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Figure 1: Overview of the GMAI-MMBench. The benchmark is meticulously designed for testing
LVLMs’ abilities in real-world clinical scenarios with three key features: (1) Comprehensive medical
knowledge: It consists of 284 diverse clinical-related datasets from worldwide sources, covering 38
modalities. (2) Well-categorized data structure: It features 18 clinical VQA tasks and 18 clinical
departments, meticulously organized into a lexical tree. (3) Multi-perceptual granularity: Interactive
methods span from image to region level, offering varying degrees of perceptual details.

Abstract

Large Vision-Language Models (LVLMs) are capable of handling diverse data
types such as imaging, text, and physiological signals, and can be applied in vari-
ous fields. In the medical field, LVLMs have a high potential to offer substantial
assistance for diagnosis and treatment. Before that, it is crucial to develop bench-
marks to evaluate LVLMs’ effectiveness in various medical applications. Current
benchmarks are often built upon specific academic literature, mainly focusing on
a single domain, and lacking varying perceptual granularities. Thus, they face
specific challenges, including limited clinical relevance, incomplete evaluations,
and insufficient guidance for interactive LVLMs. To address these limitations,
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we developed the GMAI-MMBench, the most comprehensive general medical AI
benchmark with well-categorized data structure and multi-perceptual granularity to
date. It is constructed from 284 datasets across 38 medical image modalities, 18
clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual
Question Answering (VQA) format. Additionally, we implemented a lexical tree
structure that allows users to customize evaluation tasks, accommodating various
assessment needs and substantially supporting medical AI research and applications.
We evaluated 50 LVLMs, and the results show that even the advanced GPT-4o
only achieves an accuracy of 53.96%, indicating significant room for improvement.
Moreover, we identified five key insufficiencies in current cutting-edge LVLMs that
need to be addressed to advance the development of better medical applications.
We believe that GMAI-MMBench will stimulate the community to build the next
generation of LVLMs toward GMAI.

Website: https://uni-medical.github.io/GMAI-MMBench.github.io/
Huggingface: https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench
OpenDataLab: https://opendatalab.com/GMAI/MMBench
Evaluation: https://github.com/open-compass/VLMEvalKit [64]

Introduction

In clinical practice, diverse demands may be proposed by different medical institutions for disease
diagnosis and treatment. These demands can be potentially fulfilled by general medical AI which
provides general-purpose medical models to tackle a wide range of medical tasks. Such models are
typically Large Vision-Language Models (LVLMs) trained on diverse data types, including imaging
and clinical texts, to tackle diverse tasks, e.g., disease diagnosis and severity grading. Noticeably,
the state-of-the-art LVLMs, including general-purpose ones (e.g., DeepSeek-VL [155], GPT-4V [5]
and Claude3-Opus [13]) and medical purposes (like MedDr [95], LLaVA-Med [138], and Med-
Flamingo [181]), have both demonstrated promising performance in some medical visual-textual
tasks. However, it remains unclear to what extent these LVLMs can accommodate the diverse
demands in real clinical scenarios. To validate their effectiveness and promote their application in
clinical practice, it is crucial to establish a comprehensive benchmark to address diverse real-world
demands. Therefore, an ideal benchmark should achieve three specific aims:

Aim 1. Comprehensive medical knowledge. Medical knowledge is embedded in medical data,
so comprehensive medical knowledge requires diverse medical data of different modalities from
various data sources. In clinical scenarios, various types of imaging modalities, including X-rays,
Computed Tomography (CT), Magnetic Resonance Image (MRI), Ultrasound Imaging, Positron
Emission Tomography (PET), etc, are employed for diagnostic and therapeutic purposes, reflecting
different aspects of medical knowledge [267]. Besides, to encompass the diverse medical knowledge
from different clinical facilities, the data used in a comprehensive benchmark should cover a range of
different clinical institutions and hospitals which are preferably distributed across the world [205].
These demands favor benchmarks collected from diverse sources. Aim 2. Comprehensive evaluation
across all clinical aspects. A comprehensive benchmark should be easily customized to evaluate any
specific abilities of LVLMs for each clinical professional. This property is necessary because there
are an excessive amount of clinical institutions, departments, and practitioners, each having their
own specific demand. Their potential demands can be concluded in two sides: 1) Evaluation across
diverse tasks. Some clinical practitioners may require MRI data for disease diagnosis while others
may need to deal with surgical workflow recognition for computer-assisted or robot-assisted surgery
systems. Therefore, a comprehensive benchmark should cover all clinical demands by encompassing
a sufficient number of diseases and tasks. 2) Evaluation for diverse clinical departments. Some
departments may be interested in LVLMs’ performance on oncology-related tasks only while others
may only focus on urology-related ones. As such, a comprehensive benchmark should be easily used
for customized evaluation to accommodate the diverse demands of different clinical departments.
These demands further require the benchmark to be well-categorized to facilitate ease of use. Aim 3.
Interactive ability in multi-perceptual granularity. Given a specific medical image, doctors need
to look through the whole image (image level) for an overview while also requiring comprehensive
explanations in a specific position (mask level) or region (box level). This demand requires LVLMs

2

https://uni-medical.github.io/GMAI-MMBench.github.io/
https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench
https://opendatalab.com/GMAI/MMBench
https://github.com/open-compass/VLMEvalKit


Table 1: Comparison between GMAI-MMBench and other existing benchmarks in the biomedical
field. GMAI-MMBench is sourced from extensive data sources worldwide, offering comprehensive
medical knowledge detailed in modalities, clinical tasks, departments, and perceptual granularities.
Dept and PG indicate department and perceptual granularity, respectively. In the perceptual granularity
types, I, B, M, and C denote image, box, mask, and contour, respectively. ∗ indicates the test set.

