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Abstract

Decoding of visual stimuli from noninvasive neuroimaging techniques such as func-
tional magnetic resonance (fMRI) has advanced rapidly in the last years; yet, most
high-performing brain decoding models rely on complicated, non-interpretable
latent spaces. In this study we present an interpretable brain decoding framework
that inserts a semantic bottleneck into BrainDiffuser, a well established, simple
and linear decoding pipeline. We firstly produce a 214 — dimensional binary in-
terpretable space £ for images, in which each dimension answers to a specific
question about the image (e.g., "Is there a person?”, "Is it outdoors?"). A first ridge
regression maps voxel activity to this semantic space. Because this mapping is
linear, its weight matrix can be visualized as maps of voxel importance for each
dimension of £, revealing which cortical regions influence mostly each semantic
dimension. A second regression then transforms these concept vectors into CLIP
embeddings required to produce the final decoded image, conditioning the Brain-
Diffuser model. We found that voxel-wise weight maps for individual questions
are highly consistent with canonical category-selective regions in the visual cortex
(face, bodies, places, words), simultaneously revealing that activation distributions,
not merely location, bear semantic meaning in the brain. Visual brain decoding
performance are only slightly lower compared to the original BrainDiffuser metrics
(e.g., the CLIP similarity is decreased by < 4% for the four subjects), yet offering
substantial gains in interpretability and neuroscientific insights. These results
show that our interpretable brain decoding pipeline enables voxel-level analysis of
semantic representations in the human brain without sacrificing decoding accuracy.

1 Introduction

Decoding the contents of the human mind from neural activity is one of the main challenges of
contemporary neuroscience. Brain decoding refers to the attempt to classify, retrieve or reconstruct
the stimuli that elicited a certain neural response, in an effort to translate the language of the human

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



mind into a representation of the external world (visual scenes, linguistic input, music or other
experiential domains) [50, |26} 25, |24} 12,27} 36 40, |18} 20, 4 |8l 9L /14 |48]].

Recent progress in the field of Artificial Intelligence, together with increased availability of large,
high-quality open neuroimaging data [2| |7} |23} 29, 37, 30], have significantly propelled the field
forward[40]. Very quickly it became possible to decode visual [43, 10, 46,19, 21} 32, [22]], language
related [3} |13} 48], semantic[/16]] and music[15}|5}|17] content from brain activity, and state of the
art models are capable of doing so even when the neural correlates are measured with non-invasive
techniques such as functional magnetic resonance imaging (fMRI), which infers neural activity
by measuring the blood oxygen level dependent (BOLD) signals across the brain. Even though
fMRI is limited by low temporal resolution, a consequence of the slowly evolving hemodynamic
response function underlying BOLD signal, it presents substantial advantages: its spatial resolution is
extremely precise, it allows for whole brain coverage and it is non invasive. These factors led fMRI to
become an indispensable tool for cognitive neuroscience, with fMRI datasets being made accessible
and well performing encoding and decoding models being proposed in recent literature. One of the
most widely used datasets for brain decoding is the Natural Scenes Dataset (NSD) [2]], the product
of a large-scale data collection initiative following the principles of "intensive fMRI" [28]]. This
approach shifts the focus from traditional "wide fMRI" studies (many subjects, few trials) to "deep"
or "intensive fMRI" (few subjects, many trials), enabling the development of subject-specific models
that leverage machine learning and facilitate experiments supporting a broad range of neuroscientific
hypotheses. For these reasons, we selected the NSD as the foundation for our work.

On visual brain decoding specifically, a majority of works have converged on a dual-stream architec-
ture combined with a generative model: a semantic stream predicts high-level representations of the
stimuli while a structural stream maintains structural features of the image, and a generative model
uses these predictions to produce the final stimuli reconstruction [33} |38 43]. These models have
proven very effective and have demonstrated very high performance, especially on the NSD dataset.
Deep learning approaches like these have revolutionized the field; however, a striking result is that
simple linear regressions from brain activity to latent semantic representations (such as those obtained
by CLIP) can achieve good, highly-generalizable performance [39} 44]]. This result may be explained
by the simultaneous action of macroscopic neural dynamics, such as time and space averaging and
noise, which could mask the nonlinearities of smaller scales. At the macroscopic fMRI scale, the
representation of concepts in the human brain may resemble the vector space of self-supervised large
models like CLIP, effectively making linear models very efficient, other than robust, easy to train
and potentially interpretable. Nonetheless, a linear mapping between brain voxels and the entangled
CLIP feature space still doesn’t allow for straightforward interpretation.

Here we introduce an interpretable brain-decoding framework that bridges this gap. Inspired by
a recent related study on language and the idea of factorizing linear models in concept-specific
components, we propose an approach to map brain activity into a human-readable embedding space
that serves as middle ground between neural correlates and the semantic embeddings of CLIP. Each
dimension of this intermediate space corresponds to a visual concept (such as people, motion, words),
allowing us to gain interpretability on the input space, eventually advancing our knowledge of the
brain. We insert this framework within BrainDiffuser[43|], a well-established reconstruction pipeline,
allowing us to benchmark our results and ultimately to test whether interpretability impacts image
reconstruction performance.

