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Abstract

State-of-the-art Extreme Multi-Label Text001
Classification (XMTC) models rely heavily002
on multi-label attention layers to focus on003
key tokens in input text, but obtaining op-004
timal attention weights is challenging and005
resource-intensive. To address this, we intro-006
duce PLANT — Pretrained and Leveraged007
AtteNTion — a novel transfer learning strategy008
for fine-tuning XMTC decoders. PLANT sur-009
passes existing state-of-the-art methods across010
all metrics on the MIMIC-III, MIMIC-III-011
top50, and MIMIC-IV datasets. It particularly012
excels in few-shot ICD coding, outperforming013
previous models specifically designed for few-014
shot scenarios by over 50 percentage points in015
F1 scores on MIMIC-III-rare50 and by over 36016
percentage points on MIMIC-III-few, demon-017
strating its superior capability in handling rare018
codes. PLANT also shows remarkable data effi-019
ciency in few-shot settings, achieving precision020
comparable to traditional models with signif-021
icantly less data. These results are achieved022
through key technical innovations: leveraging023
a pretrained Learning-to-Rank (L2R) model as024
the planted attention layer, integrating mutual-025
information gain to enhance attention, intro-026
ducing an inattention mechanism, and imple-027
menting a stateful-decoder to maintain context.028
Comprehensive ablation studies validate the im-029
portance of these contributions in realizing the030
performance gains.031

1 Introduction032

Extreme Multi-Label Text Classification (XMTC)033

addresses the problem of automatically assigning034

each data point with most relevant subset of labels035

from an extremely large label set, often containing036

hundreds of thousands, even millions of labels and037

samples in various real-world XMTC applications.038

One major application of XMTC is in the global039

healthcare system, specifically in the context of040

998.32 : Disruption of external operation wound
· · · wound infection, and wound breakdown · · ·
428.0 : Congestive heart failure
· · · DIAGNOSES: 1. Acute congestive heart failure
2. Diabetes mellitus 3. Pulmonary edema · · ·
202.8 : Other malignant lymphomas
· · · a 55 year-old female with non Hodgkin’s lymphoma
and acquired C1 esterase inhibitor deficiency · · ·
770.6 : Transitory tachypnea of newborn
· · · Chest x-ray was consistent with transient tachypnea
of the newborn · · ·
424.1 : Aortic valve disorders
· · · mild aortic stenosis with an aortic valve area of
1.9 cm squared and 2+ aortic insuffiency · · ·

Table 1: Examples of clinical text fragments and their
corresponding ICD codes (Li and Yu, 2020).

the International Classification of Diseases (ICD)1. 041

ICD coding is the process of assigning codes repre- 042

senting diagnoses and procedures performed dur- 043

ing a patient visit using clinical notes documented 044

by health professionals (Table 1). ICD codes are 045

used for both epidemiological studies and billing 046

of services (Bottle and Aylin, 2008). XMTC has 047

been utilized to automate the manual ICD coding 048

performed by clinical coders which is time inten- 049

sive and prone to human errors (O’malley et al., 050

2005; Nguyen et al., 2018). 051

Main Challenge: Building XMTC models is chal- 052

lenging because datasets often consist of texts with 053

multiple lengthy narratives – more than 1500 to- 054

kens (i.e., words) on average. However, only a 055

small fraction of tokens are most informative with 056

regard to assigning relevant labels. Automatically 057

assigning labels become even more challenging 058

when, (1) the label space is extremely high dimen- 059

sional, and, (2) the label distribution is heavily 060

skewed. For example, in automatic ICD coding, 061

there are over 18000 and 170000 codes in ICD- 062

1https://www.who.int/standards/
classifications/classification-of-diseases
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9-CM and ICD-10-CM/PCS2, respectively. The063

skewness of ICD-9-CM label distribution in the064

MIMIC-III dataset (Johnson et al., 2016) is evident065

from the fact that approximately 5411 out of all066

the 8929 codes appear less than 10 times (refer to067

Appendix A.1, Figure 6 for a visual).068

How SOTA models address the main challenge069

in XMTC? (Red Box) In XMTC, attention mecha-070

nisms play a vital role in addressing the challenges071

of high-dimensional label spaces and skewed label072

distributions. XMTC models (Mullenbach et al.,073

2018; Xie et al., 2019; Li and Yu, 2020; Cao et al.,074

2020; Vu et al., 2021; Zhou et al., 2021; Liu et al.,075

2021; Yuan et al., 2022; Zhang et al., 2022; Yang076

et al., 2022) consistently feature a multi-label at-077

tention layer, dynamically allocating label-specific078

attention weights to the most informative tokens079

in input text. Refer to the components highlighted080

in red in Figure 1, which illustrate this critical at-081

tention layer in action. Regardless of the specific082

encoder architecture, removing this attention layer083

leads to a significant drop in performance.084

Main Shortfall in Red Box: Current SOTA085

XMTC models often begin with random attention086

weights, necessitating the ranking of all tokens087

for each label from scratch. This process is data-088

intensive, especially given the high-dimensional089

label space characteristic of XMTC datasets, lead-090

ing to high data requirements for good performance.091

Moreover, the presence of heavily skewed label dis-092

tributions further exacerbates this challenge, as rare093

labels have even higher data requirements. If one094

does not have enough data, it necessitates running095

many epochs, which causes longer training dura-096

tions and also increases the risk of overfitting (Fig-097

ure 5). Corroborating the issue of rare codes, the098

study in (Edin et al., 2023) reveals that SOTA mod-099

els exhibit considerable difficulties when predicting100

rare ICD diagnosis codes (Figure 2). Models tend101

to perform similarly across codes with compara-102

ble frequencies, implicating the higher proportion103

of rare codes in ICD as a significant factor in per-104

formance disparities. Correlations between code105

frequency and F1 score are moderately high, indi-106

cating that rare codes are predicted with less accu-107

racy than common ones. This inherent complexity108

underscores the need for efficient mechanisms to109

learn optimal attention configurations in XMTC110

models, as starting with random weights may not111

2https://www.cdc.gov/nchs/icd/icd10cm_pcs_
background.htm
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Figure 1: Architecture of PLANT showcasing the inte-
gration of contemporary SOTA components (grey box),
multi-label attention (red box), planted attention (green
box), and mutual information gain (yellow box) to en-
hance label prediction efficacy.

suffice. 112

Main Contributions: 113

1. We evaluated PLANT on the MIMIC-III and 114

MIMIC-IV datasets, widely used in automatic 115

ICD coding research. PLANT outperformed 116

21 SOTA models across 7 evaluation metrics, 117

demonstrating significant performance 118

improvements on the MIMIC-III-full, 119

MIMIC-III-top50, MIMIC-III-rare50, and 120

MIMIC-IV-full datasets (Table 3, Table 4, 121

Table 5, Table 6, Table 7). 122

2. PLANT excels in few-shot settings, effec- 123

tively handling high-dimensional skewed la- 124
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Figure 2: Comparative analysis of model performance
from (Edin et al., 2023) on rare versus common ICD
diagnosis codes, highlighting that rare codes have near
zero macro-F1scores.

