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Abstract
A retriever, which retrieves relevant knowledge001
pieces from a knowledge base given a context,002
is an important component in many natural003
language processing (NLP) tasks. Recently,004
retrievers have been introduced in knowledge-005
grounded dialog systems to improve knowledge006
acquisition. In knowledge-grounded dialog sys-007
tems, when conditioning on a given context,008
there may be multiple relevant and correlated009
knowledge pieces. However, knowledge pieces010
are usually assumed to be conditionally inde-011
pendent in current retriever models. To address012
this issue, we propose Entriever, an energy-013
based retriever. Entriever directly models the014
candidate retrieval results as a whole instead015
of modeling the knowledge pieces separately,016
with the relevance score defined by an energy017
function. We explore various architectures of018
energy functions and different training meth-019
ods for Entriever, and show that Entriever sub-020
stantially outperforms the strong cross-encoder021
baseline in knowledge retrieval tasks. Further-022
more, we show that in semi-supervised training023
of knowledge-grounded dialog systems, En-024
triever enables effective scoring of retrieved025
knowledge pieces and significantly improves026
end-to-end performance of dialog systems.027

1 Introduction028

Recently, with the development of large language mod-029
els (LLMs), dialog systems have attracted increasing030
research interests. Although LLMs have shown an as-031
tonishing ability in open-domain question answering,032
they still often lack accuracy and make mistakes about033
certain facts in specific domains, such as customer ser-034
vices. Recent studies (Shuster et al., 2022; Izacard et al.,035
2022b; Cai et al., 2023) have shown that the integration036
of knowledge retrieval into dialog systems can substan-037
tially enhance the precision of knowledge and mitigate038
the occurrence of hallucinations.Therefore, knowledge039
retrieval is crucial to improve dialog systems, especially040
for those that require knowledge grounding.041

Currently, two types of methods are prevalent042
for knowledge retrieval, statistical-based methods043
(like BM25) and dense retrieval methods (like DPR044
(Karpukhin et al., 2020a)). Both methods aim to find045
the most relevant piece of knowledge from a given046

knowledge base. However, when dealing with situa- 047
tions where multiple knowledge pieces from the knowl- 048
edge base might be relevant given certain context, which 049
are common in real-life applications, both methods fail 050
to account for the interrelationship among knowledge 051
pieces and instead only model them separately. When 052
a retrieval task requires the most relevant n pieces of 053
knowledge as a collective whole, these methods typi- 054
cally obtain the top n results by relying on individual 055
similarity scores. This ignores the relationship between 056
those pieces, which could cause the retrieved pieces to 057
contain repetitive information or miss important infor- 058
mation. 059

To address the problems mentioned above, we pro- 060
pose using energy-based language models (ELMs) to 061
model multiple knowledge pieces as a whole token se- 062
quence, rather than modeling the relevant knowledge 063
pieces separately. A candidate retrieval result consists 064
of multiple knowledge pieces. ELMs assign an energy 065
score to each candidate result and use the score to distin- 066
guish positive candidates from negative ones, which is 067
suitable for retrieval tasks. In previous research (Wang 068
et al., 2015, 2017; Bakhtin et al., 2021), ELMs have 069
been successfully used to calculate sentence scores in 070
automatic speech recognition (ASR) and natural lan- 071
guage generation (NLG). Different training strategies, 072
such as noise contrastive estimate (NCE) and maximum 073
likelihood estimate (MLE), have been explored (Wang 074
et al., 2017; Wang and Ou, 2018a; Liu et al., 2023). 075
However, to the best of our knowledge, our energy- 076
based retriever, referred to as Entriever, is the first to 077
use ELMs in retrieval tasks. We explore various MLE 078
training approaches and find that using residual ELMs 079
can greatly improve the performance, shedding light for 080
future work. 081

Moreover, note that the energy score of a candidate 082
result is defined as the negative log probability up to 083
an additive constant. The unnormalized nature of the 084
energy score enables the proposed Entriever to model 085
the probability of a candidate result without the need to 086
access the entire knowledge base. This feature is use- 087
ful in building semi-supervised knowledge-grounded 088
dialog systems. Semi-supervised knowledge-grounded 089
dialog systems have seen significant progress recently 090
(Deng et al., 2023; Cai et al., 2023). These systems can 091
make use of both labeled and unlabeled dialog data, re- 092
ducing the reliance on costly manually labeled data and 093
improving the efficiency of model training. However, it 094
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Figure 1: An illustration of the difference between (a) traditional retriever and (b) Entriever in the retrieval task for
knowledge-grounded dialog systems. The traditional retriever judges the probability of each slots independently
while Entriever assigns a score for each candidate retrieval result as a whole. The traditional retriever ignores the
interrelationship between knowledge pieces – in this case the plan with 1GB flow should be at least $18, and makes
mistakes on the value of the price and call. In contrast, Entriever can better model the interrelationships between
knowledge pieces and demonstrate better overall performance in the task.

has been pointed out that developing such systems can095
be difficult when the knowledge base is unavailable in096
unlabeled data (Cai et al., 2023). This difficulty can be097
overcome by introducing Entriever that can model the098
probabilities of candidate results without the need to ac-099
cess the entire knowledge base. Experiments show that100
using the Entriever significantly improves the perfor-101
mance of semi-supervised knowledge-grounded dialog102
systems.103

Experiments are conducted on several knowledge-104
grounded dialog datasets, including MobileCS (Ou et al.,105
2022), Camrest (Wen et al., 2017), In-Car (Eric et al.,106
2017), and Woz2.1 (Eric et al., 2020). We evaluate107
the performance of Entriever itself through the retrieval108
task and the performance gain that Entriever brings for109
semi-supervised dialog systems through the response110
generation task.111