Related Work Our work falls within the umbrella of the recent field of brain decoding literature,
which demonstrated that it is possible to decode images, videos, language and music from brain
activity measured via fMRI [43] |10, {46, 3, |13} |48} |16} |15 |5, |17, [9]. The central idea of this work
is that the representations of external stimuli in the human brain and their latent counterparts in
large-scale models share some similarities, and with sufficient {stimulus, neural activity} pairs the
two representations could be related to each other. Two recent pieces of literature, in particular,
align with our study[6, 35]]. First, [6] elegantly showed that language brain encoding models can
achieve good performance when non-interpretable sentence embeddings are replaced by interpretable
vectors whose dimensions represent the answer to different questions (e.g. "Does the sentence
describe a relationship between people?”, "Is the sentence grammatically complex?"). This way
of crafting the interpretable latent space really resonates with the way we design our interpretable
embeddings for images. Second, the BrainBits study [35] demonstrated that it is possible to impose
bottlenecks in a visual stimuli decoding pipeline without losing much performance, suggesting that



brain representation could be more compact and lower dimensional compared to the high-dimensional
embeddings produced by large-scale multimodal models such as CLIP. While a vast majority of
literature focuses on maximizing decoding performance leveraging several non-interpretable spaces,
here we take inspiration from[6l [35] and adopt a slightly different perspective: given the high
performance reached by visual brain decoding models, we leverage the power of these predictive
models to probe the structure of conceptual representations in the brain space.

Contributions The contributions of this work are: (i) we introduce an interpretable semantic
bottleneck, interpretable by design, that preserves the information required for high-quality image
reconstruction while providing each dimension with a clear meaning; (ii) we propose a pipeline
to produce robust interpretable embeddings from a set of images, starting with the generation of a
number of questions about the NSD carried out by an LLM, GPT-40, followed by the answering
of these questions by another model, BLIP-2; (iii) we focus on the semantic stream rather than the
structural stream, decomposing the brain to semantic mapping into two separate maps: brain to
interpretable space, and interpretable space to semantic CLIP space. This yields voxel-level insights
that are easily visualized and compared to known activation patterns in the human brain. (iv) we
show that the proposed model produces stable, anatomically plausible concept maps across subjects;
we furthermore observe that the distribution of voxel-pattern strength (not only the location of the
activations) carries important information.

Main findings The derived interpretability maps align well with canonical regions in the visual
cortex significantly and for several concepts. The results also highlight the presence of distributed
networks of voxel activations, reinforcing the idea that high-level representations are encoded in our
brains by large patterns of coactivations rather than small, isolated hotspots. Our approach combines
good reconstructing accuracy with built-in transparency, offering a new way to fine-grained studies
of semantic representations in the human visual cortex.

2 Methods

Data We used the Natural Scenes Dataset (NSD)[2], a deep fMRI dataset encompassing eight
healthy adult subjects who performed a continuous recognition task on thousands of images from
the COCO dataset. The data were acquired in high-resolution with ultra-high-field (7T) strength.
NSD data can be requested athttps://naturalscenesdataset.org/. To facilitate comparison
with other works employing the same dataset, we considered in our analysis only those subjects who
completed all trials (subjO1, subj02, subjO5, subj07). We obtained a training set of 8859 images
and 24980 fMRI trials per subject, while the test set included 982 images and 2770 fMRI trials per
subject. Because stimuli were presented to subjects up to three times, the corresponding fMRI trials
were averaged. The fMRI signal, in 1.8 mm resolution, was masked using the NSDGeneral region-of-
interest mask (this includes many areas of the visual cortex), which reduced spatial dimensionality to
approximately 15000 voxels per subject. On the temporal dimensionality, we used NSD-supplied
beta weights from a general linear model with fitted hemodynamic response functions; this condensed
each voxel’s response to a single value per stimulus. Full acquisition and preprocessing details are
available in the original NSD publication [2]].

Classical visual decoding pipeline To develop our interpretable pipeline, we build on a classical
brain decoding method for images, BrainDiffuser[43]]. We choose BrainDiffuser because of its strong
performance, modular architecture, and simplicity of implementation. Its clarity and flexibility make
it well-suited for integrating our interpretable semantic bottleneck without introducing additional
confounds. BrainDiffuser is a well-established brain decoding framework that includes a two-
stage scene reconstruction pipeline encompassing different latent representations of the images
(VDVAE]|11] and CLIP[45]]). The VDVAE is a hierarchical variational auto-encoder that stacks a
series of conditionally dependent latent layers, allowing each layer to capture a different aspect of
image structure, from fine details to coarse global information. The original BrainDiffuser exploits the
first 31 of the 75 VDVAE layers. At training time, images are fed to the pretrained VDVAE encoder
and latent variables corresponding to these first 31 layers are concatenated. A ridge regression model
is trained to predict these concatenated VDVAE latents z from fMRI activations. At test time, the
trained regressor is used to predict z from the new fMRI. z latents are then fed to the pretrained
VDVAE decoder, resulting in a 64 x 64 low-level reconstruction of the image, which is structurally
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Figure 1: The BrainDiffuser model reconstructs stimuli from fMRI data. A first, structural stream
(top) is trained to estimate the representations of a VDVAE while a second, semantic stream (bottom)

estimates CLIP-Text and CLIP-Vision latent features h from neural data Z. Both estimations are done
with linear models. The VDVAE latents are fed to the VDVAE decoder to produce a first initial guess
of the image, which is given as input to Versatile Diffusion together with the estimated CLIP-Text
and CLIP-Vision vectors to obtain the final reconstruction.

similar to the original picture, but lacks fine semantic detail and is still unrecognizable. This serves as
an initial guess for the second stage of the BrainDiffuser. The second reconstruction stage leverages
Versatile Diffusion (VD) [51]], a latent diffusion model which allows conditioning the generation
process on both text and image features to guide the reverse diffusion process. The reverse diffusion
of VD can also be initialized with latent variables obtained by an image. Stage 2 of the BrainDiffuser
consist in the training of two additional regression models: the first one maps fMRI patterns to
CLIP-Vision embeddings of the stimuli, and the second one maps fMRI data to CLIP-Text features
(obtained from the captions of the COCO dataset corresponding to each NSD stimulus).