Figure 3: Comparison of the Macro-F1 scores for
rare codes between PLANT and other models on the
MIMIC-III-few dataset.

bel distributions with significantly less data,125

matching traditional attention models’ preci-126

sion with only 1
10 of the data for precision at127

5 and 1
5 for precision at 15 (Figure 4).128

3. PLANT shows exceptional performance on129

the MIMIC-III-rare50 and MIMIC-III-few130

datasets, outperforming previous few-shot131

SOTA models by over 50 percentage points in132

F1 scores on MIMIC-III-rare50 and by over133

36 percentage points on MIMIC-III-few. It134

also achieves significant gains in precision135

and recall, establishing itself as the most ef-136

fective solution for rare and few-shot ICD cod-137

ing tasks (Figure 3, Table 5 and 6). We have138

made our trained models and code available139

at https://anonymous.4open.science/r/140

xxx-111/.141

Technical Contributions (Green Box Figure 1):142

The technical contributions are validated through143

comprehensive ablation studies in Section 5,144

demonstrating their significance in achieving the145

main contributions.146

1. Learning-to-Rank (L2R) Model: We in- 147

troduce PLANT, a novel transfer learning 148

approach that uses a pretrained L2R model 149

to fine-tune attention in XMTC. By lever- 150

aging L2R activations as attention weights, 151

PLANT ensures the decoder starts with well- 152

informed weights, leading to efficient conver- 153

gence and reduced overfitting. Notably, we 154

compared PLANT with a SOTA model LAAT 155

(Vu et al., 2021) on MIMIC-IV-full, showing 156

that PLANT avoids overfitting during training 157

(Figure 5). 158

2. Mutual-Information Gain: We bootstrap the 159

L2R model using mutual information gain to 160

enhance attention mechanisms. This ensures 161

that the most relevant tokens are prioritized, 162

optimizing the model’s focus on critical fea- 163

tures for improved performance in XMTC 164

tasks. 165

3. Inattention: We introduce the inattention 166

technique to filter out less relevant tokens, 167

sharpening the model’s focus on key elements 168

within a token sequence. 169

4. Stateful Decoder: Our stateful decoder ac- 170

cumulates information across segments, en- 171

abling cumulative predictions. This approach 172

improves adaptability to large documents, 173

eliminates text truncation, and ensures stable 174

GPU memory usage, enhancing both perfor- 175

mance and efficiency. 176

2 Related Work: Automatic ICD Coding 177

Early methods in ICD Coding, such as rule-based 178

approaches (Medori and Fairon, 2010) and SVM 179

classifiers (Perotte et al., 2014), struggled with the 180

complexity of medical texts. The introduction of 181

neural networks brought models like CNNs (Li 182

and Yu, 2020), LSTMs with label-specific attention 183

(Vu et al., 2021), and Transformers (Biswas et al., 184

2021), which improved feature extraction and per- 185

formance. Efforts to leverage supplementary infor- 186

mation and hierarchical structures further enhanced 187

these models. Zhou et al. (2021) and Yuan et al. 188

(2022) utilized label descriptions and synonym in- 189

formation, while Cao et al. (2020) and Vu et al. 190

(2021) explored hierarchical learning architectures. 191

Despite these advances, challenges remained in ef- 192

fectively modeling complex code relationships and 193

managing hierarchical code structures. Additional 194
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improvements were made with LSTM-based tree195

