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ABSTRACT

In recent years, there has been growing interest in utilizing modern machine
learning techniques to learn heuristic functions for forward search algorithms.
Despite this, there has been little theoretical understanding of what they should
learn, how to train them, and why we do so. This lack of understanding has resulted
in the adoption of diverse training targets (suboptimal vs optimal costs vs admissible
heuristics) and loss functions (e.g., square vs absolute errors) in the literature. In
this work, we focus on how to effectively utilize the information provided by
admissible heuristics in heuristic learning. We argue that learning from poly-time
admissible heuristics by minimizing mean square errors (MSE) is not the correct
approach, since its result is merely a noisy, inadmissible copy of an efficiently
computable heuristic. Instead, we propose to model the learned heuristic as a
truncated gaussian, where admissible heuristics are used not as training targets
but as lower bounds of this distribution. This results in a different loss function
from the MSE commonly employed in the literature, which implicitly models the
learned heuristic as a gaussian distribution. We conduct experiments where both
MSE and our novel loss function are applied to learning a heuristic from optimal
plan costs. Results show that our proposed method converges faster during training
and yields better heuristics, with 40% lower MSE on average.

1 INTRODUCTION

Motivated by the success of Machine Learning (ML) approaches in various decision making tasks
(Mnih et al., 2015; Silver et al., 2016), an increasing number of papers are tackling the problem of
learning a heuristic function for forward state space search in recent years. Despite this interest, there
has been little theoretical understanding of what these systems should learn, how to train them and
why we do so. As a result, heuristic learning literature has adopted many different training targets
(corresponding to either admissible heuristics (Shen et al., 2020), suboptimal solution costs (Arfaee
et al., 2011; Ferber et al., 2022; Marom & Rosman, 2020) or optimal solution costs (Ernandes &
Gori, 2004; Shen et al., 2020)) and training losses (e.g., square errors (Shen et al., 2020), absolute
errors (Ernandes & Gori, 2004) and piecewise absolute errors (Takahashi et al., 2019)).

In this work, we try to answer these questions from a statistical lens, focusing on how to effectively
utilize admissible heuristics in the context of heuristic learning. We argue that learning from poly-time
admissible heuristics, such as hLMcut (Helmert & Domshlak, 2009), by minimizing mean square
errors (MSE) does not provide any practical benefits, since its result is merely a noisy, inadmissible
copy of a heuristic that is already efficient to compute. Then, if admissible heuristics should not be
used as training targets, how can we leverage them? In order to answer this question, we first analyze
the statistical implications behind the commonly used loss function, the MSE, which implicitly models
the learned heuristic as a Gaussian distribution. Nonetheless, we contend that a better modeling
choice for heuristics is given by the Truncated Gaussian distribution (Fig. 1), due to the existence of
bounds on the values a heuristic can take (e.g., heuristics never take on negative values).

The main contribution of this paper is a theoretically-motivated, statistical method for exploiting the
information encoded by admissible heuristics in the heuristic learning setting. We propose to model
the learned heuristic as a Truncated Gaussian, where an admissible heuristic provides the lower bound
of this distribution. This modeling choice results in a loss function to be minimized that is different
from the standard MSE loss. We conduct extensive experimentation where both loss functions are
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Figure 1: The PDFs of Truncated Gaussian dis-
tributions p(x) = T N (µ = 0, σ = 1, l, u) with
several lower/upper bounds (l, u). In the heuris-
tic learning setting, x is the optimal solution
cost h∗ sampled from the dataset and µ = µθ(s)
is the prediction associated with a state s. The
(l, u) = (0.2, 1.7) variant (yellow) shows that
the mean Ep(x)[x], which we use as the search
heuristic, respects the bounds (l, u) even when
the predicted µ = 0 lies outside (l, u).
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Figure 2: Comparison of the training curve
(x-axis: training step) for the validation MSE
loss (y-axis, logarithmic) between Gaussian (or-
ange) and Truncated Gaussian (blue) models
on logistic domain, independent runs recorded
on 5 random seeds each. The losses converge
faster for the latter due to the additional infor-
mation provided by the admissible lower bound
l = hLMcut.

applied to learning heuristics from optimal plan costs in several classical planning domains. Results
show that those methods which model the learned heuristic as a Truncated Gaussian learn faster and
result in more accurate heuristics, with 40% lower MSE on average, than those which model it as an
ordinary Gaussian, i.e., minimize an MSE loss during training.

2 BACKGROUND: CLASSICAL PLANNING AND HEURISTICS

We define a propositional STRIPS Planning problem as a 4-tuple ⟨P,A, I,G⟩ where P is a set of
propositional variables, A is a set of actions, I ⊆ P is the initial state, and G ⊆ P is a goal condition.
Each action a ∈ A is a 4-tuple ⟨PRE(a), ADD(a), DEL(a), COST(a)⟩ where COST(a) ∈ Z0+ is a
cost, PRE(a) ⊆ P is a precondition and ADD(a), DEL(a) ⊆ P are the add-effects and delete-effects.
A state s ⊆ P is a set of true propositions (all of P \ s are false), an action a is applicable when
s ⊇ PRE(a) (read: s satisfies PRE(a)), and applying action a to s yields a new successor state
a(s) = (s \ DEL(a)) ∪ ADD(a).

The task of classical planning is to find a sequence of actions called a plan (a1, · · · , an) where, for
1 ≤ t ≤ n, s0 = I , st ⊇ PRE(at+1), st+1 = at+1(st), and sn ⊇ G. A plan is optimal if there is no
plan with lower cost-to-go

∑
t COST(at). A plan is otherwise called satisficing. In this paper, we

assume unit-cost: ∀a ∈ A; COST(a) = 1.

A domain-independent heuristic function h in classical planning is a function of a state s and the
problem ⟨P,A, I,G⟩. It returns an estimate of the shortest (optimal) path cost from s to one of the goal
states (states that satisfy G), typically through a symbolic, non-statistical means including problem
relaxation and abstraction. Notable state-of-the-art functions include hLMcut, hFF, hmax, hadd, hGC

Helmert & Domshlak (2009); Hoffmann & Nebel (2001); Bonet & Geffner (2001); Fikes et al. (1972).
The optimal cost to go, or a perfect heuristic, is denoted by h∗. Admissible heuristics are those that
never overestimate it, i.e., ∀s; 0 ≤ h(s) ≤ h∗(s).

3 TASK: SUPERVISED LEARNING FOR HEURISTICS

This section explains the basic statistical background behind the commonly used MSE loss, including
the assumptions that are implicitly made when it is used for training a model.
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Let p∗(x) be the unknown ground-truth probability distribution of an observable random variable(s)
x. Given a dataset X =

{
x(1), . . . , x(N)

}
of N data points, we denote an empirical data distribution

as q(x), which draws samples from X uniformly and can be regarded as a uniform mixture of dirac’s
delta distributions (Eq. 1), which is entirely different from p∗(x). Our goal is to obtain an estimate
p(x) that resembles p∗(x) as closely as possible. Under the Maximum Likelihood Estimation (MLE)
framework, it is assumed that p∗(x) is equal to the p(x) that maximizes its expectation over q(x). In
other words, MLE tries to maximize the probability p(x) of observing each data point x ∼ q(x):

q(x) =
∑

i

q(x|i)q(i) =
N∑
i=1

δ(x = x(i)) · 1

N
(1)

p∗(x) = argmax
p

Eq(x)p(x) = argmax
p

Eq(x) log p(x) = argmin
p

Eq(x) − log p(x) (2)

where Eq(x) is estimated by Monte-Carlo in practice.

Typically, we assume p∗(x) and p(x) are of the same family of functions parameterized by θ, such as
a set of neural network weights, i.e., p∗(x) = pθ∗(x), p(x) = pθ(x). This makes MLE a problem of
finding the θ maximizing Eq(x)pθ(x). In practice, we typically minimize a loss such as the negative
log likelihood (NLL) − log p(x), since log is monotonic and preserves the optima θ∗ (Eq. 2). We
further assume p(x) to follow a specific distribution such as a Gaussian distribution:

p(x) = N (µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 . (3)

We emphasize that the choice of the distribution determines the loss. When the model designer
assumes p(x) = N (µ, σ), then the NLL is a shifted and scaled squared error:

− log p(x) =
(x − µ)2

2σ2
+ log

√
2πσ2. (4)

Similarly, a Laplace distribution L(µ, b) = 1
2be

− |x−µ|
b results in a shifted and scaled absolute error

|x−µ|
b + log 2b as the NLL.

It can be seen that the NLL derived from a Gaussian distribution (Eq. 4) is similar but not exactly
equivalent to the MSE. The reason is that most methods, when provided with an input, do not return
a probability distribution p(x) but rather a single prediction (referred to as a point estimate) which
represents the entire p(x). A point estimate can be any statistic of central tendency, such as the mean,
median or mode. In the case of a Gaussian p(x) = N(µ, σ), these three values are identical to µ.
Therefore, since σ does not affect the point estimate of N(µ, σ), the NLL loss can be simplified by
setting a fixed σ = 1√

2
and ignoring the second term of Eq. 4 (which becomes a constant), resulting in

a square error (x−µ)2. The expectation Eq(x)(x−µ)2 of this error can be estimated by Monte-Carlo,
by sampling N data points x ∼ q(x) and averaging the loss (x− µ)2 of each sample x resulting in
the standard mean square error MSE: 1

N

∑
(x− µ)2. In contrast, distributional estimation returns

p(x) without simplifications and thus p(x) = N(µ, σ) must predict the values for both µ and σ.