In summary, the main contributions of this work are112
as follows.113

• We propose to use an energy-based retriever (En-114
triever) to model each candidate retrieval result115
as a whole, which consists of multiple knowledge116
pieces, instead of modeling the knowledge pieces117
separately in knowledge-grounded dialog systems.118

• We explore different architectures of energy func-119
tions and different training methods to train the120
Entriever and demonstrate the superiority of the121
proposed Entriever over previous methods.122

• The proposed Entriever can model the retrieval123
probability without the need to access the entire124
knowledge base, which improves the performance125
of semi-supervised knowledge-grounded dialog126
system.127

2 Related Work 128

2.1 Knowledge Retrieval for Dialog Systems 129
Recent research such as RAG (Lewis et al., 2020) and 130
REALM (Guu et al., 2020) have introduced knowl- 131
edge retrieval models into conditional generation, which 132
greatly improves the quality of generated responses in 133
knowledge-intensive tasks such as open-domain ques- 134
tion answering and knowledge-grounded dialog systems. 135
Retriever, which ranks relevant knowledge pieces from 136
the knowledge base given a context, is important for 137
knowledge retrieval. Previous works use statistic-based 138
retrievers (e.g. BM25 (Robertson et al., 2004)) or neural 139
network based retrievers (e.g. DPR (Karpukhin et al., 140
2020b)). There are several recent studies that improve 141
over the original DPR retrievers. Re2G (Glass et al., 142
2022) proposed to use a cross-encoder reranker to im- 143
prove the performance over the dual-encoder retriever. 144
Contriever (Izacard et al., 2022a) performed unsuper- 145
vised pretraining using contrastive learning to improve 146
the performance of the retriever. RetroMAE (Xiao et al., 147
2022) was pretrained with mask auto-encoding objective 148
function to better capture the information of the whole 149
sentence. However, all these works aim to retrieve the 150
most relevant knowledge piece from the knowledge base 151
given certain searching context. Yet in real-life applica- 152
tions, multiple knowledge pieces from the knowledge 153
base might be relevant and helpful for response genera- 154
tion. Our work propose to use an energy-based retriever 155
(Entriever) to better model the inter-relationship among 156
knowledge pieces instead of modeling them indepen- 157
dently. 158

2.2 Energy-based Language Models (ELMs) 159
Energy-based language models (ELMs) parameterize 160
an unnormalized distribution for natural sentences via 161
an energy function, which can be very flexibly defined. 162
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In previous studies, ELMs have shown promising per-163
formances in scoring for sentences in various applica-164
tions such as computation of sentence likelihoods (Wang165
et al., 2015, 2017; Wang and Ou, 2017, 2018a,b; Gao166
et al., 2020), text generation (Deng et al., 2020), lan-167
guage model pretraining (Clark et al., 2020), calibrated168
natural language understanding (He et al., 2021) and169
calculating sentence scores in automatic speech recog-170
nition (ASR) (Liu et al., 2023). Our work leverages171
the modeling flexibility of ELMs to model whether the172
ensemble of multiple knowledge pieces is suitable given173
a context.174

There are two main training methods for ELMs, the175
maximum likelihood estimate (MLE) and the noise176
contrastive estimate (NCE) (Gutmann and Hyvärinen,177
2010). In this work, we mainly explore different178
architectures of energy functions and different sam-179
pling methods using MLE methods. In MLE, calcu-180
lating gradients of the log likelihood usually resorts181
to Monte Carlo sampling methods. Two widely-used182
classes of sampling methods are importance sampling183
(IS) and Markov Chain Monte Carlo (MCMC) (Liu,184
2001). MCMC covers a range of specific algorithms185
and Metropolis independent sampling (MIS), where the186
proposed Markov move is generated independent of the187
previous state, is explored in this work. Meanwhile,188
residual ELM (Deng et al., 2020), which models the189
ELM over a normalized model instead of modeling190
from scratch, is explored to study whether it can bring191
performance gain to the non-residual ELM.192

2.3 Knowledge-Grounded Dialog Systems193

Knowledge-Grounded Dialog Systems aim to generate194
informative and meaningful responses based on both195
conversation context and external knowledge sources196
(Li et al., 2022). Semi-supervised knowledge-grounded197
dialog systems have seen significant progress recently198
(Paranjape et al., 2021; Deng et al., 2023; Cai et al.,199
2023, 2024). The use of semi-supervised training in200
knowledge-based dialog systems has been shown to201
greatly improve performance (Paranjape et al., 2021;202
Deng et al., 2023; Cai et al., 2023). In a semi-supervised203
knowledge-grounded dialog system, the knowledge re-204
quired for response generation is not annotated in unla-205
beled data, and needs to be predicted by an inference206
model. An annoying difficulty in semi-supervised train-207
ing is to accurately score the pseudo knowledge labels208
generated by the inference model on the unlabeled data.209
In previous efforts to build semi-supervised knowledge-210
grounded dialog systems (Cai et al., 2023), researchers211
have to approximate the retrieval probability of the latent212
knowledge, using only the positive samples predicted by213
the inference model and ignoring the possible negative214
samples, due to that the knowledge base is unavailable215
over unlabeled data. In contrast, Entriever directly mod-216
els the retrieval probability of the latent knowledge as217
a whole. Our work explored using Entriever to better218
score the generated knowledge on the unlabeled data219
and significantly improved the performances of semi-220