structures and adversarial learning Xie et al. (2019),196

condensed memory neural networks Prakash et al.197

(2017), and hierarchical GRU networks Baumel198

et al. (2017). Other works introduced convolu-199

tional and multi-scale feature attention networks200

Xie et al. (2019); Li and Yu (2020), graph con-201

volution and hyperbolic representations Cao et al.202

(2020), and LSTM-based attention models Vu et al.203

(2021). Moreover, shared representation networks204

(Zhou et al., 2021), effective convolutional net-205

works Liu et al. (2021), and multi-synonym atten-206

tion networks Yuan et al. (2022) were proposed207

to improve ICD coding performance. Recent ad-208

vancements introduced even more sophisticated209

approaches. Zhang and Wang (2024) proposed210

AHDD, a framework using associated and hierar-211

chical code descriptions for distilling medical notes.212

Luo et al. (2024) introduced CoRelation, enhanc-213

ing ICD code learning by modeling relationships214

within the context of clinical notes. Lu et al. (2023)215

addressed data variability and privacy constraints216

through contrastive learning and section-based pre-217

training. Li et al. (2023) tackled data imbalance and218

noisy notes with a knowledge-enhanced Graph At-219

tention Network (GAT), leveraging a large hetero-220

geneous text graph and auxiliary healthcare tasks221

to improve performance.222

Pretrained Large Language Models (PLMs):223

PLMs have significantly advanced ICD coding re-224

search, though they face challenges like high com-225

putational costs and overfitting (Huang et al., 2022;226

Michalopoulos et al., 2022; Ng et al., 2023; Kang227

et al., 2023). Efforts like KEPT (Yang et al., 2022)228

and HiLAT (Liu et al., 2022) have improved PLM229

performance using prompt-based predictions and230

hierarchical encoding, but efficiency issues per-231

sist. KEPT, for example, uses Longformer (Beltagy232

et al., 2020) with contrastive learning and a prompt233

framework, but its reliance on extensive parameters234

and long inputs limits training practicality.235

Few/Zero Shot ICD: The challenge of few-shot236

and zero-shot ICD coding has garnered increasing237

attention, particularly in handling rare and unseen238

codes in medical texts. Song et al. (2021) intro-239

duced a GAN-based framework for zero-shot ICD240

coding, generating latent features for unseen codes241

by leveraging the ICD hierarchy and reconstruct-242

ing code-relevant keywords. Yang et al. (2022)243

developed KEPT-Longformer, a prompt-based fine-244

tuning model that injects domain-specific knowl-245

edge and uses contrastive learning to significantly 246

improve rare code assignments. Chen et al. (2023) 247

proposed a relation-enhanced code encoder that 248

strengthens inter-code connections through hierar- 249

chical structures, improving rare code predictions 250

without relying on extensive external knowledge. 251

Yang et al. (2023) addressed the long-tail challenge 252

by transforming ICD coding into an autoregres- 253

sive generation task, using a novel prompt template 254

and SOAP structure to effectively handle few-shot 255

scenarios. 256

3 Approach 257

Intuition behind our XMTC model - PLANT 258

(Figure 1): The intuitive flow starts with docu- 259

ment tokenization into embeddings processed by a 260

pretrained AWD-LSTM to grasp textual contexts. 261

The decoder introduces planted attention (green 262

box), leveraging a L2R model’s ability to rank to- 263

ken significance by label relevance, enriching the 264

model with a pre-understanding of token-label dy- 265

namics. This is adeptly paired with multi-label 266

attention (red box), merging learned and pretrained 267

insights for feature prominence. Additionally, mu- 268

tual information gain (yellow box) is utilized to en- 269

hance the decision-making process by calculating 270

the relevance of each token to the potential labels, 271

providing an informed basis for further attention 272

refinement. A subsequent boost attention phase 273

fine-tunes this for label-specific discernment, cul- 274

minating in a sigmoid-derived label probability pre- 275

diction. Section 3.1 provides a detailed description 276

of the L2R model components, while Section 3.2 277

explains how we utilize the pretrained L2R model 278

for planted attention, illustrating the integration of 279

the green boxes in Figure 1. 280

3.1 Pretraining L2R Model 281

L2R Model: In our approach, we use a Learning- 282

to-Rank (L2R) model to help our framework de- 283

termine which words in a text are most relevant to 284

specific labels. We start with a set of labels (e.g., 285

medical diagnoses) and a set of words from medi- 286

cal texts. Each word is given a relevance score for 287

each label, indicating how important that word is 288

for the label. Both labels and words are represented 289

using word embeddings, which are numerical rep- 290

resentations that capture their meanings. For each 291

combination of a label and a word, we create a 292

feature vector by combining their embeddings, cap- 293

turing the relationship between the label and the 294
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word. The L2R model uses these feature vectors295

to learn a ranking function, which is trained to296

output a score for each word-label pair, indicating297

how relevant the word is to the label. During train-298

ing, the model learns to rank words based on their299

relevance to labels, improving over time at iden-300

tifying which words are most important for each301

label. By using the L2R model, we ensure that302

our attention mechanism in the decoder starts with303

well-informed weights rather than random ones.304

This helps the model focus on the most relevant305

parts of the text right from the beginning, leading306

to faster and more effective training.307

Mutual Information Gain: We use Mutual Infor-308

mation Gain to bootstrap our L2R model, helping309

it understand the relationship between labels and310

tokens in our data. We treat the presence or absence311

of a label (e.g., a specific medical diagnosis) and312

the presence or absence of a token (a word in a med-313

ical text) as random events. Mutual Information314

Gain measures how much knowing the presence of315

a token gives us information about the presence of a316

label, quantifying the strength of their relationship.317

We calculate it by comparing the joint probabil-318

ity of the label and token occurring together to319

the probabilities of each occurring independently.320

These scores are used as relevance scores, indicat-321

ing important word-label pairs, as discussed in the322

L2R section. Using these scores, we bootstrap our323

L2R model, starting training with a good under-324

standing of which words are important for which325

labels. This helps the model focus on the most326

relevant parts of the text from the beginning, lead-327

ing to better performance and faster convergence.328

In summary, Mutual Information Gain identifies329

and prioritizes the most informative words for each330

label, enhancing the L2R model’s effectiveness.331

3.2 Leveraging L2R as Pretrained Attention332

Pretrained and Fine-tuned AWD-LSTM: We use333

a pretrained AWD-LSTM model3 as our language334

model to process word sequences. This model, pre-335

trained on a large corpus, captures general language336

patterns. We further fine-tune it using the ULMFiT337

approach (Howard and Ruder, 2018), adapting the338

model to our specific task to enhance its ability to339

extract relevant information. This combination of340

pretraining and fine-tuning makes the AWD-LSTM341

a powerful tool for feature extraction.342

3We used the pretrained LM from https://docs.fast.
ai/text.models.awdlstm.html

Decoder – PLANT L2R as Attention: To allocate 343

label-specific attention weights to the most infor- 344

mative tokens (i.e. words) in the sequence we take 345

the following four steps. 346

Step 1 (Traditional Learned Attention): We ex- 347

tract hidden features from each word, organize 348

them into a matrix, and compute label-specific at- 349

tention weights by comparing these features with 350

label embeddings. Applying softmax column-wise 351

emphasizes the most relevant words, creating a ma- 352

trix where each column represents a label’s focus. 353

These learned attention weights help the model 354

highlight significant tokens and make accurate pre- 355

dictions. 356

Step 2 (Our Planted Attention): We utilize two 357

types of attention weights: static-planted (S) and 358

differentiable-planted (P ). Static-planted attention, 359

based on mutual information gain, remains con- 360

stant during training, prioritizing tokens important 361

to each label. S contains fixed relevance scores for 362

tokens as defined in the L2R model. Differentiable- 363

planted attention involves trainable parameters, al- 364

lowing adjustment during training. It uses feature 365

vectors for label-token pairs to create dynamic rel- 366

evance scores, enabling the model to adapt and 367

fine-tune the importance of tokens as it learns from 368

the data. 369

Step 3 (Inattention Technique): We introduce 370

inattention, a technique that enhances attention 371

by filtering out less relevant tokens. By applying 372

a threshold to the differentiable-planted attention 373

scores before softmax, we zero out weights for less 374

important tokens, focusing the model on the top 375

k relevant tokens. Optimal threshold k is tuned 376

within the range [1, 10k′], aligning with the L2R 377

model’s ranking to prioritize significant tokens. 378

Step 4 (Combining Attention and Boosting): We 379

combine learned, static-planted, and differentiable- 380

planted attention weights to compute label-specific 381

vectors. This involves a linear combination of to- 382

ken hidden features, followed by an element-wise 383

multiplication with a trainable weight matrix W . 384

The resulting matrix V captures attention-driven 385

insights, with each row representing the key infor- 386

mation relevant to a specific label. 387

Predictions and Training Objective: To make 388

predictions, we sum the label-specific information, 389

add a label-specific bias, and pass it through a 390

sigmoid activation to produce probability scores 391

for each label. These scores indicate the likeli- 392

hood of each label applying to the token sequence. 393
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The model is trained by minimizing binary cross-394

