
MegaAgent: Dynamic Agent Coordination Without SOPs

Anonymous ACL submission

Abstract
LLM-powered multi-agent (LLM-MA) sys-001
tems have shown promise in tackling complex002
tasks. However, existing solutions often suf-003
fer from limited agent coordination and heavy004
reliance on predefined Standard Operating Pro-005
cedures (SOPs), which demand extensive hu-006
man input. To address these limitations, we007
propose MegaAgent, a framework designed for008
autonomous coordination in LLM-MA systems.009
MegaAgent generates agents based on task com-010
plexity and enables dynamic task decompo-011
sition, parallel execution, efficient communi-012
cation, and comprehensive system monitoring013
of agents. In evaluations, MegaAgent demon-014
strates exceptional performance, successfully015
developing a Gobang game within 800 seconds016
and scaling up to 590 agents in a national policy017
simulation to generate multi-domain policies.018
It significantly outperforms existing systems,019
such as MetaGPT, in both task completion effi-020
ciency and scalability. By eliminating the need021
for predefined SOPs, MegaAgent demonstrates022
exceptional scalability and autonomy, setting023
a foundation for advancing true autonomy in024
LLM-MA systems.1025

1 Introduction026

The remarkable planning and cognitive capabilities027
of Large Language Models (LLMs) (Touvron et al.,028
2023; Zhu et al., 2023) have spurred significant interest029
in LLM-based multi-agent (LLM-MA) systems (Wu030
et al., 2023b; Chen et al., 2023b; Hong et al., 2023),031
which coordinate multiple LLM agents to address com-032
plex tasks. For example, MetaGPT introduces a meta-033
programming framework to simulate the software de-034
velopment process (Hong et al., 2023), while Simulacra035
(Park et al., 2023) models social interactions among 25036
LLM-powered agents in a simulated town, showcasing037
the potential of these systems to replicate real-world038
dynamics. The demand for large-scale social simulation039
applications, such as social media and war simulations040
(Gao et al., 2023a; Hua et al., 2023; Jin et al., 2024), is041
driving the development of LLM-MA systems capable042
of simulating complex real-world scenarios.043

1Code is available at https://anonymous.4open.
science/r/MegaAgent-dev-DEF0

However, existing LLM-MA frameworks have two 044
limitations. (1) They fail to achieve adaptive task co- 045
ordination when the task is big and complex e.g. gen- 046
erating hundreds of agents for a social simulation; and 047
do not consider the coordination between a large scale 048
of agents. (2) Most systems heavily depend on user- 049
defined configurations, including predefined agent roles, 050
standard operating procedures (SOPs), and static com- 051
munication graphs (Hong et al., 2023; Chen et al., 052
2023b; Wu et al., 2023b). This approach limits flexibil- 053
ity and requires significant human effort when deploying 054
numerous agents to complete a task. 055

Addressing the above limitations presents the fol- 056
lowing key challenges: (1) Facilitating adaptive and 057
effective communication among agents and with ex- 058
ternal file systems. As tasks grow in complexity and 059
scale, managing communication becomes increasingly 060
difficult, especially when incorporating parallelism and 061
coordinating multiple agents across different rounds of 062
communication (Zhang et al., 2024b). (2) Ensuring 063
that each agent completes its task accurately with- 064
out relying on predefined SOPs. LLM agents often 065
generate hallucinated outputs (Huang et al., 2023b) or 066
fail to complete tasks correctly within a single round 067
(Liu et al., 2023a; Andriushchenko et al., 2024), ne- 068
cessitating robust mechanisms to ensure reliability and 069
correctness. This is particularly critical in multi-agent 070
systems, where hallucinations can propagate and com- 071
promise the entire system’s performance (Zhang et al., 072
2024b; Lee and Tiwari, 2024). 073

Drawing inspiration from Operating Systems (OS), 074
where processes and threads efficiently manage tasks 075
through: (1) generating multiple threads within a pro- 076
cess to complete a task, and (2) enabling different pro- 077
cesses to operate in parallel, we propose MegaAgent to 078
address the aforementioned limitations. MegaAgent de- 079
composes large tasks into multiple hierarchical subtasks 080
(analogous to processes), with each subtask completed 081
by a dedicated group of agents (similar to threads). Com- 082
munication occurs either within agent groups or between 083
them as needed, resembling inter-process communica- 084
tion in an OS. Users simply need to provide a meta 085
prompt to Boss Agent, after which the task is au- 086
tonomously completed. The novelty comparison be- 087
tween MegaAgent and popular baselines is in Table 1. 088
Details are in Table 9. An overview of MegaAgent is 089
shown in Figure 1. We equip MegaAgent with the fol- 090
lowing two strategies to tackle the above challenges: 091

1

https://anonymous.4open.science/r/MegaAgent-dev-DEF0
https://anonymous.4open.science/r/MegaAgent-dev-DEF0

(1) Hierarchical Task Management: To facilitate092
adaptive task handling and effective communication,093
MegaAgent employs a hierarchical task management094
mechanism structured across three levels. First, the095
Boss Agent Level Task Decomposition, where the Boss096
Agent divides a task into smaller subtasks and assigns097
them to admin agents. Next, Dynamic Hierarchical098
Group Formation occurs when an admin agent recruits099
additional agents if a subtask exceeds its capacity, form-100
ing a recursive, dynamic group to handle complex tasks.101
Finally, System-Level Coordination and Communica-102
tion enables parallel execution and efficient interaction103
across the system, with agents connecting to external104
systems through function calls.105

(2) Hierarchical Monitoring: To ensure agents com-106
plete tasks accurately without relying on predefined107
SOPs, MegaAgent incorporates hierarchical monitor-108
ing and coordination mechanisms. First, each agent109
is assigned a task by its admin agent upon generation.110
Then, MegaAgent employs a robust hierarchical mon-111
itoring and coordination framework for each agent as112
follows: Agent-Level Monitoring ensures each agent113
tracks its actions with a checklist, verifying progress114
before moving forward. At the Group-Level Monitoring,115
admin agents oversee the tasks of their assigned agents,116
ensuring smooth execution and coordination. At the117
System-Level Monitoring, the Boss Agent reviews the118
outputs of all groups to ensure accuracy and consistency.119
This hierarchical approach ensures both effective task120
management and completion across all levels.121

Model No Predefined SOP Multi-file Support Parallelism Scalability

AutoGen ✗ ✗ ✗ ✗
MetaGPT ✗ ✓ ✗ ✗
CAMEL ✗ ✗ ✗ ✗

AgentVerse ✓ ✗ ✗ ✗

MegaAgent ✓ ✓ ✓ ✓

Table 1: Novelty comparison of popular LLM-MA sys-
tems with MegaAgent. Details are explained in Table 9.

MegaAgent’s framework is most beneficial for fu-122
ture applications requiring large-scale coordination of123
autonomous agents. In financial markets, it models124
systems where agents represent traders, investors, or125
regulatory bodies. These agents process market news,126
analyze trends, make trades, and respond to macroe-127
conomic events, potentially scaling to millions or bil-128
lions of agents. Initial studies highlight its applicability129
(Zhang et al., 2024a; Gao et al., 2024). In healthcare,130
MegaAgent can optimize systems with agents represent-131
ing providers, patients, administrators, and policymak-132
ers, simulating complex workflows (Li et al., 2024a; Fan133
et al., 2025).134

We conduct two experiments in widely recognized135
LLM-MA research scenarios (Hong et al., 2023; Guo136
et al., 2024) to demonstrate MegaAgent’s effective-137
ness and autonomy. (1) Software development: Gob-138
ang Game Development. This experiment highlights139
MegaAgent’s superior autonomy and efficiency com-140
pared to previous baselines, with MegaAgent being the141

only model capable of completing the task within 142
800 seconds. (2) Social Simulation: National Pol- 143
icy Generation. This task demonstrates MegaAgent’s 144
large-scale autonomy and scalability, generating and 145
coordinating approximately 590 agents to produce 146
the expected policies within 3000 seconds. In contrast, 147
baseline models can coordinate fewer than 10 agents 148
and fail to generate the expected policies. 149

Our contributions are as follows: 150

❶ Autonomous Framework. We introduce MegaA- 151
gent, a practical framework enabling autonomous 152
coordination in LLM-MA systems. It supports 153
dynamic task decomposition, parallel execution, 154
and systematic monitoring, ensuring efficient task 155
management. 156

❷ Minimizing Human-designed Prompts. We no- 157
tice the importance of minimizing human-designed 158
prompts in LLM-MA systems, addressing a criti- 159
cal limitation of previous frameworks that creates 160
a bottleneck for large-scale LLM-MA systems for 161
complex tasks. To overcome this, we propose as- 162
signing LLM agents to autonomously split tasks 163
and generate SOPs for agents. This approach re- 164
duces human intervention and enable broader range 165
of users to employ LLM-MA systems effectively. 166

❸ Experimental Validation. Extensive experiments 167
on two scenarios demonstrate that MegaAgent is: 168
(1) Superior: It is the only framework capable of 169
completing both Gobang game development and 170
national policy simulation tasks, outperforming 171
all baselines. (2) Efficient: MegaAgent success- 172
fully completes the Gobang game development 173
task within 800 seconds, demonstrating its supe- 174
rior task execution and coordination capabilities. 175
Moreover, it efficiently coordinates 590 agents for 176
national policy generation within 3000 seconds, 177
while baselines manage fewer than 10 agents and 178
fail to complete the task. This remarkable agent 179
count underscores MegaAgent’s scalability. 180

The remainder of this paper is organized as follows: 181
Section 2 introduces MegaAgent framework in detail. 182
Section 3 presents experimental evaluations demonstrat- 183
ing MegaAgent’s effectiveness. Section 4 reviews re- 184
lated work, and Section 5 concludes the paper. 185

2 MegaAgent Framework 186

2.1 Overview 187

We introduce the MegaAgent framework from two hi- 188
erarchical perspectives, as outlined in Section 1: (1) 189
Hierarchical Task Management and (2) Hierarchical 190
Monitoring. An overview is provided in Figure 1. We 191
elaborate the algorithm of MegaAgent in Algorithm 1. 192

2

Boss
Agent

Level 1 Level 3Level 2

Storage Module

Execution Logs Memory Database aPython Code aChecklistaPython Executor OOutput Files

No Problem! Let
me recruit admin
agents to finish it!

Function Callsv
Tax policies are

complex!
I need to recruit

more agents: one
 for rich people…

…

Agent Type

Admin Agent

Ordinary Agent

Split Task

Agent Action

v

Economic policies are
complex!

I need to recruit some
agents: one for tax, one

for bank…

I can finish
educational
policies by

myself!

Monitor Outputs

Agent Chat

Call functions

Intra-group Chat

Inter-group Chat

exec_python

a

write_file

read_file

add_agent

…

Healthy policies are
complex. I need to hire
some agents: one for

food, one for medical…

Divide and Conquer

I want you to
generate national

policies.

Parallel

Interaction
Check

Interaction
Check

Figure 1: MegaAgent processes a user-provided meta-prompt by dividing it into distinct tasks, assigning each
to a corresponding admin agent. Admin agents oversee their tasks, autonomously recruiting additional agents as
needed to form task-specific groups that operate in parallel for efficient execution. These groups can further expand
through sub-agent recruitment, creating a multi-level hierarchy. Admin agents supervise their groups to ensure task
completion and output quality. Agents are classified into admin and ordinary agents: admin agents can communicate
with one another, while ordinary agents interact only within their groups to optimize communication efficiency.
Agents access and manage external files in storage module using function calls, supporting seamless data retrieval
and task execution.

2.2 Hierachical Task Management193

2.2.1 Multi-level Task Splitting194

To efficiently manage complex tasks in large-scale LLM-195
MA systems, we implement a multi-level task manage-196
ment framework. Boss Agent is responsible for decom-197
posing the main task into manageable subtasks upon198
receiving the meta-prompt from a user. Each subtask199
is delegated to a specialized admin agent with a well-200
defined role by Boss Agent. If a subtask is too complex201
for an admin agent to complete independently, it can202
recruit additional agents to handle specific components.203
These newly created agents can, in turn, recruit more204
agents if needed, assuming the role of admin agent them-205
selves, as depicted in Level 2 and Level 3 in Figure 1.206
This recursive task-splitting mechanism enables the sys-207
tem to adapt dynamically as task complexity increases.208

To enhance efficiency, we implement a parallel mech-209
anism for agent groups operating at the same level. For210
instance, the two agent groups in Level 2 of Figure 1211
can work in parallel, with one generating economic212
policies and the other developing health policies. This213
parallelization reduces overall task completion time.214

2.2.2 Hierarchical Coordination Mechanism215

Effective task execution in MegaAgent is driven by a216
two-layer hierarchical coordination structure: (1) Intra-217
group Chat, where agents within the same task group218
collaborate by sharing updates through prompt-based219

communication, ensuring smooth progress and effective 220
task execution when interaction is required, as indicated 221
by the black double-arrow line in Figure 1; and (2) 222
Inter-group Chat, where admin agents from different 223
groups communicate to resolve task dependencies and 224
coordinate cross-group efforts, as represented by the 225
yellow double-arrow line in Figure 1. For instance, in 226
the software development experiment discussed in sub- 227
section 3.1, the software implementation must adhere 228
to the game logic designer’s requirements. Ordinary 229
agents are restricted from directly communicating with 230
agents outside their group to enhance efficiency. 231

2.2.3 File Management 232

To enable effective interaction between LLM agents and 233
external files, we introduce an external storage module 234
that manages all file-related tasks. This module includes 235
components such as agent execution logs, a memory 236
database, task monitoring tools, Python code execution 237
support, shared files, and individualized agent checklists. 238
To ensure consistent and accurate file management, we 239
propose the following two designs: 240

(1) Git-Based Version Control. To maintain file 241
consistency, we integrate a Git-based version control 242
mechanism. Since agents may spend considerable time 243
editing files after reading them, concurrent modifica- 244
tions by other agents could cause conflicts. To prevent 245
this, an agent retrieves the file’s current Git commit 246
hash upon reading it. Before making changes, the agent 247

3

submits this hash to the file management system, which248
commits the updates, merges them into the latest HEAD,249
and prompts the agent to resolve any merge conflicts250
if necessary. All Git operations are serialized using a251
global mutex lock to ensure synchronization and prevent252
race conditions.253

(2) Long-Term Memory Management with a Vec-254
tor Database. Many studies show that LLM agents255
would forget the conversation history after several256
rounds due to the token length limit (Becker, 2024; Xue257
et al., 2024). To address this, we implement a vector258
database to store the outputs of agents. Each output is259
encoded into embeddings using language models and260
stored in a vector database. Therefore, agents can re-261
trieve relevant memory entries, enabling them to recall262
past interactions and maintain contextual awareness.263

To visually illustrate the communication, we present264
an example of agent communication in Figure 2.265

You are MinisterHealth, the Minister of Health.
Your job is to develop a comprehensive policy doc-
ument (’policy_health.txt’) according to the guide-
lines provided in ’policy_health.txt’. You will collab-
orate with MinisterEducation (the Minister of Edu-
cation), MinisterFinance (the Minister of Finance),
and pass the final document to MinisterInfrastruc-
ture (the Minister of Infrastructure). You can recruit
lots of citizens for testing health initiatives. Ensure
adherence to the specified routine only. Your collab-
orators include MinisterEducation, MinisterFinance,
and MinisterInfrastructure.