The MLE framework can be applied to the supervised heuristic learning setting as follows. Let q(s, x)
be the empirical data distribution, where s is a random variable representing a state-goal pair (from
now on, we will implicitly assume that states s also contain goal information) and x a random variable
representing the cost-to-go (regardless of whether it corresponds to a heuristic estimate, optimal or
suboptimal cost). Then, the goal is to learn p∗(x | s) where:

p∗(x | s) = argmax
p

Eq(s,x)p(x|s) (5)

p(x | s) = N (x | µ = µθ(s), σ = 1√
2
), (6)

and µθ(s) is the main body of the learned model, such as a neural network parameterized by the
weights θ. Eq. 6 holds because the network predicting the mean µ = µ(s) is deterministic, i.e., a
direc’s delta p(µ | s) = δ(µ = µ(s)) that assigns a probability of 0 to every µ ̸= µ(s). Supervised
heuristic learning with distributional estimates is formalized similarly. The only difference is that an
additional model (e.g. a neural network) with parameters θ2 predicts σ:

p(x | s) = N (x | µ = µθ1(s), σ = σθ2(s)). (7)
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3.1 THE PRINCIPLE OF MAXIMUM ENTROPY

In the discussion above, we decided to model p(x) as a Gaussian distribution. Nonetheless, we may
wonder if this is the correct choice. The principle of maximum entropy (Jaynes, 1957) states that p(x)
should be modeled as the maximum entropy (max-ent) distribution among all those that satisfy our
constraints or assumptions, where entropy is defined as Ep(x)⟨− log p(x)⟩. A set of constraints defines
its corresponding max-ent distribution which, being the most random among those that satisfy those
constraints, does not encode any more assumptions than those associated with the given constraints.
Conversely, a non max-ent distribution implicitly encodes additional or different assumptions and,
thus, can result in an accidental, potentially harmful bias. For example, if we believe that our random
variable x has a finite mean, a finite variance and a support/domain equal to R, then it should be
modeled as a Gaussian distribution, since it is the max-ent distribution among all those that satisfy
these three constraints.

Therefore, in order to select an appropriate distribution for p(x), the model designer should first
devise a reasonable set of constraints and then model p(x) as the max-ent distribution that satisfies
those constraints which, in turn, will determine the particular NLL loss function to minimize for
training the model. This paper tries to follow this principle as faithfully as possible.

4 UTILIZING BOUNDS FOR LEARNING

In the previous section, we provided some statistical background on heuristic learning. We now
leverage this background to analyze many of the decisions taken in the existing literature, sometimes
unknowingly. Among the different aspects of heuristic learning, we put particular focus on the best
way of utilizing the information provided by admissible heuristics during training.

We previously explained that the heuristic to be learned is modeled as a probability distribution (e.g.,
a Gaussian), instead of a single value. The reason behind this is that the ML model is unsure about the
true heuristic value h∗ associated with a state s. When it predicts µ, it believes not only that µ is the
most likely value for h∗ but also that other values are still possible. The uncertainty of this prediction
is given by σ: The larger this parameter is, the more unsure the model is about its prediction. The
commonly used MSE loss is derived from the ad-hoc assumption that σ is fixed, i.e., it does not
depend on s. This would mean that the model is equally certain (or uncertain) about h∗ for every state
s, which is not a realistic assumption in most scenarios. For example, it is generally more difficult
to accurately predict h∗ for those states that are further from the goal due to the unknown obstacles
between the current state and the goal states. Therefore, the model should predict σ in addition to µ,
i.e., it should output a distributional estimate of h∗ instead of a point estimate, which should improve
the speed of convergence.

Another crucial decision involves selecting what to learn, i.e., the target / ground truth to use for the
training. It is easy to see that training a model on a dataset containing a practical (i.e., computable
in polynomial time) admissible heuristic such as hLMcut does not provide any practical benefits.
Even in the best case, we will simply obtain a noisy, lossy, inadmissible copy of a heuristic that is
already efficient to compute. Therefore, in order to learn a heuristic that outperforms these poly-time
admissible heuristics, i.e., achieve a super-symbolic benefit from learning, it is imperative to train the
model on data of better quality. For instance, it can be trained on the h+ heuristic, as proposed in
Shen et al. (2020), or even on optimal solution costs h∗, although obtaining these datasets may prove
computationally expensive in practice. Nonetheless, by training on these targets, we can aspire to
learn a heuristic that outperforms the poly-time admissible heuristics, although at the cost of the loss
of admissibility.

If poly-time admissible heuristics are not useful as training targets, are they completely useless in
learning a heuristic? Intuitively this should not be the case, given the huge success of heuristic search
where they provide a strong search guidance toward the goal. Our main quiestion is then about how
we should exploit the information they provide. To figure it out, we must revise the assumption we
made (by using squared errors) about x = h∗ following a Gaussian distribution N (µ, σ). The issue
with this assumption is that a Gaussian distribution assigns a non-zero probability p(x) to every
x ∈ R, but we actually know that h∗ cannot take some values. In particular, given some admissible
heuristic like hLMcut, we know that the inequality hLMcut ≤ h∗ holds for every state; therefore
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p(x) = 0 when x < hLMcut. Analogously, if for some state s we know the cost hsat of a satisficing
(non-optimal) plan from s to the goal, then hsat acts as an upper bound of h∗.

According to the principle of maximum entropy, which serves our why, if we have a lower l and
upper u bound for h∗, then we should model h∗ using the max-ent distribution with finite mean, finite
variance, and a support equal to (l, u). The max-ent distribution that satisfies all these constraints is
the Truncated Gaussian distribution T N (x|µ, σ, l, u) (Dowson & Wragg, 1973), formalized as Eq. 8:

T N (x|µ, σ, l, u) =

{
1
σ

ϕ( x−µ
σ )

Φ(u−µ
σ )−Φ( l−µ

σ )
l ≤ x ≤ u

0 otherwise.

ϕ(x) = 1√
2π

exp x2
2 , Φ(x) =

1
2 (1 + ERF(x)), (8)

where l is the lower bound, u is the upper bound, µ is the pre-truncation mean, σ is the pre-truncation
standard deviation, and ERF is the error function. This distribution has the following NLL loss:

− log T N (x|µ, σ, l, u) = (x − µ)2

2σ2
+ log

√
2πσ2 + log

(
Φ

(
u− µ

σ

)
− Φ

(
l − µ

σ

))
(9)

Modeling h∗ as a T N instead of N presents several advantages. Firstly, T N constraints heuristic
predictions to lie in the range (l, u) given by the bounds of the distribution. Secondly, T N generalizes
N as T N (µ, σ,−∞,∞) = N (µ, σ) when no bounds are provided. Finally, T N opens the possibility
for a variety of training scenarios for heuristic learning, with a sensible interpretation of each type of
data, including the satisficing solution costs.

In this work, we focus on the scenario where an admissible heuristic is provided along with the
optimal solution cost h∗ for each state, leaving other settings for future work. In this case, the
admissible heuristic acts as the lower bound l of h∗, which is modeled as a T N (x = h∗|µ, σ, l,∞),
where µ and σ are predicted by an ML model. This model is trained by minimizing the NLL loss
associated with this distribution. Note that we cannot model h∗ as T N (h∗|µ, σ, h∗, h∗) since, during
evaluation/test time, we do not have access to the optimal cost h∗. Also, this modeling decision is
feasible even when no admissible heuristic is available (e.g., when the PDDL description of the
environment is not known, as in Atari games (Bellemare et al., 2013)) since we can always resort to
the blind heuristic hblind(s) or simply do l = 0, which still results in a tighter bound than the one
provided by an untruncated Gaussian N (µ, σ) = T N (µ, σ,−∞,∞).

Finally, our setting is orthogonal and compatible with residual learning (Yoon et al., 2008), where
the ML model does not directly predict µ but rather predicts a residual or offset ∆µ over a heuristic
h, where µ = h +∆µ. Residual learning can be seen as initializing the model output µ around h,
which, when h is a good unbiased estimator of h∗, facilitates learning. This technique can be used
regardless of whether h∗ is modeled as a T N or N because it merely corresponds to a particular
implementation of µ = µθ(s), which is used by both distributions. It is an essential implementation
detail because it is equivalent to the data normalization commonly applied to the standard regression
tasks (rescaling and shifting the dataset to have mean 0, variance 1). However, the standard data
normalization is not appropriate for heuristic learning and is inferior to residual learning because the
target data is skewed above 0 and because the heuristic functions used as the basis of the residual is
able to handle unknown, out-of-distribution data due to its symbolic nature.

4.1 PLANNING WITH A TRUNCATED GAUSSIAN

At planning time, we must obtain a point estimate of the output distribution, which will be used as
a heuristic to determine the ordering between search nodes. As a point estimate, we can use any
statistic of central tendency, thus we choose the mean. It is important to note that the µ parameter of
T N (µ, σ, l, u) is not the mean of this distribution since µ corresponds to the mean of N (µ, σ) (i.e.,
the mean of the distribution before truncation) and does not necessarily lie in the interval (l, u). The
mean of a Truncated Gaussian is obtained according to Eq. 10. Note that a naive implementation of
this formula results in rounding errors (See Appendix A for a numerically stable implementation).

E[x] = µ+ σ
ϕ( l−µ

σ )− ϕ(u−µ
σ )

Φ(u−µ
σ )− Φ( l−µ

σ )
(10)
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Eq. 10 satisfies l ≤ E[x] ≤ u. This means that, when a lower bound l is provided (e.g., by an
admissible heuristic), the heuristic prediction returned by the model will never be smaller than
l. Analogously, when an upper bound u is also provided (e.g., by a satisficing solution cost), the
model will never predict a heuristic value larger than u. With this, we hope that the use of a T N
during planning helps the model make predictions that are closer to h∗ than the bounds themselves,
potentially helping it achieve a super-symbolic improvement over admissible heuristics.

In contrast, the mode argmaxx p(x) of T N is uninteresting: While we could use it as another point
estimate, it is the same as the untruncated mean µ when the predicted µ is within the bounds, and
equal to one of the upper/lower bounds otherwise. However, this inspires a naive alternative that is
applicable even to N , which is to clip the heuristic prediction E[x] (equal to µ for N ) to the interval
[l, u]. We expect only a marginal gain from this trick because it only improves really bad predictions,
i.e., those which would lie outside [l, u] otherwise, and does not affect predictions that correctly lie
inside [l, u]. In our experiments, we show that this approach is inferior to our first method.