Benchmark Modality Size Task Dept PG Source
Medical-Diff-VQA∗ [105] 1 70K 7 ✘ I MIMIC-CXR [120]
PathVQA∗ [96] 1 6K 7 ✘ I Textbook, PEIR [1]
Cholec80-VQA∗ [222] 1 9K 2 ✘ I Cholec80 [243]
VQA-RAD [136] 3 3K 11 ✘ I Teaching cases from Medpix [2]
RadBench [254] 6 137K 5 ✘ I 13 image-text paired datasets
MMMU (H & M) [262] 6 2K 5 ✘ I, B Exam, Quiz, Textbook
SLAKE∗ [145] 3 2K 10 ✘ I MSD [227], Chestx-ray8 [250], CHAOS [127]
OmniMedVQA [106] 12 128K 5 ✘ I 73 classification datasets
GMAI-MMBench 38 26K 18 ✔ I, B, M, C 284 datasets from both public and hospital

to perceive the granularity range from a specific position to the entire image. Thus, a comprehensive
benchmark should also evaluate LVLMs’ perceptual granularity.

As shown in Table 1, there are some medical benchmarks, such as Medical-Diff-VQA [105],
PathVQA [96], Cholec80-VQA [222], and Cholec80 [243], dedicated to evaluating specific abilities
of LVLMs. These benchmarks effectively assess the performance of LVLMs within a particular
modality or task, thereby facilitating the optimization of models for specific applications. Nonetheless,
their limited modalities and tasks cannot meet the requirement of modal and task diversity. Other
benchmarks including VQA-RAD [136], RadBench [254], and MMMU (Health & Medicine) [262]
address this issue by providing multiple modalities and tasks for evaluation, with data consisting of
natural image-text pairs sourced from academic papers, textbooks, and specific databases. Though
these benchmarks significantly enhance the breadth and depth of medical assessment, they may not
accurately reflect actual clinical requirements, as their sources are distant from clinic practice and
prone to data leakage [44, 72]. More importantly, none of these benchmarks can be customized to
evaluate various abilities of LVLMs to accommodate highly diverse clinical demands because their
data are not well categorized. For instance, it is hard to obtain the dimension, modality, and task
information of a specific data point in these datasets, which prevents a clinical professional from
evaluating LVLMs using the CT (modality) of 2D (dimension) images for blood vessel recognition
(task). Due to this, they can hardly be used for customized evaluation. In summary, though existing
medical multimodal benchmarks provide valuable evaluation frameworks, they present challenges
in fully addressing clinical needs. Future developments necessitate more refined and customized
benchmarks that are closely aligned with real-world clinical applications.

To address these challenges, we introduce the General Medical AI MultiModal Benchmark (GMAI-
MMBench), a comprehensive multimodal benchmark that is well-categorized for medical image
understanding and reasoning in real-world clinical scenarios. As shown in Figure 1, its comprehen-
siveness can be concluded in three aspects: 1) comprehensive medical knowledge from diverse
modalities, tasks, and data sources, 2) well-categorized in lexical tree structures, and 3) multiple
perceptual granularity.

First, GMAI-MMBench has diverse modalities and data sources because it is built upon 284 high-
quality datasets collected across the world. These 284 datasets cover various medical image tasks,
including 2D detection, 2D classification, and 2D/3D segmentation, to ensure the diversity of tasks.
Using these foundational visual-based tasks has two advantages over using off-the-shelf image-text
pair data. 1) It minimizes the risk of data leakage since the data in our benchmark are mostly image-
label pairs rather than image-text pairs. The image-label pairs are not directly convertible to LVLMs
training samples (usually image-text pairs), thus less likely to be used to train LVLMs; 2) It ensures
high clinical relevance, as the images are sourced from hospitals and annotated by professional
doctors. We then carefully selected approximately 26K cases with 38 different modalities to construct
the GMAI-MMBench, thus meeting the modal diversity goal.

Second, GMAI-MMBench is a well-categorized medical benchmark that can comprehensively
evaluate the pros and cons of various aspects of LVLMs, benefiting both model developers and users
with specific needs. Specifically, we develop a categorization system, called lexical tree structure,
which categorizes all cases into 18 clinical VQA tasks, 18 departments, 38 modalities, etc. The
‘clinical VQA tasks’ / ‘departments’ / ‘modalities’ are the lexicons that can be used to retrieve desired
cases for evaluation. For instance, the oncology department can select cases related to oncology to
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Figure 2: Examples of GMAI-MMBench. The benchmark covers a variety of clinical tasks, depart-
ments, and perceptual granularities from worldwide data sources.

evaluate LVLMs’ performance for oncology tasks, thus greatly enhancing flexibility and usability for
specific demands.

Third, GMAI-MMBench can evaluate LVLMs’ abilities to perceive different granularity, such as
understanding the local image content in a mask or bounding box as well as recognizing the entire
image content. This ability is important for detection, segmentation, and classification tasks as these
tasks need different perceptual granularity for better performance. Furthermore, the perception of
bounding boxes or masks is vital for interactive LVLMs [132], so the perceptual granularity evaluation
in our benchmark can possibly be used to improve interactive LVLMs.

We assess 44 publicly available LVLMs (38 general purpose and 6 medical-specific models) as well
as advanced proprietary LVLMs such as GPT-4o, GPT-4V, Claude3-Opus, Gemini 1.0, Gemini 1.5,
and Qwen-VL-Max on our GMAI-MMBench. We summarize the key findings as follows:

(1) GMAI-MMBench presents significant challenges in clinical practice. Even the best proprietary
GPT-4o only achieves an accuracy of 53.96%, which demonstrates the deficiencies of cutting-edge
LVLMs in tackling medical professional issues, thus they can hardly fulfill diverse clinical demands.