Figure 2: Agent Communication Example: National
Leader to Minister of Health

2.3 Hierarchical Monitoring266

To ensure accurate task execution and minimize the267
propagation of hallucinations (Huang et al., 2023b; Hao268
et al., 2024) in an LLM-MA system, we implement a269
hierarchical monitoring mechanism that facilitates real-270
time oversight, error correction, and progress validation271
through a structured process.272

2.3.1 Multi-level Monitoring273

The monitoring system in MegaAgent follows a struc-274
tured, multi-level hierarchy to ensure accurate task com-275
pletion and prevent error propagation. Then, MegaA-276
gent employs a hierarchical monitoring and coordina-277
tion framework for each agent as follows:278

• Agent-Level Monitoring: Each agent maintains an279
checklist upon its being generated by its admin280
agent to document its actions and verify progress.281
This monitoring ensures accountability and allows282
agents to independently validate their work before283
proceeding to the next step.284

• Group-Level Monitoring: Each agent group is285
supervised by an admin agent, which tracks the286
progress of individual agents, ensures smooth exe-287
cution, and coordinates tasks within the group.288

• System-Level Monitoring: At the highest level, 289
Boss Agent oversees the outputs of all agent groups 290
upon task completion, ensuring adherence to the 291
correct format and minimizing hallucinated results. 292
This process enhances system-wide consistency, 293
reliability, and correctness. 294

2.3.2 Failure Scenarios and Solutions 295

Monitoring focuses on two key aspects: output format 296
verification and result validation, detailed as follows: 297

(1) Output Format Verification. First, the monitor- 298
ing would focus on the output format of an agent. For 299
example, if an agent generates a Python file that fails 300
to execute, its admin agent would flag the issue, log the 301
error, and prompt a retry. By enforcing consistent out- 302
put formats, this step prevents downstream agents from 303
misinterpreting data, reducing potential hallucinations. 304

(2) Result Validation. Once a group completes its 305
tasks, the admin agent reviews the generated outputs and 306
compares them against the initial task requirements. If 307
discrepancies are detected, the admin agent would detail 308
error messages, outline missing or incorrect aspects, 309
prompt the responsible agents to revise their work. This 310
validation process ensures that final outputs align with 311
intended objectives while minimizing task failures. 312

To clarify the monitoring process, we outline com- 313
mon failure scenarios and solutions as follows: 314

• Incomplete TODO Lists: Agents may terminate 315
prematurely or enter infinite loops due to inherent 316
LLM limitations. An admin agent would detect 317
it and prompt the agent to retry the task to ensure 318
task completion. 319

• Task Repetition: Limited context memory may 320
cause agents to forget completed tasks, leading 321
to redundant actions or task loops. An admin 322
agent would identify inconsistencies by cross- 323
referencing agent checklists and prompts corrective 324
actions as necessary. 325

• Secure Alignment Interruptions: Agents may be- 326
come unresponsive or repeatedly return alignment- 327
related constraint messages, such as “Sorry, I can’t 328
help with that.” In such cases, an admin agent at- 329
tempts to recruit other agents to finish the task. 330

To visually illustrate the monitoring, we present a 331
monitoring log example in Figure 3. 332

By combining strict output format verification and 333
result validation, this monitoring framework ensures 334
agents remain aligned with system goals. Comprehen- 335
sive error-handling processes prevent cascading fail- 336
ures, ensuring system stability and optimal performance 337
throughout the LLM-MA framework. 338

3 Experiments 339

We evaluate MegaAgent’s capabilities through two ex- 340
periments: software development and social simulation. 341
These scenarios are chosen over tasks such as reasoning 342

4

Financial Policy - **Strengths**: Clear
objectives, funding sources, and metrics for suc-
cess. - **Improvements Needed**: - Ensure
curriculum relevance for different demograph-
ics. - Incorporate interactive learning elements. -
Make programs accessible to all, including those
with disabilities. - Establish a feedback loop for
continuous improvement. - **Action**: Talk to
MinisterFinance for revisions based on feedback.

Figure 3: Monitoring Log Example: National Leader
monitors the financial policy.

or math problems, which a single LLM agent can handle343
(Chen et al., 2023b; Guo et al., 2024). The selected tasks344
demand extensive multi-agent coordination, providing a345
more realistic representation of coordination challenges346
in human societies.347
We focus on the following three research questions:348
RQ1: Can MegaAgent complete a task requiring exten-349
sive coordination without a predefined SOP? How do350
other baselines compare? (§subsection 3.1)351
RQ2: Can MegaAgent be effectively scaled to handle352
more complex tasks that involve a significantly larger353
number of agents, showcasing its scalability? How does354
it compare to other baselines?(§subsection 3.2)355

3.1 RQ1: Software Development - Gobang Game356

Gobang is a strategic board game played between two357
participants who take turns placing black and white358
pieces on a grid. The objective is to be the first to align359
five consecutive pieces horizontally, vertically, or diago-360
nally2. We select game development as a test scenario361
because it effectively evaluates an LLM-MA system’s362
coding and coordination abilities. The task requires363
generating both backend logic and frontend components364
while involving extensive collaboration among roles like365
product manager, game logic designer, and software de-366
velopers. This setting provides a robust evaluation of367
MegaAgent’s capabilities in coordination, autonomy,368
and parallelism in a project.369

3.1.1 Experiment Setup370

We conduct this experiment using the GPT-4o API3,371
setting the ’temperature’ parameter to 0 to ensure more372
deterministic responses (Achiam et al., 2023). The ex-373
periment begins by feeding the meta prompt to MegaA-374
gent shown in Figure 4. More details are in Appendix E.375

For comparative analysis, we employ AutoGen,376
MetaGPT, CAMEL, and AgentVerse to perform the377
same task. We manually adjust their backbones to GPT-378
4o or GPT-4 when GPT-4o is incompatible with their379
configurations. To ensure a fair evaluation, we design380
prompts tailored to each baseline’s requirements while381
adhering to the guidelines specified in their respective382

2https://en.wikipedia.org/wiki/Gomoku
3https://openai.com/index/

hello-gpt-4o/

You are Bob, the leader of a software develop-
ment club. Your club’s current goal is to develop
a Gobang game with an AI, and can be executed
by running ’main.py’.

Figure 4: Gobang Game Meta Prompt

papers to determine appropriate testing methods. Fur- 383
ther details are in subsection E.6. 384

3.1.2 Evaluation Metrics 385

To evaluate the generated Gobang game, we establish 386
the following evaluation metrics: (1) Error-Free Execu- 387
tion, which assesses the program’s ability to run without 388
errors; (2) User Move, which evaluates the user’s ability 389
to make a move; (3) AI Move, which measures the AI’s 390
ability to make a move; and (4) Game Termination, 391
which ensures the game’s ability to end correctly when 392
there are five consecutive pieces. 393

3.1.3 Experiment Results 394

As shown in Table 2. MegaAgent autonomously gen- 395
erates an SOP involving seven agents, effectively co- 396
ordinates their tasks, and successfully develops a fully 397
functional Gobang game with an interactive interface 398
within 800 seconds. These achievements fulfill all task 399
requirements, making MegaAgent the only system 400
capable of producing a complete and operational 401
game, unlike baseline models that either produce 402
incomplete results or fail entirely. Further details are 403
provided in Appendix E. The performance of other 404
baseline models is analyzed below: 405
AutoGen: AutoGen employs two agents but fails to 406
produce a valid game move. After approximately three 407
minutes, it generates a program ending with # To be 408
continued.. and becomes stuck when attempting 409
execution. The likely cause of this failure is its overly 410
simplistic SOP, lacking critical inter-agent communica- 411
tion steps such as code review. More details are provided 412
in subsubsection E.6.1. 413
MetaGPT: Despite generating six agents, MetaGPT 414
fails to produce a functional AI move in any trial. The 415
main issues include: (1) unexecutable code due to the 416
lack of debugging tools, (2) incorrect program genera- 417
tion, such as creating a tic-tac-toe game4 instead of a 418
Gobang game, likely due to a simplistic SOP and in- 419
sufficient agent communication, and (3) infinite loops 420
caused by incomplete implementations. More details 421
are in subsubsection E.6.2. 422
CAMEL: CAMEL cannot produce executable Python 423
code using two agents, likely due to weak planning and 424
limited contextual reasoning capabilities. More details 425
are in subsubsection E.6.3. 426
AgentVerse: AgentVerse generates four agents to com- 427
plete the task but faces significant issues. In the first 428
two trials, the agents repeatedly reject results for all ten 429

4https://en.wikipedia.org/wiki/
Tic-tac-toe

5

https://en.wikipedia.org/wiki/Gomoku
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/Tic-tac-toe

Model Error-Free Execution User Move AI Move Game Termination # of Agents Time(s) Time/Agent (s)

AutoGen ✓ ✓ ✗ ✗ 2 180 90
MetaGPT ✓ ✓ ✗ ✗ 6 480 80
CAMEL ✗ ✗ ✗ ✗ 2 1,830 915

AgentVerse ✗ ✗ ✗ ✗ 4 1,980 495

MegaAgent ✓ ✓ ✓ ✓ 7 800 114

Table 2: Gobang Game Development Results

rounds. In the third trial, while the result is accepted,430
the generated code contains numerous placeholders and431
remains unexecutable. The likely cause of failure is432
an overly rigid task outline during the planning stage,433
which current LLMs struggle to fulfill. More details are434
in subsubsection E.6.4.435

3.1.4 Ablation Study436

To validate the necessity of each component design in437
MegaAgent, we conduct an ablation study, with results438
in Table 3.439

Components Completed Metrics # Agents Time(s) Time/Agent (s)

Full (1) (2) (3) (4) 7 800 114
w/o hierarchy (1) (2) 5 920 184

w/o parallelism (1) (2) (3) (4) 7 4,505 643
w/o monitoring (1) (2) (3) 7 300 42

Table 3: Gobang Ablation Study Results

Removing the hierarchical structure reduces agent440
usage to 5 but increases completion time to 920 seconds441
while achieving only basic metrics. Without parallelism,442
task groups complete their tasks sequentially, increasing443
time complexity from O(log n) to O(n), which raises444
the execution time per agent from 114 seconds to 643445
seconds. Removing monitoring reduces execution time446
to 300 seconds but fails to meet essential metrics. These447
findings underscore that parallel execution, hierarchy,448
and monitoring are all crucial for both task completion449
and execution speed. More details are in subsection E.4.450

3.1.5 Cost Analysis451

To evaluate token usage and better understand the effi-452
ciency of the Gobang game generation, we provide a453
detailed cost analysis. The analysis is divided into three454
stages: Planning, Task-Solving, and Merging, each rep-455
resenting distinct phases of the system’s operation. The456
Planning stage focuses on initial strategy generation, the457
Task-Solving stage handles the core game-solving com-458
putations, and the Merging stage consolidates results for459
final outputs. We have two key insights from the results460
in Table 4 as follows:461

Stage # Input Tokens # Output Tokens # Total Tokens Time (s)

Planning 42,947 12,347 55,294 0–60
Task-Solving 1,098,573 55,022 1,153,595 30–840

Merging 22,099 1,493 23,592 840–870

Total 1,163,619 68,862 1,232,481 870

Table 4: Token usage analysis across different stages of
Gobang GPT-4o experiments.

Insight 1: High Resource Consumption in the Task- 462
Solving Stage. The majority of the time and token usage 463
occurs during the task-solving stage. This indicates 464
that the task is inherently complex, requiring significant 465
coordination among agents to generate solutions. This 466
highlights the computational intensity of multi-agent 467
interactions in solving strategic problems. 468

Insight 2: Disproportionate Input and Output Token 469
Usage. The input token count is substantially higher 470
than the output token count, revealing significant room 471
for optimization in token usage. Notably, the input to- 472
kens predominantly originate from dialogues between 473
agents. This suggests that improving the efficiency and 474
structure of inter-agent communication could be a valu- 475
able research direction to enhance overall efficiency. 476

3.2 RQ2: Social Simulation - National Policy 477
Generation 478

We propose a more challenging experiment: formulat- 479
ing national policies, which requires numerous agents 480
to perform various tasks in complex domains such as 481
education, health, and finance. We select this experi- 482
ment because social simulations with LLM-MA systems 483
require numerous agents—potentially scaling to hun- 484
dreds—to mimic a human-like society. This experiment 485
can evaluate MegaAgent’s autonomy, scalability, and 486
coordination capabilities. 487

3.2.1 Experiment Setup 488

Due to budget constraints, we use the GPT-4o-mini 489
API for this experiment conducted by MegaAgent. For 490
comparative analysis, we utilize AutoGen, MetaGPT, 491
CAMEL, and AgentVerse to perform the same task. 492
We manually adapt their backbone LLMs to GPT-4o or 493
GPT-4 when GPT-4o is incompatible with their code 494
configurations. The meta prompt we feed into MegaA- 495
gent is shown in Figure 5, with more details provided in 496
Appendix F. Descriptions of the other baseline settings 497
are included in subsection F.5. 498

You are NationLeader, the leader of a pioneer-
ing nation. You want to develop the best de-
tailed policy for your cutting-edge country in ‘pol-
icy_department.txt’. You are now recruiting minis-
ters and assigning work to them. For each possible
minister, please write a prompt.

Figure 5: National Policy Generation Meta Prompt

6

3.2.2 Evaluation Metrics499

To assess MegaAgent’s national policy reliability, we500
implement the LLM-as-a-Judge framework using five501
advanced models: Claude-3.55, GPT-4o-mini, GPT-4o,502
o1-mini, and o1-preview (Achiam et al., 2023). Our503
validation dataset contains 50 authentic national poli-504
cies and 50 non-policy texts (multi-turn conversations,505
meeting summaries) (Zheng et al., 2023a) to test pol-506
icy discrimination capability. Using the standardized507
prompt in Figure 6, models achieve 89% average iden-508
tification accuracy in Table 10, confirming evaluation509
validity. Complete validation details are in Appendix G.510

"Is this policy reasonable as a national policy?
Please return your answer with clear nuances:
Agree, Disagree, or Neutral with detailed expla-
nations."

Figure 6: National Policy Evaluation Prompt

3.2.3 Experiment Results511

We present National Policy Generation’s experimental512
results in Table 5. It shows MegaAgent’s ability to gen-513
erate complete and reasonable policies using a signifi-514
cantly larger number of agents within competitive time515
limits. The results show that MegaAgent outperforms516
baseline models by producing complete policies with517
590 agents in 2,991 seconds. Notably, MegaAgent’s518
average processing time per agent is 5 seconds, signif-519
icantly faster than the best-performing baseline at 40520
seconds per agent, demonstrating its scalability. The521
structure of the policies generated by MegaAgent is il-522
lustrated in Figure 7, with detailed outputs provided in523
subsection F.3.524

Model Outputs # Agents Time (s) Time/Agent (s)

AutoGen Outline 1 40 40
MetaGPT Python Program 6 580 97
CAMEL Plans 2 1,380 690

AgentVerse None 4 510 128

MegaAgent Complete Policies 590 2,991 5

Table 5: National Policy Generation Results

To evaluate the reliability of MegaAgent’s generated525
national policies, we feed the prompt in Figure 6 to526
chosen advanced LLMs for reasonability assessment.527
As shown in Table 6, an average of 27.4 out of 31 poli-528
cies are judged as reasonable by LLMs. This result529
highlights MegaAgent’s effectiveness in generating well-530
justified policies in this social simulation experiment.531

3.2.4 Ablation Study532

To validate the necessity of each component design in533
MegaAgent, we conduct an ablation study with results534
shown in Table 7.535

5https://www.anthropic.com/claude/
sonnet

Hierachy Diagram

Nation Leader

Minister of
Education

Minister of
Health

Minister of
Finance

...Education
Tester 01

Education
Tester 02

Education
Tester 03 Physician Psychologist Fitness

Expert
Regulatory
Reviewer Trader

Tax
Feedback
Collector

Figure 7: MegaAgent’s Generated National Policy
Structure

Model # Agree # Disagree # Neutral

Claude-3.5 26 1 4
gpt-4o-mini 28 0 3
gpt-4o 25 2 4
o1-mini 29 2 0
o1-preview 29 1 1

Average 27.4 1.2 2.4

Table 6: Evaluating the Rationality of 31 Policies Gen-
erated by MegaAgent

Without hierarchy, only incomplete policies are pro- 536
duced within 450 seconds using 19 agents, indicating 537
the importance of hierarchical design. Disabling paral- 538
lelism entirely results in incomplete policies even after 539
14400 seconds, with over 100 agents continuously re- 540
cruited but unable to complete tasks due to serialized 541
processing bottlenecks. Removing monitoring gener- 542
ates policies with placeholders in 667 seconds using 50 543
agents, highlighting the need for continuous supervi- 544
sion for task completeness. Detailed outputs of these 545
ablation studies are in subsection F.4. 546

These findings underscore that parallelism is not 547
merely beneficial but critical for managing complex 548
tasks in LLM-MA systems. 549

3.2.5 Cost Analysis 550

To assess the token and time costs of this experiment, we 551
perform a detailed analysis of token usage and execution 552
time across three stages: Planning, Task-Solving, and 553
Merging. The results are presented in Table 8. 554

Similar to analysis in 3.1.5, we observe from Table 8 555
that significant resource consumption during the task- 556
solving stage, which dominates both time and token 557
usage. A comparison of input-to-output token ratios be- 558
tween the experiments reveals consistent inefficiencies, 559
with the first experiment showing a ratio of approxi- 560
mately 23:1, while the current experiment is slightly 561
higher at 25:1. This increase suggests that the policy 562
generation task required additional resources for 563
inter-agent dialogues and greater context manage- 564
ment, likely due to the involvement of a larger num- 565
ber of agents. These findings highlight the critical need 566
to optimize token usage and enhance dialogue efficiency, 567

7

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet

Components Outputs # of Agents Time (s) Time/Agent (s)

Full Complete Policies 590 2,991 5
w/o hierarchy Incomplete Policies 19 450 24

w/o parallelism Incomplete Policies >100 >14,400 N.A.
w/o monitoring Policies with Placeholders 50 667 13

*We terminate the execution without parallelism
after 14400 seconds.