supervised knowledge-grounded dialog system. 221

3 Preliminary 222

3.1 Knowledge-Grounded Dialog Systems 223

Knowledge-grounded dialog systems retrieve relevant 224
knowledge pieces given the dialog context and gen- 225
erate system response using the retrieved knowledge. 226
Our settings of the knowledge-grounded dialog sys- 227
tem is similar to (Cai et al., 2023). Assume that we 228
have a dialog with T turns of user utterances and sys- 229
tem responses, denoted by u1, r1, · · · , uT , rT respec- 230
tively. At turn t, based on the dialog context, the system 231
queries a task-related knowledge base (KB) to obtain 232
relevant knowledge and generates appropriate responses. 233
The KB is made up of knowledge pieces1, denoted by 234
{k1, k2, · · · , kN} and the knowledge pieces that are rel- 235
evant for the system to respond at turn t are denoted 236
by ξt. In knowledge-grounded dialog systems, the joint 237
likelihood of the relevant knowledge pieces ξt and the 238
response rt given the context ct and user input ut is op- 239
timized at each turn t in a dialog session. The likelihood 240
is decomposed into a knowledge retrieval probability 241
pret
θ and a response generation probability pgen

θ , as fol- 242
lows: 243

pθ(ξt, rt|ct, ut) = pret
θ (ξt|ct, ut)× pgen

θ (rt|ct, ut, ξt)
(1) 244

The model parameters are collectively denoted by θ, 245
which can actually split into two parts θ = (θret, θgen). 246

The retrieval model pret
θ is introduced to retrieve 247

knowledge from the KB. Traditionally, knowledge 248
pieces in the KB are modeled independently when mul- 249
tiple knowledge pieces are retrieved. Particularly, the 250
knowledge piece ξt necessary for turn t is represented 251
by ξt ≜ ξt,1 ⊕ ξt,2 ⊕ · · · ⊕ ξt,N , where ⊕ denotes se- 252
quence concatenation. ξt,i = ki if the knowledge piece 253
ki is relevant to the response rt; otherwise, ξt,i is set 254
to be empty. Therefore, the retrieval probability can be 255
written as follows: 256

pret
θ (ξt|ct, ut) =

N∏
i=1

pret
θ (ξt,i|ct, ut) (2) 257

In this study, a cross-encoder retriever based on BERT is 258
used to realize pret

θ (ξt,i|ct, ut), using ct⊕ut⊕ki as input, 259
as shown in Figure 2(a). However, a drawback of using 260
Eq. (2) is that it ignores the interrelationship between 261
the knowledge pieces and only models the knowledge 262
pieces independently, since different knowledge pieces 263
may contain similar or correlated information. 264

We propose to use an energy-based model, called 265
Entriever, to directly model the candidate retrieval result 266
as a whole. The retrieval probability is defined by: 267

pret
θ (ξt|ct, ut) =

exp(−Uθ(ct, ut, ξt))

Zθ(ct, ut)
268

∝ exp(−Uθ(ct, ut, ξt)) (3) 269

1The form of knowledge pieces can be flexible, for exam-
ples, documents or items in knowledge bases. In this paper,
the knowledge pieces are mainly in the form of entities with
attributes, or, say, slot-value pairs.
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where Uθ(ct, ut, ξt) is the energy function. In this work,270
we initialize Uθ with a BERT model, similar to (Deng271
et al., 2020). Zθ(ct, ut) denotes the normalizing con-272
stant.273

The generation probability pgen
θ (rt | ct, ut, ξt) is in-274

stantiated with a GPT2 model using an autoregressive275
loss function, which is shown in Figure 3(a):276

pgen
θ (rt | ct, ut, ξt)277

=

|rt|∏
l=1

pgen
θ (r

(l)
t | ct, ut, ξt, r

(1)
t , . . . , r

(l−1)
t ) (4)278

where | · | denotes the length in tokens, and r
(l)
t the l-th279

token of the response rt.280
In training, the ground truth ξt, which is annotated281

in the dataset, is used to maximize the log probabil-282
ities in Eq. (2) - (4). In testing, according to Eq.283
(1), we firstly retrieve relevant slot-value pairs ξt; then,284
we generate at and rt, based on retrieved ξt. To be285
specific, to retrieve knowledge pieces using the cross-286
encoder retriever in Eq. (2), we threshold pret

θ (ξt,i =287
ki|ct, ut), i = 1, · · · , N , similar to (Cai et al., 2023).288
For the Entriever in Eq. (3), the candidate with the289
highest score is taken as the final retrieval result. A290
knowledge base with N knowledge pieces will yield291
2N possible combination of retrieval results, which is292
impossible to enumerate. Therefore, in our experiments,293
only the k retrieval results with the highest retrieval294
probabilities proposed from the cross-encoder retriever295
are scored by Entriever. 2 We use an ablation study to296
study the affect of k to the retrieval results in Table 5.297

3.2 Semi-Supervision in Knowledge-Grounded298
Dialog Systems299

Semi-Supervision aims to leverage both labeled and300
unlabeled data. Following (Cai et al., 2023), our semi-301
supervised dialog systems use latent variable model and302
the joint stochastic approximation (JSA) algorithm (Ou303
and Song, 2020) to optimize the latent variable model.304
As the knowledge pieces are annotated in labeled data305
and unavailable in unlabeled data, the relevant knowl-306
edge pieces ξ1:T are viewed as the latent variable for a307
dialog. Therefore, the generation model can be written308
as pθ(ξ1:T , r1:T |u1:T ) and the inference model can be309
written as qϕ(ξ1:T |u1:T , r1:T ) to approximate the true310
posterior pθ(ξ1:T |u1:T , r1:T ). Both probabilities can be311
decomposed into the turn , as pointed out in (Cai et al.,312
2022):313

pθ(ξ1:T , r1:T |u1:T ) =

T∏
t=1

pθ(ξt, rt|ct, ut) (5)314

qϕ(ξ1:T |u1:T , r1:T ) =

T∏
t=1

qϕ(ξt|ct, ut, rt) (6)315

2The Viterbi algorithm (Forney, 1973) is used instead of
enumarating the probability of all 2N possible combination of
retrieval results to reduce computational complexity.