Finally, we note that despite the use of admissible heuristics during training the learned heuristic
is itself inadmissible. Thus, the natural way to evaluate it is to apply it to the satisficing (i.e., non-
optimal) planning setting. In case a distributional estimate is used, i.e., when the ML model also
learns to predict σ, we could discuss likely-admissibility (Ernandes & Gori, 2004; Marom & Rosman,
2020). However, this extension is left for future work.

5 EXPERIMENTAL EVALUATION

We evaluate the effectiveness of our new loss function under the domain-specific generalization
setting, where the learned heuristic function is required to generalize across different problems of a
single domain. Due to space limitations, we focus on the high-level descriptions and describe the
detailed configurations in Appendix B.

Data Generation. We trained our system on three classical planning domains: blocksworld-4ops,
logistics, and satellite. For each domain, we generated three sets of problem instances (train, validation,
test) with parameterized generators used in past IPCs (Fawcett et al., 2011). We provided between
456 and 1536 instances for training (the variation is due to the difference in the number of generator
parameters in each domain), between 132 and 384 instances for validation and testing (as separate
sets), and 100 instances sampled from the test set for planning. Training, validation, and test instances
are generated with the same range of generator parameters. Appendix describes the domains and
parameter values employed. To generate the dataset from these instances, we optimally solved each
instance with A∗+hLMcut in Fast Downward (Helmert, 2006) under 5 minutes and 8GB memory.
When it failed to solve the instance within the limits, we discard it and retry generating and solving a
new instance with a different random seed until it succeeds, which guarantees that it generates an
specified number of instances. We also discard trivial instances that satisfy the goal conditions at the
initial state. For each state s in the optimal plan, we archived h∗ and the values of several heuristics
(e.g., hLMcut and hFF). This implies that each instance results in a different number of data points.

Model Configurations. We evaluated three neural network architectures to show that our statistical
model is implementation agnostic. Neural Logic Machines (NLMs) (Dong et al., 2019) is an architec-
ture designed for inductive learning and reasoning over symbolic data, which has been successfully
applied to classical planning domains for learning heuristic functions (Gehring et al., 2022) with
Reinforcement Learning (Sutton & Barto, 2018). STRIPS-HGN (Shen et al., 2020, HGN for short)
is another architecture based on the notion of hypergraphs. Lastly, we included a linear regression
with a hand-crafted feature set proposed in Gomoluch et al. (2017), which comprise the values of the
goal-count (Fikes et al., 1972) and FF (Hoffmann & Nebel, 2001) heuristics, along with the total and
mean number of effects ignored by FF’s relaxed plan.

We analyze our learning & planning system from several orthogonal axes:

• Truncated vs. Gaussian. Using µ(s) as the parameter of a Gaussian N (µ(s), σ(s)) or
Truncated Gaussian T N (µ(s), σ(s), l,∞) distribution.

• Learned vs. fixed sigma. Predicting σ(s) with the model or using a constant value σ(s) =
1√
2

, as it is done for the MSE loss.
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• Lower bounds. Computing the lower bound l with the hLMcut (Helmert & Domshlak, 2009)
heuristic. When we employ a Gaussian distribution, l is used to clip the heuristic prediction
E[x] = µ(s) to the interval [l,∞). Ablation studies with l = hmax(s) (Bonet & Geffner,
2001) and l = hblind(s) are included in the Appendix E.

• Residual learning. Either using the model to directly predict µ(s) or to predict an offset
∆µ(s) over a heuristic h(s), so that µ(s) = ∆µ(s)+h(s). We use h = hFF as our unbiased
estimator of h∗, as proposed in Yoon et al. (2008).

We trained each configuration with 5 different random seeds on a training dataset that consists of 400
problem instances subsampled from the entire training problem set (456-1536 instances, depending
on the domain). Due to the nature of the dataset, these 400 problem instances can result in a different
number of data points depending on the length of the optimal plan of each instance, but we do not
control the final size of the data points. We performed 104 weight updates (training steps) using Adam
(Kingma & Ba, 2014) with batch size 256, learning rate of 0.01 for the linear regression and NLM,
and 0.001 for HGN. All models use the NLL loss for training, motivated by the theory, but note that
the NLL of N and fixed σ = 1/

√
2 matches the MSE up to a constant, as previously noted. For each

model, we saved the weights that resulted in the best validation NLL loss during the training.

We report four different metrics computed on the test set: “NLL” (equivalent to the NLL loss), “MSE”,
“NLL+clip” and “MSE+clip”. Here, “MSE” is a square error between h∗ and the point estimate used
as the heuristic, i.e., for T N it is (E[x]− h∗)2, while for N it is simply (µ− h∗)2. “+clip” variants
are exclusive to N and they clip µ to l, i.e., use max(µ, l) in place of µ to compute the NLL and
MSE. As a result, each configuration has 2x3 metrics to evaluate.

After the training, we use the point estimate provided by each model as a heuristic function for
Greedy Best-First Search (GBFS) (Bonet & Geffner, 1999) to solve the set of 100 planning instances.
To eliminate the effect of hardware (GPU and CPU) and software stack (e.g., deep learning library)
differences, we evaluated the search performance using the number of heuristic evaluations required
to solve each instance, rather than the total runtime. For each problem, we limited the number of
evaluations to 10000. Additionally, we evaluated GBFS with off-the-shelf hFF heuristic as a baseline.
The planning component is based on Pyperplan (Alkhazraji et al., 2020).

5.1 TRAINING ACCURACY EVALUATIONS

We focus on the results obtained by the NLM models, as the results obtained by the Linear and
the HGN models (Appendices C and D) were not substantially different. Table 1 shows the test
metrics obtained by the different configurations. T N obtains around 40% lower MSE than N+clip on
(geometric) average. In addition, regardless of the evaluated metric (NLL or MSE), T N outperforms
N for all configurations except fixed/hFF on logistics, where it obtains a slightly worse MSE (but
much better NLL nonetheless). In contrast, N+clip only marginally improves over N , confirming
our hypothesis that post-hoc clipping is insufficient for an accurate prediction.

Additional detailed observations follows. Firstly, we obtained the mean square error (hFF − h∗)2

between hFF and h∗ and observed that the trained heuristics, including those that use residual
learning from hFF, tend to be more accurate than hFF (see third table column). Secondly, residual
learning often improves performance considerably, thus proving to be an effective way of utilizing
inadmissible heuristics. Finally, the T N tends to converge faster during training, as shown in Fig. 2.

5.2 SEARCH PERFORMANCE EVALUATIONS

We compared the search performance of GBFS using heuristic functions obtained by different models,
which include our proposed configuration learn/hFF (best accuracy in Table 1) and the baseline
fixed/none configuration which follows the common practice in the literature using a fixed σ = 1/

√
2

and lacking residual learning.

Table 2 shows the average±stdev of the number of problems solved (the coverage metric) and
the average number of node evaluations per problem over 5 seeds. The second metric is necessary
because the coverage can saturate to 100 and becomes statistically insignificant when all/most problem
instances are solved. The accuracy in Table 1 strongly correlates with the search performance in Table
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Table 1: Test metrics for NLM. For each experiment configuration, we performed 104 training
steps, saving the checkpoints with the best validation NLL loss. We tested several orthogonal
configurations: 1) Learning σ (learn) or fixing it to 1/

√
2 (fixed) and 2) Using residual learning

(hFF) or not (none). For each configuration, we compare the test NLL and MSE of the Gaussian
(N ) and Truncated Gaussian (T N ) models. Rows labeled as +clip denote a N model where µ
is clipped above hLMcut. For each configuration, the best metric among N , N+clip, and T N
is highlighted in bold. Results from linear regression and STRIPS-HGN are provided in the Appendix.

do
m

ai
n Weights with the best validation NLL in 104 steps

metric learn/hFF learn/none fixed/hFF fixed/none
N T N N T N N T N N T N hFF

bl
oc

ks
-4

op
s NLL .16 .02 .85 .54 1.37 .30 1.49 .44

+clip .15 .81 1.37 1.48
MSE .67 .55 1.48 1.21 .43 .41 .91 .73 16.61
+clip .67 1.46 .42 .88 16.37

lo
gi

st
ic

s NLL .32 .09 1.49 .67 1.33 .34 2.24 .91
+clip .31 1.33 1.32 1.97
MSE .39 .30 4.72 .44 .25 .28 3.92 1.34 .78
+clip .38 3.22 .24 2.81 .78

sa
te

lli
te NLL -.13 -.48 1.00 -.05 1.41 -.11 1.66 -.07

+clip -.15 .77 1.38 1.51
MSE .80 .34 1.93 .41 .56 .39 1.59 .48 .92
+clip .71 1.09 .45 .97 .92

Table 2: Planning results on NLM weights saved according to the best validation NLL loss,
comparing the average±stdev of the number of instances solved under 104 node evaluations and the
average number of evaluated nodes across the problems. The number of evaluated nodes is counted
as 104 on instances that the planner failed to solve. For each configuration, the best metric among N ,
N+clip, and T N is highlighted in bold, with statistically insignificant ties being equally highlighted.

learn/hFF fixed/none
domain hFF N N+clip T N N N+clip T N

Number of solved instances under 104 evaluations (higher the better)

blocks-4opts 55 97.4±1.14 97.4±1.14 98±1.87 98.6±1.14 92±3.32 90.2±3.11
logistics 99 93±5.83 97.6±1.67 97.4±2.70 40.4±5.55 82.2±5.22 90.6±3.91
satellite 84 34.4±7.27 55.8±9.26 65.2±3.27 16.2±4.76 48±4.06 62.6±8.71

Average node evaluations (smaller the better)

blocks-4opts 5751 656 656 560 640 1537 1514
logistics 1031 1435 1077 953 6841 2986 1830
satellite 3398 7227 5557 4594 8792 6336 4862

2 as learn/hFF tends to outperform fixed/none and T N tends to outperform N and N+clip. Note
that the coverage in blocksworld tends to saturate, thus the improvements are in the node evaluations.