Table 7: National Policy Generation Ablation Study
Results

Stage Input Tokens Output Tokens Total Tokens Time (s)

Planning 111,601 24,103 135,704 0–180
Task-Solving 8,003,124 343,670 8,346,794 20–2,950

Merging 348,264 13,280 361,544 2,400–3,000

Total 8,463,989 381,053 8,845,042 3,000

Table 8: Token usage analysis for National Policy Gen-
eration.

which could significantly reduce resource consumption568
and improve overall performance in LLM-MA systems.569

3.3 Scalability Analysis570

In MegaAgent, for n agents, the hierarchical layer-to-571
layer communication cost is O(log n), as agent groups572
at the same level operate in parallel, as illustrated in573
Figure 7. In contrast, existing frameworks exhibit linear574
running time growth O(n) as they run serially, which575
becomes impractical with the number of LLM agents576
increasing much. The analysis is supported by our na-577
tional policy generation experiment in subsection 3.2,578
where MegaAgent’s average processing time per agent579
is 5 seconds, compared to CAMEL’s average of 700580
seconds per agent. These results highlight MegaAgent’s581
scalability and practicality for autonomous coordination582
in large-scale LLM-MA systems.583

4 Related Work584

We discuss the most related work here and leave more585
details in Appendix D.586

4.1 LLM-MA Systems587

With the emergence of powerful LLMs (Achiam et al.,588
2023; Team et al., 2023), recent research on LLM-589
based multi-agent systems has investigated how multi-590
ple agents can accomplish tasks through coordination,591
utilizing elements such as personas (Chen et al., 2024b;592
Chan et al., 2024), planning (Chen et al., 2023a; Zhang593
et al., 2024c; Yuan et al., 2023), and memory (Zhang594
et al., 2023a; Hatalis et al., 2023). Unlike systems rely-595
ing on a single LLM-based agent, multi-agent systems596
demonstrate superiority in tackling challenging tasks.597
Recent works, such as MetaGPT (Hong et al., 2023),598
AutoGen (Wu et al., 2023b), and AgentVerse (Chen599
et al., 2023b), design specific roles to achieve a task.600

However, most popular LLM-MA systems heavily601
rely on handcrafted prompts and expert design. For602
instance, MetaGPT (Hong et al., 2023) requires users603
to pre-design roles like product manager and software604
engineer. Another limitation is these systems utilize a605

sequential pipeline without considering parallel execu- 606
tion of agents (Li et al., 2023a). Although AgentScope 607
(Pan et al., 2024) does consider this, its implementation 608
follows a fixed trajectory in different rounds of inter- 609
action, prohibiting changes in communication partners, 610
thus limiting performance improvement as the number 611
of agents scales up. 612

In contrast, in the real world, when many software 613
developers are employed, they may first work on differ- 614
ent files simultaneously, and then focus on one specific 615
file when difficulties are encountered, sparking creative 616
ideas to overcome challenges by coordination. Addition- 617
ally, existing LLM-MA systems are restricted by their 618
small scale and have not been applied in large-scale 619
scenarios with complex coordination involved. We com- 620
pare current popular LLM-MA systems with MegaAgent 621
in Table 9. We can see from the table that MegaAgent 622
stands out for its high autonomy, multi-file support, par- 623
allelism, and scalability. 624

4.2 SOPs in LLM-MA Systems 625

Allocating SOPs is a common approach in designing 626
agent profiles and tasks within LLM-based multi-agent 627
(LLM-MA) systems (Hong et al., 2023; Huang et al., 628
2023a; Park et al., 2023; Zhuge et al., 2024; Shi et al., 629
2024). These systems define SOPs for both individual 630
agents and their communication protocols. While this 631
method has proven effective in previous works, it has 632
two major limitations: (1) Agents may possess unfore- 633
seen capabilities that cannot be anticipated during the 634
human design stage but become relevant during task 635
execution (Rivera et al., 2024; Sypherd and Belle, 2024; 636
Piatti et al., 2024); (2) As the scale of LLM-MA sys- 637
tems grows—potentially involving thousands or even 638
billions of agents—designing SOPs manually for each 639
agent becomes infeasible (Mou et al., 2024; Pan et al., 640
2024). To address this, the design mechanism must 641
evolve, leveraging LLMs themselves, as in the LLM- 642
as-the-Judge concept (Huang et al., 2024; Chen et al., 643
2024a), allowing LLMs to autonomously generate SOPs 644
for large-scale LLM-MA systems. 645

5 Conclusion 646

We present MegaAgent, a practical LLM-MA frame- 647
work enabling dynamic and autonomous coordination, 648
where users only need to provide a meta prompt at the 649
start of the process. Through a Gobang game software 650
development experiment, we demonstrate MegaAgent’s 651
superior autonomy and coordination compared to base- 652
line models. Our social simulation on national policy 653
generation highlights MegaAgent’s scalability to hun- 654
dreds of agents while ensuring effective coordination. 655
With its hierarchical and adaptive design, MegaAgent 656
has the potential to serve as the foundational OS for 657
future LLM-MA systems. We encourage the research 658
community to further explore enhancing agent coordi- 659
nation to address the increasing demands of large-scale 660
LLM-MA systems. 661

8

Limitations662

Planning and Communication Overhead. The pri-663
mary bottleneck lies in the planning and communication664
processes among LLM agents, particularly in translat-665
ing code into prompts, managing task checklists, main-666
taining the framework, and debugging. As the number667
of agents and communication rounds increases, input-668
output token consumption grows substantially, affecting669
both efficiency and cost. Future work should explore670
advanced token summarization, semantic compression,671
and efficient dialogue storage methods.672

Hallucination in Agent Outputs. Despite using task-673
specific checklists to monitor agent actions, occasional674
hallucinations persist, with output formats sometimes675
deviating from expected requirements. Since the check-676
lists themselves are generated by LLMs, errors may677
propagate. Addressing this requires more robust veri-678
fication mechanisms, potentially involving external ex-679
pert knowledge bases before, during, or after agent re-680
sponse generation.681

API Cost and Model Integration. MegaAgent’s re-682
liance on GPT-4 incurs high API costs. While cheaper683
alternatives exist, they may lack generalizability. A684
promising direction would involve integrating special-685
ized LLMs for specific tasks, leveraging models that686
excel in certain domains while maintaining efficient687
communication and data sharing across the LLMs.688

References689

Tensorrt-llm: A tensorrt toolbox for optimized large690
language model inference.691

2023. Huggingface text generation inference.692
https://github.com/huggingface/693
text-generation-inference. Commit:694
3c02262, Accessed on: 2023-11-25.695

2023. Promptflow.696

2024. Langchain.697

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sad-698
hana Kumaravel, Matt Stallone, Rameswar Panda,699
Yara Rizk, G. Bhargav, M. Crouse, Chulaka Gu-700
nasekara, S. Ikbal, Sachin Joshi, Hima P. Karanam,701
Vineet Kumar, Asim Munawar, S. Neelam, Dinesh702
Raghu, Udit Sharma, Adriana Meza Soria, Dheeraj703
Sreedhar, P. Venkateswaran, Merve Unuvar, David704
Cox, S. Roukos, Luis A. Lastras, and P. Kapanipathi.705
2024. Granite-function calling model: Introducing706
function calling abilities via multi-task learning of707
granular tasks. In Conference on Empirical Methods708
in Natural Language Processing.709

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama710
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo711
Almeida, Janko Altenschmidt, Sam Altman, Shyamal712
Anadkat, et al. 2023. Gpt-4 technical report. arXiv713
preprint arXiv:2303.08774.714

Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia 715
Smirni. 2020. Batch: machine learning inference 716
serving on serverless platforms with adaptive batch- 717
ing. In SC20: International Conference for High 718
Performance Computing, Networking, Storage and 719
Analysis, pages 1–15. IEEE. 720

Maksym Andriushchenko, Alexandra Souly, Mateusz 721
Dziemian, Derek Duenas, Maxwell Lin, Justin Wang, 722
Dan Hendrycks, Andy Zou, Zico Kolter, Matt Fredrik- 723
son, et al. 2024. Agentharm: A benchmark for mea- 724
suring harmfulness of llm agents. arXiv preprint 725
arXiv:2410.09024. 726

Apache. 2019. Tez. https://tez.apache. 727
org/. 728

Sourav Banerjee, Ayushi Agarwal, and Saloni Singla. 729
2024. Llms will always hallucinate, and we need to 730
live with this. arXiv preprint arXiv:2409.05746. 731

Jonas Becker. 2024. Multi-agent large language mod- 732
els for conversational task-solving. arXiv preprint 733
arXiv:2410.22932. 734

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten- 735
berger, Michal Podstawski, Lukas Gianinazzi, Joanna 736
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi- 737
otr Nyczyk, et al. 2024. Graph of thoughts: Solving 738
elaborate problems with large language models. In 739
Proceedings of the AAAI Conference on Artificial 740
Intelligence, volume 38, pages 17682–17690. 741

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald 742
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho- 743
seini. 2024. Large language monkeys: Scaling infer- 744
ence compute with repeated sampling. arXiv preprint 745
arXiv:2407.21787. 746

Souradip Chakraborty, Soumya Suvra Ghosal, Ming 747
Yin, Dinesh Manocha, Mengdi Wang, Amrit Bedi, 748
and Furong Huang. 2024. Transfer q-star : Principled 749
decoding for LLM alignment. In The Thirty-eighth 750
Annual Conference on Neural Information Processing 751
Systems. 752

Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, 753
and Dong Yu. 2024. Scaling synthetic data cre- 754
ation with 1,000,000,000 personas. arXiv preprint 755
arXiv:2406.20094. 756

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo 757
Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang, Yao 758
Wan, Pan Zhou, and Lichao Sun. 2024a. Mllm- 759
as-a-judge: Assessing multimodal llm-as-a-judge 760
with vision-language benchmark. arXiv preprint 761
arXiv:2402.04788. 762

Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai 763
Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan Yang, 764
Tinghui Zhu, et al. 2024b. From persona to person- 765
alization: A survey on role-playing language agents. 766
arXiv preprint arXiv:2404.18231. 767

Jiangjie Chen, Siyu Yuan, Rong Ye, Bodhisattwa Prasad 768
Majumder, and Kyle Richardson. 2023a. Put your 769
money where your mouth is: Evaluating strategic 770

9

https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://https://github.com/microsoft/promptflow
https://github.com/langchain-ai/langchain
https://www.semanticscholar.org/paper/cbde6f07977255cd5b571d93b497aa2874a7a544
https://www.semanticscholar.org/paper/cbde6f07977255cd5b571d93b497aa2874a7a544
https://www.semanticscholar.org/paper/cbde6f07977255cd5b571d93b497aa2874a7a544
https://www.semanticscholar.org/paper/cbde6f07977255cd5b571d93b497aa2874a7a544
https://www.semanticscholar.org/paper/cbde6f07977255cd5b571d93b497aa2874a7a544
https://tez.apache.org/
https://tez.apache.org/
https://tez.apache.org/
https://openreview.net/forum?id=5PrShrKxoX
https://openreview.net/forum?id=5PrShrKxoX
https://openreview.net/forum?id=5PrShrKxoX

planning and execution of llm agents in an auction771
arena. arXiv preprint arXiv:2310.05746.772

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,773
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia774
Qin, Yaxi Lu, Ruobing Xie, et al. 2023b. Agent-775
verse: Facilitating multi-agent collaboration and ex-776
ploring emergent behaviors in agents. arXiv preprint777
arXiv:2308.10848.778

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-779
baum, and Igor Mordatch. Improving factuality and780
reasoning in language models through multiagent781
debate. In Forty-first International Conference on782
Machine Learning.783

Zhihao Fan, Lai Wei, Jialong Tang, Wei Chen, Wang784
Siyuan, Zhongyu Wei, and Fei Huang. 2025. Ai785
hospital: Benchmarking large language models in a786
multi-agent medical interaction simulator. In Pro-787
ceedings of the 31st International Conference on788
Computational Linguistics, pages 10183–10213.789

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.790
Break the sequential dependency of llm inference us-791
ing lookahead decoding. In Forty-first International792
Conference on Machine Learning.793

Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao,794
Jinghua Piao, Huandong Wang, Depeng Jin, and Yong795
Li. 2023a. SΘ3: Social-network simulation system796
with large language model-empowered agents. arXiv797
preprint arXiv:2307.14984.798

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,799
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-800
ham Neubig. 2023b. PAL: Program-aided language801
models. In Proceedings of the 40th International802
Conference on Machine Learning, volume 202 of803
Proceedings of Machine Learning Research, pages804
10764–10799. PMLR.805

Shen Gao, Yuntao Wen, Minghang Zhu, Jianing Wei,806
Yuhan Cheng, Qunzi Zhang, and Shuo Shang. 2024.807
Simulating financial market via large language model808
based agents. arXiv preprint arXiv:2406.19966.809

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,810
Antoine Kaufmann, Ymir Vigfusson, and Jonathan811
Mace. 2020. Serving dnns like clockwork: Per-812
formance predictability from the bottom up. In813
Proc. USENIX OSDI.814

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,815
Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xi-816
angliang Zhang. 2024. Large language model based817
multi-agents: A survey of progress and challenges.818
arXiv preprint arXiv:2402.01680.819

Guozhi Hao, Jun Wu, Qianqian Pan, and Rosario820
Morello. 2024. Quantifying the uncertainty of llm821
hallucination spreading in complex adaptive social822
networks. Scientific reports, 14(1):16375.823

Kostas Hatalis, Despina Christou, Joshua Myers, Steven824
Jones, Keith Lambert, Adam Amos-Binks, Zohreh825

Dannenhauer, and Dustin Dannenhauer. 2023. Mem- 826
ory matters: The need to improve long-term memory 827
in llm-agents. In Proceedings of the AAAI Symposium 828
Series, volume 2, pages 277–280. 829

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 830
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 831
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023. 832
Metagpt: Meta programming for multi-agent collabo- 833
rative framework. arXiv preprint arXiv:2308.00352. 834

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 835
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 836
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 837
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 838
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro- 839
gramming for a multi-agent collaborative framework. 840
In The Twelfth International Conference on Learning 841
Representations. 842

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, 843
Jianchao Ji, Yingqiang Ge, Libby Hemphill, and 844
Yongfeng Zhang. 2023. War and peace (waragent): 845
Large language model-based multi-agent simulation 846
of world wars. arXiv preprint arXiv:2311.17227. 847

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, 848
and Heming Cui. 2023a. Agentcoder: Multi-agent- 849
based code generation with iterative testing and opti- 850
misation. arXiv preprint arXiv:2312.13010. 851

Hui Huang, Yingqi Qu, Jing Liu, Muyun Yang, and 852
Tiejun Zhao. 2024. An empirical study of llm- 853
as-a-judge for llm evaluation: Fine-tuned judge 854
models are task-specific classifiers. arXiv preprint 855
arXiv:2403.02839. 856

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 857
Zhangyin Feng, Haotian Wang, Qianglong Chen, 858
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 859
2023b. A survey on hallucination in large language 860
models: Principles, taxonomy, challenges, and open 861
questions. ACM Transactions on Information Sys- 862
tems. 863

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, 864
and Dennis Fetterly. 2007. Dryad: Distributed data- 865
parallel programs from sequential building blocks. 866
In Proceedings of the 2nd ACM SIGOPS/EuroSys 867
European Conference on Computer Systems 2007, 868
EuroSys ’07, page 59–72, New York, NY, USA. As- 869
sociation for Computing Machinery. 870

Minbyul Jeong, Jiwoong Sohn, Mujeen Sung, and Jae- 871
woo Kang. 2024. Improving medical reasoning 872
through retrieval and self-reflection with retrieval- 873
augmented large language models. Bioinformatics, 874
40(Supplement_1):i119–i129. 875

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko 876
Ishii, and Pascale Fung. 2023. Towards mitigating 877
llm hallucination via self reflection. In Findings of the 878
Association for Computational Linguistics: EMNLP 879
2023, pages 1827–1843. 880