At testing time, also the initial guess is used: it is encoded by the AutoKL Encoder of the pretrained
Versatile Diffusion model and noise is added to the obtained latent vector in 37 steps; the so obtained
noisy vector is then fed as initialization to the diffusion model and denoised for 37 steps, while

conditioning on the predicted CLIP-Text and CLIP-Vision features h. The result of the diffusion
process is then fed to the AutoKL Decoder of the pretrained Versatile Diffusion model and the final
image reconstruction is obtained. A schematic representation of the BrainDiffuser is available in
Figure[I] For further details, we refer to the original publication[43]].

Notably, in the second stage of the original BrainDiffuser brain activity Z is mapped into the estimated

CLIP embeddings by means of a linear model h = ZW where W has shape (nyoxelss CLIPgimension)-
Because the CLIP embeddings are not interpretable, it is difficult to understand the meaning of the
model weight matrix W.

Interpretable space To understand how brain activity is converted into the representations given
by the CLIP embeddings, we factorize the decoding weight matrix W in two separate matrices A of
SiZ€ Nyoxels X @ and B of size a X CLIPgimension, Such that W = AB. The core idea is that we can
design an a — dimensional, semantically interpretable latent space £ so that A : brain activity — £
and B : £ — CLIP space. This decomposition allows for direct inspection of A, whose entries reveal
the individual contribution of each brain voxel to every latent dimension. Therefore, the factorization
exposes a linear map onto semantic dimensions, enabling neuroscientific interpretation.

To design a meaningful latent space £ we adopt a two-step pipeline. First we leverage GPT4-o [41]]
to create a set of non-overlapping questions with binary answer (yes or no) that well describe the
images of the NSD dataset (e.g. "Is there a person in the image?", "Is the image taken outdoors?", "Is
there more than one subject?" etc.). This was done by providing the LLM with the captions for all
images and the prompt “Given the following set of captions, each representing an image, generate
a set of 256 binary questions that are suitable to well describe the content of the images. Generate
questions that are diverse and non-overlapping, and that describe as completely as possible all the
images. These should maximize your information about the image content. The prompt asks for
256 questions. This number was set with the idea in mind of imposing a bottleneck that reduces
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Figure 2: Overview of the different models. Top row: (1) "Brain to Int" Model training: training
pipeline of the model mapping from brain activity — intepretable space £. Each stimulus image is
fed to BLIP-2 along with a fixed set of 214 yes/no questions. The model’s answers form the concept
vector a, our interpretable target space. The "Brain to Int" model learns to reconstruct these vectors
from brain activity; (2) "Int to CLIP" Model training: training pipeline of the model mapping from
L — CLIP/VDVAE space. This model learns to map brain activity to VDVAE and CLIP embeddings
which are used to generate the reconstructed image. Bottom row: "Interpretable BrainDiffuser -
Inference": the whole inference pipeline of our interpretable model. Neural data Z is first mapped to
the interpretable space £ via the "Brain to Int" model and then mapped to CLIP/VDVAE space via
the "Int to CLIP" model). The final image is generated via Versatile Diffusion, using the estimated
CLIP/VDVAE embeddings.

the dimensionality between 20% and 30% of the original CLIP dimensionality (768), knowing
from a previous literature result that a bottleneck of 50 dimension is already able to retain most of
the performance [35]]. After manual inspection of LLM generated questions, removing duplicate
questions, we select a reduced set of 214 questions. Each dimension of £ corresponds to the answer
of a specific question. The complete set of questions is available in the Supplementary Materials.
Later, BLIP-2[31]] was employed to answer the 214 questions sequentially for each image in the
dataset with the following question-specific prompt: “Question: [one question, for example ‘is the
subject smiling?’] Answer:”. For every image, the model was queried 214 times, once per question,
producing a binary (“Yes”/No”’) answer for each. The answers were converted to binary values (1 for
“Yes”, 0 for “No”), resulting in a 214-dimensional interpretable vector representation for each image.

Figure[2]is a scheme of the interpretable brain decoding pipeline.

We verify that £ preserves CLIP-level semantics by learning a ridge-regression alignment to CLIP-
Vision and measuring top-k image-retrieval accuracy. The full protocol and results appear in Appendix
[6.1]

Reconstructing images from interpretable embeddings We first estimate the linear map B : £L—
CLIP by duplicating the BrainDiffuser architecture and training a Ridge regressiorﬂ to reconstruct
the images from ground-truth interpretable embeddings (instead of brain activity). We used 5-fold
cross-validation to determine the best values of the regularization coefficient o over logarithmically
spaced values in the interval 102 < « < 10*. This latent-to-image model has two purposes. First,
it verifies that the designed latent space is sufficiently informative, as high reconstruction quality
indicates that the latent space encodes important properties of the NSD images. Moreover, this model
is subsequently frozen and applied to the interpretable embeddings inferred from brain activity to
generate the final reconstructed images.

'We use Python library Himalaya Ridge regression with the standard svd solver.



Learning the map from brain activity to £ We fit a ridge regression mode]E] to estimate the
normalized coordinates (because B : £ — CLIP expects normalized inputs) of the interpretable
space L from brain activity. 5-fold cross-validation was used to determine the optimal values of
the regularization coefficient v over logarithmically spaced values in the interval 1076 < o < 109,
The learned map A, one per subject, is interpretable by design: each 7 — th column encodes the
contribution of every brain voxel to the i — th coordinate in £, i.e. the answer to each ¢ — th binary
question.

Evaluation We assess the quality of the images generated by our interpretable model and we
compare them to the classical, non-interpretable, BrainDiffuser based on low- and high-level metrics.
Low-level metrics include PixCorr, SSIM, MSE, Cosine Similarity, 2-way accuracy in AlexNet
latent space, while high-level metrics include 2-way accuracy in InceptionV3 and CLIP latent spaces,
correlation distance in EfficientNet and SWAV spaces, as well as 50-way-top-1 Accuracy using
ViT-H/14 (1000 repetitions per image), replicating the original publication evaluation [42].

