
Published as a conference paper at ICLR 2024

CAMBRANCH: CONTRASTIVE LEARNING WITH
AUGMENTED MILPS FOR BRANCHING

Jiacheng Lin1,†∗ Meng Xu2† Zhihua Xiong2 Huangang Wang2‡

1University of Illinois Urbana-Champaign 2Tsinghua University

ABSTRACT

Recent advancements have introduced machine learning frameworks to enhance
the Branch and Bound (B&B) branching policies for solving Mixed Integer Lin-
ear Programming (MILP). These methods, primarily relying on imitation learning
of Strong Branching, have shown superior performance. However, collecting ex-
pert samples for imitation learning, particularly for Strong Branching, is a time-
consuming endeavor. To address this challenge, we propose Contrastive Learning
with Augmented MILPs for Branching (CAMBranch), a framework that gener-
ates Augmented MILPs (AMILPs) by applying variable shifting to limited expert
data from their original MILPs. This approach enables the acquisition of a con-
siderable number of labeled expert samples. CAMBranch leverages both MILPs
and AMILPs for imitation learning and employs contrastive learning to enhance
the model’s ability to capture MILP features, thereby improving the quality of
branching decisions. Experimental results demonstrate that CAMBranch, trained
with only 10% of the complete dataset, exhibits superior performance. Ablation
studies further validate the effectiveness of our method.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) is a versatile tool for solving combinatorial optimization
problems, with applications across various fields (Bao & Wang, 2017; Soylu et al., 2006; Godart
et al., 2018; Almeida et al., 2006; Hait & Artigues, 2011). A prominent approach for solving MILPs
is the Branch-and-Bound (B&B) algorithm (Land & Doig, 1960). This algorithm adopts a divide-
and-conquer approach, iteratively resolving sub-problems and progressively reducing the search
space. Within the execution of the algorithm, one pivotal decision comes to the fore: variable
selection, also known as branching. Traditionally, variable selection relies heavily on expert-crafted
rules rooted in substantial domain knowledge. However, recent developments have seen a shift of
focus towards the integration of machine learning based frameworks, aiming to enhance the B&B
algorithm by replacing conventional, hand-coded heuristics (Gasse et al., 2019; Zarpellon et al.,
2021; Nair et al., 2020; Lin et al., 2022). This transition marks a notable advancement in the field,
leveraging the power of machine learning and data-driven approaches to tackle complex problems
more effectively. For a comprehensive overview of the notable developments in this emerging field,
refer to the survey provided in Bengio et al. (2021).

The performance of the B&B algorithm hinges significantly upon its branching strategy, and sub-
optimal branching decisions can exponentially escalate the computational workload. This predica-
ment attracts researchers to explore the integration of machine learning (ML) techniques to enhance
branching strategies. Notably, Gasse et al. (2019) have trained branching policy models using imita-
tion learning, specifically targeting Strong Branching (Applegate et al., 1995), a traditional strategy
known for generating minimal branching search trees but with extremely low efficiency. By map-
ping a MILP into a bipartite, these branching policy models leverage Graph Convolution Neural
Networks (GCNN) (Kipf & Welling, 2017) to extract variable features and make variable selec-
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tion decisions. This approach has demonstrated superior performance in solving MILPs, marking a
significant milestone in the application of machine learning to MILP solving.

Despite making significant progress, a significant challenge arises with the imitation learning
paradigm mentioned above. The collection of expert samples for imitation learning requires solving
numerous MILP instances using Strong Branching, which is computationally intensive and time-
consuming. From our experiments, collecting 100k expert samples for four combinatorial opti-
mization problems (Easy level) evaluated in (Gasse et al., 2019), namely the Set Covering Problem
(BALAS, 1980), Combinatorial Auction Problem (Leyton-Brown et al., 2000), Capacitated Facility
Location Problem (Cornuejols et al., 1991), and Maximum Independent Set Problem (Cire & Au-
gusto, 2015), took a substantial amount of time: 26.65 hours, 12.48 hours, 84.79 hours, and 53.45
hours, respectively. These results underscore the considerable effort and resources required for col-
lecting a sufficient number of expert policy samples even on the Easy level instances. Importantly,
as the complexity of MILPs scales up, the challenge of collecting an adequate number of samples
for imitation learning within a reasonable timeframe becomes increasingly impractical.