Figure 2: The architecture of retrieval models: (a) cross-
encoder retrieval model, which models the knowledge
pieces independently, and (b) Entriever, which models
the ensemble of relevant knowledge pieces. All of the
variables ct, ut, ξt, rt, k

i are represented by token se-
quences.

In supervised training, the ground truth knowledge 316
ξt is annotated in the dataset and thus can be directly 317
used to maximize the probabilities in Eq. (5) and 318
Eq. (6). In semi-supervised training, the ground truth 319
knowledge ξt is not annotated for unlabeled data and 320
should be inferred. Particularly, Metropolis indepen- 321
dent sampling (MIS) is applied to draw samples from 322
the true posterior pθ(ξt|ct, ut, rt) using the inference 323
model qϕ(ξt|ct, ut, rt) as a proposal. A recursive turn- 324
level MIS sampler is used to sample ξ1:T , as developed 325
in (Cai et al., 2022). At each turn t, the MIS sampler 326
works in a propose, accept or reject way, as follows: 327

1) Propose ξ′t ∼ qϕ(ξt|ct, ut, rt). 328
2) Simulate η ∼ Uniform[0, 1] and let 329

ξt =

ξ′t, if η ≤ min

{
1,

w(ξ′t)

w(ξ̃t)

}
ξ̃t, otherwise

(7) 330

where ξ̃t denotes the cached latent knowledge, and the 331
importance weight w(ξt) between the target and the 332
proposal distribution is defined as follows: 333

w(ξt) =
pθ(ξt|ct, ut, rt)

qϕ(ξt|ct, ut, rt)
334

=
pθ(ξt, rt|ct, ut)

qϕ(ξt|ct, ut, rt)

1

pθ(rt|ct, ut)
335

∝
pret
θ (ξt|ct, ut)× pgen

θ (rt|ct, ut, ξt)

qϕ(ξt|ct, ut, rt)
(8) 336

The term pθ(rt|ct, ut) is canceled out, since it appears 337
in both the numerator and denominator of w(ξ′t)/w(ξ̃t); 338
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Figure 3: The models in semi-supervised training proce-
dure: (a) the generation model, (b) the inference model.
All of the variables ct, ut, ξt, rt are represented by token
sequences in our experiments.

and we only need to calculate the last line in Eq. (8)339
and use it as the importance weight. The details of the340
JSA algorithm for training semi-supervised knowledge-341
grounded dialog systems are given in Appendix A.342

Note that the retrieval probability pret
θ (ξt|ct, ut) is343

needed to calculate the importance weight w(ξt) in Eq.344
(8). However, in previous works, using Eq. (2) to calcu-345
late the retrieval probability requires to access the entire346
knowledge base, which, however, is often not avail-347
able for unlabeled data in semi-supervised knowledge348
grounded systems. To address this issue, we propose to349
use Entriever to calculate the retrieval probability of the350
latent knowledge ξt as defined in Eq. (3).351

4 Method352

As introduced in Section 3.1, we aim to train an energy-353
based retriever (Entriever) which models the knowledge354
retrieval probability given the context at the t-th turn in355
a dialog, pret

θ (ξt|ct, ut), in the form of Eq. (3), where356
Uθ(ct, ut, ξt) denotes the energy function.357

4.1 Architecture of Entriever358

The architecture of the energy function Uθ(ct, ut, ξt) in359
Eq. (3) can be very flexibly defined (Liu et al., 2023).360
In our work, a bi-directional text encoder (e.g., BERT)361
is used to encode the input ct, ut, ξt and we denote the362
encoder output (hidden vectors) by encθ(x). At position363
i, we have encθ(x)[i]. Then, the energy is defined as:364

Uθ(ct, ut, ξt) = −Linear

 |x|∑
i=1

encθ(x)[i]

 (9)365

where Linear(·) denotes a trainable linear layer whose366
output is a scalar and x ≜ ct ⊕ ut ⊕ ξt is the concatena-367
tion of the input sequence ct, ut, ξt.368

Orthogonal to the neural architecture used to define369
an energy function, we can define a residual form for an370
energy function, i.e., in the form of exponential tilting of371

a reference distribution (Wang et al., 2017; Deng et al., 372
2020). Specifically in our case, the retrieval probability 373
can be defined as follows: 374

pret
θ (ξt|ct, ut) ∝ pref(ξt|ct, ut) exp(−Uθ(ct, ut, ξt))

(10)
375

where a reference distribution pref(ξt|ct, ut) is intro- 376
duced. For simplicity, though with abuse of notation, 377
we still use Uθ(ct, ut, ξt) to denote the residual energy 378
function, as for both non-residual and residual forms, 379
we still use Eq. (9) to realize Uθ and we will see in 380
Section 4.2 that the formulas in model training share 381
the same expressions. The role of residual energy is to 382
fit the difference between the target distribution and the 383
reference distribution. 384

In this work, the reference distribution pref(ξt|ct, ut) 385
is set to be the traditional retrieval distribution shown in 386
Eq. (2), which is usually closer to the target distribution 387
than from uniform3. Therefore, the residual Entriever 388
only needs to learn the difference between the target dis- 389
tribution and the baseline distribution, which is easier 390
to train. Remarkably, as pref(ξt|ct, ut) is irrelevant to θ, 391
the residual Entriever can be optimized the same as the 392
non-residual Entriever, which is introduced in Section 393
4.2. In our experiments, we compare both forms of En- 394
trievers and find that the residual Entriever reduces the 395
training difficulty and brings substantial improvement 396
to the overall performance of dialog systems. 397