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, 881
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Structgpt: 882

10

https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1145/1272996.1273005

A general framework for large language model to883
reason over structured data. In Proceedings of the884
2023 Conference on Empirical Methods in Natural885
Language Processing, pages 9237–9251.886

Mingyu Jin, Beichen Wang, Zhaoqian Xue, Suiyuan887
Zhu, Wenyue Hua, Hua Tang, Kai Mei, Mengnan Du,888
and Yongfeng Zhang. 2024. What if llms have differ-889
ent world views: Simulating alien civilizations with890
llm-based agents. arXiv preprint arXiv:2402.13184.891

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon892
Wei. 2023. S3: Increasing gpu utilization during893
generative inference for higher throughput. Advances894
in Neural Information Processing Systems, 36:18015–895
18027.896

Tianjie Ju, Yiting Wang, Xinbei Ma, Pengzhou Cheng,897
Haodong Zhao, Yulong Wang, Lifeng Liu, Jian898
Xie, Zhuosheng Zhang, and Gongshen Liu. 2024.899
Flooding spread of manipulated knowledge in llm-900
based multi-agent communities. arXiv preprint901
arXiv:2407.07791.902

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying903
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-904
zalez, Hao Zhang, and Ion Stoica. 2023a. Efficient905
memory management for large language model serv-906
ing with pagedattention. In Proceedings of the 29th907
Symposium on Operating Systems Principles, pages908
611–626.909

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying910
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-911
zalez, Hao Zhang, and Ion Stoica. 2023b. Efficient912
memory management for large language model serv-913
ing with pagedattention. In Proc. ACM SOSP.914

Rémi Leblond, Jean-Baptiste Alayrac, L. Sifre, Miruna915
Pislar, Jean-Baptiste Lespiau, Ioannis Antonoglou,916
K. Simonyan, and O. Vinyals. 2021. Machine transla-917
tion decoding beyond beam search. In Conference on918
Empirical Methods in Natural Language Processing.919

Donghyun Lee and Mo Tiwari. 2024. Prompt infec-920
tion: Llm-to-llm prompt injection within multi-agent921
systems. arXiv preprint arXiv:2410.07283.922

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii923
Khizbullin, and Bernard Ghanem. 2023a. Camel:924
Communicative agents for" mind" exploration of925
large language model society. Advances in Neural926
Information Processing Systems, 36:51991–52008.927

Junkai Li, Yunghwei Lai, Weitao Li, Jingyi Ren, Meng928
Zhang, Xinhui Kang, Siyu Wang, Peng Li, Ya-Qin929
Zhang, Weizhi Ma, et al. 2024a. Agent hospital: A930
simulacrum of hospital with evolvable medical agents.931
arXiv preprint arXiv:2405.02957.932

Xiang Li, Zhenyu Li, Chen Shi, Yong Xu, Qing933
Du, Mingkui Tan, and Jun Huang. 2024b. Al-934
phaFin: Benchmarking financial analysis with935
retrieval-augmented stock-chain framework. In Pro-936
ceedings of the 2024 Joint International Conference937
on Computational Linguistics, Language Resources938
and Evaluation (LREC-COLING 2024), pages 773–939
783. ELRA and ICCL.940

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent 941
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng 942
Chen, Hao Zhang, Joseph E Gonzalez, and et al. 943
2023b. Alpaserve: Statistical multiplexing with 944
model parallelism for deep learning serving. In 945
Proc. USENIX OSDI. 946

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, 947
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and 948
Zhaopeng Tu. 2023. Encouraging divergent thinking 949
in large language models through multi-agent debate. 950
arXiv preprint arXiv:2305.19118. 951

Chaofan Lin, Zhenhua Han, Chengruidong Zhang, 952
Yuqing Yang, Fan Yang, Chen Chen, and Lili Qiu. 953
2024. Parrot: Efficient serving of llm-based appli- 954
cations with semantic variable. In Proc. USENIX 955
OSDI. 956

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu- 957
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, 958
Kaiwen Men, Kejuan Yang, et al. 2023a. Agent- 959
bench: Evaluating llms as agents. arXiv preprint 960
arXiv:2308.03688. 961

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi 962
Yang. 2023b. Dynamic llm-agent network: An llm- 963
agent collaboration framework with agent team opti- 964
mization. arXiv preprint arXiv:2310.02170. 965

LINHAO LUO, Yuan-Fang Li, Reza Haf, and Shirui 966
Pan. Reasoning on graphs: Faithful and interpretable 967
large language model reasoning. In The Twelfth In- 968
ternational Conference on Learning Representations. 969

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, 970
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 971
2021. SONIC: Application-aware data passing for 972
chained serverless applications. In 2021 USENIX An- 973
nual Technical Conference (USENIX ATC 21), pages 974
285–301. USENIX Association. 975

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, 976
Daniel Khashabi, and Hannaneh Hajishirzi. 2023. 977
When not to trust language models: Investigating 978
effectiveness of parametric and non-parametric mem- 979
ories. In Proceedings of the 61st Annual Meeting of 980
the Association for Computational Linguistics (Vol- 981
ume 1: Long Papers), pages 9802–9822, Toronto, 982
Canada. Association for Computational Linguistics. 983

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, 984
Yingqiang Ge, and Yongfeng Zhang. 2024a. Aios: 985
Llm agent operating system. arXiv.org. 986

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, 987
Yingqiang Ge, and Yongfeng Zhang. 2024b. 988
Llm agent operating system. arXiv preprint 989
arXiv:2403.16971. 990

Xinyi Mou, Xuanwen Ding, Qi He, Liang Wang, Jing- 991
cong Liang, Xinnong Zhang, Libo Sun, Jiayu Lin, Jie 992
Zhou, Xuanjing Huang, et al. 2024. From individual 993
to society: A survey on social simulation driven by 994
large language model-based agents. arXiv preprint 995
arXiv:2412.03563. 996

11

https://www.semanticscholar.org/paper/e8cc5b6204970a88cd1b2df491aa10c4333e083e
https://www.semanticscholar.org/paper/e8cc5b6204970a88cd1b2df491aa10c4333e083e
https://www.semanticscholar.org/paper/e8cc5b6204970a88cd1b2df491aa10c4333e083e
https://www.semanticscholar.org/paper/f89e85059a55b647c93822aefa7e985376e0ef20
https://www.semanticscholar.org/paper/f89e85059a55b647c93822aefa7e985376e0ef20
https://www.semanticscholar.org/paper/f89e85059a55b647c93822aefa7e985376e0ef20

Christopher Olston, Noah Fiedel, Kiril Gorovoy,997
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu Ra-998
jashekhar, Sukriti Ramesh, and Jordan Soyke. 2017.999
Tensorflow-serving: Flexible, high-performance ml1000
serving. arXiv preprint arXiv:1712.06139.1001

Xuchen Pan, Dawei Gao, Yuexiang Xie, Zhewei Wei,1002
Yaliang Li, Bolin Ding, Ji-Rong Wen, and Jingren1003
Zhou. 2024. Very large-scale multi-agent simulation1004
in agentscope. arXiv preprint arXiv:2407.17789.1005

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-1006
ith Ringel Morris, Percy Liang, and Michael S Bern-1007
stein. 2023. Generative agents: Interactive simulacra1008
of human behavior. In Proceedings of the 36th an-1009
nual acm symposium on user interface software and1010
technology, pages 1–22.1011

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bern-1012
hard Schölkopf, Mrinmaya Sachan, and Rada Mi-1013
halcea. 2024. Cooperate or collapse: Emergence of1014
sustainable cooperation in a society of llm agents.1015
In The Thirty-eighth Annual Conference on Neural1016
Information Processing Systems.1017

Nicholas Pipitone and Ghita Houir Alami. 2024.1018
Legalbench-rag: A benchmark for retrieval-1019
augmented generation in the legal domain. arXiv1020
preprint arXiv:2408.10343.1021

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,1022
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan1023
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-1024
ciently scaling transformer inference. Proceedings of1025
Machine Learning and Systems, 5:606–624.1026

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-1027
guang Zhu, and Michael Zeng. 2023. Automatic1028
prompt optimization with" gradient descent" and1029
beam search. arXiv preprint arXiv:2305.03495.1030

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,1031
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,1032
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,1033
Jie Zhou, M. Gerstein, Dahai Li, Zhiyuan Liu, and1034
Maosong Sun. 2023. Toolllm: Facilitating large lan-1035
guage models to master 16000+ real-world apis. In-1036
ternational Conference on Learning Representations.1037

Corban Rivera, Grayson Byrd, William Paul, Tyler1038
Feldman, Meghan Booker, Emma Holmes, David1039
Handelman, Bethany Kemp, Andrew Badger, Au-1040
rora Schmidt, et al. 2024. Conceptagent: Llm-1041
driven precondition grounding and tree search for1042
robust task planning and execution. arXiv preprint1043
arXiv:2410.06108.1044

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta1045
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-1046
moyer, Nicola Cancedda, and Thomas Scialom. 2023.1047
Toolformer: Language models can teach themselves1048
to use tools. In Advances in Neural Information1049
Processing Systems, volume 36, pages 68539–68551.1050
Curran Associates, Inc.1051

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,1052
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,1053

Suzan Verberne, and Zhaochun Ren. 2024. Learning 1054
to use tools via cooperative and interactive agents. In 1055
Findings of the Association for Computational Lin- 1056
guistics: EMNLP 2024, pages 10642–10657, Miami, 1057
Florida, USA. Association for Computational Lin- 1058
guistics. 1059

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo 1060
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung- 1061
Yeung Shum, and Jian Guo. Think-on-graph: Deep 1062
and responsible reasoning of large language model 1063
on knowledge graph. In The Twelfth International 1064
Conference on Learning Representations. 1065

Chris Sypherd and Vaishak Belle. 2024. Practical con- 1066
siderations for agentic llm systems. arXiv preprint 1067
arXiv:2412.04093. 1068

Gemini Team, Rohan Anil, Sebastian Borgeaud, 1069
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 1070
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 1071
Anja Hauth, et al. 2023. Gemini: a family of 1072
highly capable multimodal models. arXiv preprint 1073
arXiv:2312.11805. 1074

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vip- 1075
ula Rawte, Aman Chadha, and Amitava Das. 2024. 1076
A comprehensive survey of hallucination mitigation 1077
techniques in large language models. arXiv preprint 1078
arXiv:2401.01313. 1079

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 1080
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 1081
Baptiste Rozière, Naman Goyal, Eric Hambro, 1082
Faisal Azhar, et al. 2023. Llama: Open and effi- 1083
cient foundation language models. arXiv preprint 1084
arXiv:2302.13971. 1085

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry 1086
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny 1087
Zhou, Quoc Le, and Thang Luong. 2023. Freshllms: 1088
Refreshing large language models with search engine 1089
augmentation. In Annual Meeting of the Association 1090
for Computational Linguistics. 1091

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 1092
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and 1093
Anima Anandkumar. a. Voyager: An open-ended 1094
embodied agent with large language models. Trans- 1095
actions on Machine Learning Research. 1096

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V 1097
Le, Ed H Chi, Sharan Narang, Aakanksha Chowdh- 1098
ery, and Denny Zhou. b. Self-consistency improves 1099
chain of thought reasoning in language models. In 1100
The Eleventh International Conference on Learning 1101
Representations. 1102

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 1103
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 1104
et al. 2022. Chain-of-thought prompting elicits rea- 1105
soning in large language models. Advances in neural 1106
information processing systems, 35:24824–24837. 1107

Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, 1108
Xuanzhe Liu, and Xin Jin. 2023a. Fast distributed 1109
inference serving for large language models. In arXiv 1110
preprint arXiv:2305.05920. 1111

12

https://www.semanticscholar.org/paper/0bfc804e31eecfd77f45e4ee7f4d629fffdcd628
https://www.semanticscholar.org/paper/0bfc804e31eecfd77f45e4ee7f4d629fffdcd628
https://www.semanticscholar.org/paper/0bfc804e31eecfd77f45e4ee7f4d629fffdcd628
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://www.semanticscholar.org/paper/be177300487b6d0f25e6cade9a31900454b13281
https://www.semanticscholar.org/paper/be177300487b6d0f25e6cade9a31900454b13281
https://www.semanticscholar.org/paper/be177300487b6d0f25e6cade9a31900454b13281
https://www.semanticscholar.org/paper/be177300487b6d0f25e6cade9a31900454b13281
https://www.semanticscholar.org/paper/be177300487b6d0f25e6cade9a31900454b13281

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,1112
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,1113
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling1114
next-gen llm applications via multi-agent conversa-1115
tion. In ICLR 2024 Workshop on Large Language1116
Model (LLM) Agents.1117

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,1118
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,1119
Xiaoyun Zhang, and Chi Wang. 2023b. Auto-1120
gen: Enabling next-gen llm applications via multi-1121
agent conversation framework. arXiv preprint1122
arXiv:2308.08155.1123

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei1124
Zheng, and Yang You. 2024. To repeat or not to1125
repeat: Insights from scaling llm under token-crisis.1126
Advances in Neural Information Processing Systems,1127
36.1128

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,1129
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching1130
large language model to use tools via self-instruction.1131
In Advances in Neural Information Processing Sys-1132
tems, volume 36, pages 71995–72007. Curran Asso-1133
ciates, Inc.1134

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,1135
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.1136
2024. Tree of thoughts: Deliberate problem solving1137
with large language models. Advances in Neural1138
Information Processing Systems, 36.1139

Shunyu Yao, Jeffrey Zhao, Dian Yu, Izhak Shafran,1140
Karthik R Narasimhan, and Yuan Cao. React: Syn-1141
ergizing reasoning and acting in language models.1142
In NeurIPS 2022 Foundation Models for Decision1143
Making Workshop.1144

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-1145
jeong Kim, and Byung-Gon Chun. 2022. Orca: A dis-1146
tributed serving system for Transformer-Based gener-1147
ative models. In 16th USENIX Symposium on Oper-1148
ating Systems Design and Implementation (OSDI 22),1149
pages 521–538, Carlsbad, CA. USENIX Association.1150

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, So-1151
ham Shah, Charles Robert Jankowski, Yanghua Xiao,1152
and Deqing Yang. 2023. Distilling script knowledge1153
from large language models for constrained language1154
planning. arXiv preprint arXiv:2305.05252.1155

Chong Zhang, Xinyi Liu, Mingyu Jin, Zhongmou1156
Zhang, Lingyao Li, Zhengting Wang, Wenyue Hua,1157
Dong Shu, Suiyuan Zhu, Xiaobo Jin, et al. 2024a.1158
When ai meets finance (stockagent): Large language1159
model-based stock trading in simulated real-world1160
environments. arXiv preprint arXiv:2407.18957.1161

Kai Zhang, Fubang Zhao, Yangyang Kang, and Xi-1162
aozhong Liu. 2023a. Memory-augmented llm person-1163
alization with short-and long-term memory coordina-1164
tion. arXiv preprint arXiv:2309.11696.1165

Shizhuo Zhang, Curt Tigges, Stella Biderman, M. Ra-1166
ginsky, and T. Ringer. 2023b. Can transformers learn1167
to solve problems recursively? arXiv.org.1168

Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu 1169
Li, Xuelong Li, and Zhen Wang. 2024b. Towards 1170
efficient llm grounding for embodied multi-agent col- 1171
laboration. arXiv preprint arXiv:2405.14314. 1172

Yikai Zhang, Siyu Yuan, Caiyu Hu, Kyle Richard- 1173
son, Yanghua Xiao, and Jiangjie Chen. 2024c. 1174
Timearena: Shaping efficient multitasking language 1175
agents in a time-aware simulation. arXiv preprint 1176
arXiv:2402.05733. 1177

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 1178
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 1179
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 1180
survey of large language models. arXiv preprint 1181
arXiv:2303.18223. 1182

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 1183
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 1184
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023a. 1185
Judging llm-as-a-judge with mt-bench and chatbot 1186
arena. Advances in Neural Information Processing 1187
Systems, 36:46595–46623. 1188

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff 1189
Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Chris- 1190
tos Kozyrakis, Ion Stoica, Joseph E Gonzalez, and 1191
et al. 2023b. Efficiently programming large language 1192
models using sglang. arXiv. 1193

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, 1194
Xin Jiang, and Yang You. 2024. Response length per- 1195
ception and sequence scheduling: An llm-empowered 1196
llm inference pipeline. Advances in Neural Informa- 1197
tion Processing Systems, 36. 1198