(2) Open-source LVLMs, such as MedDr and DeepSeek-VL-7B, achieve approximately 44% accuracy,
making them very competitive compared to proprietary models. For instance, they surpass Claude3-
Opus and Qwen-VL-Max and achieve comparable performance to Gemini 1.5 and GPT-4V. However,
they still exhibit a clear performance disparity compared to the top-performing GPT-4o.

(3) Most medical-specific models have difficulty reaching a general performance level (approximately
30% accuracy) achieved by general LVLMs, except MedDr with 43.69% accuracy.

(4) Most LVLMs exhibit unbalanced performance across different clinical VQA tasks, departments,
and perceptual granularity. Notably, in the experiments on different perceptual granularity, box-level
annotation consistently results in the worst accuracy, even worse than image-level annotation.
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Figure 3: Overall illustration of GMAI-MMBench. The data collection can be divided into three main
steps: 1) We search hundreds of datasets from both the public and hospitals, then keep 284 datasets
with highly qualified labels after dataset filtering, uniforming image format, and standardizing label
expression. 2) We categorize all labels into 18 clinical VQA tasks and 18 clinical departments,
then export a lexical tree for easily customized evaluation. 3) We generate QA pairs for each label
from its corresponding question and option pool. Each question must include information about
image modality, task cue, and corresponding annotation granularity. The final benchmark is obtained
through additional validation and manual selection.

(5) The major factors leading to performance bottlenecks include perceptual errors (e.g., misrecog-
nition of image content), lack of medical domain knowledge, irrelevant responses, and rejection of
answering questions due to safety protocols.

In summary, our contributions are three-fold. (a) We introduce a comprehensive benchmark, GMAI-
MMBench, to evaluate existing LVLMs in clinical practice. GMAI-MMBench covers 38 modalities,
18 clinical VQA tasks, 18 departments, and 4 different perceptual granularity from 284 medical-related
datasets, thereby offering a diverse range of modalities, tasks, and data sources. (b) GMAI-MMBench
organizes each data point in lexical tree structures, with lexicons used to select desired data points
to evaluate various aspects of LVLMs’ abilities. Thus, GMAI-MMBench facilitates customized
evaluation to meet highly diverse demands in clinical practice. See Supplementary C.2. (c) We
evaluate 44 representative general-purpose LVLMs, including both open-source and proprietary
models, as well as 6 medical-specific LVLMs on GMAI-MMBench. The comprehensive evaluation
reveals the pros and cons of different LVLMs from diverse perspectives, providing insights to improve
these models to accommodate real-world clinical applications.

GMAI-MMBench

Overview

We propose GMAI-MMBench, an innovative benchmark meticulously designed for the medical field,
capable of providing comprehensive evaluations of LVLMs across various aspects of healthcare.
(shown in the Figure 2) We collect 284 datasets from public sources and hospitals, covering medical
imaging tasks of detection, classification, and segmentation, to form the data fuel for establishing such
a benchmark. The detailed datasets are listed in the supplementary. Based on the data foundation,
we design a reliable pipeline to generate question-answering pairs and organize them from different
perspectives with manual validation. Finally, we carefully select approximately 26K questions with
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varying levels of perceptual granularity from the manually validated cases to construct the final
GMAI-MMBench.

Benchmark Construction

The detailed steps of constructing our GMAI-MMBench can be divided into three main steps as
shown in Figure 3.

Dataset collection and standardization. As our aim is to build a large-scale benchmark for the
comprehensive evaluation of LVLMs, the first and most important step is data collection. In contrast
to benchmarks that directly use multimodal paired datasets, we source the datasets in two ways to
minimize the data leakage problem and ensure the diversity and clinical property: First, we conduct
thorough Internet searches to collect as many 2D/3D medical-related datasets as possible, retaining
those that involve classification, detection, and segmentation tasks. Second, we collaborate with
several hospitals that have agreed to share their ethically approved data. This process has enabled
us to curate 284 datasets with highly qualified labels. Following data collection, we standardize
both images and labels. For images, we adhere to the SA-Med2D-20M [258] protocol, transforming
all 2D/3D medical images into 2D RGB images for further evaluation. For labels, we refer to the
Medical Subject Headings (MeSH)3 to ensure every label is unique, clear, and free from conflict
or ambiguity within each task. Specifically, we focus on three main situations: (1) expanding all
abbreviations, such as changing “AMD” to “Age-related macular degeneration”; (2) unifying different
expressions for the same target, such as standardizing both “lung nodule” and “pulmonary nodule”
to “pulmonary nodule”; (3) merging labels with left and right distinctions, such as combining “left
kidney” and “right kidney” into “kidney”, since our goal is to evaluate the abilities of understanding
and reasoning rather than directional judgment.

Label categorization and lexical tree construction. We construct a well-categorized lexical tree
to ensure GMAI-MMBench can be easily customized to evaluate the specific abilities of LVLMs
for each clinical professional. The overview of the tree is shown in Figure 3, and the complete
version is in supplementary. First, we integrate data properties and real applications to propose
three subjects tailored for the biomedical fields: clinical VQA tasks, departments, and perceptual
granularities. Specialized options are generated for each subject individually: For clinical VQA tasks,
we extract keywords according to the original dataset descriptions and then lead to 18 categories. For
departments, we refer to the Mayo Clinic4 and assign all labels to 18 departments. For perceptual
granularity, we construct 4 types based on annotation methods (see the rightmost panel in Figure 1).
We then recruit several biomedical engineering university students (including coauthors) to tag labels
from the constructed options in these subjects. Specifically, each label is randomly assigned to 3
people, and their tagging results are merged by voting. After label categorization, the lexical tree can
be directly exported for customized evaluation. An example of customized evaluation is presented in
Supplementary C.2.