To address this issue, we present a novel framework named Contrastive Learning with Augmented
MILPs for Branching (CAMBranch). Our approach begins with the development of a data aug-
mentation technique for MILPs. This technique generates a set of Augmented MILPs (AMILPs)
through variable shifting, wherein random shifts are applied to each variable within a MILP to pro-
duce a new instance. This augmentation strategy enables the acquisition of a substantial number of
labeled expert samples, even when expert data is limited. It eliminates the need for extensive compu-
tational efforts associated with solving numerous MILP instances, thereby mitigating the challenges
related to expert strategy sample collection. Next, building upon the work of Gasse et al. (2019),
we transform a MILP into a bipartite graph. By providing theoretical foundations and proofs, we
establish a clear correspondence between an augmented bipartite graph (derived from an AMILP)
and its corresponding original bipartite graph. These bipartite graph representations are then fed into
Graph Convolutional Neural Networks (GCNNs) to extract essential features and make branching
decisions. Finally, we employ contrastive learning between MILPs and corresponding AMILPs to
facilitate policy network imitation learning. This choice is motivated by the fact that MILPs and
their AMILP counterparts share identical branching decisions, enabling a seamless integration of
this learning approach. We evaluate our approach on four classical NP-hard combinatorial optimiza-
tion problems, following the experimental setup described in Gasse et al. (2019). The experimental
results demonstrate the superior performance of our proposed CAMBranch, even if CAMBranch
leverages only 10% of the data used in Gasse et al. (2019).

2 PRELIMINARIES

2.1 MIXED INTEGER LINEAR PROGRAMMING (MILP)

The general definition form of a MILP problem instance MILP = (c,A, b, l,u,I) is shown below

min
x

cTx s.t. Ax ⩽ b, l ⩽ x ⩽ u, xj ∈ Z, ∀j ∈ I (1)

where A ∈ Rm×n is the constraint coefficient matrix in the constraint, c ∈ Rn is the objective
function coefficient vector, b ∈ Rm represents the constraint right-hand side vector, while l ∈
(R ∪ {−∞})n and u ∈ (R ∪ {+∞})n represent the lower and upper bound vectors for each
variable, respectively. The set I is an integer set containing the indices of all integer variables.

In the realm of solving MILPs, the B&B algorithm serves as the cornerstone of contemporary op-
timization solvers. Within the framework of the B&B algorithm, the process involves branching,
which entails a systematic division of the feasible solution space into progressively smaller subsets.
Simultaneously, bounding occurs, which aims to establish either lower-bound or upper-bound tar-
gets for solutions within these subsets. Lower bounds are calculated through linear programming
(LP) relaxations, while upper bounds are derived from feasible solutions to MILPs.

2.2 MILP BIPARTITE GRAPH ENCODING

Following Gasse et al. (2019), we model the MILP corresponding to each node in the B&B tree with
a bipartite graph, denoted by (G,C,E,V), where: (1) G represents the structure of the bipartite
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Table 1: An overview of the features for constraints, edges, and variables in the bipartite graph
st = (G,C,E,V) following Gasse et al. (2019).

Type Feature Description

obj cos sim Cosine similarity between constraint coefficients and objective function coefficients.

C bias Normalized right deviation term using constraint coefficients.

is tight Indicator of tightness in the linear programming (LP) solution.

dualsol val Normalized value of the dual solution.

age LP age, which refers to the number of solver iterations performed on the LP relaxation
problem without finding a new integer solution.

E coef Normalized constraint coefficient for each constraint.

type One-hot encoding representing the type (binary variables, integer variables, implicit inte-
ger variables, and continuous variables).

coef Normalized objective function coefficients.

has lb / ub Indicator for the lower/upper bound.