Visualization Visualization of brain regions involved most in the estimation of each dimension
of £ was achieved by first mapping each Region Of Interest (ROI) to the actual anatomical space
of each participant. We then register these coordinates to the MNI-152 standard space, providing a
common frame for group level analyses and comparison with canonical atlases. We compared the
resulting maps to visual cortex regions knowingly related to concepts such as bodies, faces, words and
places. The analysis was performed in Python using the Nilearn neuro-imaging library [/1]. For final
visualizations, we kept only the top 4% of most influential voxels and discarded any cluster smaller
than 100 voxels to suppress noise. The decision to focus on the top 4% of most influential voxels
was made empirically, guided by two considerations. First, this threshold yields a voxel count that is
comparable to that of well-characterized functional regions in the dataset, such as face-, body-, place-,
and word-selective areas, each comprising a similar number of voxels|2]. Second, this proportion
provides a clear and interpretable visualization.

All experiments and model training were carried out on a server equipped with 8 NVIDIA H100
GPUs, 2 TB of RAM, and 256 CPU threads. The extraction of interpretable latent embeddings
with BLIP-2 took approximately 24 hours per subject and the training of the whole interpretable
model took less than 30 minutes per subject. Inference time for all models is approximately
3 seconds per decoded image. Code is available at https://github.com/SaraCammarota/
Bridging-Brains-and-Concepts.

3 Results

Tables [I] and [2] present the results of the interpretable model evaluation compared to the original
BrainDiffuser and to the intermediate model "Int to CLIP". This last model maps the true interpretable
vectors to the CLIP-Text and CLIP-Vision embeddings and serves as a check that the designed
interpretable embeddings are good enough for image reconstruction. The tables report, respectively,
low- and high-level metrics on the decoded images of the test set for the four subjects.

Results show that our interpretable model (Int-BD) retains good reconstructing performance (e.g.,
on average we report —4% on CLIP score and —8% on 50-way-top-1 Accuracy with respect to the
original BrainDiff), confirming that interpretability does not affect excessively the reconstructing
accuracy. It is important to notice that, even if Int to CLIP obtains the best high-level performance
across all models, this is not a brain decoding model and only serves as an indication of how well £
represents NSD images. Its superior accuracy stems from being the only model to bypass the noisy
fMRI data, mapping directly the true interpretable embeddings to the CLIP space.

Figure [3|reports a collection of image reconstructions obtained with the three pipelines for different
subjects. Images reconstructed by our interpretable model show visual fidelity and similarity to the
ground truth images, comparable to the ones achieved by the original, non-interpretable BrainDiffuser.

Figure ] displays the column entries of the interpretable matrix A, mapped to the MNI-512 space, for
a subset of the interpretable embedding dimensions. We compare the activated voxels to the standard
ROIs related to bodies, faces, places and text/words. The so-obtained activation maps exhibit a good
similarity with standard concept-related regions.

2See Footnote 1.
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Table 1: Quantitative analysis of reconstructed images for all subjects. Here are reported low-level
image metrics. Upward arrow (71): higher is better; downward arrow (): lower is better.

Subject Model PixCorr T SSIM1 MSE | Cosine Sim.T AlexNet(2) T AlexNet(5)
BrainDiffuser 0.285 0.359 0.119 0.801 0.948 0.966
Subj0l  Int-BD 0.153 0.320 0.140 0.767 0.795 0.869
Int to CLIP 0.156 0.309 0.148 0.757 0.813 0.894
BrainDiffuser 0.241 0.355 0.126 0.789 0.931 0.956
Subj02  Int-BD 0.149 0.319 0.141 0.764 0.783 0.866
Int to CLIP 0.155 0.311 0.149 0.755 0.819 0.897
BrainDiffuser 0214 0.344 0.133 0.779 0.910 0.950
SubjO05  Int-BD 0.154 0.320 0.140 0.765 0.798 0.878
Int to CLIP 0.154 0.312 0.149 0.758 0.808 0.894
BrainDiffuser 0.213 0.345 0.134 0.781 0.901 0.940
Subj07  Int-BD 0.142 0.317 0.143 0.761 0.787 0.861
Int to CLIP 0.160 0.311 0.148 0.756 0.817 0.895

Table 2: Quantitative analysis of reconstructed images for all subjects with high-level metrics. Upward
arrow (7): higher is better; downward arrow (]): lower is better.

Subject Model IncepV31 CLIP7T EffNetDist. | SwAV Dist. | 50-way-top-1 Acc. T + std
BrainDiffuser 0914 0.923 0.710 0.407 0.53 +0.23
Subj0l  Int-BD 0.851 0.885 0.782 0.470 0.46 £0.23
Int to CLIP 0.942 0.955 0.655 0.412 0.69 + 0.20
BrainDiffuser 0.909 0.907 0.725 0.417 0.52 +£0.23
Subj02  Int-BD 0.842 0.869 0.798 0.480 0.42 £0.23
Int to CLIP 0.946 0.952 0.661 0.412 0.70 +0.20
BrainDiffuser 0.917 0.928 0.702 0.409 0.55 +0.22
Subj0S  Int-BD 0.860 0.886 0.771 0.466 0.47 £0.23
Int to CLIP 0.941 0.951 0.668 0417 0.68 +0.20
BrainDiffuser 0.886 0.900 0.736 0.430 0.50 + 0.21
Subj07  Int-BD 0.831 0.868 0.801 0.484 0.43 £0.23
Int to CLIP 0.933 0.950 0.668 0416 0.68 +0.20