QA generation and selection. Following the label categorization, all labels are assigned to specific
modalities, clinical VQA tasks, departments, and perceptual granularities. Based on the well-
organized structure, we generate the VQA pairs for every label with three steps. First, questions and
options generation. For question generation, a question must include three key pieces of information
in GMAI-MMBench: modality, clinical task hint, and perceptual granularity information. For
each combination of the three elements, we randomly pick 10 labels and generate 10 candidate
questions with GPT-4o for each selected label. These questions are then manually reviewed to meet
the following criteria: (1) they must include necessary information on modality, clinical task, and
perceptual granularity; (2) they do not include any hints that would allow the question to be answered
without viewing the image. After manual review, the modality is replaced with a placeholder for
standardization. For example, a valid question template for Disease Diagnosis in segmentation task is:
“This is a <modality> image. Which of the following options is the most appropriate to demonstrate
symptoms in the marked area?” Once the question pool is generated, each category has its question
pool based on its tags of modality, clinical VQA task, and perceptual granularity. For options
generation, the global view (image level) and local view (mask level, bounding box level, and contour
level) of perceptual granularity are handled separately. For the global view, the option pool for each
answer is sourced from the remaining categories within the answer’s dataset to avoid introducing

3https://www.ncbi.nlm.nih.gov/mesh/1000048
4https://www.mayoclinic.org/departments-centers
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multiple correct answers. For instance, a fundus image dataset may focus solely on pathological
myopia, but the images might also contain other diseases like diabetic retinopathy. Including other
categories could render the question invalid. For the local view, we construct a shared option pool for
the answers with the combination of modality, clinical VQA task, and perceptual granularity. Second,
as each answer with corresponding images has its own question and option pool, we generate all QA
pairs for all images. For each image, we randomly select a question from its question pool and replace
the placeholder with its modality. Along with the correct answer, we randomly select n options
(where n = randint(max(1, len(option pool)),min(4, len(option pool)) from the corresponding
option pool to create the set of options. Third, to ensure data quality and balanced distribution, we
perform additional manual validation and selection. In the validation stage, we assess the QA pairs
based on the following criteria: (1) We drop cases whose questions do not contain the three key
components and can be answered without the image. (2) We filter out cases with incorrect answers.
(3) We drop cases where images have unclear targets or poor image quality. In the selection stage, we
choose 30 cases per answer to ensure balance across all tasks (all cases are included if the number is
less than 30). The selection rule is based on the consideration of diversity: Selecting images with
large differences in appearance, data source, age, gender, etc. As a result, we finalize 25831 QA pairs
for the GMAI-MMBench (4550 in the validation set and 21281 in the test set).

Experiments

Experiment setup

In this study, we evaluated various LVLMs, including medical-specific, open-source, and proprietary
API general models. We selected versions with approximately 7 billion parameters for testing, and the
model weights were sourced from their respective official Hugging Face repositories. Our evaluation
was conducted using the VLMEvalKit5 framework and Multi-Modality-Arena6.

The assessment was performed in a “zero-shot” setting. Specifically, our evaluation prompts did not
include any example cues, and the models were required to perform inference on tasks without prior
training or examples related to those tasks. This approach better tests the models’ generalization
capabilities and comprehension, examining their performance when confronted with novel problems.
All tests were executed using NVIDIA A100 GPUs with 80GB of memory.

Models

For completeness, we conducted evaluations using several state-of-the-art LVLMs to benchmark their
performance on GMAI-MMBench, including both general models that have extended capabilities in
the biomedical domain and medical-specific models that are meticulously trained for clinical medicine.
By default, we use the latest, largest, and best-performing available checkpoint for each model family
to ensure optimal performance. We picked 29 out of 50 models for demonstration in the main text,
additional results are provided in the supplementary material. For medical-specific models, we include
5 latest powerful LVLMs: MedDr [95], LLaVA-Med [138], Med-Flamingo [181], RadFM [254], and
Qilin-Med-VL-Chat [149]. For general models, we test 18 representative LVLMs: TransCore-M [3],
VisualGLM-6B [61], mPLUG-Owl2 [259], OmniLMM-12B [261], Mini-Gemini-7B [141], Emu2-
Chat [237], MMAlaya [154], CogVLM-Chat [249], InstructBLIP-7B [56], DeepSeek-VL-7B [155],
Idefics-9B-Instruct [137], XComposer2 [62], Yi-VL-6B [7], InternVL-Chat-V1.5 [46], LLAVA-V1.5-
7B [148], LLAVA-InternLM2-7b [54], MiniCPM-V2 [257], and Qwen-VL-Chat [18]. In addition, we
also evaluate 6 proprietary LVLMs via API: Qwen-VL-Max [18], Claude3-Opus [13], GPT-4V [5],
GPT-4o [5], Gemini 1.0 [240], and Gemini 1.5 [211].

Metrics

To evaluate the model’s performance, we use macro-averaged accuracy (ACC) as the evaluation
metric for single-choice questions. For multiple-choice questions, we first count the number of
correct predictions for each case, then calculate accuracy (ACCmcq) and recall (Recallmcq) based on

5https://github.com/open-compass/VLMEvalKit
6https://github.com/OpenGVLab/Multi-Modality-Arena/tree/main/MedicalEval/

Question-answering_Score
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Figure 4: Results for single-choice questions of different models on different perceptual granularities,
including Contour level, Mask level, Image level, and Box level.

Table 2: Results for single-choice questions of different LVLMs on clinical VQA tasks. The best-
performing model in each category is in-bold, and the second best is underlined. Abbreviations: the
full terms of all clinical VQA tasks are listed in Table 5 of supplementary material.