T N did not outperform N in fixed/none in blocksworld but this is expected: fixed/none is known
to be a problematic configuration because it contains an ad-hoc assumption on σ and lacks the
normalization by the residual base, both of which could prevent it from learning a useful search
guidance. We still maintain our conclusion because the best learn/hFF blocksworld model (T N , 540
evaluations) outperforms the best fixed/none blocksworld model (N , 640 evaluations).

Compared to the State-of-the-Art off-the-shelf heuristic hFF, our models significantly outperform
hFF in blocksworld, although hFF is competitive in logistics and dominates our models in satellite.
This is surprising because the T N learn/hFF models are significantly more accurate (in MSE) than
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hFF in every domain. Our hypothesis is that the GBFS algorithm used for evaluation may be sensitive
to the small changes in node ordering, which matters more (Garrett et al., 2016) especially with
accurate heuristics (hFF is already quite accurate in logistics and satellite with MSE below 1) and
can produce unreliable results. Investigating the theoretical characteristics of GBFS (Heusner et al.,
2018; Kuroiwa & Beck, 2022) is an important future work, but is outside the scope of this paper.

6 RELATED WORK

ML approaches for learning search guidance in Classical Planning can be categorized according to
two orthogonal dimensions: Supervised Learning (SL) vs. Reinforcement Learning (RL), and policy
learning (i.e., predicting the next action) vs. heuristic learning (i.e., predicting a cost/reward as a
heuristic/value function). SL approaches (Yoon et al., 2006; 2008; Arfaee et al., 2011; Satzger &
Kramer, 2013; Gomoluch et al., 2017; Shen et al., 2020) work on a pre-generated dataset, which may
be a disadvantage if obtaining a high-quality dataset (i.e., with optimal costs) is costly. SL can also
be applied to policy learning (Toyer et al., 2018). On the other hand, RL integrates the data-collection
process into the training by allowing the agent to interact with the environment, with the additional
benefit that it is compatible with model-free settings (Mnih et al., 2015; Silver et al., 2016). RL has
been successfully applied to classical planning in the context of both policy learning (Rivlin et al.,
2019) and heuristic learning (Gehring et al., 2022). Its main drawback is the high variance/instability
of training (Henderson et al., 2018) and its sample inefficiency (Badia et al., 2020).

Other works explore orthogonal ideas such as learning residuals/offsets from existing heuristics
(Ernandes & Gori, 2004; Yoon et al., 2008; Satzger & Kramer, 2013; Gehring et al., 2022), learning
to rank states (Garrett et al., 2016), learning pruning rules (Krajňanskỳ et al., 2014), improving the
sampling and data generation process (Arfaee et al., 2011; Ferber et al., 2022) and learning from
regression (Yu et al., 2020).

7 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of supervised heuristic learning under a statistical lens, focusing
on how to effectively utilize the information provided by admissible heuristics. Firstly, we provided
some statistical background on heuristic learning which was later leveraged to analyze the decisions
made (sometimes unknowingly) in the literature. We explained how the commonly used MSE loss
implicitly models the heuristic to be learned as a Gaussian distribution. Then, we argued that this
heuristic should instead be modeled as a Truncated Gaussian, where admissible heuristics are used
as the lower bound of the distribution. We conducted extensive experimentation, comparing the
heuristics learned with our truncated-based statistical model versus those learned by minimizing
squared errors. Results show that our proposed method improves convergence speed during training
and yields better heuristics (with 40% lower MSE on average), thus confirming that it is the correct
approach for utilizing admissible bounds in heuristic learning.

Our findings serve to answer the three important questions we raised in the introduction: What
should be learned in heuristic learning? We should use h∗ as the training target, instead of learning
from admissible heuristics or sub-optimal plan costs, since otherwise no super-symbolic benefit
can be achieved. How should we learn? We should follow the MLE approach, modeling h∗ as a
Truncated Gaussian whose lower bound is given by an admissible heuristic. Why so? According to
the principle of maximum entropy, a Truncated Gaussian is the distribution that encodes all our prior
knowledge without introducing any extra assumption into the model that may result in harmful bias.

In future work, we will extend our proposed method to other learning settings. One interesting
scenario is given by iterative search algorithms (Richter et al., 2010; 2011), where the cost of the
best solution found so far could be used as the upper bound of a Truncated Gaussian. We are also
interested in discovering whether our method can be successfully applied to learn a heuristic when
optimal costs are not available, but only their upper and/or lower bounds, using variational inference
(Jordan et al., 1999; Kingma & Welling, 2013) with the optimal cost as a hidden variable. We also
plan to explore the Reinforcement Learning setting where a value function is learned instead of a
heuristic, extending the work on residual learning for RL (Gehring et al., 2022). Finally, the statistical
framework for heuristic learning extends beyond classical planning. Application to logistics-type
industrial domains (e.g., TSP, VRP) is an interesting avenue for future work.
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8 REPRODUCIBILITY STATEMENT

In order to support reproducibility, we provide all the code used in this work as part of the supple-
mentary materials. This includes the code for generating the datasets, training and testing the models,
and running the planning experiments. The particular datasets the experiments were performed on are
also included in the supplementary materials.

In Appendix A, we explain how the Truncated Gaussian distribution used in this work was imple-
mented. The Pytorch code of this implementation can be found along with the rest of the code in the
supplementary materials.

Finally, Section 5 provides details about the experimental setup, e.g., the size of the datasets employed
and values for training parameters such as the learning rate. The remaining details can be found in the
Appendices. Appendix B.1 contains the hyperparameter values for the different ML models (NLM,
STRIPS-HGN and Linear Regression), whereas Appendix B.2 contains the parameter values used as
inputs to the instance generators, in order to generate the problems for the different domains.
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A TRUNCATED GAUSSIAN IMPLEMENTATION

This Appendix explains several important implementation details of the Truncated Gaussian distri-
bution used in our work. Our Pytorch implementation can be found in the supplementary material,
along with the rest of the code.

A.1 NUMERICALLY STABLE FORMULAS FOR TRUNCATED GAUSSIAN

The Truncated Gaussian distribution is a four-parameter probability distribution defined as follows:

N (x|µ, σ, l, u) =

{
1
σ

ϕ( x−µ
σ )

Φ(u−µ
σ )−Φ( l−µ

σ )
l ≤ x ≤ u

0 otherwise.

where ϕ(x) =
1√
2π

exp
x2

2
,

Φ(x) =
1

2
(1 + ERF(x)).

In order to train and use a system that involves a Truncated Gaussian, we need to compute several
properties, such as its mean and the log-probability of some value x under the distribution. However,
the naive implementation of the formulas for calculating these quantities is numerically unstable due
to floating-point rounding errors, especially when µ lies outside the interval (l, u). In this subsection,
we briefly explain the source of instability and provide numerically stable formulas for calculating
these values.

Given a Truncated Gaussian distribution N (x | µ, σ, l, u), its mean E[x] is given by the following
formula:

E[x] = µ+
ϕ(α)− ϕ(β)

Φ(β)− Φ(α)
σ, where

α = l−µ
σ , β = u−µ

σ . (β ≥ α)

The expression ϕ(α)−ϕ(β)
Φ(β)−Φ(α) should not be evaluated directly because it involves subtractions between

values that could be potentially very close to each other, causing floating-point rounding errors.

We now describe a stable implementation of this formula introduced by Fernandez-de Cossio-Diaz
(2018). Let us define the following function:

F1(x, y) =
e−x2 − e−y2

ERF(y)− ERF(x)

Then, we reformulate the mean as follows:

E[x] = µ+

√
2

π
F1

(
α√
2
,
β√
2

)
σ.

F1 can be evaluated in a numerically stable manner by using the formulas below:

F1(x, y)

= F1(y, x), if |x| > |y|
= P1(x, y − x), if |x− y| = |ϵ| < 10−7

=
1−∆

∆ERFCX(−y)− ERFCX(−x)
if x, y ≤ 0

=
1−∆

ERFCX(x)−∆ERFCX(y)
if x, y ≥ 0

=
(1−∆)e−x2

ERF(y)− ERF(x)
otherwise.
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where ∆ = ex
2−y2

, ERFCX(x) = ex
2

ERFC(x) is a function that is commonly available in mathemat-
ical packages, and P1 is a Taylor expansion of F1(x, x+ ϵ) = P1(x, ϵ) where y = x+ ϵ:

P1(x, ϵ) =
√
πx+

1

2

√
πϵ− 1

6

√
πxϵ2 − 1

12

√
πϵ3+

1

90

√
πx(x2 + 1)ϵ4.

Next, we provide a numerically stable method for computing the log-probability logN (x | µ, σ, l, u).
Let us assume l ≤ x ≤ u, since otherwise the probability is 0 (whose logarithm is −∞). The value is
given by the following expression:

logN (x | µ, σ, l, u) = log

(
1

σ

ϕ(ξ)

Φ(β)− Φ(α)

)
=

− log σ − log
√
2π − ξ2

2
− log

(
Φ(β)− Φ(α)

)
,

where ξ =
x− µ

σ
.

Let Z = Φ(β)− Φ(α). We obtain log(Z) from the stable formula for E[x]. When α, β ≥ 0,

log(Z) = − log
E[x]− µ

σ
− log

√
2π − α2

2
+

log

(
1− e

α2−β2

2

)
.

When α, β ≤ 0,

log(Z) = − log
µ− E[x]

σ
− log

√
2π − β2

2
+

log

(
1− e

β2−α2

2

)
.

Otherwise,

log(Z) = − log 2 + log

[
ERF

(
β√
2

)
− ERF

(
α√
2

)]
.