entropy loss, which measures the difference be-395

tween predicted probabilities and actual labels,396

thereby improving prediction accuracy.397

Stateful Decoder: Our decoder employs a stateful398

mechanism inspired by backpropagation through399

time (BPTT) (Howard and Ruder, 2018), which400

enhances its ability to maintain context across se-401

quences. Building on the attention mechanisms and402

planted attention strategies, the stateful decoder403

uses accumulated context from earlier steps to im-404

prove predictions.405

Discriminative Fine-tuning and Gradual Un-406

freezing: To fine-tune our pretrained model for407

attention planting, we use two key strategies. First,408

we apply discriminative fine-tuning, assigning dif-409

ferent learning rates to parameter groups (encoder,410

planted decoder, and other components) to opti-411

mize areas needing the most adjustment. We use a412

smaller learning rate for the pretrained L2R model413

parameters. Second, we implement gradual un-414

freezing, fine-tuning the model layer by layer, start-415

ing from the last layer and moving toward the first.416

4 Experiments417

4.1 Experimental Setup418

Datasets: We compare PLANT to SOTA ICD419

coding models using the MIMIC-III (Johnson420

et al., 2016) and MIMIC-IV (Johnson et al., 2023)421

datasets, which include rich textual and structured422

records from ICU settings, primarily discharge423

summaries annotated with ICD-9 (MIMIC-III)424

and ICD-10 (MIMIC-IV) codes. MIMIC-III425

contains 52,722 discharge summaries with 8,929426

unique ICD-9 codes, and MIMIC-IV includes427

122,279 summaries with 7,942 ICD-10 codes.428

We follow established methodologies for patient429

ID-based splits and frequent code subsets. For430

few-shot learning, we evaluate PLANT on the431

MIMIC-III-rare50 dataset (Yang et al., 2022),432

which features 50 rare ICD codes, and the MIMIC-433

III-few dataset (Yang et al., 2023), a subset with434

685 unique ICD-9 codes occurring between 1435

and 5 times in the training set. We denote these436

datasets as MIMIC-III-full, MIMIC-III-top50,437

MIMIC-III-rare50, MIMIC-III-few, and438

MIMIC-IV-full (refer to Table 2 for statistics).439

Preprocessing, Implementation and Hyperpa-440

rameters and Evaluation Metrics: We direct441

readers to Appendix A.6, Appendix A.7 and Ap-442

pendix A.8 for specifications.443

MIMIC-III-full MIMIC-IV-full

Number of documents 52,723 122,279
Number of patients 41,126 65,659
Number of unique codes 8,929 7,942
Codes pr. instance: Median (IQR) 14(10 − 20) 14(9 − 20)
Words pr. document: Median (IQR) 1, 375(965 − 1, 900) 1, 492(1, 147 − 1, 931)
Documents: Train/val/test [%] 90.5/3.1/6.4 72.9/10.9/16.2

Table 2: Descriptive statistics for MIMIC-III-full and
MIMIC-IV-full discharge summary training sets.

Baselines: This study compares PLANT with 444

a range of ICD coding models developed over 445

recent years, starting with CAML (Mullenbach 446

et al., 2018), MSATT-KG (Xie et al., 2019), 447

MUltiResCNN (Li and Yu, 2020), and Hyper- 448

Core (Cao et al., 2020). Later models include 449

LAAT/JointLAAT (Vu et al., 2021), ISD (Zhou 450

et al., 2021), Effective-CAN (Liu et al., 2021), Hier- 451

archical (Dai et al., 2022), and MSMN (Yuan et al., 452

2022). More recent approaches, such as DiscNet 453

(Zhang et al., 2022), KEPTLongformer (Yang et al., 454

2022), PLM-ICD (Huang et al., 2022), AHDD 455

(Zhang and Wang, 2024), CoRelation (Luo et al., 456

2024), Contrastive (Lu et al., 2023), KEMTL (Li 457

et al., 2023), and MIMIC-IV-Benchmark (Nguyen 458

et al., 2023), expand the scope. For few-shot learn- 459

ing, we also consider models like AGMHT (Song 460

et al., 2021), RareCodes (Chen et al., 2023), GP 461

(Yang et al., 2023), and KEPT (Yang et al., 2022). 462

4.2 Main Results 463

MIMIC-III-full (Table 3) MIMIC-III-top50 464

(Table 4) MIMIC-III-rare50 (Table 5) 465

MIMIC-III-few (Table 6) MIMIC-IV-full 466

(Table 7): PLANT consistently outperforms 467

existing state-of-the-art models across multiple 468

datasets, demonstrating its superiority in ICD 469

coding tasks. On the MIMIC-III-full test set, 470

PLANT achieves the highest scores in macro 471

and micro AUC (96.1% and 99.9%), macro and 472

micro F1 (14.5% and 60.2%), and precision at 473

various ranks, including P@5 (85.1%), P@8 474

(77.7%), and P@15 (61.8%). Similarly, on the 475

MIMIC-III-top50 test set, PLANT leads in macro 476

and micro AUC (95.1% and 95.9%), macro and 477

micro F1 (69.7% and 73.1%), and outperforms 478

other models in P@8 (55.9%) and P@15 (36.3%). 479

In few-shot scenarios, PLANT excels even further. 480

On the MIMIC-III-rare50 test set, it delivers 481

outstanding macro and micro F1 scores (82.6% 482

and 84.2%), with AUC scores of 95.6% and 96.0%, 483

far surpassing other models. Notably, these results 484

were achieved with only unfrozen PLANT layers, 485

highlighting its efficiency and potential. On the 486
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MIMIC-III-few test set, PLANT achieves macro487