Model name Overall
(val)

Overall
(test) AR BVR B CR C DD IQG MR M NT OR-A OR-HN OR-P OR-T SG SAR SIR SWR

Random 25.70 25.94 38.20 22.73 22.92 22.72 24.06 26.66 27.13 27.00 20.00 24.75 21.37 22.93 22.33 21.18 32.43 24.23 21.39 23.71
Medical Special Model

Med-Flamingo [181] 12.74 11.64 6.67 10.14 9.23 11.27 6.62 13.43 12.15 6.38 8.00 18.18 9.26 18.27 11.00 11.53 12.16 5.19 8.47 11.43
LLaVA-Med [138] 20.54 19.60 24.51 17.83 17.08 19.86 15.04 19.81 20.24 21.51 13.20 15.15 20.42 23.73 17.67 19.65 21.70 19.81 14.11 20.86
Qilin-Med-VL-Chat [149] 22.34 22.06 29.57 19.41 16.46 23.79 15.79 24.19 21.86 16.62 7.20 13.64 24.00 14.67 12.67 15.53 26.13 24.42 17.37 25.71
RadFM [254] 22.95 22.93 27.16 20.63 13.23 19.14 20.45 24.51 23.48 22.85 15.60 16.16 14.32 24.93 17.33 21.53 29.73 17.12 19.59 31.14
MedDr [95] 41.95 43.69 41.20 50.70 37.85 29.87 28.27 52.53 36.03 31.45 29.60 47.47 33.37 51.33 32.67 44.47 35.14 25.19 25.58 32.29

Open-Source LVLMs
VisualGLM-6B [61] 29.58 30.45 40.16 33.92 24.92 25.22 24.21 32.99 29.96 29.53 21.20 37.88 30.32 24.80 13.33 29.88 33.11 19.62 19.16 37.43
Idefics-9B-Instruct [137] 29.74 31.13 40.39 30.59 26.46 33.63 22.56 34.38 25.51 26.71 21.60 27.78 27.47 32.80 24.67 23.41 32.66 23.08 21.39 30.57
InstructBLIP-7B [56] 31.80 30.95 42.12 26.92 24.92 28.09 21.65 34.58 31.58 29.23 22.40 30.30 28.95 27.47 23.00 24.82 32.88 19.81 21.64 26.57
Mini-Gemini-7B [141] 32.17 31.09 29.69 39.16 31.85 28.26 10.38 35.58 29.96 28.78 20.80 34.34 29.58 36.53 24.00 31.76 22.45 25.96 18.56 29.43
MMAlaya [154] 32.19 32.30 41.20 35.14 32.15 34.17 27.82 35.09 28.34 30.27 18.00 46.97 20.21 31.20 16.00 34.59 32.28 23.65 22.93 30.29
Yi-VL-6B [7] 34.82 34.31 41.66 39.16 26.62 30.23 31.88 38.01 26.72 24.93 25.20 37.37 29.58 31.20 32.33 30.59 36.71 24.81 23.18 31.43
Qwen-VL-Chat [18] 35.07 36.96 38.09 40.56 38.00 32.20 25.71 44.07 24.70 30.56 24.00 40.91 29.37 36.53 26.00 27.29 35.14 16.54 20.10 34.00
CogVLM-Chat [249] 35.23 36.08 40.97 30.77 27.69 32.74 19.40 41.10 36.84 34.72 24.00 40.91 36.74 37.33 26.00 33.65 36.56 20.19 23.95 26.57
mPLUG-Owl2 [259] 35.62 36.21 37.51 41.08 30.92 38.10 27.82 41.59 28.34 32.79 22.40 40.91 24.74 38.27 23.33 36.59 33.48 20.58 23.01 32.86
Emu2-Chat [237] 36.50 37.59 43.27 47.73 26.31 40.07 28.12 44.00 36.44 28.49 20.40 31.82 26.74 37.60 26.67 29.76 33.63 23.27 26.43 29.43
OmniLMM-12B [261] 37.89 39.30 39.82 40.56 32.62 37.57 24.81 46.68 35.63 35.01 27.60 57.58 28.42 34.00 25.00 29.18 34.46 24.42 27.54 40.29
LLAVA-V1.5-7B [148] 38.23 37.96 45.45 34.27 30.92 41.32 21.65 44.68 34.01 27.74 23.60 43.43 28.00 42.13 29.00 35.06 33.41 22.12 23.61 29.14
XComposer2 [62] 38.68 39.20 41.89 37.59 33.69 40.79 22.26 45.87 36.44 32.94 27.20 58.59 26.11 36.40 43.67 37.29 32.06 23.46 27.80 32.86
TransCore-M [3] 38.86 38.70 40.74 41.78 20.77 35.06 34.74 45.69 32.39 32.94 24.40 44.95 31.05 38.93 27.00 33.76 33.86 23.46 25.49 31.14
InternVL-Chat-V1.5 [46] 38.86 39.73 43.84 44.58 34.00 33.99 31.28 45.59 33.20 38.28 32.40 42.42 31.89 42.80 27.00 36.82 34.76 23.27 24.72 32.57
LLAVA-InternLM2-7b [54] 40.07 40.45 39.82 37.94 30.62 35.24 29.77 48.97 34.01 25.96 20.80 53.03 30.95 42.67 32.00 39.88 32.43 21.73 24.38 38.00
DeepSeek-VL-7B [155] 41.73 43.43 38.43 47.03 42.31 37.03 26.47 51.11 33.20 31.16 26.00 44.95 36.00 58.13 36.33 47.29 34.91 18.08 25.49 39.43
MiniCPM-V2 [257] 41.79 42.54 40.74 43.01 36.46 37.57 27.82 51.08 28.74 29.08 26.80 47.47 37.05 46.40 25.33 46.59 35.89 22.31 23.44 31.71