A.2 TRUNCATED GAUSSIAN WITH MISSING BOUNDS

A Truncated Gaussian distribution can be defined with either the lower l or upper bound u missing,
as N (µ, σ,−∞, u) or N (µ, σ, l,∞), respectively. It can also be defined with no bounds at all as
N (µ, σ,−∞,∞), in which case it is equivalent to an untruncated Gaussian N (µ, σ).

In our implementation, we use l = −1e5 and u = 1e5 as the parameters of a Truncated Gaussian with
no lower and/or upper bound, respectively. We have observed that these values result indistinguishable
from l → −∞ and u → ∞ when calculating the mean E[x] and log-probability log p(x), as long as
−1e5 ≪ µ ≪ 1e5, σ ≪ 1e5 and −1e5 < x < 1e5 (since p(x) = 0 for any x outside the interval
[l, u]).

A.3 TRUNCATED GAUSSIAN WITH OPEN BOUNDS

When defining a Truncated Gaussian distribution N (µ, σ, l, u), we need to specify whether the
bounds l, u are contained in the support of the distribution or not, i.e., whether the support is equal to
[l, u] (they are contained) or (l, u) (they are not contained). When the support is [l, u] we say that the
Truncated Gaussian has closed bounds and that it has open bounds otherwise.

Our first Truncated Gaussian implementation used closed bounds, but we discovered that this
decision would sometimes lead to learning issues since the ML model would tend to output µ ≪ 0
(e.g., µ = −100). We believe the reason for that behavior is that a highly accurate lower bound
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l (e.g., hLMcut) can be sometimes equal to h∗ and the ML model is encouraged to maximize
log p(l) = log p(h∗). In order to do so, it can simply output µ ≪ 0, as the smaller (more negative)
µ gets, the higher log p(l) becomes. Therefore, using closed bounds would often result in a learned
heuristic equivalent to l = hLMcut, as the mean of N (µ, σ, l, u) is almost equal to l when µ ≪ l.

For this reason, we switched to open bounds in our implementation. To do so, we simply subtracted
a small value ϵ = 0.1 from l, obtaining a new distribution N (µ, σ, l − ϵ, u). This made sure that x
was never equal to l′ = l − ϵ when calculating log p(x = h∗), which prevented the ML model from
predicting µ ≪ 0. Finally, in order to obtain a Truncated Gaussian where the upper bound u is also
open, we can add ϵ to u, which results in a new distribution N (µ, σ, l − ϵ, u+ ϵ).

15



B PARAMETER DETAILS

B.1 MODEL HYPERPARAMETERS

In this Appendix, we detail the hyperparameter values used for the different models: NLM, HGN, and
linear regression. In general, we did not perform extensive hyperparameter tuning for the different
models.

For the NLM, we used a model with breadth 3 and depth 5, where every inner layer outputs 8
predicates for each arity. The multi-layer perceptrons used in the network employed sigmoid as their
activation function and contained no hidden layer.

For the HGN, we employed a hidden size of 32 and 3 recursion steps. We note that using more
recursion steps did not improve performance significantly (but incurred in higher computational cost)
and, in satellite, using 4 recursion steps actually degraded performance. As mentioned in the main
paper, the learning rate for the HGN is 1e−3, which corresponds to the value used in Shen et al.
(2020).

Finally, we report that we initially tested an L2 weight decay penalty for the linear regression model
but removed it because it did not help the model.

B.2 PARAMETERS OF INSTANCE GENERATORS

As mentioned in the paper, we generated the problems used in our experiments with parameterized
generators (Fawcett et al., 2011). For each domain, we tried to select a diverse set of parameters
that resulted in problems solvable in under 5 minutes and 8GB of memory using A∗ + hLMcut

in Fast Downward. We now detail the range of parameter values used for each generator. For
each parameter combination, we generated one or several problems, discarding those resulting
from invalid combinations. In blocksworld, we generated problems containing between 5 and 15
blocks. In logistics, we used the following set of parameter values: airplanes = 1..3, cities =
1..5, city size = 1..3, packages = 3..5, trucks = 5. In satellite, we utilized the following:
satellites = 1..5, max instruments per satellite = 3, modes = 3..5, targets = [7, 10, 15],
observations = 3..5.
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C EXPERIMENTAL RESULTS FOR LINEAR REGRESSION

In this Appendix, we provide the results of the experiments conducted on the Linear Regression (LR)
models. These experiments were run using the same parameters as in the NLM experiments.

Table S3 shows the NLL and MSE metrics obtained by the LR model on the test problems. The trend
obtained by the LR model is very similar to that of the NLM model: T N obtains better test MSE and
NLL than N for almost every configuration. In those few cases where N outperforms T N , it only
does so slightly. Additionally, we observe that N + clip only provides a marginal improvement over
N and that residual learning provides no benefit at all. Residual learning does not help the LR model
because it already receives the hFF heuristic as one of its inputs, so using hFF again as the basis for
the residual does not provide any additional information.

We note that the LR models are remarkably accurate in logistics and satellite compared to the NLM
ones despite their simplicity. Our hypothesis is that since hFF is already informative in those domains,
it is easy for the LR models to obtain good results. On the other hand, the accuracy of LR is not as
good in blocksworld because hFF tends to have large errors and, therefore, the hFF input (as well as
the residual) is not helpful. Nonetheless, the LR models manage to outperform hFF in blocksworld
by a great margin in terms of accuracy.

Table S4 shows the results of the planning experiments for the LR models. We also observe that
residual learning does not improve performance (since LR models already receive hFF as an input).
The trends are similar to the NLM results overall: The LR models outperform hFF in blocksworld,
obtain similar results in logistics and perform worse in satellite.
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Table S3: Test metrics for Linear Regression (LR) model. Table columns and rows have the same
meaning as in Table 1 of the main paper. For each configuration, the best metric among N , N + clip,
T N is highlighted in bold. T N improves the accuracy over N and N+clip overall.

do
m

ai
n Weights with the best validation NLL in 104 steps

metric learn/hFF learn/none fixed/hFF fixed/none
N T N N T N N T N N T N hFF

bl
oc

ks
-4

op
s NLL 1.92 1.30 1.92 1.30 2.53 2.01 2.53 2.01

+clip 1.89 1.89 2.50 2.50
MSE 6.02 5.17 6.08 5.19 5.06 5.08 5.06 5.09 16.61
+clip 6.01 6.07 4.94 4.94 16.37

lo
gi

st
ic

s NLL .85 .68 .89 .71 1.42 .71 1.44 .71
+clip .85 .88 1.42 1.43
MSE .65 .52 .68 .51 .64 .64 .68 .66 .78
+clip .65 .68 .63 .68 .78

sa
te

lli
te NLL .69 .13 .61 .13 1.50 .26 1.47 .24

+clip .69 .61 1.48 1.45
MSE 1.05 .48 .96 .49 .92 .70 .80 .63 .92
+clip 1.05 .96 .86 .74 .92

Table S4: Planning results for Linear Regression (LR) model. For each model, we use the weights
that resulted in the best validation NLL loss during training. Table columns and rows have the same
meaning as in Table 2 of the main paper. For each configuration, the best metric among N , N+clip
and T N is highlighted in bold.

domain learn/hFF fixed/none

hFF N N+clip T N N N+clip T N
Number of solved instances under 104 evaluations

blocksworld 55 99.6±.55 99.6±.55 98.2±1.79 98±2.83 98±2.92 97.8±1.48
logistics 99 95.8±2.17 96±1.87 97.8±1.64 99.6±.55 100±.00 99.6±.89
satellite 84 33.4±3.21 53.2±5.93 59.4±11.41 68.4±8.23 75.2±4.38 65.2±8.11

Average node evaluations

blocksworld 5753 4455 4350 4851 4733 4858 4815
logistics 1033 1094 1073 943 1040 1056 1018
satellite 3400 3412 3779 5501 3578 3642 4524
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D EXPERIMENTAL RESULTS FOR HGNS

In this Appendix, we provide the results of the experiments conducted on the STRIPS-HGN models.
HGN models are trained with learning rate 1e−3.

The test metrics obtained by the HGN model are shown in Table S5, whereas Table S6 shows its
planning results. With HGN, T N tends to improve NLL and MSE over N and N+clip, but less
effectively so than with NLM (11/12 configurations for NLL, 8/12 configurations for MSE). One
potential reason is the limited expressivity of HGN: Unlike NLM, HGN is designed to only receive
the delete-relaxed information about the problem instance, which may harm its ability to learn a
heuristic for the original instance. Another potential reason for its weak performance is training time:
We observed that HGN requires a smaller learning rate to achieve training stability, which means that
it may need more training steps in order to converge.