and micro F1 scores of 66.3% and 71.0%, more488

than doubling the performance of the closest489

competitors, and excels in precision and recall,490

with macro precision at 65.1%, micro precision at491

68.6%, and recall scores of 81.0% (macro) and492

81.7% (micro). In Figure 3, PLANT achieves a493

mean Macro F1 score of 0.6632, which is more494

than double that of KEPT (red line), the next495

best model, which has a mean Macro F1 score496

of 0.2942. CoRelation (blue line) and PLM-ICD497

(purple line) lag far behind, with mean Macro F1498

scores of 0.0538 and 0.0000, respectively. The499

plot clearly demonstrates PLANT ’s superior500

capability in accurately predicting rare ICD codes,501

particularly when compared to models explicitly502

designed for few-shot learning like KEPT. Finally,503

on the MIMIC-IV test set, PLANT solidifies its504

dominance with the highest macro and micro AUC505

scores (98.1% and 99.6%) and leads in macro and506

micro F1 (21.5% and 58.9%), as well as precision507

at P@5 (78.1%), P@8 (70.6%), and P@15508

(55.6%). Across all datasets, PLANT proves509

to be the most effective model for ICD coding,510

consistently outperforming all other models.511

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 89.7 98.6 8.8 53.9 - 70.9 56.1
MSATT-KG 91.0 99.2 9.0 55.3 - 72.8 58.1
MultiResCNN 91.0 98.6 8.5 55.2 - 73.4 58.4
HyperCore 93.0 98.9 9.0 55.1 - 72.2 57.9
LAAT/JointLAAT 92.1 98.8 10.7 57.5 81.3 73.8 59.1
ISD 93.8 99.0 11.9 55.9 - 74.5 -
Effective-CAN 92.1 98.9 10.6 58.9 - 75.8 60.6
MSMN 95.0 99.2 10.3 58.4 - 75.2 59.9
DiscNet 95.6 99.3 14.0 58.8 - 76.5 61.4
AHDD 95.2 99.3 10.9 58.9 - 75.3 -
CoRelation 95.2 99.2 10.2 59.1 83.4 76.2 60.7
JointLAAT (/w Contrastive) - - 11.4 58.8 - 75.6 60.2
KEMTL 95.3 99.6 12.7 58.3 - 75.6 -
PLM-ICD 92.6 98.9 10.4 59.8 84.4 77.1 61.3
PLANT (Ours) 96.1 99.9 14.5 60.2∗ 85.1∗ 77.7∗ 61.8∗

Table 3: Results (in %) on the MIMIC-III-full test set.
We ran our model 5 times each with different random
seeds for initialization and report mean scores. * indi-
cates that the performance difference between PLANT
and the next best is significant (p < 0.01, using the Ap-
proximate Randomization test). All scores in tables 3,
4, 5 and 7 are reported under the same experimental
setup.

5 Analysis512

Firstly, except for the Gradual Unfreezing and Bidi-513

rectionality, we selectively unfreeze the layers in514

decoder, keeping the encoder frozen—meaning no515

backpropagation was performed on their weights516

during training. This ensures that performance im-517

provements are attributed directly to the decoder,518

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 88.4 91.6 57.6 63.3 61.8 - -
MSATT-KG 91.4 93.6 63.8 68.4 64.4 - -
MultiResCNN 89.9 92.8 60.6 67.0 64.1 - -
HyperCore 89.5 92.9 60.9 66.3 63.2 - -
LAAT/JointLAAT 92.5 94.6 66.6 71.6 67.5 54.7 35.7
ISD 93.5 94.9 67.9 71.7 68.2 - -
Effective-CAN 92.0 94.5 66.8 71.7 66.4 - -
MSMN 92.8 94.7 68.3 72.5 68.0 - -
AHDD 92.8 94.7 68.5 72.8 67.8 - -
CoRelation 93.3 95.1 69.3 73.1 68.3 55.6 -
MSMN (/w Contrastive) - - 69.1 72.5 68.3 - -
KEMTL 94.8 95.5 69.5 72.9 70.8 - -
PLANT (Ours) 95.1∗ 95.9∗ 69.7 73.1∗ 70.8 55.9∗ 36.3∗

Table 4: Results on the MIMIC-III-top50 test set.

Model
AUC F1

Macro Micro Macro Micro
MultiResCNN (/w Contrastive) - - 22.8 23.3
HyperCore (/w Contrastive) - - 23.4 25.2
JointLAAT (/w Contrastive) - - 28.6 27.8
EffectiveCAN (/w Contrastive) - - 27.1 28.0
PLM-ICD (/w Contrastive) - - 30.3 29.5
Hierarchical (/w Contrastive) - - 32.0 31.3
MSMN (/w Contrastive) - - 31.2 30.6
KEPTLongformer 82.7 83.3 30.4 32.6
PLANT (Ours) 95.6∗ 96.0∗ 82.6∗ 84.2∗

Table 5: Results on the MIMIC-III-rare50 test set.

our primary focus. Secondly, all reported perfor- 519

mance metrics stem from the full test sets of both 520

MIMIC-III-full and MIMIC-IV-full datasets. 521

Thirdly, reported enhancements were statistically 522

significant (p < 0.01, using the Approximate Ran- 523

domization test). 524

Impact of PLANT (Figure 4,5): We evaluate 525

PLANT and LAAT (Vu et al., 2021) in contexts 526

with skewed label distributions. PLANT uses pre- 527

trained L2R activations P and mutual information 528

gain S, initializing the decoder’s attention weights. 529

While LAAT relies solely on learned attention A, 530

initialized randomly and learned from scratch. That 531

is LANT omits P and S form Equation 7. Our 532

analysis involves training both PLANT and LAAT 533

models across varying fractions of a balanced train- 534

ing dataset, with both models trained for up to five 535

epochs. The test set remains constant, and we mea- 536

sure P@5 and P@15 as the performance metric for 537

both models. The results were notable: the PLANT 538

model consistently matched or surpassed the LAAT 539

model’s performance across all training sizes, even 540

with significantly less data. For instance, in the case 541

of MIMIC-IV-full, PLANT achieved a P@5 of 542

0.50 and P@15 of 0.37 with a smaller training split 543

of 1090 and 2743 instances, respectively, matching 544

the performance of the LAAT model trained on a 545

significantly larger split of 10, 337 and 12, 902 in- 546

stances. Similarly, in the case of MIMIC-III-full, 547
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Model
F1 Precision Recall

Macro Micro Macro Micro Macro Micro
MSMN 4.3 8.5 4.5 70.9 4.2 4.5
AGMHT 18.7 29.2 17.6 49.4 19.9 20.7
GP 30.2 35.3 27.9 38.5 32.9 32.6
PLANT (Ours) 66.3∗ 71.0 65.1∗ 68.6∗ 81.0∗ 81.7∗

Table 6: Results on the MIMIC-III-few test set.

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 91.1 98.5 16.0 55.4 - 66.8 52.2
MultiResCNN 94.5 99.0 21.1 56.9 - 67.8 53.5
LAAT/JointLAAT 95.4 99.0 20.3 57.9 - 68.9 54.3
PLM-ICD 91.9 99.0 21.1 58.5 - 69.9 55.0
CoRelation 97.2 99.6 6.3 57.8 - 70.0 -
PLANT (Ours) 98.1∗ 99.6 21.5∗ 58.9∗ 78.1∗ 70.6∗ 55.6∗

Table 7: Results on the MIMIC-IV-full test set. The
comparitive results are reported from Edin et al. (2023).