4.2 Training of Entriever 398

First, it should be noted that the formulas presented 399
in Section 4.2 apply to both non-residual and residual 400
forms of Entrievers, defined in Eq. (3) and Eq. (10) 401
respectively, unless otherwise specified. 402

MLE base model training of Entriever is to learn 403
the energy function Uθ(x), by using the negative log 404
likelihood as the loss function: 405

Jθ = − log pret
θ (ξt|ct, ut). (11) 406

The gradient of the loss function ∂Jθ(x)
∂θ can be derived 407

as follows (Ou et al., 2024): 408

∂Jθ(ξt|ct, ut)

∂θ
409

=− ∂Uθ(ct, ut, ξt)

∂θ
+ Eξt∼pret

θ

[
∂Uθ(ct, ut, ξt)

∂θ

]
(12)

410

The challenge in calculating the gradient in Eq. (12) 411
is that calculating the second term as an expectation 412
requires sampling from the unnormalized distribution 413
pret
θ (ξt|ct, ut), which is generally intractable. Similar to 414

(Parshakova et al., 2019; Liu et al., 2023), we compare 415
two sampling approaches, Metropolis independence 416
sampling (MIS) and important sampling (IS). Both ap- 417
proaches require a proposal distribution, which is set to 418

3The non-residual form in Eq. (3) can be viewed as a
constrained subclass of the residual form in Eq. (10), where
the reference distribution is chosen to be uniform.
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be the traditional retrieval distribution in Eq. (2) in this419
work and is denoted by q(ξt|ct, ut). Note that here we420
drop any parameters related to the proposal distribution,421
since it is always fixed during the training of Entriever.422

For the residual Entrievers in our experiments, we use423
the reference distribution pref(ξt|ct, ut) as the proposal424
distribution q(ξt|ct, ut) (i.e., both set to be the tradi-425
tional retrieval distribution), we have the importance426
weight in the following simple form:427

pret
θ (ξt|ct, ut)

q(ξt|ct, ut)
∝ exp(Uθ(ct, ut, ξt)). (13)428

4.2.1 Importance Sampling (IS)429

Instead of directly sampling from the intractable dis-430
tribution pret

θ (ξt|ct, ut), importance sampling draw pro-431
posal samples from a tractable distribution q(ξt|ct, ut)432

(Liu, 2001). The importance weight pret
θ (ξt|ct,ut)
q(ξt|ct,ut)

is cal-433
culated and renormalization is taken to calculate the434
expectation. Specifically, to estimate the second term in435
Eq. (12), we can use the importance sampling method436
with the proposal distribution q(ξt|ct, ut):437

Eξt∼pret
θ (ξt|ct,ut)

[
∂

∂θ
Uθ(ct, ut, ξt)

]
438

≈
∑

ξt

pret
θ (ξt|ct,ut)
q(ξt|ct,ut)

∂Uθ(ct,ut,ξt)
∂θ∑

ξt

pret
θ (ξt|ct,ut)

q(ξt|ct,ut)

, ξt ∼ q(ξt|ct, ut)

(14)

439

where the samples are from the proposal distribution440
q(ξt | ct, ut), which is set to be the traditional retrieval441
distribution in Eq. (2). They can be trivially obtained442
by sampling from N independent binary distributions.443

4.2.2 Metropolis Independence Sampling (MIS)444

Similar to the IS approach, the Metropolis Indepenence445
Sampling (MIS) approach draws proposal samples from446
the tractable proposal distribution q(ξt | ct, ut). Un-447
like the IS approach, which uses renormalization and448
weighted averaging techniques to estimate the expec-449
tation term, MIS uses Markov Chain Monte Carlo450
(MCMC) to obtain samples from the target distribution451
pret
θ (ξt | ct, ut). MIS is a special case of Metropolis-452

Hasting (Liu, 2001) and has been applied for ELM in453
(Wang and Ou, 2017; Liu et al., 2023).454

In experiments, we run the Markov chain for T steps.455

ξ
(0)
t is randomly initialized. At step τ = 1, · · · , T ,456

generate a proposal sample ξ′t from q(ξt | ct, ut), and457

accept ξ(τ)t = ξ′t with probability458

min

{
1,

pret
θ (ξ′t | ct, ut)/q(ξ

′
t|ct, ut)

pret
θ (ξ

(τ−1)
t | ct, ut)/q(ξ

(τ−1)
t |ct, ut)

}
,

(15)459

otherwise set ξ(τ)t = ξ
(τ−1)
t . Then we can use the460

samples {ξ(1)t , ..., ξ
(T )
t } to approximate the second term461

in Eq. (12) via Monte Carlo averaging: 462

Eξt∼pret
θ (ξt|ct,ut)

[
∂

∂θ
Uθ(ct, ut, ξt)

]
≈

T∑
τ=1

∂Uθ(ct,ut,ξ
(τ)
t )

∂θ

T
(16) 463

4.3 Leveraging Entriever in Semi-Supervised 464
Knowledge-Grounded Dialog Systems 465

In semi-supervised training of knowledge-grounded dia- 466
log systems, we need to calculate the importance weight 467
w(ξt) in Eq. (8) in order to properly filter the generated 468
pseudo labels for unlabeled data. This involves cal- 469
culating the retrieval probability pret