Proprietary LVLMs
Claude3-Opus [13] 32.37 32.44 1.61 39.51 34.31 31.66 12.63 39.26 28.74 30.86 22.40 37.37 25.79 41.07 29.33 33.18 31.31 21.35 23.87 4.00
Qwen-VL-Max [18] 41.34 42.16 32.68 44.58 31.38 40.79 10.68 50.53 32.79 44.36 29.20 51.52 41.37 58.00 30.67 41.65 26.95 25.00 24.64 39.14
GPT-4V [5] 42.50 44.08 29.92 48.95 44.00 37.39 12.93 52.88 32.79 44.21 32.80 63.64 39.89 54.13 37.00 50.59 27.55 23.08 25.75 37.43
Gemini 1.0 [240] 44.38 44.93 42.12 45.10 46.46 37.57 20.45 53.29 35.22 36.94 25.20 51.01 34.74 59.60 34.00 50.00 36.64 23.65 23.87 35.43
Gemini 1.5 [211] 47.42 48.36 43.50 56.12 51.23 47.58 2.26 55.33 38.87 48.07 30.00 76.26 51.05 75.87 46.33 62.24 20.57 27.69 30.54 40.57
GPT-4o [5] 53.53 53.96 38.32 61.01 57.08 49.02 46.62 61.45 46.56 56.38 34.00 75.25 53.79 69.47 48.67 65.88 33.93 22.88 29.51 39.43

the proportion of correct matches to the prediction length and the length of the ground-truth options,
respectively. More details are shown in supplementary materials. If a model’s output does not include
clearly followed instructions to select an answer or letter options, we use ChatGPT-3.5-turbo-0613 to
extract the answer. If an answer cannot be extracted, it is treated as an error.

Results

Analysis

After reviewing the evaluation results, we have drawn 2 conclusions and identified 5 insufficiencies
that require further improvement in future LVLMs in the medical domain:

Conclusion 1. Medical tasks are still challenging for all LVLMs: Our GMAI-MMBench provides
a comprehensive multitask challenge, revealing that even the most advanced model, GPT-4o, is
limited to an accuracy of around 54% (see Table 2 and Table 3). This does not meet the clinical
requirement and indicates that all current LVLMs in the medical domain still require significant
improvement.

Conclusion 2. Open-source models are catching up to the commercialized models: In the
comparison between open-source and commercialized models, most open-source models lag behind
their commercialized counterparts. Leading open-source models such as MedDr and DeepSeek-
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Table 3: Results for single-choice questions of different LVLMs on departments. The best-performing
model in each category is in-bold, and the second best is underlined. Abbreviations: the full terms of
all departments are listed in Table 6 of supplementary material

Model name Overall
(val)

Overall
(test) CS D E GH GS H ID LMP NH N OG OM O OS ENT/HNS PM SM U

Random 25.70 25.94 22.82 25.19 21.00 25.97 22.24 24.45 31.13 28.99 22.86 24.00 29.15 27.77 30.36 25.92 22.53 24.74 22.87 29.19
Medical Special Model

Med-Flamingo [181] 12.74 11.64 11.76 12.49 10.00 10.88 9.33 5.42 7.28 10.05 12.00 10.91 12.88 14.89 15.37 12.40 13.43 12.89 14.92 10.47
LLaVA-Med [138] 20.54 19.60 26.12 20.20 29.00 20.31 16.30 18.46 15.23 21.84 20.86 16.73 21.69 19.23 20.18 18.38 20.99 16.87 20.49 21.55
Qilin-Med-VL-Chat [149] 22.34 22.06 12.94 21.06 15.50 22.09 18.98 17.33 17.88 22.92 31.14 29.82 20.00 21.83 25.55 19.07 14.81 29.42 22.17 22.29
RadFM [254] 22.95 22.93 24.24 23.02 20.00 20.59 20.83 19.49 28.48 24.42 18.00 32.00 16.95 26.90 26.25 18.26 26.54 25.19 23.74 20.20
MedDr [95] 41.95 43.69 53.18 45.28 33.00 44.78 28.03 29.91 47.68 35.22 38.29 78.55 25.08 49.53 45.31 52.09 48.61 52.36 54.21 39.90