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia 1199
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli 1200
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. 2021. 1201
Qmsum: A new benchmark for query-based multi- 1202
domain meeting summarization. arXiv preprint 1203
arXiv:2104.05938. 1204

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, 1205
Haohan Wang, and Yu-Xiong Wang. Language agent 1206
tree search unifies reasoning, acting, and planning in 1207
language models. In Forty-first International Confer- 1208
ence on Machine Learning. 1209

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 1210
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing 1211
vision-language understanding with advanced large 1212
language models. arXiv preprint arXiv:2304.10592. 1213

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, 1214
Francesco Faccio, Dmitrii Khizbullin, and Jürgen 1215
Schmidhuber. 2024. Language agents as optimizable 1216
graphs. arXiv preprint arXiv:2402.16823. 1217

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/e393677793767624f2821cec8bdd02f1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e393677793767624f2821cec8bdd02f1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e393677793767624f2821cec8bdd02f1-Paper-Conference.pdf
https://www.semanticscholar.org/paper/45c196d28d16b2a8c0a078e8b79bcb39887a8a9f
https://www.semanticscholar.org/paper/45c196d28d16b2a8c0a078e8b79bcb39887a8a9f
https://www.semanticscholar.org/paper/45c196d28d16b2a8c0a078e8b79bcb39887a8a9f
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

Appendix1218

A Algorithm 151219

B More Related Works 151220
B.1 Multi-Agent Coordination . 151221
B.2 Reasoning and Planning . 151222
B.3 External Memory and Tools . 151223
B.4 Operational Protocols in Multi-Agent Systems . 161224
B.5 LLM Inference and Serving . 161225
B.6 System Optimization of LLM-MA system . 161226

C Experimental Environment 171227

D Supplementary Related Work 171228
D.1 LLM-based Agents Coordination . 171229
D.2 LLM-based Agents Management . 171230
D.3 Hallucinations in LLM-MA Systems . 171231
D.4 Novelty Comparison between MegaAgent and Baselines . 171232

E Gobang Game Experiment Details 171233
E.1 Setup . 171234
E.2 Cost . 171235
E.3 Results . 171236
E.4 Ablation Study . 181237
E.5 Human-written SOP for Gobang Game . 181238
E.6 Gobang Game Experiment with Baselines . 181239

F National Policy Generation Experiment Details 221240
F.1 Setup . 221241
F.2 Cost . 221242
F.3 Results . 221243
F.4 Ablation Study . 221244
F.5 National Policy Generation Experiment with other Baselines . 261245

G National Policy Evaluation Validation Experiment 281246
G.1 Data Collection . 281247
G.2 Data Ethics . 281248
G.3 Experiment Setup . 341249
G.4 Evaluation Metrics . 341250
G.5 Experiment Results . 351251

14

A Algorithm1252

Algorithm 1 MegaAgent Algorithm from Prompt to
Task Completion

Require: Prompt P
Ensure: Completed Task Output O

1: Initialization: Assign BossAgent as root agent.
2: BossAgent Decompose P into subtasks S =

{s1, s2, . . . , sn}.
3: BossAgent assign each subtask si ∈ S to an Admin

Agent.
4: repeat
5: for all Admin Agent in parallel do
6: Task Splitting:
7: if si is complex then
8: Recruit sub-agents to handle compo-

nents of si.
9: end if

10: Intra-group Coordination:
11: Agents communicate via prompts within

their group.
12: Execute Task: Each agent completes as-

signed components.
13: Monitoring: Validate progress using check-

lists.
14: if Output format or validation fails then
15: Retry or recruit additional agents.
16: end if
17: end for
18: Inter-group Coordination: Admin agents re-

solve dependencies.
19: until All subtasks si are completed and validated.
20: System-Level Monitoring:
21: BossAgent aggregates outputs from all agent

groups.
22: if Discrepancies or errors detected then
23: Return to corresponding Admin Agent(s) for cor-

rections.
24: end if
25: Return: Final output O.

B More Related Works1253

B.1 Multi-Agent Coordination1254

Recent advances in LLMs (Achiam et al., 2023; Team1255
et al., 2023) have spurred the creation of multi-agent1256
frameworks where specialized models collaborate on1257
intricate tasks like code synthesis, mathematical analy-1258
sis, and decision-making (Hong et al., 2023; Chen et al.,1259
2023b). Innovations in role specialization (Chen et al.,1260
2024b; Chan et al., 2024), adaptive planning (Yuan1261
et al., 2023), and knowledge retention (Zhang et al.,1262
2023a; Hatalis et al., 2023) enable these systems to1263
surpass single-agent performance. Platforms such as1264
MetaGPT (Hong et al., 2023) and AgentVerse (Chen1265
et al., 2023b) exemplify effective coordination strategies1266
through structured role assignment.1267

B.2 Reasoning and Planning 1268

Reasoning. The Chain-of-Thought (CoT) reasoning 1269
framework illustrates that detailed reasoning conducted 1270
in multiple stages is notably beneficial for the effec- 1271
tiveness of Large Language Models (LLMs), particu- 1272
larly when compared to the limitations of single-step 1273
reasoning (Wei et al., 2022). Multi-stage reasoning sig- 1274
nificantly enhances LLM performance by decomposing 1275
problems into sequential steps (Wei et al., 2022), mir- 1276
roring human cognition. Single-step approaches often 1277
neglect critical intermediate phases, reducing solution 1278
accuracy (Wei et al., 2022). 1279

While CoT (Wei et al., 2022) employs one LLM 1280
invocation, newer techniques integrate search algo- 1281
rithms like MCTS (Leblond et al., 2021), Q-star 1282
search (Chakraborty et al., 2024) and recursive valida- 1283
tion (Fu et al.) during token generation to refine outputs. 1284
Parallel LLM invocations (Brown et al., 2024) and an- 1285
swer selection via CoT-SC (Wang et al., b) improve 1286
reliability. Structured approaches like ToT (Yao et al., 1287
2024) and GoT (Besta et al., 2024) organize reasoning 1288
paths graphically, while collaborative agent simulations 1289
enable decentralized problem-solving (Li et al., 2023a; 1290
Hong et al., 2024). And some research indicates that 1291
integrating knowledge graphs (LUO et al.; Sun et al.) 1292
and prompt structuring (Jiang et al., 2023) can empower 1293
LLMs reasoning ability. Multiple agents is another 1294
form of using parallel LLM to enhance reasoning per- 1295
formance and solve problems (Li et al., 2023a; Hong 1296
et al., 2024; Liang et al., 2023; Du et al.). 1297

Planning. Complex task resolution and reasoning 1298
requires divide-and-conquer strategies, where LLMs act 1299
as coordinators partitioning problems and delegating 1300
subtasks (Hong et al., 2024; Wang et al., a). Hybrid 1301
systems combining neural and symbolic reasoning fur- 1302
ther enhance planning efficiency (Zhang et al., 2023b). 1303
Some recent research begins utilizing LLMs to indepen- 1304
dently orchestrate planning and scheduling (Hong et al., 1305
2024; Wu et al.; Zhou et al.; Wang et al., a; Zhang et al., 1306
2023b). 1307

B.3 External Memory and Tools 1308

External Tools. Modern LLMs excel at invoking ex- 1309
ternal APIs for tasks requiring web search (Qin et al., 1310
2023), computation (Schick et al., 2023), or system op- 1311
erations (Mei et al., 2024a). In the practical applications, 1312
the external function descriptions are sent to LLMs to 1313
allow them to choose suitable functions to execute. (Ab- 1314
delaziz et al., 2024). For example, numerical functions 1315
APIs can be particularly effective for arithmetic tasks 1316
(Gao et al., 2023b; Yang et al., 2023). And with the 1317
Internet search, LLMs can receive more information to 1318
enhance its task solution performance (Yao et al.; Vu 1319
et al., 2023). 1320

External Memory. Incorporating external data 1321
sources like research papers or databases (Mallen et al., 1322
2023) reduces factual inaccuracies. Domain-specific 1323
enhancements in legal (Pipitone and Alami, 2024), med- 1324

15

ical (Jeong et al., 2024), and financial (Li et al., 2024b)1325
contexts demonstrate significant performance gains.1326

B.4 Operational Protocols in Multi-Agent Systems1327

Allocating SOPs is a common approach in designing1328
agent profiles and tasks within LLM-based multi-agent1329
(LLM-MA) systems (Hong et al., 2023; Huang et al.,1330
2023a; Park et al., 2023; Zhuge et al., 2024; Shi et al.,1331
2024). These systems define SOPs for both individual1332
agents and their communication protocols. While this1333
method has proven effective in previous works, it has1334
two major limitations: (1) Agents may possess unfore-1335
seen capabilities that cannot be anticipated during the1336
human design stage but become relevant during task1337
execution (Rivera et al., 2024; Sypherd and Belle, 2024;1338
Piatti et al., 2024); (2) As the scale of LLM-MA sys-1339
tems grows—potentially involving thousands or even1340
billions of agents—designing SOPs manually for each1341
agent becomes infeasible (Mou et al., 2024; Pan et al.,1342
2024).1343

B.5 LLM Inference and Serving1344

Prefilling and Decoding. Modern language model1345
deployment relies on two distinct operational phases.1346
During context initialization, the system processes in-1347
put prompts to establish attention key-value states – a1348
memory-saving process that prevents redundant recom-1349
putation of historical token embeddings (Pope et al.,1350
2023). This phase is particularly critical for applica-1351
tions requiring sequential coherence, such as interactive1352
chatbots.1353

The subsequent token generation phase produces out-1354
put sequences using strategies like deterministic beam1355
search (Pryzant et al., 2023) or stochastic sampling1356
(Brown et al., 2024). Beam search balances quality1357
and computational cost, while temperature-controlled1358
sampling introduces controlled randomness for creative1359
outputs.1360

Memory Optimization Techniques. Efficient1361
KV cache management has become pivotal for high-1362
throughput LLM serving. The PagedAttention method-1363
ology (Kwon et al., 2023a) revolutionized this do-1364
main by organizing cached attention states into non-1365
contiguous memory blocks, enabling dynamic alloca-1366
tion proportional to sequence lengths. Leading inference1367
engines like vLLM (Kwon et al., 2023a), TensorRT-1368
LLM (ten), and HuggingFace TGI (tgi, 2023) have1369
implemented this approach with varying architectural1370
adaptations.1371

LLM serving has seen a surge of research activity in1372
recent years, with many systems developed to address1373
the different challenges. The systems include Tensor-1374
Flow Serving (Olston et al., 2017), Clockwork (Gujarati1375
et al., 2020), AlpaServe (Li et al., 2023b), Orca (Yu1376
et al., 2022), vllm (Kwon et al., 2023b), SGLang (Zheng1377
et al., 2023b) and others. These serving system explore1378
many aspects including batching, caching, placement,1379
scheduling, model parallelism for the serving of single1380
or multiple models.1381

Serving Metrics. System designers evaluate LLM 1382
serving efficiency through multiple quantitative mea- 1383
sures: (1) TTFT (Time To First Token) that is criti- 1384
cal for user-perceived responsiveness; (2) TPOT (Time 1385
Per Output Token)that impacts streaming experience 1386
quality; (3) Throughput that measures total tokens pro- 1387
cessed per unit time; (4) SLO Compliance Rate which 1388
is the percentage of requests meeting latency guarantees. 1389
Different serving frameworks utilize different serving 1390
strategies to optimize them. 1391

Scheduling Requests. Effective scheduling requires 1392
balancing conflicting objectives: maximizing GPU uti- 1393
lization through batching while maintaining strict la- 1394
tency constraints (Ali et al., 2020). Advanced systems 1395
employ: (1) Dynamic Batching: Groups requests by 1396
similar context lengths; (2) Iterative Scheduling: In- 1397
terleaves processing of new and ongoing generations; 1398
(3) Predictive Scaling: Anticipates resource needs via 1399
request length estimation (Zheng et al., 2024). Mod- 1400
ern schedulers like FastServe (Wu et al., 2023a) imple- 1401
ment priority queues based on input complexity, while 1402
response-aware systems (Jin et al., 2023) optimize for 1403
tail latency reduction. The industry-wide adoption of 1404
continuous batching allows incremental addition of re- 1405
quests to active computation batches, dramatically im- 1406
proving hardware utilization compared to static batching 1407
approaches. 1408

B.6 System Optimization of LLM-MA system 1409

Workflow Composition. Agent-based applications typ- 1410
ically involve interconnected LLM calls organized as 1411
computational graphs. These directed acyclic graphs 1412
(DAGs) represent data dependencies between model in- 1413
vocations, where nodes correspond to individual agents 1414
and edges define execution prerequisites (lan, 2024). 1415
Tools like Microsoft’s PromptFlow (pro, 2023) provide 1416
visual editors for constructing such workflows, enabling 1417
latency prediction and parallel execution planning. 1418

Legacy Graph Processing. Previous generation 1419
DAG schedulers (Apache, 2019; Isard et al., 2007; Mah- 1420
goub et al., 2021) focused on general data processing 1421
optimizations: (1) Pipeline parallelism for multi-stage 1422
workloads; (2) Data locality-aware task placement; (3) 1423
Inter-node communication minimization. While effec- 1424
tive for traditional dataflows, these systems lack seman- 1425
tic understanding of LLM-specific patterns like prompt 1426
reuse opportunities or attention cache sharing potential 1427
across requests in LLM-MA systems. 1428

DAG-aware LLM Serving. Recent innovations ad- 1429
dress LLM workflow peculiarities through two comple- 1430
mentary approaches. 1431

Semantic Task Chaining. Parrot (Lin et al., 2024) 1432
introduces reusable context containers (semantic vari- 1433
ables) that explicitly track dependencies between LLM 1434
calls. This enables cross-request prompt deduplication 1435
and context-aware scheduling, reducing redundant com- 1436
putation by up to 40% in benchmark tests. 1437

Cross-Request Cache Optimization. SGLang (Zheng 1438
et al., 2023b) implements RadixAttention – a prefix- 1439

16

aware KV cache management system. By maintain-1440
ing an LRU-cached radix tree of attention states, the1441
framework identifies and reuses common prompt pre-1442
fixes across concurrent requests. When combined with1443
cache-aware scheduling, this technique demonstrates1444
3.8× throughput improvement on workflows with shared1445
context segments.1446

These advancements highlight the necessity of spe-1447
cialized scheduling mechanisms for LLM agent systems,1448
contrasting with the one-size-fits-all approaches of con-1449
ventional DAG processors.1450

C Experimental Environment1451

All experiments are conducted using an NVIDIA A100-1452
80G Tensor Core GPU, utilizing Tier 5 APIs for both1453
ChatGPT-4o and ChatGPT-4o mini 6.1454

D Supplementary Related Work1455

D.1 LLM-based Agents Coordination1456

The coordination between LLM-based agents is crit-1457
ical infrastructure for supporting LLM-MA systems1458
(Guo et al., 2024). There are three main coordina-1459
tion paradigms: cooperative, debate, and competitive.1460
MegaAgent focuses on the coordination paradigm, aim-1461
ing to have agents work together toward a shared goal.1462
Within the cooperative paradigm are three main struc-1463
tures: layered, decentralized, and centralized. Layered1464
communication is organized hierarchically, with agents1465
at each level having distinct roles and each layer inter-1466
acting with adjacent layers (Liu et al., 2023b). Decen-1467
tralized communication operates on a peer-to-peer basis1468
among agents. Centralized communication involves a1469
central agent or a group of central agents coordinating1470
the system’s communication, with other agents primar-1471
ily connecting to the central agent. A shared message1472
pool, as proposed in MetaGPT (Hong et al., 2023), main-1473
tains a shared message pool where agents publish and1474
subscribe to relevant messages, boosting communica-1475
tion efficiency.1476

D.2 LLM-based Agents Management1477

Research on the management of LLM-based agents is1478
limited. Popular LLM-based multi-agent systems, such1479
as MetaGPT (Hong et al., 2023), AgentVerse (Chen1480
et al., 2023b), and AutoGen (Wu et al., 2023b), typically1481
divide tasks into smaller sub-tasks and allocate multiple1482
agents to complete them. However, their approaches to1483
planning are sequential, lacking strategic management.1484
In contrast, AIOS (Mei et al., 2024b) introduces an1485
LLM agent operating system that provides module iso-1486
lation and integrates LLM and OS functions. It employs1487
various managers, including Agent Scheduler, Context1488
Manager, Memory Manager, Storage Manager, Tool1489
Manager, and Access Manager, to effectively handle1490