θ (ξt|ct, ut) for the 470
pseudo labels ξt, generated from the inference model. 471
However, in unlabeled data such as customer service 472
logs, knowledge bases are often unavailable. This poses 473
a significant challenge to the traditional retriever, which 474
calculates the retrieval probability based on the entire 475
knowledge base by Eq. (2). In contrast, the proposed 476
Entriever can directly calculate the retrieval probability 477
without the need to access the entire knowledge base 478
by Eq. (3). Note that in semi-supervised experiments, 479
since the knowledge base is unavailable for unlabeled 480
data, we only use the non-residual form of Entriever, 481
i.e. Eq. (3). In this setting, the unknown normalizing 482
constant Zθ(ct, ut) is canceled out, since it appears in 483
both the numerator and denominator of w(ξ′t)/w(ξ̃t) in 484
Eq. (7); and we can calculate the importance weight as 485
follows, for ξt generated from the inference model: 486

w(ξt) ∝
exp(−Uθ(ct, ut, ξt))× pgen

θ (rt|ct, ut, ξt)

qϕ(ξt|ct, ut, rt)
(17) 487

The two-stage training of semi-supervised is detailed 488
in Appendix A. The first stage is supervised pre-training 489
of the retrieval model pret

θ , the generation model pgen
θ , 490

and the inference model qϕ on labeled data. In the 491
second stage, the retriever is frozen, and only the gener- 492
ation model pgen

θ and the inference model qϕ are further 493
trained on the mix of labeled and unlabeled dialogs. 494

5 Experiments 495

5.1 Experiment Settings and Baselines 496
Experiments are conducted on several dialog datasets: 497
(1) MobileCS dataset, a real-life human-human dialog 498
dataset, focuses on mobile customer service, released 499
from the EMNLP 2022 SereTOD Challenge (Ou et al., 500
2022). MobileCS contains a total of around 100K di- 501
alogs. The labeled part was officially split into train- 502
ing/validation/test sets with 8,953/1014/955 dialogs, 503
respectively. The remaining 87,933 dialogs are unla- 504
beled. (2) CamRest dataset (Wen et al., 2017) focuses 505
on dialogs in the restaurant domain, consisting of 676 506
dialogues. Each dialogue contains a knowledge base 507
(KB). The average size of the KB is 22.5 triples. Fol- 508
lowing previous work, the dataset is split into train- 509
ing/validation/test sets with 406/135/135 dialogs. (3) 510
In-Car Assistant dataset (Eric et al., 2017) comprises 511
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Table 1: Results on knowledge retrieval task for the MobileCS, Camrest, In-Car, and Woz2.1 datasets. Joint-acc,
Inform, and F1-score are reported. Residual Entrievers are used and trained with different methods (MIS and IS).

Method MobileCS Camrest In-Car Woz2.1

Joint-acc Inform F1 Joint-acc Inform F1 Joint-acc Inform F1 Joint-acc Inform F1

Cross-encoder 73.15 35.95 0.589 81.38 63.84 0.816 74.70 42.16 0.870 75.00 32.86 0.508
Entriever (MIS) 76.67 39.81 0.620 83.17 68.05 0.824 78.66 49.64 0.875 80.24 43.78 0.524
Entriever (IS) 77.21 42.45 0.628 83.17 68.28 0.825 78.51 50.53 0.875 79.72 45.02 0.530

Table 2: Comparison over the MobileCS dataset for
different semi-supervision methods (pseudo labeling
(PL) and JSA) and whether Entriever is used or not
during semi-supervised training. Ratio means the ratio
between the number of unlabeled dialogs and the num-
ber of labeled dialogs in training. The p-value denotes
the significant test result for Combined score. The first
colomun of p-value means whether JSA + Entriever
outperforms the PL methods, and the second colomun
of p-value means whether the JSA + Entriever method
significantly improves the JSA method.

Ratio Method Success BLEU-4 Combined p-value

1:1
PL 87.5 8.853 105.21

0.025 0.013JSA 88.0 8.713 105.43
JSA + Entriever 90.6 9.816 110.23

2:1
PL 87.8 9.196 106.19

0.006 0.018JSA 88.7 9.490 107.68
JSA + Entriever 92.1 9.725 111.55

4:1
PL 88.5 9.341 107.18

0.049 0.088JSA 90.9 9.398 109.70
JSA + Entriever 92.8 9.554 111.91

9:1
PL 89.4 9.532 108.46

0.083 0.192JSA 91.8 9.677 111.15
JSA + Entriever 93.0 9.627 112.25

3,031 dialogs spanning three domains: weather, nav-512
igation, and schedule. The average size of the KB513
for each dialogue is 62.3 triples. Following previous514
work, the dataset is split into training/validation/test sets515
with 2425/302/304 dialogs. (4) Woz2.1 dataset (Eric516
et al., 2020) contains three domains: hotel, attraction517
and restaurant. The average size of the KB for each518
dialogue is 54.4 triples. Following (Ding et al., 2024),519
the dataset is split into training/validation/test sets with520
1,839/117/141 dialogs.521

For evaluation, we follow the scripts in (Cai et al.,522
2023) and (Ding et al., 2024). We evaluate the knowl-523
edge retrieval ability of Entriever on all four dialog524
datasets. Three metrics, Joint Accuracy (whether the525
whole knowledge in a dialog turn is accurate or not),526
Inform (whether the retriever provides all the key infor-527
mation for completing a dialog session), and F1 (the ac-528
curacy of the knowledge pieces retrieved), are reported.529
To evaluate the improvement that Entriever brings to530
the semi-supervised knowledge-grounded dialog sys-531
tems, experiments are taken on the MobileCS dataset,532
as only the MobileCS dataset contains unlabeled data.533
Two metrics, Success rate and BLEU, are used to eval-534
uate the quality of the generated responses. Success535
rate measures how often the system is able to provide536
all the entities and values requested by the user, which537

Table 3: Semi-supervised response generation results
on the MobileCS dataset. Success, BLEU-4, and Com-
bined score are reported.