V sol is at lb / ub The lower/upper bound is equal to the solution value.

sol frac Fractionality of the solution value.

basis status The state of variables in the simplex base is encoded using one-hot encodin (lower, basic,
upper, zero).

reduced cost Normalized reduced cost.

age Normalized LP age.

sol val Value of the solution.

inc val /avg inc val Value/Average value in the incumbent solutions.

graph, that is, if the variable i exists in the constraint j, then an edge (i, j) ∈ E is connected between
node i and j within the bipartite graph. E represents the set of edges within the bipartite graph.
(2) C ∈ R|C|×d1 stands for the features of the constraint nodes, with |C| denoting the number of
constraint nodes, and d1 representing the dimension of their features. (3) V ∈ R|V|×d2 refers to
the features of the variable nodes, with |V| as the count of variable nodes, and d2 as the dimension
of their features. (4) E ∈ R|C|×|V|×d3 represents the features of the edges, with d3 denoting the
dimension of edge features. Details regarding these features can be found in Table 1.

Next, the input st = (G,C,E,V) is then fed into GCNN which includes a bipartite graph convolu-
tional layer. The bipartite graph convolution process involves information propagation from variable
nodes to constraint nodes, and the constraint node features are updated by combining with variable
node features. Similarly, the variable node updates its features by combining with constraint node
features. For ∀i ∈ C, j ∈ V , the process of message passing can be represented as

c′i = fC

ci,

(i,j)∈E∑
j

gC(ci,vj , ei,j)

 v′
j = fV

vj ,

(i,j)∈E∑
i

gV(ci,vi, ei,j)

 (2)

where fC , fV , gC , and gV are Multi-Layer Perceptron (MLP) (Orbach, 1962) models with two
activation layers that use the ReLU function (Agarap, 2018). After performing message passing
(Gilmer et al., 2017), a bipartite graph with the same topology is obtained, where the feature val-
ues of variable nodes and constraint nodes have been updated. Subsequently, an MLP layer is used
to score the variable nodes, and a masked softmax operation is applied to obtain the probability
distribution of each variable being selected. The process mentioned above can be expressed as
P = softmax(MLP(v)). Here, P is the probability distribution of the output variables. During
the training phase, GCNN learns to imitate the Strong Branching strategy. Upon completion of the
training process, the model becomes ready for solving MILPs.

3 METHODOLOGY

As previously mentioned, acquiring Strong Branching expert samples for imitation learning poses a
non-trivial challenge. In this section, we introduce CAMBranch, a novel approach designed to ad-
dress this issue. Our first step involves the generation of Augmented MILPs (AMILPs) labeled with

3



Published as a conference paper at ICLR 2024

Strong Branching decisions, derived directly from the original MILPs. This augmentation process
equips us with multiple expert samples essential for imitation learning, even when confronted with
limited expert data. Subsequently, building upon the AMILPs, we proceed to create their augmented
bipartite graphs. Finally, since MILPs and corresponding AMILPs share branching decisions, we
view them as positive pairs. Leveraging the power of contrastive learning, we train our model to
boost performance.

3.1 AUGMENTED MIXED INTEGER LINEAR PROGRAMMING (AMILP)

To obtain AMILPs, we adopt variable shift from x defined in Eq.(1) to x̂ using a shift vector s,
denoted as x̂ = x+ s, where s is a shift vector. Note that if xi ∈ Z, then si ∈ Z; otherwise si ∈ R.
Based on this translation, we can derive a MILP from Eq.(1). To bring this model into standard
form, we redefine the parameters as follows: b̂ = As+ b, l̂ = l+ s, and û = u+ s. Consequently,
the final expression for the AMILP model is represented as:

min
x̂

cTx̂− cTs s.t.Ax̂ ≤ b̂, l̂ ≤ x̂ ≤ û, x̂j ∈ Z, ∀j ∈ I (3)

Through this data augmentation technique, a single MILP has the capacity to generate multiple
AMILPs. It’s worth noting that each MILP, along with its corresponding AMILPs, share identical
variable selection decisions of the Strong Branching. We next present a theorem to demonstrate
this characteristic. To illustrate this distinctive characteristic, we begin by introducing a lemma that
elucidates the relationship between MILPs and AMILPs.
Lemma 3.1. For MILPs Eq.(1) and their corresponding AMILPs Eq.(3), let the optimal solutions
of the LP relaxation be denoted as x∗ and x̂∗, respectively. A direct correspondence exists between
these solutions, demonstrating that x̂∗ = x∗ + s.