6https://platform.openai.com/docs/
guides/rate-limits/usage-tiers?context=
tier-five

numerous agents. However, AIOS manually organizes 1491
different applications, such as a math problem-solving 1492
agent and a travel planning agent, rather than multiple 1493
agents within the same application. This approach rep- 1494
resents a different type of SOP and is not applicable to 1495
large-scale LLM-MA systems, as it is impractical for 1496
humans to write every SOP and prompt for each agent 1497
when the scale reaches thousands or even millions. 1498

D.3 Hallucinations in LLM-MA Systems 1499

Hallucination refers to the phenomenon where a model 1500
generates factually incorrect text (Zhao et al., 2023; 1501
Huang et al., 2023b). Hallucinations are considered 1502
inevitable in LLMs (Banerjee et al., 2024). This issue 1503
becomes more severe in LLM-MA systems due to the 1504
multi-agent nature: one agent can send information to 1505
others. If an agent generates a hallucinated message, 1506
it may propagate to other agents, causing a cascading 1507
effect (Lee and Tiwari, 2024; Ju et al., 2024). Self- 1508
refinement through feedback and reasoning has proven 1509
effective, such as using self-reflection and prompting the 1510
LLM again to verify its outputs (Ji et al., 2023; Tonmoy 1511
et al., 2024). Inspired by this, we equip MegaAgent 1512
with a self-correction mechanism, enabling agents to 1513
review their outputs based on a to-do list generated at 1514
initialization. To enhance monitoring efficiency, we 1515
introduce a hierarchical monitoring mechanism: first, 1516
agents check their own outputs; second, an admin agent 1517
reviews the group’s outputs; and third, a boss agent 1518
oversees the outputs of all groups. 1519

D.4 Novelty Comparison between MegaAgent and 1520
Baselines 1521

To highlight the distinctions between MegaAgent and 1522
baseline models, we compare their supported features in 1523
Table 9. The comparison shows that MegaAgent stands 1524
out as the only LLM-MA system supporting key fea- 1525
tures, including: (1) No Pre-defined Standard Operating 1526
Procedures (SOPs); (2) Multi-file Input/Output Support; 1527
(3) Parallel Execution Capabilities; and (4) Scalability 1528
to a Large Number of Agents. 1529

E Gobang Game Experiment Details 1530

E.1 Setup 1531

We use ChatGPT-4o API for this experiment. The ’tem- 1532
perature’ parameter is set to 0 to reduce the randomness 1533
of the outputs (Achiam et al., 2023). 1534

E.2 Cost 1535

The total cost is $6.9. 1536

E.3 Results 1537

First, Boss Agent receives the initial hand-written meta- 1538
prompt, shown in Figure 9. Then, MegaAgent utilizes 1539
these initial prompts as the system message to create 1540
agents, with additional written function calls in Fig- 1541
ure 10 and Figure 11. The communication content and 1542

17

https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-five
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-five
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-five

Feature AutoGen MetaGPT CAMEL AgentVerse MegaAgent

Definition of Each Agent’s Task
Users pre-define roles,

such as product manager
and software engineer

Users pre-define roles,
such as product manager

and software engineer

Pre-defined
agent abilities

No Pre-defined
agent abilities

No pre-defined
agent abilities

Support for Multi-File Input/Output Cannot handle
multiple files

Can generate and manage
multiple files simultaneously

Cannot handle
multiple files

Cannot handle
multiple files

Can generate and manage
multiple files simultaneously

Support for Parallel Execution Tasks are finished sequentially,
one after another

Tasks are finished sequentially,
one after another

Tasks are completed sequentially,
one after another

Tasks are completed sequentially,
one after another Tasks are completed in parallel

Scalability to Large Numbers of Agents Restricted by the number
of user-defined agents

Limited by the number of
user-defined agents

Limited by the number of
user-defined agents

Limited by the number of
user-defined agents

Can adaptively generate more agents
based on needs of the task

Table 9: Comparison of features across LLM-based multi-agent (LLM-MA) systems. Definition of Each Agent’s
Task: Indicates whether the system can autonomously produce a clear and customizable definition of roles and
tasks for individual agents. Both MegaAgent and AgentVerse support this feature, while other systems rely on fixed
or developer-specified tasks. Support for Multi-File Input/Output: Refers to the ability of systems to process and
manage multiple files simultaneously. MegaAgent and MetaGPT support this functionality, enhancing their usability
for complex workflows. Support for Parallel Execution: Indicates whether the system can execute multiple tasks
in parallel. Only MegaAgent supports true parallel execution, while other systems operate sequentially. Scalability
to Large Numbers of Agents: Assesses the system’s capability to scale efficiently when the number of agents
increases. MegaAgent is the only system designed to handle a large number of agents seamlessly, demonstrating
superior scalability.

function call results are added directly into the corre-1543
sponding agent’s memory. Each function call is imple-1544
mented according to its description, and can be found in1545
our source code. The initial prompt and the additional1546
written functions are the only prompts that are written1547
by hand, showcasing our framework’s autonomy.1548

E.4 Ablation Study1549

We conduct the ablation study of MegaAgent for the1550
Gobang task. We rerun the experiment without hierar-1551
chy, parallelism, and monitoring mechanism, separately.1552

When running without hierarchy, group managers1553
cannot create new agents. As shown in Figure 8, the1554
generated program will fall in an infinite loop. However,1555
the AI development group’s manager cannot resolve1556
this issue by himself. Nor can he recruit new agents for1557
collaboration in this scenario.1558

Figure 8: Failure of MegaAgent without Hierarchy

When running without parallelism, each group will1559
complete their tasks one by one, linearly. Although1560

this will not hinder the system’s performance, the time 1561
complexity will drop from O(log n) to O(n). As a 1562
result, the execution time grows from 800 seconds to 1563
4505 seconds. 1564

When running without the monitoring mechanism, 1565
the group leaders will not validate the program. As 1566
shown in figure Figure 15, the program cannot terminate 1567
when there are five-in-a-row, but the group agents do 1568
not find this bug because of the lack of the monitoring 1569
mechanism. 1570

Then, MegaAgent would generate different agent 1571
roles in Figure 12. After generation, each agent will 1572
update its own TODO list, utilize function calls to com- 1573
plete its tasks, or talk to other agents, until it clears its 1574
TODO list and marks its task as ’Done’. If an agent 1575
wants to talk to others, the talk content will be added to 1576
the corresponding agents simultaneously, and they will 1577
be called in parallel. 1578

The memory of each agent is implemented by a 1579
chroma vector database 7. It returns the last message’s 1580
most relevant message, as well as the six latest messages 1581
(in this experiment), upon each memory retrieval. 1582

In our experiment, MegaAgent successfully produces 1583
a runnable Gobang game with a naive AI upon the first 1584
trial, whose interface is shown in Figure 13. 1585

E.5 Human-written SOP for Gobang Game 1586

To evaluate the performance of the Gobang Game devel- 1587
opment against other baselines, we provide a human- 1588
written SOP for the Gobang Game, as shown in Fig- 1589
ure 14. This serves as a benchmark for comparison with 1590
the MegaAgent-generated SOP. 1591

E.6 Gobang Game Experiment with Baselines 1592

We conduct the same Gobang game task experiment on 1593
state-of-the-art LLM-MA systems as of July 2024. 1594

7https://www.trychroma.com/

18

You are Bob, the leader of a software develop-
ment club. Your club’s current goal is to de-
velop a Gobang game with a very strong AI,
no frontend, and can be executed by running
’main.py’. You are now recruiting employees
and assigning work to them. For each employee
(including yourself), please write a prompt speci-
fying: their name (one word, no prefix), their job,
the tasks they need to complete, and their col-
laborators’ names and jobs. The format should
follow the example below:
<employee name="Alice">
You are Alice, a novelist. Your job
is to write a single chapter of a
novel with 1000 words according
to the outline (outline.txt) from
Carol, the architect designer, and
pass it to David (chapter_x.txt),
the editor. Please only follow this
routine. Your collaborators include
Bob (the Boss), Carol (the architect
designer), and David (the editor).
</employee>
Please note that every employee is lazy and will
only perform the tasks explicitly mentioned in
their prompt. To ensure project completion, each
task must be non-divisible, detailed, specific, and
involve only supported file types (txt or python).
You should recruit enough employees to cover
the entire SOP, ensuring tasks are distributed
to speed up the process. Finally, specify an em-
ployee’s name to initiate the project in the for-
mat:
<beginner>Name</beginner>

Figure 9: Gobang Game Development Meta Prompt

Function Calls for Gobang Game Development
(Part 1)

{"name": "exec_python_file",
"description": "Execute a Python file and
get the result.",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "The filename of the Python
file to be executed."
}
}
}
},
{"name": "read_file",
"description": "Read the content of a
file.",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "The filename to be read."
}
}
}
},
{"name": "input",
"description": "Input a string to the
running Python code.",
"parameters": {
"type": "object",
"properties": {
"content": {
"type": "string",
"description": "The string to be input."
}
}
}
}

Figure 10: Function Calls for Gobang Game Develop-
ment (Part 1).

19

Function Calls for Gobang Game Development
(Part 2)

{"name": "write_file",
"description": "Write content to a file.",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "The filename to be
written."
},
"content": {
"type": "string",
"description": "The content to be written."
}
}
}
},
{"name": "add_agent",
"description": "Recruit an agent as your
subordinate.",
"parameters": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "Unique agent name."
},
"description": {
"type": "string",
"description": "Agent description."
}
}
}
},
{"name": "TERMINATE",
"description": "End the conversation when
all tasks are complete."
}

Figure 11: Function Calls for Gobang Game Develop-
ment (Part 2).

You are Bob, the leader of the software develop-
ment club. Your job is to decide all the features
to develop for the Gobang game and write them
in a file named ’features.txt’. Your col-
laborators include Alice (game designer), Carol
(AI developer), David (game logic developer),
and Eve (integrator).

You are Alice, a game designer. Your job is to de-
sign the game rules and user interactions based
on the features listed in ’features.txt’
from Bob, and document them in a file named
’game_design.txt’. Your collaborators in-
clude Bob (leader), Carol (AI developer), David
(game logic developer), and Eve (integrator).

You are Carol, an AI developer. Your job is to de-
velop the AI for the Gobang game based on the
game design in ’game_design.txt’ from
Alice, and write the AI code in a file named
’ai.py’. Your collaborators include Bob
(leader), Alice (game designer), David (game
logic developer), and Eve (integrator).

You are David, a game logic developer. Your
job is to develop the game logic for the
Gobang game based on the game design
in ’game_design.txt’ from Alice, and
write the game logic code in a file named
’game_logic.py’. Your collaborators include
Bob (leader), Alice (game designer), Carol (AI
developer), and Eve (integrator).

You are Eve, an integrator. Your job is to inte-
grate the AI code from ’ai.py’ by Carol and
the game logic code from ’game_logic.py’
by David, and write the integration code in a
file named ’main.py’ to ensure the Gobang
game can be executed by running ’main.py’.
Your collaborators include Bob (leader), Alice
(game designer), Carol (AI developer), and David
(game logic developer).

Figure 12: Role Assignments Generated by MegaAgent

20

Figure 13: Interface of Gobang demo produced by
MegaAgent

E.6.1 AutoGen Setup and Result1595

We test AutoGen v1.0.16 based on its multi-agent cod-1596
ing demo. We only fill in the API key and change its1597
prompt to: Develop a Gobang game with an AI , and1598
leave everything else unchanged. We do not allow run-1599
time human input.1600

As shown in Figure 16 and Figure 17, AutoGen gener-1601
ates a program ending with # To be continued..1602
after about two minutes, and gets stuck when trying to1603
execute it. The possible reason for its failure is that its1604
SOP is too simple and does not include enough commu-1605
nication e.g. code review between agents.1606

We try three times, which all end with similar results.1607
In another one trial, as shown in Figure 18 and Figure1608
19, AutoGen successfully produces an AI with mini-1609
max algorithm, but no pruning. This is impossible to1610
execute in a limited time, as the state space of Gobang1611
game is very large. We try another prompt: Develop a1612
Gobang game with a very strong AI, no frontend, and1613
can be executed by running ’main.py’ , and get similar1614
results.1615

By the time it gets stuck, AutoGen has cost $0.1 and1616
120 seconds. Since AutoGen cannot complete this task,1617
we are unable to count the overall cost.1618

E.6.2 MetaGPT Setup and Result1619

We test MetaGPT v0.8.1 by feeding the prompt: De-1620
velop a Gobang game with an AI. We fill in the API1621
key and leave everything else unchanged. It produces1622
results in Figure 20, and its execution time is around1623
eight minutes. We try three times, and find none of them1624
can produce an AI move. The major errors are:1625

• The code is not executable, and raises an error.1626
The possible reason is that MetaGPT does not have1627
external tools to execute and debug the produced1628
code.1629

You are Bob, the boss of the software develop-
ment team. You are responsible for monitoring
the project’s progress and ensuring that it can be
executed by running the main.py file in the end.
Your team members are Alan (game logic design),
Alice (board.py), Charlie (main.py), David
(ai.py), and Emily (testing).

You are Alan, an architect designer. Your job is
to design the game logic of the Gobang game
and propose possible AI implementations. Doc-
ument your design in design.txt and pass it
to your teammates. Collaborators: Bob (Boss),
Alice (board.py), Charlie (main.py), David
(ai.py).

You are Alice, a software developer. Implement
the board.py file based on Alan’s design in
design.txt. Collaborators: Bob (Boss),
Alan (game logic), Charlie (main.py), David
(ai.py), Emily (testing).

You are Charlie, a software developer. Imple-
ment the main.py file based on Alan’s design
in design.txt. Ensure compatibility with
board.py (Alice) and ai.py (David). Op-
tionally create test.py for testing. Collab-
orators: Bob (Boss), Alan (game logic), Alice
(board.py), David (ai.py), Emily (testing).

You are David, an AI developer. Implement a
naive ai.py file that makes random moves
quickly. Collaborators: Bob (Boss), Alan (game
logic), Alice (board.py), Charlie (main.py),
Emily (testing).

You are Emily, a tester. Test the Gobang game’s
correctness and efficiency. Write test.py and
ensure the game runs correctly by executing
main.py. Test thoroughly until the game com-
pletes. Collaborators: Bob (Boss), Alan (game
logic), Alice (board.py), Charlie (main.py),
David (ai.py).