PLANT achieved a P@5 of 0.47 and P@15 of 0.30,548

trained with only 136 and 235 instances, respec-549

tively. This performance equates to that of the550

LAAT model trained on a dataset comprising 1342551

and 1578 instances. These findings are visually552

represented in Figure 4 through vertical and hori-553

zontal lines, illustrating the substantial efficiency554

gains of PLANT in terms of training data require-555

ments while maintaining or improving model per-556

formance. Since PLANT achieves comparable557

performance to LAAT with significantly less data,558

which also implies a lower number of instances559

per label (aka skewed label distribution), this out-560

come underscores the inefficiencies of the LAAT561

approach in such scenarios. To examine overfit-562

ting (Figure 5), we trained both PLANT and LAAT563

on MIMIC-IV-full for 60 epochs. While PLANT564

remained stable, LAAT began overfitting after 40565

epochs, diverging train and test loss, leading to a566

decline in P@15.

Figure 4: P@15 for PLANT vs. LAAT (Vu et al.,
2021) with different number of training examples on
MIMIC-III-full and MIMIC-IV-full.

567

Impact of Inattention (Table 8): We investigated568

the impact of the inattention threshold k (Equa-569

tion 6) within PLANT on MIMIC-III-full and570

MIMIC-IV-full. The training splits comprised571

22, 525 instances (average 49 instances per la-572

bel) and 49, 579 instances (average 97 instances573

Figure 5: PLANT does not overfit on MIMIC-IV-full,
LAAT (Vu et al., 2021) does.

Ablation MIMIC-III-full MIMIC-IV-full

Without Inattention 50.95 42.40
With Inattention 51.05 42.51
Stateless 52.80 43.38
Stateful 52.90 44.22
− disc 51.40 43.29
+ disc 52.21 44.34
full unfreezing 57.78 49.78
gradual unfreezing 58.31 50.97

Table 8: P@15 for MIMIC-III-full and
MIMIC-IV-full (train split 49, 579) test set.

per label) for the respective datasets. We trained 574

each model for 5 epoch and measured P@15. 575

For MIMIC-III-full, the model without inatten- 576

tion (k = 72) achieved a P@15 of 50.95, while 577

the model with inattention (k = 56) achieved a 578

slightly higher P@15 of 51.05. In the case of 579

MIMIC-IV-full, the model without inattention at- 580

tained a P@15 of 42.4, which improved to 42.51 581

with inattention (k = 8). 582

Impact of Sateful Decoder (Table 8): On the 583

MIMIC-III-full training dataset, using the state- 584

ful decoder for three epochs yielded a P@15 of 585

52.9, a slight improvement over 52.8 without it. 586

Similarly, on the MIMIC-IV-full (training split of 587

49, 579), employing the stateful decoder for seven 588

epochs significantly boosted P@15, from 43.28 to 589

44.22. 590

Impact of Discriminative Fine-tuning and 591

Gradual Unfreezing (GU) (Table 8): On the 592

MIMIC-III-full, training PLANT for one epoch 593

with discriminative fine-tuning, applying half the 594

learning rate to L2R parameters, improved P@15 595

from 51.40 to 52.21 on the test set. Similarly, on 596

MIMIC-IV-full (training split of 49, 579), training 597

PLANT for seven epochs with a third of the learn- 598

ing rate for L2R parameters increased P@15 from 599

43.29 to 44.34. For GU we explored two scenarios: 600

one gradually unfreezing the model layer by layer, 601

and the other unfreezing the entire model simultane- 602

ously. Both models were trained for 10 epochs. On 603

the MIMIC-III-full, GU increased P@15 from 604

57.78 to 58.31; and on MIMIC-IV-full from 49.78 605

to 50.97. 606
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Limitations607

The PLANT method, while effective, presents a no-608

table trade-off in terms of computational resources.609

The necessity to pretrain and load the L2R model610

imposes a substantial memory overhead compared611

to traditional attention mechanisms. Consequently,612

our memory constraints limited the number of613

epochs for which PLANT could be trained. This as-614

pect of PLANT, particularly its scalability to larger615

XMTC datasets, warrants further investigation. Fu-616

ture work will explore strategies to optimize mem-617

ory usage, ensuring that the benefits of PLANT618

can be harnessed more broadly without the current619

limitations on training duration and dataset size.620

Broader Impacts and Ethical621

Considerations622

Our research contributes to the broader field of nat-623

ural language processing (NLP) and machine learn-624

ing (ML), advancing the SOTA in XMTC. In the625

context of XMTC, our research has the potential626

to significantly impact various sectors, including627

healthcare, finance, and e-commerce. By automat-628

ing labor-intensive tasks such as medical coding629

and diagnosis, these models can enhance healthcare630

accessibility, particularly in underserved commu-631

nities. This can lead to improved patient outcomes632

and reduced disparities in healthcare access. Ad-633

ditionally, in education, XMTC models can sup-634

port personalized learning experiences by catego-635

rizing educational resources and recommending636

tailored learning materials to students. Further-637

more, XMTC can contribute to policy development638

by analyzing public opinion and sentiment from639

social media and news sources, providing valu-640

able insights for policymakers to develop evidence-641

based policies and interventions. These applica-642

tions demonstrate the diverse and far-reaching so-643

cietal implications of XMTC technology. How-644

ever, we acknowledge the importance of ensuring645

that automated systems do not perpetuate biases646

or discrimination present in the data. Therefore,647

we prioritize fairness, transparency, and account-648

ability in our model development process. In sum-649

mary, while our research presents exciting oppor-650

tunities for automation and efficiency gains, we651

recognize the importance of ethical considerations652

and broader societal impacts. By upholding ethical653

principles and promoting responsible AI develop-654

ment, we aim to maximize the positive impact of655

our work while mitigating potential risks.656
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Figure 6: The skewness of ICD-9-CM code distribution
for MIMIC-III (Johnson et al., 2016).