Method Success BLEU-4 Combined

Baseline (Liu et al., 2022) 31.5 4.170 39.84
Passion (Lu et al., 2022) 43.2 6.790 56.78

TJU-LMC (Yang et al., 2022) 68.9 7.54 83.98
PRIS (Zeng et al., 2022) 78.9 14.51 107.92

JSA-KRTOD (Cai et al., 2023) 91.8 9.677 111.15
JSA-KRTOD+Entriever (ours) 93.0 9.627 112.25

Table 4: Knowledge retrieval capability on MobileCS
for different model architectures and training methods.
Joint-acc, Inform, and F1-score are reported.

Setting Joint-acc Inform F1

Dual-encoder (Karpukhin et al., 2020b) 65.60 32.17 0.563
Cross-encoder (Cai et al., 2023) 73.15 35.95 0.589
Entriever (Non-residual, MIS) 76.94 31.89 0.593
Entriever (Non-residual, IS) 72.19 32.22 0.596
Entriever (Residual, MIS) 76.67 39.81 0.620
Entriever (Residual, IS) 77.21 42.45 0.628

is crucial in performing a successful dialog. BLEU is 538
used to measure the fluency of the generated responses 539
by analyzing the amount of n-gram overlap between 540
the real responses and the generations. The overall per- 541
formance of the semi-supervised knowledge-grounded 542
dialog system is measured by Combined score, which 543
is Success + 2*BLEU, as in the original SereTOD chal- 544
lenge evaluation scripts (Liu et al., 2022). 545

For the knowledge retrieval task, we select the 546
most prevalent retriever, the dual-encoder retriever 547
(Karpukhin et al., 2020b), and the most competitive 548
retriever, the cross-encoder retriever (Glass et al., 2022; 549
Cai et al., 2023) (mostly used in the reranking tasks), 550
as our baselines. For the semi-supervised knowledge- 551
grounded dialog systems on MobileCS, several base- 552
lines are reported in the experiments. We implement En- 553
triever upon the current state-of-the-art (SOTA) method 554
JSA-KRTOD (Cai et al., 2023). 555

In our experiments, BERT (Devlin et al., 2019) is 556
used to initialize the retrievers and GPT-2 (Radford 557
et al., 2019) is used to initialize the reponse generator 558
in the semi-supervised knowledge-grounded dialog sys- 559
tems following previous settings (Cai et al., 2023; Ding 560
et al., 2024). Hyper-parameters are chosen based on the 561
development set, and evaluated on the test set. 562

5.2 Main Results 563

The experiments mainly explore the following research 564
questions: RQ1: Whether Entriever can improve the 565
knowledge retrieval performance? RQ2: Whether intro- 566
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ducing Entriever can improve the overall performance567
of the semi-supervised knowledge-grounded dialog sys-568
tem?569

As shown in Table 1, Entriever greatly improves570
over the cross-encoder (current SOTA method) on all571
of the Joint-acc, Inform, and F1 metrics across the572
four datasets. Regardless of the training methods (MIS573
and IS), Entriever consistently outperforms the strong574
cross-encoder baseline. Based on these results, we can575
further discuss the reason for the improvement. The576
cross-encoder model (Figure 2(a)) models the knowl-577
edge pieces in the knowledge base independently given578
the context. In contrast, Entriever (Figure 2(b)) models579
the collection of all relevant knowledge pieces given580
the dialog context. In knowledge-grounded dialog sys-581
tems, the interconnectivity and interdependence among582
relevant knowledge fragments are of great importance.583
Therefore, through the explicit modeling of such inter-584
relationships, the retrieval results produced by Entriever585
tend to be more accurate as a whole, therefore achieving586
significantly higher scores on the Joint-acc and Inform587
metrics. These findings answer RQ1 and show that588
Entriever can substantially improve the knowledge re-589
trieval performance.590

Considering the difference the importance sampling591
(IS) method and Metropolis independence sampling592
(MIS) method, there is no significant difference between593
the results. The sample size in IS and the markov steps594
in MIS are both set to be 12. MIS and IS sampling meth-595
ods perform equally well. This is similar to the results596
of using ELMs in rescoring for speech recognition (Liu597
et al., 2023).598

To answer RQ2, we conduct experiments on the semi-599
supervised knowledge-grounded dialog systems with600
Entriever. To systematically study the effect of the En-601
triever, different semi-supervised methods and label ra-602
tio are explored. As shown in Table 2, the introduction603
of Entriever substantially improves the overall perfor-604
mance (Combined Score) of the system regardless of605
the label ratio. Remarkably, the introduction of En-606
triever can greatly improve the Success rate metric for607
the dialog systems, indicating that the system’s ability608
to provide the important knowledge is improved. More-609
over, the significant test results in Table 2 show that610
almost in all settings, introducing Entriever can signif-611
icantly improve the performances (p-value<0.1) over612
the original JSA method (filter the generated knowledge613
label with a less accurate knowledge retriever) and the614
pseudo labeling (PL) method (do not filter the generated615
knowledge label at all). Furthermore, as shown in Table616
3, our Entriever improves over the current SOTA semi-617
supervised methods JSA-KRTOD (Cai et al., 2023) in618
MobileCS. These findings answer RQ2 and show that619
introducing Entriever can improve the overall perfor-620
mance of semi-supervised knowledge-grounded dialog621
systems.622

Table 5: Ablation study on how the number of proposed
candidate retrieval results (k) for Entriever to score in-
fluences the final test results over MobileCS.