Figure 14: Human-written Prompts for Gobang Game
Development

21

Figure 15: Failure of MegaAgent without the Monitor-
ing Mechanism

• The produced program is not a Gobang game1630
(for example, a tic-tac-toe game instead). The1631
possible reason for failure is that its SOP is too1632
simple, and the requirement for communication1633
between agents is not sufficient.1634

• AI falls into an infinite loop. The possible rea-1635
son is that MetaGPT does not have external tools1636
to execute and debug the produced code, and the1637
current ChatGPT API is not capable of developing1638
the AlphaBeta algorithm without errors by itself.1639

E.6.3 CAMEL Setup and Result1640

We use the CAMEL v0.1.6.0 Jupiter Notebook demo in1641
Colab. We fill in the API key, change the task prompt1642
to: Develop a Gobang game with an AI, and leave ev-1643
erything else unchanged. We try three times. It turns1644
out that CAMEL can only produce code segments. For1645
example, in one trial, as shown in Figure 21, CAMEL1646
forgets to write ui.py, which is included in game.py.1647
The possible reason for this is that its planning and con-1648
textual ability are weak. The total cost of one trial is1649
$0.76.1650

E.6.4 AgentVerse Setup and Result1651

We test AgentVerse v0.1.8.1 based on its1652
tasksolving/pythoncalculator scenario.1653
We fill in the API key, change the max_turn parame-1654
ter from 3 to 10 to allow more rounds for better results,1655
and modify the task description to: develop a Gobang1656
game with an AI using Python3. We leave everything1657
else unchanged and try three times. We find that, in1658
the first and second trial, the agent keeps rejecting the1659
result for all the ten rounds, as shown in Figure 22;1660
as for the third trial, although the agent accepts the1661

result, the code as shown in Figure 23 still presents 1662
many placeholders, and cannot be executed. Given that 1663
ten rounds significantly exceed the default setting, we 1664
conclude that AgentVerse is unlikely to successfully 1665
complete the Gobang task even with additional rounds 1666
and opportunities. One trial costs about $8.07, and 1667
1980 seconds. 1668

To sum up, our MegaAgent framework is the first and 1669
only LLM-MA system to develop the Gobang game 1670
successfully. 1671

F National Policy Generation Experiment 1672

Details 1673

F.1 Setup 1674

We use the ChatGPT-4o mini API for this experiment. 1675
The ‘temperature’ parameter is set to default. The mem- 1676
ory of each agent returns the most relevant message, as 1677
well as ten latest messages in this experiment. 1678

F.2 Cost 1679

The total cost of this experiment is $3.3. 1680

F.3 Results 1681

Boss agent receives the initial hand-written meta-prompt 1682
in Figure 24. Then, Boss Agent generated several admin 1683
agents shown in Figure 25. 1684

After that, NationLeader spontaneously engages in 1685
conversations with the minister agents. Each minister 1686
then utilizes the add_agent function call to draft their 1687
policies and create citizen agents to test and refine these 1688
policies. Citizen testers discuss their feedback among 1689
themselves and also communicate with their superiors 1690
to provide feedback. Moreover, ministers engage in 1691
discussions with one another to enhance cooperation 1692
across ministries. 1693

File system manages each agent’s todo list, records 1694
the citizens’ feedback, and maintains the most recent 1695
version of each ministry’s policy. For example, a todo 1696
list for a citizen tester is shown in Figure 27. 1697

Following the health testers’ discussions, the feed- 1698
back on the education policy is shown in Figure 28. 1699

And the final version of the health policy is presented 1700
in Figure 29 and Figure 30. Other policies have the sim- 1701
ilar format which can be found in the github repository. 1702

Finally, MegaAgent generates 590 agents, forming 1703
a three-level hierarchy that can be extended further, 1704
with human input limited to the meta-prompt. This 1705
demonstrates the scalability and autonomy of MegaA- 1706
gent framework. 1707

One trial in this experiment costs about $3.3 and 2991 1708
seconds. 1709

F.4 Ablation Study 1710

Similar to the Gobang task, we conduct an ablation 1711
study on MegaAgent for National Policy Generation by 1712
rerunning the system without hierarchy, parallelism, and 1713
monitoring mechanisms separately. 1714

22

Figure 16: Code Produced by AutoGen

Figure 17: Execution Result of AutoGen

23

Figure 18: Code Produced by AutoGen in Another Trial

Figure 19: Execution Result of AutoGen in Another Trial. AI will keep thinking for almost infinite time.

24

Figure 20: Execution Result of the Code Produced by MetaGPT

Figure 21: An example of CAMEL’s output. It forgets to write ui.py in this trial.

Figure 22: A rejected trial of AgentVerse after ten rounds.

25

Figure 23: An accepted trial of AgentVerse. The code still contains many placeholders, and is not executable.

When running without hierarchy, minister agents can-1715
not recruit new subordinates, forcing them to draft poli-1716
cies independently. As a result, the generated policies1717
are relatively short and lack precision. For example,1718
health-related aspects are missing, while certain sec-1719
tions, such as economic policies, are partially complete,1720
as shown in Figure 31. This indicates that tasks in the1721
second layer remain challenging for individual agents,1722
highlighting the necessity of hierarchical task splitting.1723

Disabling parallelism forces all 590 agents to work1724
sequentially, with only one agent active at a time. Af-1725
ter 14,400 seconds, more than 100 agents are recruited,1726
most of which remain in the planning stage. This demon-1727
strates that parallel processing is essential as the number1728
of agents scales up.1729

Without the monitoring mechanism, MegaAgent pro-1730
duces mostly complete policies, as seen in Figure 33 and1731
Figure 34. However, some sections, such as the Regula-1732
tion Policy shown in Figure 31, remain unfinished. This1733
underscores the importance of a final validation stage to1734
ensure comprehensive and accurate policy generation.1735

F.5 National Policy Generation Experiment with1736
other Baselines1737

F.5.1 AutoGen Setup and Result1738

Similar to the setup of Gobang Game, we change the1739
prompt to: Develop a best detailed policy for a cutting-1740
edge country, which is the same as that of MegaAgent’s,1741
except for the agent recruitment part. It only outputs an1742
outline for each industry, with no policy details provided,1743
as shown below:1744

It takes 40 seconds and $0.1 in this trial. The failure1745
might because AutoGen is too simple in structure, and1746
cannot manage complex outputs with multiple files.1747

F.5.2 MetaGPT Setup and Result 1748

Similar to the setup of Gobang Game, we change the 1749
prompt to: Develop a best detailed policy for a cutting- 1750
edge country. After 580 seconds, MegaGPT only out- 1751
puts python codes for a policy management system. The 1752
’main.py’ is shown in Figure 37. The reason for its fail- 1753
ure is that it follows a code generation SOP, and cannot 1754
cope with works other than writing the code. 1755

The cost of one trial is $0.90. 1756

F.5.3 CAMEL Setup and Result 1757

Similar to the setup of the Gobang Game, we adjust the 1758
prompt to: Develop the best detailed policy for a cutting- 1759
edge country. After 1380 seconds, CAMEL generates 1760
numerous implementation plans instead of actual poli- 1761
cies, as shown in Figure 38. The likely reason for this 1762
failure is its overly simplistic standard operating proce- 1763
dure (SOP), coupled with the agent ’AI User’ repeatedly 1764
raising irrelevant questions. 1765

One trial costs about $0.68. 1766

F.5.4 AgentVerse Setup and Result 1767

Similar to the setup in the Gobang Game, we adapt the 1768
scenario to tasksolving/brainstorming and 1769
modify the prompt to: Develop the best detailed policy 1770
for a cutting-edge country. After 510 seconds, Agent- 1771
Verse consistently rejects its proposed solutions across 1772
all ten rounds, failing to produce a viable policy with 1773
four agents, as shown in Figure 39. A likely reason 1774
for this failure is its current inability to draft complex 1775
policies in an organized manner, leading to persistent 1776
dissatisfaction with its own performance. 1777

One trial costs about $2.05. 1778

26

NationLeader’s Prompt:
You are NationLeader, the leader of a pioneer-
ing nation. You want to develop the best de-
tailed policy for your cutting-edge country in
’policy_{department}.txt’. You are
now recruiting ministers and assigning work to
them. For each possible minister, please write
a prompt. Please specify his name (no space),
his job, and what kinds of work he needs to do.
Note that each of them can recruit subordinates
and conduct tests on them based on your policy.
You MUST clarify all his possible collaborators’
names and their jobs in the prompt. The format
should be like (The example is for Alice in an-
other novel writing project):

<employee name="MinisterName">
You are MinisterName, the {job_title}
of {specific_department}. Your
job is to develop a comprehensive pol-
icy document (’{file_name}.txt’)
according to the guidelines provided in
’policy_{department}.txt’. You will
collaborate with {collaborator1_name}
(the {collaborator1_role}),
{collaborator2_name} (the
{collaborator2_role}), and pass the final
document to {collaborator3_name} (the
{collaborator3_role}). You can recruit
lots of citizens for testing. Ensure adherence to
the specified routine only. Your collaborators in-
clude {list_of_collaborators}.
</employee>

Also, write a prompt for NationLeader (yourself).
Please note that every minister is lazy and will
not care about anything not explicitly mentioned
in your prompt. To ensure project completion,
each minister’s tasks should be non-divisible
(covering ALL ministries concerning ALL as-
pects of the country), detailed with specific ac-
tions (such as what file to write; only .txt files
are supported), and limited to clear and specific
instructions. All ministers (including yourself)
should follow the entire SOP to develop a policy.
They should simultaneously create citizens and
conduct tests on them. Speed up the process by
recruiting additional ministers to divide the work-
load.

Figure 24: National Policy Generation’s Meta Prompt

You are NationLeader, the leader of a pioneer-
ing nation. You aim to develop the best detailed
policy for your cutting-edge country, saved in
policy_{department}.txt. Recruit minis-
ters, assign specific roles, and ensure that each
job is clearly defined. Ministers should collab-
orate, recruit subordinates, and conduct tests to
ensure policy effectiveness.

You are Alex, the Minister of Economy. Your
job is to develop a comprehensive eco-
nomic policy document in economy.txt,
based on the national strategy defined in
policy_economy.txt. Collaborate with
Sarah (Minister of Trade) and Michael (Minister
of Finance), and pass the final policy to Emily
(National Auditor). Recruit economic analysts for
testing.

You are Sarah, the Minister of Trade. Draft
the national trade policy in trade.txt
according to the economic policy in
policy_economy.txt. Collaborate with
Alex (Economy), Michael (Finance), and Emily
(National Auditor). Conduct trade simulations
using citizen groups for validation.

You are Michael, the Minister of Finance.
Create the national budget and tax poli-
cies in finance.txt, ensuring consis-
tency with the economic policy outlined in
policy_economy.txt. Collaborate with
Alex (Economy), Sarah (Trade), and Emily (Na-
tional Auditor). Simulate various fiscal policies
with test citizens.

You are Emily, the National Auditor. Re-
view, consolidate, and validate policies
from economy.txt, trade.txt, and
finance.txt. Ensure policies align
with the national strategy outlined in
policy_nation.txt. Request revisions if
necessary before final submission.

Figure 25: Role Assignments

27

Citizen Tester’s TODO List

1. Specify the frequency and scope of health
impact assessments.
2. Include specific targets and timelines for air
quality standards.
3. Add metrics for success in active transporta-
tion promotion.
4. Include incentives for businesses to support
active transportation.
5. Outline specific safety measures for trans-
portation safety.
6. Include a plan for regular safety audits of
public transportation systems.
7. Mention accessibility considerations in urban
space design.
8. Include partnerships with local health organi-
zations for mental health initiatives.
9. Emphasize community involvement in the
planning process.

Figure 27: Citizen Tester’s TODO List for Urban Devel-
opment Planning

G National Policy Evaluation Validation1779

Experiment1780

G.1 Data Collection1781

To construct a reliable validation dataset for evaluating1782
MegaAgent’s national policy generation, we collect 501783
publicly available national policies from verified gov-1784
ernment and institutional sources. These policies are1785
obtained from the U.S. Government’s official websites8,1786
the U.K. Government’s policy portal9, and the World1787
Health Organization10. These sources are chosen for1788
their transparency, accessibility, and adherence to open1789
data policies. In detail, we collect 13 health policies, 101790
tax policies, 12 technology policies, and 15 environment1791
policies.1792

Additionally, we collected 50 unrelated negative sam-1793
ples from publicly available sources (Zhong et al., 2021;1794
Zheng et al., 2023a), including 25 samples from multi-1795
turn conversations11 and 25 samples from meeting sum-1796
maries12, which resemble policy statements due to their1797
length and logical structure. This dual-structured dataset1798
allows us to evaluate whether LLMs can effectively dis-1799
tinguish reasonable policies from non-policy texts.1800

G.2 Data Ethics1801

In this study, we follow established ethical guidelines1802
for data collection, processing, and usage. We obtain1803

8https://www.usa.gov
9https://www.gov.uk

10https://www.who.int
11https://huggingface.co/datasets/

lmsys/mt_bench_human_judgments
12https://github.com/Yale-LILY/QMSum

Feedback on Infrastructure Policy Draft

General Observations
- The policy provides a comprehensive frame-
work for infrastructure development, with a
strong emphasis on health, technology, and en-
vironmental sustainability.

Health Infrastructure
Accessibility
- The focus on improving access to healthcare fa-
cilities through public transport and active trans-
portation is commendable. However, it would
be beneficial to include specific metrics or tar-
gets for accessibility improvements.

Health Impact Assessments
- The inclusion of health impact assessments is
crucial. It is recommended to specify the types
of health outcomes that will be measured and
how these assessments will influence project
planning and design.
Environmental Considerations

- The environmental section is robust, but it
should explicitly connect how sustainable prac-
tices can positively impact public health, such
as reducing pollution and promoting healthier
living environments.

Cross-Sector Collaboration
- Consider promoting collaboration between en-
vironmental and health agencies to align sustain-
ability and public health objectives effectively.

Conclusion
- Overall, the policy is well-structured and aligns
with national goals. Further detailing in specific
areas, particularly around health metrics, stake-
holder engagement, and sustainability integra-
tion, will enhance its effectiveness.

Recommendations

1. Include specific metrics for accessibility
improvements in healthcare.

2. Specify health outcomes to be measured in
health impact assessments.

3. Outline methods for stakeholder engage-
ment in health assessments.

4. Provide examples of innovative technolo-
gies that can improve health outcomes.

5. Connect sustainable practices to public
health benefits more explicitly.

6. Promote collaboration between environ-
mental and health agencies.

Figure 28: Feedback on the Infrastructure Policy Draft
(Part 2).

28

https://www.usa.gov
https://www.gov.uk
https://www.who.int
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://github.com/Yale-LILY/QMSum

Health-Related Aspects of Urban Development
Policy (Part 1)

1. Health Impact Assessments
- Conduct health impact assessments for all ur-
ban development projects exceeding a specified
budget threshold (to be defined).
- Assessments should be conducted at the plan-
ning stage and include evaluations of potential
health risks and benefits.
- Frequency of assessments to be determined
based on project size and scope.

2. Accessibility Guidelines
- Ensure all urban designs adhere to accessibility
guidelines for individuals with disabilities.
- Include specific metrics for evaluating acces-
sibility improvements over time, such as the
percentage of public spaces meeting accessibil-
ity standards.

3. Collaboration with Health Organizations
- Outline specific roles and responsibilities for
local health organizations in community health
initiatives.
- Establish regular communication channels be-
tween urban planners and health organizations
to ensure alignment of goals.

4. Safety Measures
- Implement regular safety audits for public
transportation systems to assess the effective-
ness of safety measures such as surveillance
cameras and emergency call buttons.
- Develop a plan for continuous improvement
based on audit findings, including a timeline for
conducting safety audits and implementing im-
provements.

5. Community Health Initiatives
- Promote community health initiatives in collab-
oration with local health organizations, focusing
on preventive care and health education.
- Engage community members in the planning
process to ensure their health needs are ad-
dressed.
- Expand on the community engagement process
to include diverse populations and ensure their
voices are heard.

Figure 29: Health-Related Aspects of Urban Develop-
ment Policy (Part 1)

Health-Related Aspects of Urban Development
Policy (Part 2)

6. Monitoring and Evaluation
- Establish a framework for monitoring and eval-
uating the health-related aspects of urban devel-
opment policies over time.
- Include metrics for success, such as reductions
in health disparities and improvements in com-
munity health outcomes.

7. Mental Health Support

• Resource Allocation and Funding: Al-
locate funding for mental health support
through government budgets, grants, and
partnerships with private organizations.

• Partnerships with Local Health Orga-
nizations: Collaborate with local mental
health organizations, community health
centers, and non-profits to provide com-
prehensive mental health services.

• Evaluation Plan: Develop a plan to eval-
uate the effectiveness of mental health ini-
tiatives, including metrics such as the num-
ber of individuals served, improvements in
mental health outcomes, and community
feedback.

8. Community Engagement Strategies
- Implement interactive methods for commu-
nity involvement, such as online forums and
feedback sessions, to ensure diverse voices are
heard.
- Establish a follow-up mechanism to inform the
community about how their feedback has influ-
enced decisions.

9. Reducing Air Pollution
- Implement stricter emissions standards for con-
struction vehicles and promote the use of elec-
tric vehicles in urban development projects.
- Increase green spaces and urban forests to im-
prove air quality and provide recreational areas
for residents.
- Encourage the use of public transportation and
carpooling.

Figure 30: Health-Related Aspects of Urban Develop-
ment Policy (Part 2)

29

Economic Development Policy

Introduction
This document outlines the comprehensive policy for
economic development in our cutting-edge country.
The aim is to foster sustainable growth, innovation,
and competitiveness in the global market.

Objectives
1. Promote innovation and technology adoption.
2. Enhance workforce skills and education.
3. Attract foreign investment.
4. Support small and medium enterprises (SMEs).
5. Ensure sustainable economic practices.

Policy Areas
1. Innovation and Technology
- Establish innovation hubs in major cities.
- Provide grants and tax incentives for R&D
activities.
- Collaborate with universities for technology
transfer.
- Performance Indicators: Number of innovation
hubs established, amount of R&D funding allocated.

2. Workforce Development
- Implement vocational training
programs.
- Partner with industries to align education with
market needs.
- Promote lifelong learning initiatives.
- Performance Indicators: Number of training
programs launched, percentage of workforce with
relevant skills.

3. Foreign Investment
- Streamline the investment approval process.
- Offer incentives for foreign companies to set up
operations.
- Create a one-stop-shop for foreign investors.
- Performance Indicators: Amount of foreign
investment attracted, number of new foreign
companies established.