A Appendix 874

A.1 Skewness of Codes 875

A.2 L2R Model (continued from Section 3.1) 876

We use superscript to denote the id of a label 877

and subscript to denote the id of a token. The 878

training set of the L2R model contains a set 879

of labels L =
{

l(1), l(2), · · · , l(m)
}

, and a set 880

of tokens T = {t1, t2, · · · , tn}. Furthermore, 881

G =
[
g(1), g(2), · · · , g(m)

]
∈ Rn×m, and g(i) = 882[

g
(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
∈ Rn, where g

(i)
j denotes 883

the relevance of the token tj with respect to label 884

l(i). We represent each label l(i) and token tj with 885

word embeddings e
l(i) and etj

, respectively. A 886

feature vector 887

x
(i)
j = Ψ

(
e

l(i) , etj

)
(1) 888

is created from each label-token pair
(
l(i), tj

)
, i = 889

1, 2, · · · , m; j = 1, 2, · · · , n, by concatenat- 890

ing the corresponding word embeddings e
l(i) 891

and etj
. The feature matrix, X(i) = 892[

x
(i)
1 , · · · , x(i)

n

]
and the corresponding scores, 893

g(i) =
[
g

(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
then form an ‘in- 894

stance’. The training set can be denoted as 895{(
X(i), g(i)

)}m

i=1
. The L2R model is associated 896

with a ranking function, f : x
(i)
j 7→ R. At any 897

point in the training, the model outputs the score 898

z(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈ Rn. We di- 899

rect readers to Appendix A.2 for detailed specifics 900

about the L2R model, including our methods for 901

bootstrapping it with mutual information gain and 902

subsequent training procedures. 903

The ranking function, f : x
(i)
j 7→ R, of the L2R 904

model is an L layered feed forward network, 905

f(x(i)
j ) = yL, y(l) = a(W (l) · y(l−1) + b(l)), (2) 906
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where y(l) is layer l output, y(0) = x is input, W (l)907

is layer l weight matrix, b(l) is layer l bias vector,908

and a(·) is the activation function. In our experi-909

ments we trained the L2R model with L = 2.910

At any point in the training, the model outputs911

the score z(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈912

Rn. The objective of the L2R model is to minimize913

the total loss,914

m∑
i=1

nDCG@k
(
z(i), g(i)

)
, (3)915

where nDCG@k is the maximum allowable916

DCG@k, which is defined as:917

DCG@k
(
z(i), g(i)

)
:=

∑
l∈rankk(z(i))

2
g

(i)
l

log(l + 1) .4918

Bootstrapping L2R Model: Let (I, J) be a919

pair of random variables for the label l(i) and920

token tj over the space I × J , where I =921

{label i present, label i not present} and J =922

{token j present, token j not present}. Then, gi
j is923

defined as the mutual information gain of I and J :924

g
(i)
j =

∑
x∈I,y∈J

P(I,J)(x, y) log
(

P(I,J)(x, y)
PI(x)PJ(y)

)
,925

where P(I,J) is the joint, and PI , PJ are the926

marginal probability mass function of I and J , re-927

spectively.928

Training L2R Model: Gradient update rule to929

train the L2R model on
{(

X(i), g(i)
)}m

i=1
are de-930

fined as follows. Let I(i) denote the set of pairs of931

token indices {j, k}, such that g
(i)
j > g

(i)
k . Also,932

let z
(i)
j = f

(
x

(i)
j

)
and z

(i)
k = f

(
x

(i)
k

)
. The pa-933

rameters of L2R model, wp ∈ R, are updated as934

(Burges, 2010):935

δwp = −η
∑

j

λj

∂z
(i)
j

∂wk
,936

λj =
∑

k:{j,k}∈I(i)

λjk −
∑

k:{k,j}∈I(i)

λkj ,937

λjk = − σ

1 + e
σ

(
z

(i)
j −z

(i)
k

) |∆nDCG@k|jk,938

where |∆nDCG@k|jk denotes the change in939

nDCG@k by swapping j and k in rank(z(i)).940

4here rankk(z(i)) returns the k largest indices of g(i)

ranked in descending order.

A.3 Language Model: AWD-LSTM 941

We use the AWD-LSTM architecture (Merity et al., 942

2017) as LM in our experiments. That means, 943

AWD-LSTM model learns hidden features from a 944

sequence of n tokens ⟨t1, t2, · · · , tn⟩, where each 945

token is represented by word embedding etj
∈ Rse . 946

The hidden feature learned by AWD-LSTM corre- 947

sponding to the jth token is represented as: 948

hj = AWD-LSTM(⟨et1 , · · · , etj ⟩), hj ∈ Rse

(4) 949

Note that all the pretrained word embeddings etj 950

and the parameters of the AWD-LSTM model are 951

finetuned on the target task using the mechanisms 952

proposed in Howard and Ruder (2018). 953

A.4 XMTC Decoder – PLANT L2R as 954

Attention 955

To allocate label-specific attention weights to 956

the most informative tokens in the sequence 957

⟨t1, t2, · · · , tn⟩ we take the following three steps. 958

First, the hidden features h1, h2, · · · , hn of the 959

sequence ⟨t1, t2, · · · , tn⟩ are concatenated to for- 960

mulate the matrix H = [h1, h2, · · · , hn]T ∈ 961

Rn×se . To transform H into label-specific vec- 962

tors, we compute label-specfic attention weights 963

as: 964

A = softmax(HUT ), A ∈ Rn×|L| (5) 965

where U ∈ R|L|×se is the label embedding ma- 966

trix.The ith column in A represents the attention 967

weights corresponding to the ith label in L for each 968

of the n tokens. To ensure the bulk of the weight is 969

placed on the most informative tokens, the softmax 970

is applied at the column level. Here A denotes the 971

learned attention weights. 972

Second, we perform attention planting by uti- 973

lizing two types of attention weights: static- 974

planted (S) and differentiable-planted (P ). The 975

static-planted attention (S) remains constant and 976

is based on mutual information gain, while the 977

differentiable-planted attention (P ) comprises 978

trainable parameters. These mechanisms en- 979

hance the model’s ability to prioritize relevant 980

tokens. We determine the static-planted atten- 981

tion as S =
[
g(1), g(2), · · · , g(|L|)

]
∈ Rn×|L|, 982

is comprised of individual vectors g(i) = 983[
g

(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
∈ Rn. Each element g

(i)
j 984

of these vectors represents the relevance of token 985

tj with respect to label l(i), as precisely defined 986
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in section 3.1. We determine the differentiable-987

planted attention by computing feature vectors988

x
(i)
j = Ψ

(
e

l(i) , etj

)
for each label-token pair989 (

l(i), tj

)
, i = 1, 2, · · · , |L|; j = 1, 2, · · · , n as990

per equation 1. Then utilizing pretrained embed-991

dings e
l(i) and etj

from the L2R model in sec-992

tion 3.1, the pretrained L2R model computes scores993

P =
[
p(1), p(2), · · · , p(|L|)