We also find that the specific distribution of voxel activations within the same region varies with
each sub-concept examined. For instance, in Figure {4 the reference region for bodies (second group
from the top) displays distinct activation patterns depending on the specific question. Even though
all activations tend to overlap with the reference regions, the distribution of voxel intensity varies
depending on the specific sub-concept. The question "Is someone running in the image?" results in a
widespread pattern of low-level activations, interrupted by a few cluster of highly active voxels. In
contrast, the question related to dancing yields a more intense activation of those same clusters, with
little or no activation in the surrounding voxels. Similar comments can be made when comparing
place-related activations (first group from the top in Figured), such as the questions "Is the image
taken outdoors?", "Is the image taken on a street?". We don’t observe a sharp distinction in the
activations for faces and bodies. Neuroscientific studies have shown that face- and body-selective
areas are anatomically close in the human (and monkey) high-level visual cortex and often co-activate
when a whole person or animal is present [49]]. This is simply explainable because, under normal
circumstances, faces and bodies are seen together. For many of the questions related to bodies and
faces we observed an overlap with both face and body regions. For example, the questions “Is the
subject sitting?” and “Is the subject running?” show strong overlap with body-selective regions but
also notable overlap with face areas.

4 Discussion

In this study we have presented an interpretable model for the decoding of visual stimuli from brain
fMRI data. Prior work has largely explored how to obtain performance gains over state-of-the-art
models; our study has taken a complementary approach. We believe that incremental advancement
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Figure 3: Comparison of our reconstruction results (columns 4, 8) to the original stimuli (columns 1,
5), the images reconstructed by the original BrainDiffuser (columns 2, 6) and those reconstructed by
the Int to CLIP model (columns 3, 7). Results presented here refer to subjO1.

is an incredibly valuable path of research. However, the field of brain decoding is starting to show
signs of performance saturation. In this work, rather than contributing to the field solely with
incremental performance gains, we focused on combining state-of-the-art decoding accuracy with
clear, interpretable mechanisms, with the ultimate goal of unlocking deep insights into human brain
neural functions. By mapping voxel signals to a human-readable semantic space before projecting
them into CLIP embeddings, we reformulate decoding as a two-step problem, creating a bridge
between low-level BOLD signals and human concepts. We have found that this semantic bottleneck
allows for the extraction of rich neuroscientific insights with minimal performance loss, as the
generated images incurred in only a minimal decline in both low- and high-level metrics.

Concept-specific voxel activations found in this study align well with canonical regions of the visual
cortex, supporting their validity. Furthermore, the spread pattern of informative voxel activations
reinforces the hypothesis of distributed rather than localized semantic encoding in the brain. As
highlighted by the activation maps, the patterns of co-activations carry crucial information that is not
completely expressed by the voxels location only.

To the best of our knowledge, this is the first complete brain decoding pipeline that introduces a
truly interpretable intermediate representation. While post-hoc explainability methods - such as
Grad-CAM [47], SHAP[34], or attention-based saliency - can technically be applied to existing
models, these techniques generally rely on the assumption that the model’s output space is inherently
interpretable. In the context of brain decoding, this is often not the case: most models operate between
two abstract spaces - neural activity and CLIP-like embeddings - making it challenging to extract
meaningful insights from such explanations. This limitation motivated the design of our semantic
bottleneck. By explicitly structuring the intermediate representation around human-interpretable
concepts, our framework provides a more transparent link between brain activity and visual content.
We believe this principled integration of interpretability into the core model architecture offers a more
robust and actionable understanding than standard post-hoc techniques.

Implications for neuroscience Our work carries several implications for neuroscience. First, the
semantic latent space offers a link from neural data to concepts, enabling voxel-level neuroscientific
insights. Alignments with established ROIs support the validity of the decoding approach. Moreover,
our findings support the hypothesis that, at fMRI scale, brain representations of visual concepts can be
linearly approximated in semantic spaces similar to those learned by modern vision-language models,
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Figure 4: Activation maps projected in MNI-512 space, compared to category-specific reference maps.
Sections correspond to places (top left), bodies (top right), faces (bottom left) and words (bottom
right). Within each section, the blue map shown first presents the reference for that category. Other
images show the activations derived from the interpretable matrix A. All maps are from subjectO1.

such as CLIP. Finally, the observed distribution of activation patterns underscores the complexity and
redundancy of semantic representations in the brain.

Model Interpretability vs. Performance Trade-off The introduction of a semantic bottleneck
inevitably leads to a reduction in reconstruction quality. This is expected: the prompts are derived
from human-authored COCO captions via BLIP-2 and GPT-40, and human descriptions typically
emphasize semantic content over geometric layout. Nevertheless, our curated question set does



include some geometry-oriented items. However, the measured drop in performance is small and
offset by significant gains in interpretability and neuroscientific observations. The Int to CLIP
model serves as an upper bound, revealing that the chosen interpretable space preserves most of the
information required for faithful reconstructions.

Methodological strengths The use of a large and high-quality dataset (NSD) ensures robust training
and evaluation of the results obtained. The two-stage regression approach (brain — interpretable space
— CLIP space) decouples decoding from semantic interpretation, allowing for model transparency.
Importantly, the proposed framework is architecture-agnostic: the semantic bottleneck operates prior
to the final CLIP embedding prediction, making it compatible with any decoding pipeline that maps
brain activity to CLIP or similar multimodal embeddings, which is common among many decoding
pipelines. Using GPT-40 and BLIP-2 for the generation of question-answer pairs makes the process of
generating the interpretable space automated and scalable. Finally, the consistency of voxel activation
patterns across different subjects confirms the robustness and generalizability of the method.