The proof of this lemma is provided in the Appendix. Building upon this lemma, we can initially
establish the relationship between the optimal values of a MILP and its corresponding AMILP,
denoted as cTx∗ = cTx̂∗ − cTs. This equation signifies the equivalence of their optimal values.
With the above information in mind, we proceed to introduce the following theorem.
Theorem 3.1. Suppose that an AMILP instance is derived by shifting variables from its original
MILP. When employing Strong Branching to solve these instances, it becomes evident that both the
MILP and AMILP consistently produce identical variable selection decisions at each branching step
within B&B.

Proof. In the context of solving a MILP M using Strong Branching, the process involves pre-
branching all candidate variables at each branching step, resulting in sub-MILPs. Solving the linear
programing (LP) relaxations of these sub-MILPs provides the optimal values, which act as potential
lower bounds for M. The Strong Branching strategy chooses the candidate variable that offers the
most substantial lower bound improvement as the branching variable for that step. Thus, the goal
of this proof is to demonstrate that the lower bound increments after each branching step are equal
when applying Strong Branching to solve both a MILP and its corresponding AMILP.

Given a MILP’s branching variable xi and its corresponding shifted variable of AMILP x̂i = xi +
si, we perform branching operations on both variables. Firstly, we branch on xi to produce two
subproblems for MILP, which are formulated as follows:

argmin
x

{
cTx | Ax ⩽ b, l ⩽ x ⩽ u, xi ⩽ ⌊x∗

i ⌋ , xj ∈ Z,∀j ∈ I
}

(4)

argmin
x

{
cTx | Ax ⩽ b, l ⩽ x ⩽ u, xi ⩾ ⌈x∗

i ⌉ , xj ∈ Z,∀j ∈ I
}

(5)

where x∗
i represents the value of variable xi in the optimal solution corresponding to the MILP LP

relaxation. Likewise, we branch on the shifted variable x̂i, which generates two sub-problems for
AMILP, as represented by the following mathematical expressions:

argmin
x̂

{cTx̂− cTs|Ax̂ ≤ b̂, l̂ ≤ x̂ ≤ û, x̂i ≤ ⌊x̂∗
i ⌋, x̂j ∈ Z,∀j ∈ I} (6)

argmin
x̂

{cTx̂− cTs|Ax̂ ≤ b̂, l̂ ≤ x̂ ≤ û, x̂i ≥ ⌈x̂∗
i ⌉, x̂j ∈ Z,∀j ∈ I} (7)
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where x̂i
∗ represents the value of variable x̂i in the optimal solution corresponding to the AMILP

LP relaxation.

According to Lemma 3.1, the LP relaxations of Eq.(4) and Eq.(6) have optimal solutions that can
be obtained through variable shifting and these two LP relaxations have equivalent optimal values.
Similarly, the optimal values of the LP relaxations of Eq.(5) and Eq.(7) are also equal. Thus, for x̂i

and xi, the lower bound improvements of the subproblems generated from MILP Eq.(1) and AMILP
Eq.(3) are equivalent, demonstrating identical branching decisions. The proof is completed. □

Based on Theorem 3.1, it is evident that the generated AMILPs are equipped with expert decision
labels, making them readily suitable for imitation learning.

3.2 AUGMENTED BIPARTITE GRAPH

After obtaining the AMILP, the subsequent task involves constructing the augmented bipartite graph
using a modeling approach akin to the one introduced by Gasse et al. (2019). To achieve this,
we leverage the above relationship between MILP and AMILP to derive the node features for the
augmented bipartite graph from the corresponding node features of the original bipartite graph,
as outlined in Table 1. For a detailed overview of the relationships between node features in the
augmented and original bipartite graphs, please refer to the Appendix.