Open-Source LVLMs
VisualGLM-6B [61] 29.58 30.45 52.71 25.95 14.00 31.69 22.06 25.17 30.46 25.50 30.29 59.27 15.93 29.97 37.79 30.09 23.61 32.85 38.19 23.03
Idefics-9B-Instruct [137] 29.74 31.13 19.76 33.98 21.00 30.08 24.46 26.66 50.33 28.74 36.00 58.55 36.27 29.64 36.76 36.07 24.38 31.36 32.04 29.19
InstructBLIP-7B [56] 31.80 30.95 27.06 28.99 17.50 34.24 21.78 25.84 43.05 29.15 19.14 53.09 27.46 28.64 31.99 34.58 30.25 30.76 41.09 31.28
Mini-Gemini-7B [141] 32.17 31.09 34.59 39.63 23.50 35.74 23.46 19.80 41.06 25.91 40.86 56.00 19.32 21.63 35.73 35.83 33.95 40.57 29.14 29.56
MMAlaya [154] 32.19 32.30 71.06 37.68 38.00 28.30 27.40 27.64 51.66 32.39 28.86 83.64 29.49 27.37 35.92 36.70 20.99 27.53 29.43 28.08
Yi-VL-6B [7] 34.82 34.31 39.76 43.76 56.00 27.30 25.91 27.23 45.70 32.56 44.29 65.45 47.46 36.38 39.00 35.39 25.46 29.77 39.06 35.22
Qwen-VL-Chat [18] 35.07 36.96 36.47 39.63 36.50 27.08 20.79 27.64 60.93 30.23 52.57 70.55 37.29 47.13 39.37 46.67 34.57 37.63 47.88 39.90
CogVLM-Chat [249] 35.23 36.08 30.59 38.98 42.50 31.41 26.22 23.62 47.02 34.22 51.43 56.00 32.54 44.13 38.67 37.94 30.86 41.11 45.91 29.19
mPLUG-Owl2 [259] 35.62 36.21 47.76 40.50 41.00 33.46 27.22 28.16 51.66 33.14 38.86 68.73 16.27 38.58 43.34 35.70 27.78 41.61 39.76 30.91
Emu2-Chat [237] 36.50 37.59 27.53 35.83 27.50 34.41 28.49 29.35 60.26 36.63 34.00 64.73 28.81 44.79 43.20 37.69 37.50 41.86 43.18 35.34
OmniLMM-12B [261] 37.89 39.30 39.53 37.46 41.50 36.18 27.36 28.00 60.93 37.46 55.43 80.00 31.19 35.71 44.89 42.49 28.24 43.80 51.19 42.86
LLAVA-V1.5-7B [148] 38.23 37.96 42.35 37.57 44.50 36.13 27.99 24.91 49.01 31.31 34.00 68.36 27.12 45.39 42.46 42.80 33.80 44.20 41.21 38.92
XComposer2 [62] 38.68 39.20 32.71 42.13 70.50 33.13 29.62 27.02 54.30 34.05 23.14 83.64 39.66 46.53 44.23 45.73 28.86 45.55 41.32 41.87
TransCore-M [3] 38.86 38.70 39.06 43.87 24.50 40.18 29.08 30.79 52.98 32.48 38.86 66.91 42.37 42.79 44.75 40.44 36.73 34.00 47.19 35.71
InternVL-Chat-V1.5 [46] 38.86 39.73 36.47 44.84 53.50 37.07 26.63 31.61 60.26 34.14 36.29 67.27 37.63 55.21 47.13 38.69 41.98 39.17 37.55 41.26
LLAVA-InternLM2-7b [54] 40.07 40.45 43.53 40.72 60.50 34.74 30.12 27.44 51.66 33.39 50.86 74.55 26.44 49.13 42.74 43.12 31.94 50.87 47.01 39.04
DeepSeek-VL-7B [155] 41.73 43.43 60.00 43.97 47.50 45.12 28.22 31.20 46.36 32.97 52.29 67.64 61.36 49.27 44.23 49.97 52.78 45.00 53.63 38.79
MiniCPM-V2 [257] 41.79 42.54 37.88 43.65 35.50 42.67 26.49 29.24 37.75 33.31 59.71 67.27 38.64 50.87 42.64 50.59 40.90 51.07 57.81 35.10

Proprietary LVLMs
Claude3-Opus [13] 32.37 32.44 38.59 34.42 43.50 27.97 22.96 23.62 52.32 25.42 25.14 66.91 15.93 35.25 41.06 36.07 37.50 40.67 35.40 34.24
Qwen-VL-Max [18] 41.34 42.16 50.59 47.23 74.00 40.68 29.03 26.71 58.94 34.05 62.29 85.45 27.80 44.39 43.90 42.99 48.61 49.38 51.13 40.52
GPT-4V [5] 42.50 44.08 64.00 44.95 58.50 42.45 30.03 29.40 58.28 32.31 54.57 83.27 37.63 48.26 49.04 48.41 44.60 51.87 53.98 40.89
Gemini 1.0 [240] 44.38 44.93 57.41 46.25 57.50 36.40 28.67 27.80 45.03 38.21 58.57 86.55 40.68 51.74 47.45 55.64 50.46 47.83 61.58 41.87
Gemini 1.5 [211] 47.42 48.36 55.29 50.81 54.00 51.05 36.59 29.86 56.95 36.88 58.00 88.00 47.46 48.13 51.19 56.88 64.51 56.50 59.78 31.65
GPT-4o [5] 53.53 53.96 66.82 48.53 64.50 55.94 35.10 48.53 74.17 43.52 64.57 91.64 37.63 57.88 55.21 62.80 66.98 58.39 64.60 46.18

VL-7B, although not as accurate as GPT-4o, have surpassed Claude3 Opus and Qwen-VL-Max,
approaching the performance of GPT-4V. This suggests that open-source models in the medical field
are gradually catching up to the top-performing commercialized models.

Insufficiency 1. Performance on different clinical VQA tasks needs improvement: Table 2 shows
that the best-performing clinical VQA tasks are Disease Diagnosis (DD) and Nervous Tissue (NT),
with models exceeding the random baseline by an average of over 10%. However, in clinical VQA
tasks such as Severity Grading (SG) and Attribute Recognition (AR), most LVLMs face challenges,
and most of them perform worse than the random baseline. Overall, despite the advanced models like
GPT-4o and Gemini 1.5 significantly outperforming the random baseline, there remains a substantial
gap between their performance and the requirements of real-world applications, indicating that all the
models still need more specialized medical knowledge for training.

Insufficiency 2. The performance across different departments needs further balancing: In
examining performance across different medical departments, as shown in Table 3, we found that
the Infectious Diseases (ID) and Neurosurgery (N) departments performed the best. In contrast,
departments such as General Surgery (GS) and Obstetrics and Gynecology (OG) showed a need for
improvement, as the performance of all models in these areas did not significantly exceed the random
baseline compared to other departments. This indicates that current large models exhibit specialization
biases, suggesting that future development of LVLMs aiming to achieve general medical AI should
focus on balancing capabilities across all departments.
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Figure 5: Overall results for multiple-choice questions of
different models.