]
∈ Rn×|L|, where994

p(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈ Rn, and f995

is the ranking function from equation 2. In a de-996

parture from the standard attention approach, we997

introduce inattention, a pre-softmax thresholding998

technique that strategically elevates the significance999

of attention weights. By effectively zeroing out less1000

relevant tokens, this method ensures maximal focus1001

on pivotal tokens:1002

P = softmax(threshold(P , k)) (6)1003

where both threshold (Appendix A.5) and softmax1004

are applied at the column level.1005

Third, to compute the label-specific vectors, we1006

perform linear combinations of the hidden features1007

h1, h2, · · · , hn using the attention weights from1008

three sources: the learned attention weights in each1009

column of A, the static-planted attention weights1010

in each column of S, and the differentiable-planted1011

attention weights in each column of P . This is1012

followed by element-wise matrix multiplication1013

with a weight matrix W ∈ R|L|×se :1014

V = (AT H + ST H + P T H) ⊙ W , V ∈ R|L|×se

(7)
1015

The purpose of W is to boost attention. The ith row1016

vi of V , can be thought of as the information re-1017

garding the ith label captured by attention from the1018

token sequence ⟨t1, t2, · · · , tn⟩. Finally, this label-1019

specific information is summed and added with a1020

label-specific bias followed by sigmoid activation1021

to produce predictions:1022

ŷ = sigmoid(1V T + b); 1 ∈ Rse ; b, ŷ ∈ R|L|

(8)1023

The training objective is to mimimize the binary1024

cross-entropy loss between ŷ and the target y as:1025

Loss(y, ŷ, θ) =
|L|∑
i=1

yi log ŷi+(1 − yi) log (1 − ŷi) ,1026

where θ denotes all trainable model parameters.1027

A.5 Threshold 1028

threshold(pi, k) =
{

pj , if pj > kth largest p

0 otherwise.
1029

A.6 Preprocessing 1030

Following prior research (Mullenbach et al., 2018; 1031

Xie et al., 2019; Li and Yu, 2020), we tokenize and 1032

lowercase all text while eliminating non-alphabetic 1033

tokens containing numbers or punctuation. A dis- 1034

tinctive feature of our approach is the absence of 1035

preprocessed word embeddings. Instead, we fine- 1036

tune a pretrained AWD-LSTM model on our tar- 1037

get dataset, allowing for parameter refinement, in- 1038

cluding word embeddings, and the generation of 1039

context-specific embeddings for new words in the 1040

dataset. While the concept of fine-tuning pretrained 1041

models is not new (Howard and Ruder, 2018), our 1042

innovation lies in its application to the XMTC do- 1043

main. Contrary to previous practices (Li and Yu, 1044

2020), we refrain from truncating text, as our ex- 1045

periments and findings align with those of Zhang 1046

et al. (2022), which demonstates substantial per- 1047

formance variation due to truncation. To handle 1048

longer texts, we employ our stateful decoder (refer 1049

to Section 3.2). 1050

A.7 Implementation and Hyperparameters 1051

We ensure robustness across diverse XMTC 1052

datasets by fine-tuning hyperparameters on the 1053

MIMIC-III-full and MIMIC-IV-full validation 1054

sets. Experiments are conducted on an NVIDIA 1055

QUADRO RTX 8000 GPU with 48 GB VRAM. 1056

We utilize the AWD-LSTM LM with an embedding 1057

size of 400, 3 LSTM layers with 1152 hidden ac- 1058

tivations, and the Adam Optimizer with β1 = 0.9, 1059

β2 = 0.99, and weight decay of 0.01. During 1060

fine-tuning, we apply dropout rates and weight 1061

dropout, with a batch size of 384, BPTT of 80, 1062

20 epochs, and a learning rate of 1e − 5. Classi- 1063

fier training also includes dropout rates and weight 1064

dropout, with a batch size of 16, BPTT of 72, and 1065

discriminative fine-tuning with gradual unfreezing 1066

over 115 epochs (on MIMIC-III-full), alongside 1067

scheduled weight decay and learning rate ranges. 1068

A.8 Evaluation metrics 1069

We focus on micro and macro F1 scores, AUC, and 1070

P@k to compare with prior ICD studies. Micro- 1071

averaging treats each (text, code) pair individually, 1072

while macro-averaging computes metrics per label, 1073

giving more weight to infrequent labels. Micro- 1074
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R is the ratio of true positives to the sum of true1075

positives and false negatives for each label, while1076

Macro-R averages recall across all labels. P@k1077

measures the proportion of the top k predicted la-1078

bels that match the ground truth.1079

A.9 Bidirectional Language Model1080

For the MIMIC-III-full and MIMIC-IV-full (Ta-1081

ble 2), we pretrain both a forward and backward1082

LM. We fine-tune an XMTC model for each LM in-1083

dependently and average the classifier predictions.1084

On MIMIC-III-full P@15 increased from 60.611085

to 61.67, and on MIMIC-IV-full, from 54.5 to1086

55.6.1087

A.10 Interpretability Case Study (Table 9)1088

We compare PLANT’s interpretability against1089

three baselines: MSATT-KG, CAML, and Text-1090

CNN(Kim, 2014). While PLANT selects top 51091

tokens per label based on attention values, baseline1092

methods extract informative n-grams. MSATT-KG1093

employs multi-scale and label-dependent attention,1094

while CAML and Text-CNN use label-dependent1095

attention and different phrase selection strategies.1096

CAML uses a receptive field, and Text-CNN se-1097

lects positions based on maximum channel values.1098

In the interpretability case study, PLANT attends1099

to tokens like ‘intubation’, ‘fio2’, and ‘pc02’. ‘fio2’1100

represents Fraction of Inspired Oxygen, critical in1101

determining oxygen concentration delivered to a1102

patient. ‘PCO2’ signifies partial pressure of car-1103

bon dioxide, indicative of conditions like respira-1104

tory acidosis or alkalosis. In another example, in-1105

formative tokens include ‘gastrophageal’, ‘reflux’,1106

‘gerd’, and ‘prilosec’, where ‘gerd’ denotes Gas-1107

troesophageal Reflux Disease and ‘prilosec’ is a1108

proton pump inhibitor.

518.81: Acute respiratory failure
PLANT: ...patient had a gcs3t and required intubation ...fio2 · · · temp po2 pco2 ph ...
MSATT-KG: ... left hemothorax, ETOH, depression, stable discharge condition...
CAML: ...small apical pneumothorax remained unchanged ... now tolerating a ...
Text-CNN: ...revealed a persistent left pleural effusion and due to concern for loculated hemothorax...
530.81: Esophageal reflux
PLANT: ... gastroesophageal reflux ... home o2 gerd osteoporosis ... one puff hospital1 prilosec 20mg....
MSATT-KG: ... tracheostomy & feeding gastrostomy ... GERD, anxiety ...
CAML: ... rib fx requiring tracheostomy & feeding gastrostomy,, GERD, anxiety, cataracts...
Text-CNN: ... right thoracotomy, decortication of lung, mobilization of liver off of chest wall...

Table 9: Interpretability evaluation results for different
models.

1109
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