3.2.1 CONSTRAINT NODE FEATURES

It is worth noting that the AMILP is derived from a translation transformation of the MILP, result-
ing in certain invariant features: (1) cosine similarity between constraint coefficients and objective
function coefficients; (2) tightness state of the LP relaxation solution within constraints; (3) LP
age. Additionally, for the bias feature, representing the right-hand term, the transformed feature
is bi + aT

i s. To obtain this term, consider the i-th constraint node, which corresponds to the i-th
constraint of aT

i x ⩽ bi, After translation, this constraint can be represented as aix̂ ⩽ bi + aT
i s,

leading to the bias feature bi + aT
i s. For dualsol val feature, we consider proposing the following

theorem for the explanation.

Theorem 3.2. For MILPs Eq.(1) and AMILPs Eq.(3), let the optimal solution of the dual problem
of the LP relaxations be denoted as y∗ and ŷ∗, respectively. Then, a direct correspondence exists
between these solutions, indicating that y∗ = ŷ∗.

The proof can be found in the Appendix. From Theorem 3.2, we can conclude that the dualsol val
feature of the augmented bipartite graph remains unchanged compared to the original bipartite graph.
Thus, we have successfully determined the constraint node features for the AMILP’s bipartite graph
through the preceding analysis.

3.2.2 EDGE FEATURES

Given that an AMILP is generated from the original MIP through variable shifting, the coefficients
of the constraints remain invariant throughout this transformation. Consequently, the values of the
edge features in the bipartite graph, which directly reflect the coefficients connecting variable nodes
and constraint nodes, also remain unchanged.

3.2.3 VARIABLE NODE FEATURES

Similarly to constraint node features, several variable node features also remain unaltered during the
transformation. These include (1) the variable type (i.e., integer or continuous); (2) the coefficients
of variables corresponding to the objective function; (3) whether the variable has upper and lower
bounds; (4) whether the solution value of a variable is within the bounds; (5) whether the solution
value of a variable has a decimal part; (6) the status of the corresponding basic vector; (7) the LP
age. For reduced cost features, we consider the following theorem for clarification.

Theorem 3.3. For MILPs Eq.(1) and their corresponding AMILPs Eq.(3), consider the reduced cost
corresponding to LP relaxations for a MILP, denoted as σi, and for an AMILP, denoted as σ̂i. Then,
a direct correspondence exists between these reduced costs, implying that σi = σ̂i.
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The proof is provided in the Appendix. Moreover, the features sol val, inc val, and avg inc val
all exhibit shifts in their values corresponding to the shift vector s. With all the above, we have
successfully acquired all the features of the augmented bipartite graph.

3.3 CONTRASTIVE LEARNING

Contrastive learning has been widely adopted in various domains (He et al., 2020; Chen et al., 2020a;
P. et al., 2020; Xu et al., 2022; Iter et al., 2020; Giorgi et al., 2021; Yu et al., 2022). The fundamen-
tal idea behind contrastive learning is to pull similar data points (positives) closer together in the
feature space while pushing dissimilar ones (negatives) apart. Within our proposed CAMBranch,
we leverage this principle by viewing a MILP and its corresponding AMILP as positive pairs while
considering the MILP and other AMILPs within the same batch as negative pairs. This enables us
to harness the power of contrastive learning to enhance our training process.

We initiate the process with a MILP bipartite graph (Gori ,Cori ,Eori ,Vori ) and its augmented coun-
terpart (Gaug ,Caug ,Eaug ,Vaug ). These graphs undergo processing with a GCNN, following the
message passing illustrated in Eq.(2). This results in updated constraint and variable node features
C′

ori and V′
ori for the MILP, along with C′

aug and V′
aug for the AMILP. Subsequently, we generate

graph-level representations for both bipartite graphs. To achieve this, we conduct max and average
pooling on the constraint nodes and variable nodes, respectively. Merging these embeddings using
an MLP yields pooled embeddings for constraint and variable nodes, denoted as cGori ,v

G
ori for the

MILP and cGori ,v
G
ori for the AMILP. These embeddings serve as inputs to another MLP, resulting in

graph-level embeddings gori and gaug for MILP and AMILP bipartite graphs, respectively. To train
our model using contrastive learning, we treat gori and its corresponding gaug as positive pairs, while
considering other AMILPs in the same batch as negative samples. By applying infoNCE (van den
Oord et al., 2018) loss, we have