Limitations Of course, this approach comes with some limitations. First, the introduction of the
semantic bottleneck causes slight performance degradation in both low- and high-level reconstruction
metrics compared to the non-interpretable BrainDiffuser baseline. Even though our main target is
the semantic content of the reconstructed images some questions related to the picture geometry
and the spatial positioning of the subjects are present in the chosen set. However, it is possible
that these questions do not capture the whole spectrum of features present in complex NSD images,
yielding decreased low-level metrics of reconstructed images. This leads to a second limitation of the
approach: interpretability is constrained by the relevance and completeness of the generated question
set, and the extension of interpretability for structural information is worth to be explored in the
future. We also note that the overall quality of the pipeline is limited by the performance of the VQA
model used to build the interpretable representations of the images, BLIP-2 in this case. Finally, our
study is currently limited to the NSD dataset and to visual decoding tasks. Whether it is possible to
generalize to other modalities remains to be demonstrated.

Future directions Possible paths for future research include an expansion of the interpretable space
to incorporate a wider and more diverse set of concepts, possibly hierarchical, in order to produce a
more granular representation of the images, ultimately allowing for increased image reconstruction
performance and, more importantly, a wider analysis of activation maps. The application of this
framework to other datasets and modalities (such as auditory decoding or language processing) is
possible, as well as its extension to future imagery data in which participants imagine visual scenes,
objects, or concepts instead of viewing them directly, when these will be available. Finally, moving
beyond pure semantics and integrating a greater set of structural interpretability elements (e.g. object
layout, scene geometry, subjects position) could help in clarifying how the brain represents complex
visual information.

Privacy and Ethics considerations With the advancement of brain decoding and image reconstruc-
tion technologies, there is potential for misuse and privacy violations. Even though current models
require the cooperation of the subjects and are strongly limited by the nature of the training data,
future improvements may expand capabilities and it’s important to ensure responsible use of brain
data.

5 Conclusions

We investigated whether interpretability in visual brain decoding can coexist with high-fidelity image
reconstruction. Our two-stage framework, initially mapping fMRI data into a semantic latent space
and subsequently projecting into the CLIP latent space, quantitatively shows that this kind of model
transparency imposes only a modest performance drop with respect to classical pipelines, while
bringing the advantage of built-in interpretability. Moreover, the category-selective voxel patterns we
found overlap with canonical hotspots on the visual cortex, providing neuroscientific validation and
aligning with the idea that semantic content is distributed in the human brain. These results offer a
practical way to study how concepts are represented in the brain.
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6 Appendix

6.1 Evaluation of interpretable space £

To determine whether the latent space L retains enough semantic detail to eventually be mapped
reliably into the CLIP space by our Interpretable BrainDiffuser, we carried out the following analysis.
For every image in the training and test partitions of NSD we extracted its CLIP-Vision embedding
c € CLIP and its interpretable embedding 1 € £. We then fit a linear ridge-regression model
B : L — CLIP, selecting the regularization coefficient o on a logarithmic grid from 1076 to 10° by
5-fold cross-validation. After training, the model projected each test embedding 1 into a predicted
CLIP vector ¢ = Bl. Finally, we performed k-nearest-neighbor retrieval with k& € {1, 5,10, 15}. For
every test image we queried the original CLIP index with ¢ and recorded how often the ground-truth
image appeared within the top-k returned results. The retrieval accuracy calculated in such way
quantifies how faithfully information in £ can be transferred to CLIP. Table 3] shows the accuracies
obtained for the four values of k. These results confirms the quality of the designed interpretable
representations, further supported by the fact that, even when the ground truth image is absent from
the top-k list, the nearest neighbors retrieved by the mapped embeddings typically show strong
similarity with the query. Figure [3] displays a set of representative examples that illustrate this
similarity.

Table 3: Top-k-Nearest-Neighbors retrieval accuracy achieved after projecting latent embeddings £
into CLIP-Vision space and querying the original CLIP index.

Metric Accuracy
Top-1-NN 29%
Top-5-NN 59%
Top-10-NN 74%
Top-15 82%

Chance level 0.1%

Query Retrieved Quer Retrieved Retrieved

Figure 5: For 9 randomly selected test images (left in each pair), we show the nearest neighbor
returned by 1-NN search in the original CLIP index after projecting the latent embedding £ into
CLIP space (right in each pair).
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6.2 Reconstruction examples

Below, we present a series of images reconstructed by our interpretable model, along with their
corresponding images generated by the original BrainDiffuser and the Int to CLIP model. These
reconstructed images refer to subjects 2, 5 and 7, respectively. For the results relative to subject 1,
please refer to the main section of the article under "Results."

Brain Int.to CLIP  Interpretable Brain Int.tocLIP  Interpretable

Stimulus Stimulus

Diffuser Diffuser Brain Diff Diffuser Diffuser Brain Diff

=

Figure 6: Comparison of our reconstruction results (columns 4, 8) to the original stimuli (columns 1,
5), the images reconstructed by the original BrainDiffuser (columns 2, 6) and those reconstructed by
the Int to CLIP model (columns 3, 7). Results presented here refer to subj02.
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Brain Int. to CLIP
Diffuser Diffuser

. Interpretable
Stimulus P

Brain Diff

Stimulus

Brain Int. to CLIP l_n!stnnesahl_e
Diffuser Diffuser Brain Diff

Figure 7: Comparison of our reconstruction results (columns 4, 8) to the original stimuli (columns 1,
5), the images reconstructed by the original BrainDiffuser (columns 2, 6) and those reconstructed by
the Int to CLIP model (columns 3, 7). Results presented here refer to subj05.