4. Support for SMEs
- Increase access to financing for SMEs.
- Provide mentorship and business development
services.
- Facilitate networking opportunities for SMEs.
- Performance Indicators: Number of SMEs
receiving support, growth rate of SMEs.

5. Sustainable Practices
- Encourage green technologies and practices.
- Implement regulations to reduce carbon emissions.
- Support sustainable agriculture and resource
management.
- Performance Indicators: Reduction in carbon
emissions, number of sustainable projects funded.

Conclusion
This policy aims to create a robust economic
environment that fosters growth, innovation, and
sustainability. Continuous evaluation and adaptation
will be essential to meet the changing needs of our
economy.

Figure 31: Economic Development Policy from MegaA-
gent when running without hierarchy

Policy for the Regulations Department

...(Mostly complete policies)

TODO
1. Review and clarify terms in the
policy_regulations.txt, such as
’evidence-based’.
2. Elaborate on the monitoring and reporting
system in section 3.3.
3. Detail the stakeholder engagement process
for consultations.
4. Specify the frequency and criteria for the
periodic review process in section 2.3.
5. Provide examples of proportionate penalties
in section 4.2.
6. Add more detail to the appeals process in
section 4.3, including timelines and involved
bodies.
7. Include a timeline for the implementation of
measures.
8. Define metrics for success in compliance and
enforcement.
9. Develop a plan for making information
accessible to all citizens.
10. Elaborate on the feedback mechanism’s
operation.

Figure 32: Regulation Policy from MegaAgent when
running without the monitoring mechanism. The policy
is mostly complete, except for the TODOs at the tail.

30

Health Policy Document (Part 1)

1. Introduction
This document outlines the comprehensive
health policy aimed at improving healthcare ac-
cess, quality, and public health initiatives in our
nation. It addresses current health challenges
such as rising chronic diseases, mental health
issues, and disparities in healthcare access.

2. Healthcare Access
2.1 Universal Healthcare Coverage
- Action 2.1.1: Implement a universal healthcare
system that guarantees access to essential health
services for all citizens.
- Action 2.1.2: Establish a network of com-
munity health centers in underserved areas to
provide primary care services.
- Action 2.1.3: Define specific metrics for
measuring access and quality of services,
including patient satisfaction and wait times.
- Timeline: A detailed timeline for the imple-
mentation of universal healthcare coverage
will be developed, including milestones for
evaluation.

2.2 Telehealth Services
- Action 2.2.1: Expand telehealth services to en-
sure remote access to healthcare professionals.
- Action 2.2.2: Provide training for healthcare
providers on telehealth technologies.
- Action 2.2.3: Include a timeline for imple-
mentation and evaluation of the program’s
effectiveness.

3. Quality of Care
3.1 Quality Assurance Standards
- Action 3.1.1: Develop and enforce quality
assurance standards for healthcare facilities.
- Action 3.1.2: Conduct regular audits and
assessments to ensure compliance with quality
standards.
3.2 Patient Safety Initiatives
- Action 3.2.1: Implement a national patient
safety program to reduce medical errors and
improve patient outcomes.
- Action 3.2.2: Establish a reporting system for
adverse events.

Figure 33: Health Policy from MegaAgent when run-
ning without the monitoring mechanism (Part 1)

Health Policy Document (Part 2)

4. Public Health Initiatives
4.1 Preventive Health Programs
- Action 4.1.1: Launch nationwide campaigns to
promote vaccination and preventive screenings,
defining target populations for these programs.
- Action 4.1.2: Provide funding for community-
based health education programs.

4.2 Mental Health Services
- Action 4.2.1: Increase funding for mental
health services and support programs.
- Action 4.2.2: Integrate mental health services
into primary care settings, specifying training
and resources for primary care providers.

5. Conclusion
This health policy aims to create a robust
healthcare system that prioritizes access,
quality, and public health initiatives for the
well-being of all citizens.

Regulatory Aspects and Compliance Mea-
sures
- Compliance Monitoring: Establish a
regulatory body to oversee compliance with
healthcare standards and regulations.
- Penalties for Non-Compliance: Define
specific penalties for healthcare providers that
fail to meet established standards, such as fines,
suspension of licenses, or mandatory retraining
programs. Include examples of non-compliance
and enforcement processes.
- Public Reporting: Implement a public
reporting system for healthcare facilities to
disclose compliance status and quality metrics,
clarifying the frequency and content of reports.
- Stakeholder Engagement: Involve commu-
nity stakeholders in the development and review
of healthcare regulations to ensure they meet
public needs, specifying how stakeholders will
be identified and involved.
- Monitoring Mechanisms: Develop a compre-
hensive monitoring framework that includes
regular inspections, data collection, and
community feedback to assess the effectiveness
of public health initiatives.

Figure 34: Health Policy from MegaAgent when run-
ning without the monitoring mechanism (Part 2)

31

National Policy for Artificial Intelligence and
Digital Technologies (Part 1)

1. Preamble:
The national policy for Artificial Intelligence
(AI) and Digital Technologies is a strategic
directive aimed at positioning our country as
a world leader in the development, adoption,
and regulation of AI and digital technologies.
Through this endeavor, we are committed to
fostering a digital ecosystem that enables inno-
vation .

2. Objectives:
The primary objectives of this policy include:

• Strengthening education and research in
AI and related fields.

• Encouraging innovation and entrepreneur-
ship.

• Ensuring data protection and privacy.

• Fortifying national cybersecurity mea-
sures.

• Upholding ethical standards in technologi-
cal advancements.

• Integrating AI in public sector services for
efficiency and effectiveness.

• Promoting international collaborations.

3. Strategies and Actions:

• 3.1 Education and Research:
Establish centers of excellence in AI and
digital technologies in educational insti-
tutions. Encourage and fund research in
AI, Machine Learning, and other emerging
technologies.

• 3.2 Infrastructure Development:
Support infrastructure required for digital
technologies, including high-speed internet
access, and cloud platforms.

• 3.3 Innovation and Entrepreneurship:
Institute a supportive regulatory environ-
ment for technology start-ups and provide
seed funding.

Figure 35: National Policy for Artificial Intelligence
and Digital Technologies (Part 1)

National Policy for Artificial Intelligence and
Digital Technologies (Part 2)

3.4 Data Protection:
- Enforce stringent data protection regulations
to prevent unauthorized data access and usage.
- Raise public awareness of data privacy and
impose penalties for breaches.

3.5 Cybersecurity:
- Develop national resilience against cyber
threats through proactive and reactive measures.
- Create a dedicated task force responsible for
maintaining nationwide cybersecurity.

3.6 Ethical Standards:
- Promote the development and use of AI and
digital technologies in line with ethical and so-
cietal norms.

3.7 Public Sector Services:
- Enable the digital transformation of govern-
ment services to enhance efficiency and user-
friendliness.

3.8 International Collaborations:
- Actively pursue and foster international part-
nerships to share and adopt best practices.

4. Oversight and Enforcement Mechanisms:
- Establish a high-level committee with repre-
sentatives from various sectors to oversee policy
enforcement.

5. Policy Review and Updates:
- This policy will be reviewed every two years
to address new advancements and challenges in
the field.

This is a high-level policy guideline. The imple-
mentation of each objective will require detailed
action plans and regulations, which will be de-
veloped separately and are beyond the scope of
this document.

Summary:
This policy, driven strategically, aims to position
our nation as a global leader in AI and digital
technology. If further details are needed on spe-
cific areas, please let me know. If everything is
clear, respond with "TERMINATE" to end this
session.

Figure 36: National Policy for Artificial Intelligence
and Digital Technologies (Part 2)

32

main.py

app = Flask(__name__)

Initialize the core classes
policy_framework = PolicyFramework()
data_analysis = DataAnalysis()
visualization = Visualization()
...
from flask import Flask, request, jsonify,
send_file
from policy_framework import PolicyFramework
from data_analysis import DataAnalysis
from visualization import Visualization
import logging
import io

app = Flask(__name__)

Initialize the core classes
policy_framework = PolicyFramework()
data_analysis = DataAnalysis()
visualization = Visualization()
...

Figure 37: Code Snippet from main.py

permission from the referenced websites, ensuring that1804
data collection for research purposes is authorized13.1805

And we obey to following principles to guide our1806
research:1807

• Data Collection Transparency: We collect pub-1808
licly available policy documents from official gov-1809
ernment websites, recognized policy databases,1810
and open-access repositories. No sensitive or con-1811
fidential information is included.1812

• Informed Use: The data is used solely for research1813
and analysis purposes related to evaluating the ef-1814
fectiveness of the MegaAgent framework in gener-1815
ating policy drafts. We do not engage in commer-1816
cial or unauthorized uses of the dataset.1817

• Privacy and Anonymity: Since the dataset con-1818
sists only of publicly available national policies,1819
no personally identifiable information (PII) is col-1820
lected. The dataset is anonymized where applica-1821
ble to maintain privacy standards.1822

• Fairness and Bias Mitigation: We ensure diverse1823
representation by collecting policies from various1824
domains, such as technology, health, taxation, and1825
the environment. This reduces potential biases and1826
improves the generalizability of the analysis.1827

• Data Integrity and Security: All collected data is1828
securely stored and managed following best prac-1829
tices for data security. Access is restricted to au-1830
thorized researchers involved in this study.1831

13https://www.who.int/about/policies/
publishing/copyright,https://www.
gov.uk/help/terms-conditions,https:
//www.gsa.gov/website-information/
website-policies#privacy

AgentVerse’s Responses

1. Objectives of the M&E Framework
- Assess the implementation progress of the dig-
ital governance policy.
- Measure the impact of various initiatives on
citizen engagement, privacy, and access to digi-
tal resources.
- Identify strengths and weaknesses in the policy
implementation for continuous improvement.

2. Key Components of the Framework
A. Indicators

• Data Protection Framework:

– Number of data breaches reported an-
nually.

– Percentage of citizens aware of their
data privacy rights.

• Algorithm Transparency Guidelines:

– Number of algorithms documented
and made transparent.

– Percentage of stakeholders reporting
understanding of algorithmic deci-
sions.

• Eco-Friendly Tech Initiatives:

– Reduction in energy consumption in
government data centers.

– Number of eco-friendly tech projects
funded and implemented.

• Equitable Access to Digital Resources:

– Percentage of underserved communi-
ties with internet access.

– Number of low-cost devices dis-
tributed to low-income families.

• Community Engagement and Innova-
tion:

– Number of citizen ideas submitted
through open innovation platforms.

– Participation rate in digital town halls
and forums.

B. Data Collection Methods

• Surveys: Conduct regular surveys target-
ing citizens to gather feedback on digital
governance initiatives.

• Interviews: Hold interviews with stake-
holders, including community leaders and
tech experts.

Figure 38: AgentVerse Generated Results

33

https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy
https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy
https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy
https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy
https://www.who.int/about/policies/publishing/copyright, https://www.gov.uk/help/terms-conditions, https://www.gsa.gov/website-information/website-policies##privacy

Figure 39: The result of AgentVerse for policy simulation. It keeps rejecting for all ten rounds.

G.3 Experiment Setup1832

We employ five advanced LLMs: Claude-3.5, gpt-4o-1833
mini, gpt-4o, o1-mini, and o1-preview (Achiam et al.,1834
2023)—to conduct the validation experiment. Each1835
model is presented with the same evaluation prompt, as1836
shown in Figure 40, identical to the prompt used for1837
evaluating MegaAgent’s generated policies in Figure 6.1838
The prompt asks whether a given policy is reasonable as1839
a national policy, with models instructed to respond with1840
"Agree," "Disagree," or "Neutral," along with detailed1841
explanations to justify their answers.1842

To ensure fairness and consistency, we apply a uni-1843
form evaluation protocol across all models. Each model1844
processes the validation dataset independently, without1845
access to external context or prior knowledge beyond1846
its pretraining, ensuring no bias in evaluating policy1847
structures.

"Is this policy reasonable as a national policy?
Please return your answer with clear nuances:
Agree, Disagree, or Neutral with detailed expla-
nations."

Figure 40: National Policy Evaluation Prompt

1848

G.4 Evaluation Metrics1849

To assess the effectiveness of the selected LLMs in eval-1850
uating national policies generated by MegaAgent, we1851
use four standard evaluation metrics: Precision, Recall,1852
F1-Score, and Accuracy (Huang et al., 2024). These1853
metrics provide a comprehensive overview of the LLMs’1854
classification performance.1855

• Precision: Precision measures the proportion of1856
correctly predicted positive samples out of all sam-1857
ples predicted as positive. It indicates how accurate1858

the model is when it predicts a policy as reason- 1859
able. 1860

Precision =
True Positives

True Positives + False Positives
1861

• Recall: Recall, also known as sensitivity, measures 1862
the proportion of actual positive samples correctly 1863
identified by the model. It reflects how well the 1864
model can detect reasonable policies. 1865

Recall =
True Positives

True Positives + False Negatives
1866

• F1-Score: The F1-Score is the harmonic mean of 1867
Precision and Recall, providing a balanced evalua- 1868
tion of the model’s performance. It is useful when 1869
there is an uneven class distribution. 1870

F1-Score = 2 · Precision · Recall
Precision + Recall

1871

• Accuracy: Accuracy represents the proportion of 1872
correct predictions out of all samples evaluated. 1873
While straightforward, accuracy alone may be less 1874
informative if the dataset is imbalanced. 1875

Accuracy =
Correct Predictions

Total Samples
1876

These metrics are calculated for each LLM, and their 1877
average performance is reported to compare model capa- 1878
bilities. The results, presented in Table 10, demonstrate 1879
the models’ evaluation effectiveness based on the na- 1880
tional policy validation dataset. 1881

34

Model Precision Recall F1-Score Accuracy

Claude-3.5 0.91 0.87 0.89 0.88
gpt-4o-mini 0.95 0.90 0.92 0.91
gpt-4o 0.92 0.89 0.90 0.92
o1-mini 0.90 0.83 0.86 0.86
o1-preview 0.93 0.88 0.90 0.89

Average 0.92 0.87 0.89 0.89

Table 10: Evaluation Results of National Policy Valida-
tion Dataset

G.5 Experiment Results1882

The evaluation results, presented in Table 10, indicate1883
that the selected LLMs achieved an average accuracy of1884
89% in distinguishing real national policies from false1885
ones. Among the five models, gpt-4o demonstrated the1886
best performance with an accuracy of 92%. Notably,1887
all models exhibited strong accuracy, with the lowest1888
reaching 86%. These findings underscore the reliability1889
of the chosen LLMs as effective tools for evaluating1890
the credibility and reliability of policies generated by1891
MegaAgent.1892

35

	Introduction
	MegaAgent Framework
	Overview
	Hierachical Task Management
	Multi-level Task Splitting
	Hierarchical Coordination Mechanism
	File Management

	Hierarchical Monitoring
	Multi-level Monitoring
	Failure Scenarios and Solutions

	Experiments
	RQ1: Software Development - Gobang Game
	Experiment Setup
	Evaluation Metrics
	Experiment Results
	Ablation Study
	Cost Analysis

	RQ2: Social Simulation - National Policy Generation
	Experiment Setup
	Evaluation Metrics
	Experiment Results
	Ablation Study
	Cost Analysis

	Scalability Analysis

	Related Work
	LLM-MA Systems
	SOPs in LLM-MA Systems

	Conclusion
	Algorithm
	More Related Works
	Multi-Agent Coordination
	Reasoning and Planning
	External Memory and Tools
	Operational Protocols in Multi-Agent Systems
	LLM Inference and Serving
	System Optimization of LLM-MA system

	Experimental Environment
	Supplementary Related Work
	LLM-based Agents Coordination
	LLM-based Agents Management
	Hallucinations in LLM-MA Systems
	Novelty Comparison between MegaAgent and Baselines

	Gobang Game Experiment Details
	Setup
	Cost
	Results
	Ablation Study
	Human-written SOP for Gobang Game
	Gobang Game Experiment with Baselines
	AutoGen Setup and Result
	MetaGPT Setup and Result
	CAMEL Setup and Result
	AgentVerse Setup and Result

	National Policy Generation Experiment Details
	Setup
	Cost
	Results
	Ablation Study
	National Policy Generation Experiment with other Baselines
	AutoGen Setup and Result
	MetaGPT Setup and Result
	CAMEL Setup and Result
	AgentVerse Setup and Result

	National Policy Evaluation Validation Experiment
	Data Collection
	Data Ethics
	Experiment Setup
	Evaluation Metrics
	Experiment Results