L(infoNCE ) = −
nbatch∑
i=1

log

(
exp

(
g̃T

ori (i) · g̃aug (i)
)∑nbatch

j=1 exp
(
g̃T

ori (i) · g̃aug (j)
)) (8)

where nbatch represents the number of samples in a training batch. g̃ori and g̃aug denote the nor-
malized vectors of gori and gaug, respectively. This contrastive learning approach enhances our
model’s ability to capture representations for MILPs, which further benefits the imitation learning
process. The imitation learning process follows Gasse et al. (2019). More details can be found in
the Appendix C.3.

4 EXPERIMENT

We evaluate our proposed CAMBranch by fully following the settings in Gasse et al. (2019). Due to
the space limit, we briefly introduce the experimental setup and results. More details are provided
in the Appendix D.

4.1 SETUP

Benchmarks. Following Gasse et al. (2019), we assess our method on four NP-hard problems, i.e.,
Set Covering (BALAS, 1980), Combinatorial Auction (Leyton-Brown et al., 2000), Capacitated Fa-
cility Location (Cornuejols et al., 1991), and Maximum Independent Set (Cire & Augusto, 2015).
Each problem has three levels of difficulty, that is, Easy, Medium, and Hard. We train and test mod-
els on each benchmark separately. Through the experiments, we leverage SCIP 6.0.1 (Gleixner et al.,
2018) as the backend solver and set the time limit as 1 hour. See more details in the supplementary
materials.

Baselines. We compare CAMBranch with the following branching strategies: (1) Reliability Pseu-
docost Branching (RPB) (Achterberg et al., 2005), a state-of-the-art human-designed branching pol-
icy and the default branching rule of the SCIP solver; (2) GCNN (Gasse et al., 2019), a state-of-the-
art neural branching policy; (3) GCNN (10%), which uses only 10% of the training data from Gasse
et al. (2019). This is done to ensure a complete comparison since CAMBranch also utilizes 10% of
the data.

Data Collection and Split. The expert samples for imitation learning are collected from SCIP
rollout with Strong Branching on the Easy level instances. Following Gasse et al. (2019), we train
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GCNN with 100k expert samples, while CAMBranch is trained with 10% of these samples. Trained
with Easy level samples, the models are tested on all three level instances. Each level contains 20
new instances for evaluation using five different seeds, resulting in 100 solving attempts for each
difficulty level.

Metrics. Following Gasse et al. (2019), our metrics are standard for MILP benchmarking, including
solving time, number of nodes in the branch and bound search tree, and number of times each
method achieves the best solving time among all methods (number of wins). For the first two
metrics, smaller values are indicative of better performance, while for the latter, higher values are
preferable.

4.2 EXPERIMENTAL RESULTS

To assess the effectiveness of our proposed CAMBranch, we conducted the evaluation from two
aspects: imitation learning accuracy and MILP instance-solving performance. The former measures
the model’s ability to imitate the expert strategy, i.e., the Strong Branching strategy. Meanwhile,
MILP instance-solving performance evaluates the quality and efficiency of the policy network’s
decisions, emphasizing critical metrics such as MILP solving time and the size of the B&B tree (i.e.,
the number of nodes) generated during the solving process.

4.2.1 IMITATION LEARNING ACCURACY

First, we initiated our evaluation by comparing CAMBranch with baseline methods in terms of
imitation learning accuracy. Following Gasse et al. (2019), we curated a test set comprising 20k
expert samples for each problem. The results are depicted in Figure 1. Notably, CAMBranch, trained
with 10% of the full training data, outperforms GCNN (10%), demonstrating that our proposed data
augmentation and contrastive learning framework benefit the imitation learning process. Moreover,
CAMBranch’s performance, while exhibiting a slight lag compared to GCNN (Gasse et al., 2019)
trained on the entire dataset, aligns with expectations, considering the substantial difference in the
size of the training data. CAMBranch delivers comparable performance across three of the four
problems, with the exception being the Set Covering problem.