Focusing on the learn/hFF configuration, the planning results in Table S6 show a general improvement
of HGN over hFF in blocksworld (both for coverage and number of node evaluations) and logistics
(coverage is saturated, but node evaluations improves over hFF). Similarly to the NLM results, the
learned heuristics did not outperform hFF in satellite. Interestingly, the rankings (order) for the two
metrics (coverage and node evaluations) are the opposite in satellite: T N results in better (fewer)
evaluations than N while solving fewer instances. This may indicate overfitting to a particular subset
of similar instances, which it solves quickly and thus contributes to fewer evaluations, while failing
on other instances, which reduces coverage. This is also natural considering the limited expressivity
of HGNs.
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Table S5: Test metrics for HGN model. Table columns and rows have the same meaning as in Table
1 of the main paper. For each configuration, the best metric among N , N + clip, T N is highlighted
in bold. T N tends to improve accuracy over N and N+clip.

do
m

ai
n Weights with the best validation NLL in 104 steps

metric learn/hFF learn/none fixed/hFF fixed/none
N T N N T N N T N N T N hFF

bl
oc

ks
-4

op
s NLL -.23 -.18 .33 .14 1.31 .24 1.36 .26

+clip -.23 .30 1.31 1.36
MSE .32 .37 .72 .52 .16 .20 .39 .30 16.61
+clip .32 .72 .16 .38 16.37

lo
gi

st
ic

s NLL .56 .31 .61 .46 1.34 .35 1.36 .37
+clip .56 .54 1.33 1.36
MSE .49 .42 .46 .52 .28 .29 .39 .33 .78
+clip .49 .43 .28 .36 .78

sa
te

lli
te NLL -.03 -.57 .19 -.24 1.36 -.13 1.39 -.19

+clip -.06 .04 1.35 1.36
MSE .64 .27 .73 .27 .39 .31 .49 .26 .92
+clip .55 .49 .33 .36 .92

Table S6: Planning results for HGN model. For each model, we use the weights that resulted in
the best validation NLL loss during training. Table columns and rows have the same meaning as in
Table 2 of the main paper. For each configuration, the best metric among N , N+clip and T N is
highlighted in bold.

domain learn/hFF fixed/none

hFF N N+clip T N N N+clip T N
Number of solved instances under 104 evaluations

blocksworld 55 70.2±.45 71.8±1.92 63.6±2.61 67.6±3.05 66.8±2.17 64.4±2.97
logistics 99 98.6±.89 98.8±.84 100±.00 99.2±.84 99±.71 99±.71
satellite 84 85±1.00 79.8±1.92 56.2±11.65 84±1.41 82.8±2.77 72.6±1.82

Average node evaluations

blocksworld 5751 311 310 451 463 487 515
logistics 1031 1292 1190 982 748 660 724
satellite 3398 7064 5713 5042 4298 3871 4655
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E EXPERIMENTAL RESULTS WITH DIFFERENT LOWER BOUNDS

Tables S7-S9 show the results obtained by the different models using hmax and hblind as the lower
bound l. The results obtained with l = hmax and l = hblind are generally worse than those obtained
with l = hLMcut. T N tends to perform better than N while there are little to no improvements in
N+clip over N . In all cases, the satellite domain remains challenging.

We believe this behaviour is due to the quality of the lower bound l, or its lack thereof. The issue
is especially significant in N+clip because the clipping has no effect on the prediction unless l
is sufficiently large, while T N receives the adjustment to µ even when l < µ. Nonetheless, the
adjustment is small if l ≪ µ, as demonstrated by the lack of large improvements by l = hblind.

Table S7: Test metrics for the NLM models with l = hmax and l = hblind, using the learn/hFF

configuration. For each experiment configuration, we performed 104 training steps, saving the
checkpoints with the best validation NLL loss.

do
m

ai
n Weights with best val NLL

metric hmax hblind

N T N N T N

bl
oc

ks
-4

op
s NLL .15 .06 .18 .18

+clip .15 .18
MSE .65 .65 .69 .62
+clip .65 .69

lo
gi

st
ic

s NLL .30 .28 .30 .22
+clip .30 .30
MSE .39 .42 .39 .39
+clip .39 .39

sa
te

lli
te NLL -.13 -.04 -.13 .17

+clip -.13 -.13
MSE .84 .92 .84 .90
+clip .84 .84
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Table S8: Test metrics for the LR models with l = hmax and l = hblind, using the learn/hFF

configuration. For each experiment configuration, we performed 104 training steps, saving the
checkpoints with the best validation NLL loss.

do
m

ai
n Weights with best val NLL

metric hmax hblind

N T N N T N

bl
oc

ks
-4

op
s NLL 1.92 1.64 1.92 1.72

+clip 1.89 1.89
MSE 6.02 4.94 6.02 5.02
+clip 6.01 6.01

lo
gi

st
ic

s NLL .85 .81 .85 .83
+clip .85 .85
MSE .65 .65 .65 .64
+clip .65 .65

sa
te

lli
te NLL .69 .63 .69 .64

+clip .69 .69
MSE 1.05 1.06 1.05 1.04
+clip 1.05 1.05

Table S9: Test metrics for the HGN models with l = hmax and l = hblind, using the learn/hFF

configuration. For each experiment configuration, we performed 104 training steps, saving the
checkpoints with the best validation NLL loss.

do
m

ai
n Weights with best val NLL

metric hmax hblind

N T N N T N

bl
oc

ks
-4

op
s NLL -0.14 -0.16 -0.07 -0.15

+clip -0.14 -0.07
MSE 0.42 0.41 0.47 0.43
+clip 0.42 0.47

lo
gi

st
ic

s NLL 0.55 0.48 0.53 0.47
+clip 0.55 0.53
MSE 0.48 0.46 0.47 0.45
+clip 0.48 0.47

sa
te

lli
te NLL -0.26 -0.15 -0.33 -0.13

+clip -0.26 -0.33
MSE 0.60 0.59 0.58 0.64
+clip 0.60 0.58
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F PLANNING RESULTS WITH STANDARD DEVIATIONS OF NODE
EVALUATIONS

As requested by the reviewer, we created a variant of Table 2 which also shows the standard deviation
for the number of evaluated nodes. The std values are obtained by first computing the average number
of node evaluations across all instances, and then computing their standard deviation over the seeds,
so that the results do not contain the effect of instance-wise deviation.

Table S10: Table 2 with standard deviation of node evaluations.
learn/hFF fixed/none

domain hFF N N+clip T N N N+clip T N
Number of solved instances under 104 evaluations (higher the better)

blocks-4opts 55 97.4±1.14 97.4±1.14 98±1.87 98.6±1.14 92±3.32 90.2±3.11
logistics 99 93±5.83 97.6±1.67 97.4±2.70 40.4±5.55 82.2±5.22 90.6±3.91
satellite 84 34.4±7.27 55.8±9.26 65.2±3.27 16.2±4.76 48±4.06 62.6±8.71

Average node evaluations (smaller the better)

blocks-4opts 5751 656±161 656±160 560±223 640±146 1537±473 1514±282
logistics 1031 1435±590 1077±211 953±258 6841±648 2986±549 1830±269
satellite 3398 7227±553 5557±899 4594±343 8792±336 6336±332 4862±705

23



G EXPERIMENTAL RESULTS WITH DIFFERENT TIE-BREAKING STRATEGIES

As previously commented, our T N approach significantly outperforms the other methods in terms
of accuracy (see Table 1). Additionally, as Table 2 shows, T N also outperforms N + clip (and
N ) in terms of planning performance in 5 out of 6 cases, when we consider both coverage and
number of node evaluations (this is needed because the coverage metric sometimes saturates to
100%). Nonetheless, although the best T N model significantly outperforms the hFF baseline in
blocksworld, it obtains similar planning results in logistics and is outperformed by hFF in satellite.
This is a surprising result considering that our approach obtains significantly better MSE than hFF in
all three domains.

We hypothesized that this happens because GBFS is sensitive to changes in node ordering caused
by minor float fluctuations in heuristic values. hFF has no such fluctuations as it always returns an
integer. Moreover, hFF is also a strong baseline for logistics and satellite, as it obtains an MSE lower
than 1 in both domains. Therefore, even though heuristics learned by T N are significantly more
accurate relative to hFF, the absolute heuristic error difference is small, leading to only a minor
improvement, which is then masked by degradations from float fluctuations. We believe this is why
the improvement in relative accuracy by our approach does not necessarily translate into better search
performance.

We found a simple yet effective mitigation to this issue that modifies the tie-breaking strategy of
GBFS, which is known to significantly affect its performance (Asai & Fukunaga, 2017a). According
to our hypothesis, when the learned heuristic predicts very similar h values for different nodes,
the order between them (which is quite sensitive to minor changes in float values) may not be
ideal because the T N model does not explicitly penalize wrong ordering, unlike learning-to-rank
approaches. A simple mitigation is to round h to an integer and then break ties with the hFF heuristic
so that the node expansion order among similar h-valued nodes becomes in line with that of the hFF

heuristic, if hFF provides a good search guidance.

Following (Asai & Fukunaga, 2017a;b), a sorting strategy of a best-first search algorithm defines
the expansion order of search nodes, and is denoted as a list [f1, . . . , fn, cdefault] where each fi is a
function of a state and cdefault is a so-called default tie-breaking criteria, which is either FIFO, LIFO,
Random, or * (unspecified). Nodes are sorted according to f1 and ties are resolved according to the
function fi with smallest i for which nodes have different values. If nodes have the same fi value
for every i, ties are then solved with the default strategy cdefault. For example, the classic A∗ search
algorithm Hart et al. (1968) does not specify the default tie-breaking criteria, and is thus denoted
as [g(s) + h(s), ∗]. On the other hand, the Fast Downward Helmert (2006) implementation of A∗

is denoted as [g(s) + h(s), h(s),fifo], since it sorts the nodes according to f(s) = g(s) + h(s) first,
breaks ties with h(s), and finally implements a FIFO queue, i.e., the first node to be inserted will be
expanded first. GBFS with unspecified default tie-breaking is [h(s), ∗], and Pyperplan implementation
of GBFS is [h(s),fifo].

Table S11 shows the (GBFS) planning results of the NLM model with two different tiebreaking
configurations: [h(s),fifo], as in Table 2, and [⌊h(s)⌋, hFF(s),fifo], where the value of the heuristic
h(s) is rounded down to the largest integer and, in the case of a tie, it is resolved by resorting to the
FF heuristic.

As expected, the new FF-based tiebreaking strategy significantly improved planning performance
whenever hFF was informative: Performance improved in logistics and satellite, but not in
blocksworld, where FF-based tiebreaking performed much worse. Since the hFF baseline is greatly
outperformed by the learned heuristics in blocksworld, it makes sense that relying on hFF to break
ties actually hinders performance.