Brain Int. to CLIP
Diffuser Diffuser

Interpretable
Brain Diff

Stimulus

Stimulus

Interpretable
Brain Diff

Brain Int. to CLIP
Diffuser Diffuser

Figure 8: Comparison of our reconstruction results (columns 4, 8) to the original stimuli (columns 1,
5), the images reconstructed by the original BrainDiffuser (columns 2, 6) and those reconstructed by
the Int to CLIP model (columns 3, 7). Results presented here refer to subj07.
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6.3 Brain Regions Visualizations

In this section we present activation maps derived from the interpretable model for subjects 2, 5,
and 7, visualized in MNI-512 space and compared against category-specific reference maps. For the
corresponding figure related to subject 1, please see the "Results" section of this article.

NSD places ROI . Is the image takep [

[

Are the people in the
.

&)

Figure 9: Activation maps for subject 2, projected in MNI-512 space and compared to category-
specific reference maps. Sections correspond to places (top left), bodies (top right), faces (bottom
left) and words (bottom right). Within each section, the blue map shown first presents the reference
for that category. Other images show the activations derived from the interpretable matrix A.
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Is the image taken out
L//

Is there a city skyline visible?
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Figure 10: Activation maps, for subject 5, projected in MNI-512 space and compared to category-
specific reference maps. Sections correspond to places (top left), bodies (top right), faces (bottom
left) and words (bottom right). Within each section, the blue map shown first presents the reference
for that category. Other images show the activations derived from the interpretable matrix A.

18



0003

00022

00015

000075

mage sitting?
™

0003

0022

00015

‘

000075

0003

0022

00015

000075

Is someone dancing in the image?
77PN

1

0002 0003

00023

b | 00015

000075

Figure 11: Activation maps for subject 7, projected in MNI-512 space and compared to category-
specific reference maps. Sections correspond to places (top left), bodies (top right), faces (bottom
left) and words (bottom right). Within each section, the blue map shown first presents the reference
for that category. Other images show the activations derived from the interpretable matrix A.
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6.4 Complete list of questions

1. Is there a person in the image?

. Is there more than one subject?

. Is the image taken indoors?

. Is the image taken outdoors?

. Is the image related to sports?

. Is the image related to animals?

. Is the image related to transportation?

. Does the image contain water bodies like a sea, ocean, or river?

O 00 N O L B~ W N

. Are there any buildings visible in the image?

—_
o

. Are there trees in the image?

—
—_—

. Is the image related to food?

—
N

. Does the image contain any text or signage?

[
w

. Is the image taken during the daytime?

—_
~

. Is the image taken at night?

—
W

. Are vehicles present in the image?

—_
@)}

. Are there any children in the image?

—_
~

. Are the people in the image standing?

—
oo

. Are the people in the image sitting?

—_
Nel

. Is the image related to celebrations or parties?

[\
)

. Is the image related to a bathroom or restroom?

[\
—

. Is there a surfboard in the image?

N
\SJ

. Is someone riding a wave in the image?

[\
W

. Are people sitting on a rooftop?

)
=

. Does the image show a toilet?

N
W

. Are there zebras in the image?

[\
(@)

. Is there a shower visible in the image?

N
~

. Are there animals standing on dirt ground?

[\e]
o]

. Is there sand in the image?

[\
Nel

. Is there a mountain in the image?

98]
(=)

. Are there cars parked in the image?

[98]
—

. Does the image include bicycles?

(98]
[\

. Are there birds in the image?

98]
|98

. Are there plants or flowers visible?

oY)
~

. Is someone holding an umbrella?

W
9,1

. Is someone wearing a hat?

98]
(@)}

. Is the image taken on a beach?

(O8]
3

. Are there boats in the image?

(98]
oo

. Is there a bridge in the image?

98]
\O

. Are there stairs in the image?

o
o

. Is there a window visible in the image?

o~
—

. Is there a table in the image?

SN
N

. Is there a chair in the image?

N
W)

. Is there a bed in the image?
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44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

Is there a lamp in the image?

Are there cups or glasses visible?

Are there plates visible?

Is there a computer or laptop in the image?
Is there a mobile phone visible?

Are there books or papers in the image?
Are there shelves in the image?

Is there a refrigerator in the image?

Is there a microwave in the image?

Is there a stove or oven visible?

Is there a washing machine in the image?
Are there curtains in the image?

Are there rugs or carpets visible?

Are mirrors present in the image?

Are there paintings or artworks on the walls?
Is there a clock visible in the image?

Is there a park in the image?

Is the image set in a forest?

Is there snow in the image?

Is it raining in the image?

Is there fog or mist in the image?

Are there mountains in the background?
Is there a desert in the image?

Is there a city skyline visible?

Is the image taken on a street?

Is there a marketplace in the image?

Are there shops or stalls visible?

Are there fences or barriers visible?

Is the image taken at an amusement park?

Are there swings or playground equipment visible?

Are there stairs or escalators in the image?
Is the image taken in a subway or train station?
Are there traffic lights in the image?

Is someone swimming in the image?

Is someone running in the image?

Is someone walking in the image?

Is someone cycling in the image?

Is someone playing a musical instrument?
Is someone reading in the image?

Is someone cooking in the image?

Is someone eating or drinking?

Is someone talking to another person?

Is someone taking a photo?

Is someone holding an object?
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88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.

Is someone painting or drawing?

Is someone driving a vehicle?

Is someone fishing in the image?

Is someone dancing in the image?

Are people wearing jackets or coats?

Are people wearing swimsuits?

Are people wearing uniforms?

Are people wearing traditional clothing?

Are hats or caps visible?

Is the image symmetrical?

Does the image contain bright colors?

Are shadows visible in the image?

Are reflections visible in the image?

Is there smoke or fire in the image?

Does the image contain unusual patterns?
Are there pets in the image?

Are there insects visible in the image?

Does the image have signs of damage or destruction?
Are there fences or railings visible?

Is the main subject a human?

Is the main subject an animal?

Is the main subject a man?

Is the main subject a woman?

Is the main subject a child?

Is the main subject elderly?

Is the main subject a group of people?