Config Joint-acc Inform Precision Recall F1

k = 4 76.02 39.33 0.7162 0.5376 0.6142
k = 8 76.73 40.70 0.7054 0.5580 0.6231
k = 16 77.21 42.45 0.6855 0.5789 0.6277
k = 32 76.79 42.60 0.6455 0.6076 0.6260

5.3 Analysis and Ablation 623
To further study the influence of using different architec- 624
tures and training methods of the retrievers, an ablation 625
study is conducted on the MobileCS dataset to evaluate 626
the knowledge retrieval performance. As shown in Table 627
4, the cross-encoder architecture greatly outperforms 628
the commonly-used dual-encoder architecture, making 629
it a strong baseline. For Entriever, the results show that 630
the residual form of Entriever greatly improves the sta- 631
bility and performance of the training. Presumably, this 632
is because that the residual form is built upon a trained 633
cross-encoder retriever, which reduces the training bur- 634
den and improves the training efficiency. 635

We also conduct an ablation study to explore how the 636
number of proposed candidate retrieval results (k) for 637
Entriever to score will affect the knowledge retrieval 638
results, and the experiment results are shown in Table 639
5. From Table 5, it can be seen that the test results 640
generally increase with the increase of k, when k is 641
relatively small, presumably because the oracle retrieval 642
result is more likely to be covered. However, although 643
continuously increasing k can increase the possibility of 644
providing the correct knowledge, more noisy samples 645
are introduced as well. Moreover, the computational 646
budgets increase linearly with k. As shown in Table 647
5, increasing k from 16 to 32 does not improve the 648
performance significantly. Therefore, in experiments 649
related to Entriever, the number of proposed candidate 650
retrieval results during testing is set to k = 16. 651

6 Conclusion 652

In this work, an energy-based retriever (Entriever) is 653
proposed to collectively model the relevant knowledge 654
pieces from a knowledge base given a context. Entriever 655
can better model the inter-relationship between knowl- 656
edge pieces, and can substantially improve the knowl- 657
edge retrieval performance in knowledge-grounded dia- 658
log systems. Moreover, we conduct an in-depth explo- 659
ration of various architectures of energy functions and 660
training methods for Entriever and find out that using the 661
residual form can improve the quality of the retrieval 662
results. Furthermore, in semi-supervised training of 663
knowledge-grounded dialog systems, Entriever enables 664
effective scoring of retrieved knowledge pieces, and 665
leads to significant improvement in the end-to-end per- 666
formance of dialog systems. The above results show that 667
Entriever has great potential for developing advanced 668
knowledge-grounded dialog systems. The code and data 669
used in this paper will be open source for reproduction 670
upon the acceptance of this work. 671
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7 Limitations672

In this work, training Entrievers with maximum likeli-673
hood estimate (MLE) methods is explored. However, in674
previous works, noise contrastive estimate (NCE) (Gut-675
mann and Hyvärinen, 2010) methods have also been676
used to train energy-based language models. Therefore,677
training Entrievers with NCE methods can be studied678
in future works and compared with the MLE methods679
explored in this work.680

In addition, recent studies have explored using large681
language models (LLMs) for knowledge retrieval and682
reranking tasks (Zhu et al., 2023). However, in this683
work, Entriever is implemented with relatively small684
models (BERT). Therefore, conducting experiments on685
Entriever with larger backbone models and studying the686
scaling effects of Entriever can be further explored.687
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A The Details of the JSA Algorithm in922

Semi-Supervised Dialog Systems923

The detailed procedure of semi-supervised training us-924
ing the JSA algorithm is summarized in Algorithm 1,925
which consists of two stages. First, supervised pre-926
training is conducted on the retrieval model pret

θ , the927
generation model pgen

θ , and the inference model qϕ on928
labeled data. After supervised pre-training, the retrieval929
parameters θret are frozen in the second stage of training930
over unlabeled data. Note that in unlabeled data, the931
knowledge pieces used in the dialogs are not annotated932
and the knowledge base (KB) is often not available.933
This presents a significant challenge for the training of934
both the traditional retriever and the Entrievers over un-935
labeled data. Investigating the training of the retrieval936
parameters θret over unlabeled data and unavailable KB937
is interesting future work.938

In the second stage, supervised and unsupervised939
mini-batches are randomly drawn from labeled and un-940
labeled data. For labeled dialogs, the latent knowledge941
ξt are given. For unlabeled dialogs, we apply the recur-942
sive turn-level MIS sampler based on Eq. (7) to sample943
the latent states ξt and treat them as if being given. The944
gradient calculation and parameter updating are then the945
same for the labeled and unlabeled dialogs.946

Algorithm 1 JSA algorithm for training semi-
supervised dialog systems

Require: A mix of labeled and unlabeled dialogs.
1: Run supervised pre-training of θ = (θret, θgen) and

ϕ on labeled dialogs;
2: Frozen the retriever parameters θret;
3: repeat
4: Draw a dialog (u1:T , r1:T );
5: if (u1:T , r1:T ) is not labeled then
6: Generate ξ1:T using the recursive turn-level

MIS sampler
7: end if
8: Jθgen = 0, Jϕ = 0;
9: for i = 1, · · · , T do

10: Jθgen+ = log pgen
θ (rt | ct, ut, ξt);

11: Jϕ+ = log qϕ(ξt | ct, ut, rt);
12: end for
13: Update θgen by ascending: ∇θgenJθgen ;
14: Update ϕ by ascending: ∇ϕJϕ;
15: until convergence
16: return θ and ϕ
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