An important result from these experiments is that learned heuristics and hFF can complement each
other through tie-breaking, instead of learned heuristics just piggy-backing on the latter. This can be
observed in Table S11, where T N with learn/hFF and FF-based tiebreaking manages to outperform
both the hFF baseline and non-FF-based tiebreaking (d) in logistics and satellite, when both coverage
and node evaluations are considered. To the best of our knowledge, despite its simplicity, an approach
that employs tie-breaking to combine symbolic and data-driven heuristics into neuro-symbolic, hybrid
guidance has not been explored before.
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Table S11: Planning results for the NLM models with different tiebreaking strategies, using
the learn/hFF and fixed/none configurations. (d) rows correspond to the default tiebreaking
strategy [h(s),fifo] of GBFS, whereas (f) rows correspond to the the FF-based tiebreaking strategy
[⌊h(s)⌋, hFF(s),fifo]. The bw, lg and st rows represent the blocksworld, logistics and satellite
domains, respectively. For each configuration, the best metric among N , N +clip, T N is highlighted
in bold.

learn/hFF fixed/none
domain hFF N N+clip T N N N+clip T N

Number of solved instances under 104 evaluations (higher the better)

bw (d) 55 97.4±1.14 97.4±1.14 98.0±1.87 98.6±1.14 92.0±3.32 90.2±3.11
(f) 95.8±2.86 95.0±1.87 97.2±2.28 98.2±1.92 90.6±3.78 90.6±2.79

lg (d) 99 93.0±5.83 97.6±1.67 97.4±2.70 40.4±5.55 82.2±5.22 90.6±3.91
(f) 99.0±1.00 99.4±.89 98.6±2.61 53.4±7.30 94.4±4.56 99.2±.84

st (d) 84 34.4±7.27 55.8±9.26 65.2±3.27 16.2±4.76 48.0±4.06 62.6±8.71
(f) 58.4±15.61 79.2±7.79 83.6±1.34 47.2±11.78 75.0±3.08 80.4±5.22

Average node evaluations (smaller the better)

bw (d) 5752 656 656 560 640 1537 1514
(f) 1019 1129 725 626 1584 1508

lg (d) 1032 1435 1077 953 6841 2986 1830
(f) 888 890 917 5591 1495 977

st (d) 3399 7227 5557 4594 8792 6336 4862
(f) 5428 3829 3158 6419 4340 3687
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H EXPERIMENTAL RESULTS ON LARGE INSTANCES

In this Appendix, we test the generalization abilities of the learned heuristics when evaluated
on larger problems than those used during training. We generated a new set of test problems
by providing larger parameter values to the instance generators. These new generator parame-
ters are as follows: In blocksworld, we generated problems containing between 11 and 22 blocks.
In logistics, we used the following set of parameter values: airplanes = 3..8, cities = 3..8,
city size = 3..6, packages = 5..8, trucks = 5. In satellite, we utilized the following:
satellites = 2..7, max instruments per satellite = 3..4, modes = 4..7, targets = [8, 11, 16],
observations = 4..7.

Table S12 shows how the NLM model successfully generalizes to larger problems, with only a small
decrease in accuracy when compared to the results for small problems detailed in Table 1. The LR
model also manages to generalize to a certain extent, although the MSE obtained for large problems
(see Table S13) is moderately higher than the one obtained for small problems (see Table S3). On
the other hand, HGN accuracy degrades significantly, i.e., it fails to generalize (see Table S14). For
example, in some configurations, the MSE is sometimes larger than 10, i.e., the model mispredicts
h∗ by more than 10 steps in unit-cost settings, which would render the heuristic function almost
unusable.

We ascribe this generalization failure to the neural architecture of the HGN and not to the T N model,
since HGN fails even for the N model (which includes traditional MSE-based training). For example,
N with fixed/none in blocksworld obtains an MSE of 31.74. This is natural since generalization
mainly depends on the neural architecture employed for learning.

We also present the planning results on these larger instances in Table S15. First, as expected, both the
hFF baseline and learned heuristics resulted in smaller coverage and higher node evaluations overall
compared to the results for small problems, since the problem size tends to positively correlate with
the difficulty of the instance (though not necessarily).

Second, Table S15 draws a similar conclusion as the one obtained for smaller problems (Table
2): T N outperforms N and N + clip in 4 out of 6 cases. The first failure case is fixed/none in
Blocksworld, which reflects the lack of accuracy also observed in the smaller instances due to reasons
we already discussed in the main paper (fixed/none is a problematic configuration as it contains
an ad-hoc assumption on σ and lacks the normalization by the residual base). The second case is
learn/hFF in logistics, where N +clip achieves a minor improvement over T N , of only 0.2 coverage
and 20 fewer nodes expanded, which is not a significant difference.

Lastly, if we compare T N and hFF, the results are almost identical to those obtained for small
problems: T N greatly outperforms hFF in blocksworld, obtains similar results in logistics (a minor
decrease in coverage that is balanced by a moderate decrease in the number of nodes) and is
outperformed by hFF in satellite.

From the results obtained, we conclude that the NLM model is able to successfully generalize to
larger problems. Also, since the patterns observed for small problems also arise for larger problems,
we believe that employing FF-based tiebreaking will allow our approach to also outperform the
hFF baseline on large problems for all three domains, as shown in Table S11. Finally, upon paper
acceptance, we will include the tiebreaking results along with planning results for HGN and LR.
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Table S12: Test metrics for NLM on large instances.

do
m

ai
n Weights with the best validation NLL in 104 steps

metric learn/hFF learn/none fixed/hFF fixed/none
N T N N T N N T N N T N hFF

bl
oc

ks
-4

op
s NLL .69 .69 1.41 1.18 1.54 .65 1.93 1.09

+clip .68 1.30 1.54 1.87
MSE 1.35 1.07 3.68 3.27 1.10 1.08 2.66 2.29 22.47
+clip 1.35 3.30 1.09 2.41

lo
gi

st
ic

s NLL 1.98 1.08 3.07 1.01 1.44 .73 6.78 2.71
+clip 1.97 1.76 1.44 2.25
MSE .70 .62 25.23 .60 .70 .64 22.05 2.46 0.89
+clip .70 3.92 .69 3.93

sa
te

lli
te NLL 1.08 .76 1.75 .57 1.63 .56 2.33 .82

+clip 1.05 1.07 1.58 1.67
MSE 1.39 .64 4.29 .80 1.47 1.00 4.24 1.13 1.80
+clip 1.28 1.57 1.27 1.61

Table S13: Test metrics for LR on large instances.

do
m

ai
n Weights with the best validation NLL in 104 steps

metric learn/hFF learn/none fixed/hFF fixed/none
N T N N T N N T N N T N hFF

bl
oc

ks
-4

op
s NLL 2.08 1.51 2.08 1.51 3.00 2.78 3.00 2.77

+clip 2.06 2.06 2.98 2.98
MSE 6.49 7.22 6.52 7.23 6.94 7.81 6.93 7.75 22.47
+clip 6.48 6.51 6.86 6.84

lo
gi

st
ic

s NLL 1.21 1.02 1.18 1.02 1.57 1.38 1.57 1.40
+clip 1.21 1.18 1.57 1.57
MSE 1.06 .91 1.06 .64 1.23 2.60 1.21 2.66 0.89
+clip 1.06 1.06 1.23 1.21

sa
te

lli
te NLL 1.09 .49 .99 .49 1.61 .74 1.58 .72

+clip 1.08 .99 1.59 1.57
MSE 1.75 .69 1.76 .70 1.40 1.43 1.27 1.38 1.80
+clip 1.75 1.76 1.31 1.20

Table S14: Test metrics for HGN on large instances.

do
m

ai
n Weights with the best validation NLL in 104 steps

metric learn/hFF learn/none fixed/hFF fixed/none
N T N N T N N T N N T N hFF

bl
oc

ks
-4

op
s NLL 5.29 6.44 3.03 815.63 2.03 1.52 9.20 1.06

+clip 5.28 3.00 2.03 9.15
MSE 1.50 1.58 3.55 22.15 3.07 2.55 31.74 1.99 22.47
+clip 1.50 3.55 3.07 31.54

lo
gi

st
ic

s NLL 16.66 34.48 8.06 8.32 1.56 1.17 3.35 1.90
+clip 14.83 5.11 1.54 2.28
MSE 1.29 1.42 5.58 37.11 1.17 1.16 8.34 2.43 0.89
+clip 1.23 4.26 1.08 4.05

sa
te

lli
te NLL 2.82 1.52 1.05 .89 1.60 .44 1.58 .45

+clip 2.73 .88 1.53 1.52
MSE 1.18 .57 1.24 .70 1.35 .77 1.25 .74 1.80
+clip .99 .93 1.08 1.00
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Table S15: Planning results using NLM on large instances.

learn/hFF fixed/none
domain hFF N N+clip T N N N+clip T N

Number of solved instances under 104 evaluations (higher the better)

blocks-4opts 54 95.4±2.07 95.4±2.07 97.0±1.22 96.8±1.48 87.6±4.93 88.4±2.51
logistics 43 34.4±8.85 40.4±4.51 40.2±3.11 .0±.00 19.4±7.89 27.4±4.72
satellite 80 21.6±6.54 45.0±11.11 57.2±2.95 4.4±1.67 31.6±1.14 46.8±8.07

Average node evaluations (smaller the better)

blocks-4opts 5594 871 871 810 1243 2031 1828
logistics 4816 4870 3953 3973 10000 7827 6173
satellite 4711 8488 6521 5622 9738 7630 6547
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I DOMAIN DESCRIPTIONS

In this Appendix, we provide detailed descriptions and PDDL encodings for the three planning
domains employed in our experiments: blocksworld-4ops, logistics and satellite.

I.1 BLOCKSWORLD-4OPS

Blocksworld is one of the oldest domains in the planning literature. It represents a table with a
collection of blocks that can be stacked on top of each other. The goal in this domain is to rearrange
the blocks to achieve a specific configuration, starting from some initial block arrangement. Blocks
can be placed on top of another block or on the table, and every block can never have more than a
single block on top of it. The arm/crane used to move the blocks around can only carry a single block
at the same time. Listing 1 contains the PDDL description of this domain.