Is the main subject alone?

Is the main subject smiling?

Is the main subject interacting with someone?
Is the main subject looking directly at the camera?
Is the main subject facing away from the camera?
Is the main subject partially visible (cropped)?
Is the main subject wearing formal clothing?
Is the main subject wearing casual clothing?
Is the main subject carrying an object?

Is the main subject holding a tool?

Is the main subject using electronic devices?
Is the main subject sitting on the ground?

Is the main subject climbing?

Is the animal a mammal?

Is the animal a bird?

Is the animal a reptile?

Is the animal an amphibian?

Is the animal a fish?
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132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.

Is the animal a pet?

Is the animal a farm animal?

Is the animal a wild animal?

Is the animal flying?

Is the animal swimming?

Is the animal eating?

Is the animal drinking water?

Is the animal alone?

Are there multiple animals?

Are the animals interacting with each other?
Is the animal domesticated?

Is the main subject an object?

Is the object made of wood?

Is the object made of metal?

Is the object made of plastic?

Is the object broken?

Is the object old or vintage?

Is the object modern?

Is the object electronic?

Is the object artistic or decorative?

Is the object used for work or utility?

Is the main subject in the center of the image?
Is the main subject on the left side?

Is the main subject on the right side?

Is the main subject near the top?

Is the main subject near the bottom?

Is the main subject partially out of the frame?
Is there a background behind the main subject?
Is the main subject framed by other objects?
Is the main subject closer to the foreground?
Is the main subject farther in the background?
Does the image appear staged?

Does the image look candid or natural?

Is there movement captured in the image?

Is the image static?

Does the image look artistic or abstract?

Is the setting rural?

Is the setting urban?

Is the setting domestic?

Is the setting industrial?

Is the setting natural?

Is it sunny in the image?

Is it cloudy in the image?

Is there rain in the image?
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176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.

Is it snowing in the image?

Are there visible shadows in the image?
Does the image depict sunset or sunrise?
Is the image taken during golden hour?
Is someone dancing?

Is someone playing sports?

Is someone cooking?

Is someone cleaning?

Is someone fixing or repairing something?
Is someone driving?

Is someone hiking?

Is someone fishing?

Is the image black and white?

Is the image edited or filtered?

Does the image use high contrast?

Is the image blurred?

Does the image have reflections?

Is the subject interacting with animals?
Is the subject interacting with machines?
Is the subject interacting with nature?

Is the subject interacting with others?

Is the subject interacting with water?

Is the subject wearing sunglasses?

Is the subject wearing a hat?

Is the subject wearing a uniform?

Is the subject wearing shoes?

Is the subject barefoot?

Is there a car visible?

Is there a bicycle visible?

Is there a bus visible?

Is there a train visible?

Is there an airplane visible?

Is there a boat visible?

Is there a motorcycle visible?

Is there symmetry in the image?

Is there repetition or patterns in the image?
Does the image depict destruction or ruins?
Are there visible tools or instruments?

Is there a stage or performance area visible?
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the main contributions of this article: the
introduction of an interpretable semantic bottleneck in a brain decoding pipeline, the use
of GPT-40 and BLIP-2 to construct the interpretable space, and the demonstration that
this approach enables voxel-level insights with only minimal performance degradation.
These claims are supported by the results presented in the article, including performance
comparisons and voxel pattern alignment with known brain regions. Limitations and scope
are also acknowledged in the "Introduction” and "Discussion" sections.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are addressed in a dedicated "Limitations" section within the
Discussion. Potential privacy and ethical considerations are discussed in the "Privacy and
Ethics Considerations" paragraph of the same section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This article does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details of the interpretable model, including data preprocessing and visual-
ization procedures, are fully disclosed in the "Methods" section to ensure the reproducibility
of results. Open access to the code is also provided.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The complete code is publicly released, accompanied by detailed instructions
to facilitate results reproducibility.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Standard train and test split for the Natural Scenes Dataset were used. This
is described in the "Data" paragraph within the "Methods" section. The paragraphs titled
"Reconstructing images from interpretable embeddings" and "Learning the map from brain
activity to £", within the same section, describe the selection of regularization parameters
and the number of cross-validation folds used. Additional information is provided regarding
the Python libraries used. Full access to the source code is also made available.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: Whenever applicable, results are accompanied by error bars. The only case
in which results show variability is the 50-way-top-1 Accuracy in Table[2] and standard
deviations over 1000 repetitions, averaged over test set images, are provided.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Hardware specifications are provided at the end of the "Methods" section.
Training and inference time details for all models are mentioned within the same paragraph.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research adheres completely to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The topic is addressed in paragraph "Privacy and Ethics considerations" of
the "Discussion" section. There are no anticipations of negative impact from this specific
study. However, we emphasize the need for responsible use of brain data, especially as brain
decoding models improve.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new data are released as part of this work. The model is not anticipated to
present significant risks of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes]

Justification: Creators of the Natural Scenes Dataset[2] were explicitly mentioned in the
"Methods" section, paragraph "Data". Usage of NSD complies fully with the terms of use.
Original creators of the BrainDiffuser [42] model were properly cited and credited.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A GitHub repository is provided with the code used in the experiments.
Although the code is not documented to the level of a standalone library, it includes basic
instructions for reproducing the main results.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing and it does not involve research
with human subjects. As such, there were no instructions, tasks, or compensation provided
to participants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human participants were involved in this research. Therefore there were no
risks, disclosures, or ethical review processes applicable to the study.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The use of GPT-40 is described in the "Interpretable Space" paragraph of the
"Methods" section, where it is employed to automatically generate a set of questions suitable
for characterizing the Natural Scenes Dataset. In the same section, the use of BLIP-2 is
detailed for automatically answering the 214 questions for each image in the dataset.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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