4.2.2 INSTANCE SOLVING EVALUATION
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Figure 1: Imitation learning
accuracy on the test sets of ex-
pert samples.

Next, we sought to evaluate our proposed CAMBranch on MILP
instance solving focusing on three key metrics: solving time, the
number of B&B nodes, and the number of wins, as illustrated by
Table 2.

Solving time reflects the efficiency of each model in solving MILP
instances. As evident in Table 2, we observed that as problem com-
plexity increases, the solving time also rises substantially, with an
obvious gap between Easy and Hard levels. In the Easy level, all
strategies exhibit similar solving time, with only a maximum gap of
about 5 seconds. However, for the Medium and Hard levels, differ-
ences become more significant. Notably, delving into each strategy,
we found that, neural network-based policies consistently outper-
form the traditional RPB, demonstrating the potential of replacing
heuristic methods with machine learning-based approaches. More-
over, CAMBranch exhibits the fastest solving process in most cases,
particularly in challenging instances. For example, in the hard-
level Capacitated Facility Location problem, CAMBranch achieved
a solving time of 470.83 seconds, nearly 200 seconds faster than
GCNN. Furthermore, CAMBranch outperforms GCNN (10%) across various instances, reaffirming
the effectiveness of our CAMBranch framework.

The number of B&B nodes serves as a measure of branching decision quality, with fewer nodes
indicating better decision quality. Table 2 presents similar observations to solving time. CAM-
Branch consistently outperforms GCNN in most cases, especially in challenging scenarios like the
hard-level Maximum Independent Set problem. On average, CAMBranch generates fewer nodes
than GCNN (10%), highlighting the efficacy of our data augmentation and contrastive learning net-
work. However, it’s worth noting that in some cases, RPB generates the fewest nodes, particularly in
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the Capacitated Facility Location problem. Nevertheless, this doesn’t translate into shorter solving
times, as certain RPB decisions are time-consuming.

The number of wins quantifies the instances in which the model achieves the shortest solving time.
Higher win counts indicate better performance. With this metric, we examined models at the in-
stance level. From Table 2, we found that GCNN obtains the most times of getting the fastest solving
process in the Set Covering problem and the Combinatorial Auction problem (Easy and Medium).
However, for the remaining problems, CAMBranch leads in this metric. Additionally, CAMBranch
tends to optimally solve the highest number of instances, except in the case of Set Covering. These
results underline the promise of our proposed method, especially in scenarios with limited training
data. Collectively, CAMBranch’s prominent performance across these three metrics underscores the
importance of MILP augmentation and the effectiveness of our contrastive learning framework.

Table 2: Policy evaluation in terms of solving time, number of B&B nodes, and number of wins
over number of solved instances on four combinatorial optimization problems. Each level contains
20 instances for evaluation using five different seeds, resulting in 100 solving attempts for each
difficulty level. Bold CAMBranch numbers denote column-best results among neural policies.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.98 0/100 27 345.91 0/90 223 3600.00 - -
RPB 7.82 4/100 103 64.77 10/100 2587 1210.18 32 / 63 80599