Listing 1: PDDL domain for blocksworld-4ops.
( d e f i n e ( domain b l o c k s w o r l d − 4 o p s )

( : requ irement s : s t r i p s )
( : p r e d i c a t e s ( c l e a r ? x )

( o n − t a b l e ? x )
( arm−empty )
( h o l d i n g ? x )
( on ? x ? y ) )

( : a c t i o n p i ck up
:parameters ( ? ob )
: p r e c o n d i t i o n ( and ( c l e a r ? ob ) ( o n − t a b l e ? ob ) ( arm−empty ) )
: e f f e c t ( and ( h o l d i n g ? ob ) ( not ( c l e a r ? ob ) ) ( not ( o n − t a b l e ? ob )

) ( not ( arm−empty ) ) ) )

( : a c t i o n putdown
:parameters ( ? ob )
: p r e c o n d i t i o n ( h o l d i n g ? ob )
: e f f e c t ( and ( c l e a r ? ob ) ( arm−empty ) ( o n − t a b l e ? ob )

( not ( h o l d i n g ? ob ) ) ) )

( : a c t i o n s t a c k
:parameters ( ? ob ? underob )
: p r e c o n d i t i o n ( and ( c l e a r ? underob ) ( h o l d i n g ? ob ) )
: e f f e c t ( and ( arm−empty ) ( c l e a r ? ob ) ( on ? ob ? underob )

( not ( c l e a r ? underob ) ) ( not ( h o l d i n g ? ob ) ) ) )

( : a c t i o n u n s t a c k
:parameters ( ? ob ? underob )
: p r e c o n d i t i o n ( and ( on ? ob ? underob ) ( c l e a r ? ob ) ( arm−empty ) )
: e f f e c t ( and ( h o l d i n g ? ob ) ( c l e a r ? underob )

( not ( on ? ob ? underob ) ) ( not ( c l e a r ? ob ) ) ( not (
arm−empty ) ) ) ) )

I.2 LOGISTICS

Logistics is another well-known, classical planning domain. It simulates a transportation network
where the goal is to move packages from their starting locations to specified destinations. This domain
involves several cities, each of them having one or more locations, some of which may be airports.
In order to transport the packages, two types of vehicles are available: trucks and airplanes. A truck
can move packages between locations within the same city. On the other hand, an airplane can move
packages between airports located in different cities. Vehicles can transport an infinite number of

29



packages at the same time but packages must be loaded and unloaded one at a time. Listing 2 contains
the PDDL description of this domain.

Listing 2: PDDL domain for logistics.
( d e f i n e ( domain l o g i s t i c s − s t r i p s )

( : requ irement s : s t r i p s )
( : p r e d i c a t e s ( o b j ? o b j )

( t r u c k ? t r u c k )
( l o c a t i o n ? l o c )
( a i r p l a n e ? a i r p l a n e )
( c i t y ? c i t y )
( a i r p o r t ? a i r p o r t )
( a t ? o b j ? l o c )
( i n ? ob j1 ? ob j2 )
( i n − c i t y ? o b j ? c i t y ) )

( : a c t i o n l o a d − t r u c k
:parameters ( ? o b j ? t r u c k ? l o c )
: p r e c o n d i t i o n ( and ( o b j ? o b j ) ( t r u c k ? t r u c k ) ( l o c a t i o n ? l o c ) ( a t

? t r u c k ? l o c ) ( a t ? o b j ? l o c ) )
: e f f e c t ( and ( not ( a t ? o b j ? l o c ) ) ( i n ? o b j ? t r u c k ) ) )

( : a c t i o n l o a d − a i r p l a n e
:parameters ( ? o b j ? a i r p l a n e ? l o c )
: p r e c o n d i t i o n ( and ( o b j ? o b j ) ( a i r p l a n e ? a i r p l a n e ) ( l o c a t i o n ?

l o c ) ( a t ? o b j ? l o c ) ( a t ? a i r p l a n e ? l o c ) )
: e f f e c t ( and ( not ( a t ? o b j ? l o c ) ) ( i n ? o b j ? a i r p l a n e ) ) )

( : a c t i o n u n l o a d − t r u c k
:parameters ( ? o b j ? t r u c k ? l o c )
: p r e c o n d i t i o n ( and ( o b j ? o b j ) ( t r u c k ? t r u c k ) ( l o c a t i o n ? l o c ) ( a t

? t r u c k ? l o c ) ( i n ? o b j ? t r u c k ) )
: e f f e c t ( and ( not ( i n ? o b j ? t r u c k ) ) ( a t ? o b j ? l o c ) ) )

( : a c t i o n u n l o a d − a i r p l a n e
:parameters ( ? o b j ? a i r p l a n e ? l o c )
: p r e c o n d i t i o n ( and ( o b j ? o b j ) ( a i r p l a n e ? a i r p l a n e ) ( l o c a t i o n ?

l o c ) ( i n ? o b j ? a i r p l a n e ) ( a t ? a i r p l a n e ? l o c ) )
: e f f e c t ( and ( not ( i n ? o b j ? a i r p l a n e ) ) ( a t ? o b j ? l o c ) ) )

( : a c t i o n d r i v e − t r u c k
:parameters ( ? t r u c k ? loc−f rom ? l o c − t o ? c i t y )
: p r e c o n d i t i o n ( and ( t r u c k ? t r u c k ) ( l o c a t i o n ? loc−f rom ) ( l o c a t i o n

? l o c − t o ) ( c i t y ? c i t y ) ( a t ? t r u c k ? loc−f rom ) ( i n − c i t y ?
loc−f rom ? c i t y ) ( i n − c i t y ? l o c − t o ? c i t y ) )

: e f f e c t ( and ( not ( a t ? t r u c k ? loc−f rom ) ) ( a t ? t r u c k ? l o c − t o ) ) )

( : a c t i o n f l y − a i r p l a n e
:parameters ( ? a i r p l a n e ? loc−f rom ? l o c − t o )
: p r e c o n d i t i o n ( and ( a i r p l a n e ? a i r p l a n e ) ( a i r p o r t ? loc−f rom ) (

a i r p o r t ? l o c − t o ) ( a t ? a i r p l a n e ? loc−f rom ) )
: e f f e c t ( and ( not ( a t ? a i r p l a n e ? loc−f rom ) ) ( a t ? a i r p l a n e ?

l o c − t o ) ) )
)
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I.3 SATELLITE

Satellite is another domain that is widely employed in the planning literature. It simulates the
operation of one or more satellites in space. The goal involves using the satellites to collect images in
specific modes and orientations, requiring careful management of resources like power and instrument
capabilities. Actions in this domain include orienting the satellite, switching instruments on or off,
calibrating instruments for specific tasks, and taking images. Key challenges include managing the
limited power available to the satellite, ensuring instruments are correctly calibrated for their tasks,
and aligning the satellite to point in the correct direction for each task. Listing 3 contains the PDDL
description of this domain.
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Listing 3: PDDL domain for satellite.
( d e f i n e ( domain s a t e l l i t e )

( : requ irement s : s t r i p s : t y p i n g )
( : t y p e s s a t e l l i t e d i r e c t i o n i n s t r u m e n t mode )
( : p r e d i c a t e s

( o n b o a r d ? i − i n s t r u m e n t ? s − s a t e l l i t e )
( s u p p o r t s ? i − i n s t r u m e n t ?m − mode )
( p o i n t i n g ? s − s a t e l l i t e ? d − d i r e c t i o n )
( p o w e r a v a i l ? s − s a t e l l i t e )
( power on ? i − i n s t r u m e n t )
( c a l i b r a t e d ? i − i n s t r u m e n t )
( have image ? d − d i r e c t i o n ?m − mode )
( c a l i b r a t i o n t a r g e t ? i − i n s t r u m e n t ? d − d i r e c t i o n ) )

( : a c t i o n t u r n t o
:parameters ( ? s − s a t e l l i t e ? d new − d i r e c t i o n ? d p r e v −

d i r e c t i o n )
: p r e c o n d i t i o n ( and ( p o i n t i n g ? s ? d p r e v ) )
: e f f e c t ( and ( p o i n t i n g ? s ? d new )

( not ( p o i n t i n g ? s ? d p r e v ) ) ) )

( : a c t i o n s w i t c h o n
:parameters ( ? i − i n s t r u m e n t ? s − s a t e l l i t e )
: p r e c o n d i t i o n ( and ( o n b o a r d ? i ? s )

( p o w e r a v a i l ? s ) )
: e f f e c t ( and ( power on ? i )

( not ( c a l i b r a t e d ? i ) )
( not ( p o w e r a v a i l ? s ) ) ) )

( : a c t i o n s w i t c h o f f
:parameters ( ? i − i n s t r u m e n t ? s − s a t e l l i t e )
: p r e c o n d i t i o n ( and ( o n b o a r d ? i ? s )

( power on ? i ) )
: e f f e c t ( and ( not ( power on ? i ) )

( p o w e r a v a i l ? s ) ) )

( : a c t i o n c a l i b r a t e
:parameters ( ? s − s a t e l l i t e ? i − i n s t r u m e n t ? d − d i r e c t i o n )
: p r e c o n d i t i o n ( and ( o n b o a r d ? i ? s )

( c a l i b r a t i o n t a r g e t ? i ? d )
( p o i n t i n g ? s ? d )
( power on ? i ) )

: e f f e c t ( c a l i b r a t e d ? i ) )

( : a c t i o n t a k e i m a g e
:parameters ( ? s − s a t e l l i t e ? d − d i r e c t i o n ? i − i n s t r u m e n t ?m −

mode )
: p r e c o n d i t i o n ( and ( c a l i b r a t e d ? i )

( o n b o a r d ? i ? s )
( s u p p o r t s ? i ?m)
( power on ? i )
( p o i n t i n g ? s ? d ) )

: e f f e c t ( have image ? d ?m) ) )
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