Insufficiency 3. The LVLMs are
not robust among different percep-
tual types: As shown in Figure 4,
models perform slightly better with
contour-level perception compared to
mask-level perception, and both out-
perform image-level perception (with-
out annotation) significantly. How-
ever, bounding box-level perception
shows the worst performance among
all perceptual types, indicating that
models are sensitive to this percep-
tual type. This evaluation underscores
the need for LVLMs to address robust-
ness issues across different perceptual
types, which is crucial for their effec-
tiveness in interactive applications.
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Figure 6: Three examples of error cases. A: Question misunderstanding. B: Perceptual Errors. C:
Lack of Knowledge. More studies can be found in the appendix.

Insufficiency 4. Medical-specific models need to enhance their instruction tuning: Interestingly,
medical-specific models significantly underperform compared to general models, despite being
trained and fine-tuned directly on relevant medical data. Specifically, LLaVA-Med is fine-tuned from
the LLaVA model series in the medical field, but its performance is even worse than LLAVA-V1.5-7B.
The primary reason for the poor performance of these medical-specific models is their inability to
follow instructions correctly and their failure to understand or answer medical-related questions
accurately. Detailed analysis can be found in the case study and supplementary materials sections
on medical model analysis. Among these, the best-performing medical-specific model is MedDr,
which is fine-tuned from the InternVL series and successfully surpasses the InternVL-Chat-V1.5.
Unlike other medical-specific models that derive instruction-tuning data from papers, online sources,
and books, MedDr builds its dataset based on high-quality medical image classification datasets.
This result suggests that the quality of currently available medical instruction tuning datasets on the
internet needs improvement and highlights the effectiveness of MedDr’s dataset construction strategy,
serving as a valuable reference for future medical-specific models.

Insufficiency 5. The performance of most LVLMs on multiple-choice questions needs im-
provement: Based on our tests, none of the models can totally match the correct answers (they
always miss or over-select), so we adopt a relatively loose evaluation method for multiple-choice
questions: using multi-choice hit rate (ACCmcq) and recall rate (Recallmcq). The experimental
results are shown in Figure 5. Using this method, we found that most models have an accuracy rate
of around 40%-50% and a recall rate of around 40%-60%. Surprisingly, InternVL-Chat-V1.5 and
Qwen-VL-Max performed well in single-choice questions but showed very poor recall and accuracy
rates in multiple-choice questions. In contrast, Qwen-VL-Chat and CogVLM-Chat, which performed
relatively poorly in single-choice questions, achieved very high recall rates and moderate accuracy
rates in multiple-choice questions, especially CogVLM-Chat with over 90% recall rate. Nonetheless,
even with this less strict evaluation method, all models had accuracy rates below 55%, indicating that
there is still significant room for improvement in answering multiple-choice questions.

Case Study

We further analyze the results by requiring the models to output content beyond the provided options
and explain their reasoning process. This approach helps us better understand the causes of errors.
Through detailed testing and analysis, we identify 5 typical errors present in the LVLMs:

Question misunderstanding: This occurs when the model incorrectly understands the purpose of
the question, leading to an inability to provide a correct response. As shown in Figure 6A, the model
is asked to answer a multiple-choice question, but it describes the problem or repeats the options
rather than choosing an option.

Perceptual Error: These errors occur when there is a mislocation or misrecognition of image content.
This means that the model’s understanding or interpretation of the visual content is incorrect, leading
to an inaccurate response. As shown in Figure 6B, the model mistakenly identifies the esophagus
as the spine, suggesting that while the model can locate the target on the image (The annotated
esophagus is very close to the spine), it makes an error in perceiving the masked content.
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Lack of knowledge: While the model can recognize text and images, it makes errors in specific
areas that require specific knowledge, indicating a deficiency in relevant training or fine-tuning in
those areas. For example, in Figure 6C, the model incorrectly identifies the staining method as
Ziehl-Neelsen and misrecognizes the blue-stained structure as Mycobacterium tuberculosis, where it
is actually a white blood cell stained with Giemsa or Wright stain. This error indicates the model’s
lack of knowledge in experimental medicine.

Irrelevant Responses: This error indicates the model fails to generate a readable answer, which is
easily found in medical-specific models like RadFM. Examples are listed in the appendix.

Reject to Answer: Some models, especially proprietary LVLMs like GPT-4V, GPT-4o, Gemini
1.0, and Gemini 1.5, commonly refuse to provide an answer due to policy reasons, because safety
is crucial according to the commercial rules and regulations. Many potentially risky responses are
declined to ensure compliance with guidelines. Those models’ strict adherence to safety protocols
and ethical standards limits response capabilities in certain domains.

Conclusion
The development of GMAI-MMBench as a benchmark for evaluating LVLMs’ capabilities represents
a significant advancement in the pursuit of general medical AI. GMAI-MMBench epitomizes the
expertise of skilled medical professionals, serving as a pivotal guide for advancing large models
toward GMAI by testing the limits of current LVLMs. Owing to the extensive and diverse source of
GMAI-MMBench, which comprises medical datasets annotated by professional healthcare providers
worldwide, this benchmark can comprehensively evaluate the model’s capability across various
specific aspects. In this way, GMAI-MMBench can guide the model development at a more fine-
grained level, accelerating the development of robust and reliable GMAI systems. Moreover, this
benchmark supports the advancement of interactive multimodal medical models by providing more
perceptual modes and annotations that are commonly used by physicians in clinical practice, thereby
creating a framework for their evaluation and improvement.

However, GMAI-MMBench, like all benchmarks, has its limitations. The manual curation process,
despite being thorough, might introduce biases, and focusing solely on medical subjects may not fully
meet the criteria for general medical AI as defined. Nevertheless, we assert that high performance on
GMAI-MMBench is essential for demonstrating the extensive subject knowledge and expert-level
reasoning skills required for general medical AI. Looking ahead, we intend to integrate human
evaluations into GMAI-MMBench. This addition will offer a more grounded comparison between
model capabilities and expert performance, providing insights into how close current AI systems are
achieving general medical AI in the medical field.
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