GCNN 6.03 57/100 167 50.11 81/100 1999 1344.59 36/68 56252
GCNN (10%) 6.34 39/100 230 98.20 5/96 5062 2385.23 0/6 113344

CAMBranch (10%) 6.79 0/100 188 61.00 4/100 2339 1427.02 0/55 66943

Set Covering

FSB 4.71 0/100 10 97.6 0/100 90 1396.62 0/64 381
RPB 2.61 1/100 21 19.68 2/100 713 142.52 29/100 8971

GCNN 1.96 43/100 87 11.30 74/100 695 158.81 19/94 12089
GCNN (10%) 1.99 44/100 102 12.38 16/100 787 144.40 10/100 10031

CAMBranch (10%) 2.03 12/100 91 12.68 8/100 758 131.79 42/100 9074

Combinatorial Auction

FSB 34.94 0/100 54 242.51 0/100 114 995.40 0/82 84
RPB 30.63 9/100 79 177.25 2/100 196 830.90 2/93 178

GCNN 24.72 25/100 169 145.17 13/100 405 680.78 5/95 449
GCNN (10%) 26.30 15/100 180 124.49 48/100 406 672.88 11/95 423

CAMBranch (10%) 24.91 50/100 183 124.36 37/100 390 470.83 77/95 428

Capacitated Facility Location

FSB 28.85 10/100 19 1219.15 0/62 81 3600.00 - -
RPB 10.73 11/100 78 133.30 5/100 2917 965.67 10/40 17019

GCNN 7.17 11/100 90 164.51 4/99 5041 1020.58 0/17 21925
GCNN (10%) 7.18 26/100 103 122.65 8/89 3711 695.96 2/20 17034

CAMBranch (10%) 6.92 42/100 90 61.51 83/100 1479 496.86 33/40 10828

Maximum Independent Set

4.2.3 EVALUATION OF DATA COLLECTION EFFICIENCY

In this part, we compared the efficiency of expert sample collection for GCNN in Gasse et al. (2019)
and our proposed CAMBranch. We focused on the Capacitated Facility Location Problem, which
exhibits the lowest collection efficiency among the four MILP benchmarks and thus closely sim-
ulates real-world MILPs by low data collection efficiency. Generating 100k expert samples using
Strong Branching to solve the instances takes 84.79 hours. In contrast, if obtaining the same quan-
tity of expert samples, CAMBranch requires 8.48 hours (collecting 10k samples initially) plus 0.28
hours (generating the remaining 90k samples based on the initial 10k), totaling 8.76 hours—an
89.67% time savings. This underscores the superiority of CAMBranch in data collection efficiency.
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Figure 2: Ablation experiment results on CAMBranch (10%) for instance solving evaluation, includ-
ing solving time (a), number of nodes (b), and number of wins (c), in addition to imitation learning
accuracy (d) for the Set Covering problem.

4.3 ABLATION STUDIES

To further validate the effectiveness of contrastive learning, we conducted ablation studies. Specifi-
cally, we compared the performance of CAMBranch with contrastive learning to CAMBranch with-
out contrastive learning but with data augmentation, denoted as CAMBranch w/o CL. These exper-
iments were conducted on the Set Cover problem, and the results are displayed in Figure 2. It is
evident from the results that integrating contrastive learning significantly enhances CAMBranch’s
performance, providing compelling evidence of the efficacy of this integration within CAMBranch.

4.4 EVALUATING CAMBRANCH ON FULL DATASETS

Previous experiments have showcased CAMBranch’s superiority in data-scarce scenarios. To fur-
ther explore CAMBranch’s potential, we conducted evaluations on complete datasets to assess its
performance with the entire training data. Table 3 presents the results of instance-solving evalua-
tions for the Combinatorial Auction problem. The outcomes reveal that when trained with the full
dataset, CAMBranch (100%) surpasses GCNN (10%), CAMBranch (10%) and even GCNN (100%).
Notably, CAMBranch exhibits the fastest solving time for nearly 90% of instances, underscoring
its effectiveness. For Hard instances, CAMBranch (100%) demonstrates significant improvements
across all instance-solving evaluation metrics. These findings affirm that our plug-and-play CAM-
Branch is versatile, excelling not only in data-limited scenarios but also serving as a valuable tool
for data augmentation to enhance performance with complete datasets.

Table 3: The results of evaluating the instance-solving performance for the Combinatorial Auction
problem by utilizing the complete training dataset. Bold numbers denote the best results.

Model
Easy Medium Hard

Time Wins Nodes Time Wins Nodes Time Wins Nodes

GCNN (10%) 1.99 2/100 102 12.38 3/100 787 144.40 2/100 10031
GCNN (100%) 1.96 4/100 87 11.30 7/100 695 158.81 4/94 12089

CAMBranch (10%) 2.03 1/100 91 12.68 2/100 758 131.79 11/100 9074
CAMBranch (100%) 1.73 93/100 88 10.04 88/100 690 109.96 83/100 8260

5 CONCLUSION

In this paper, we have introduced CAMBranch, a novel framework designed to address the chal-
lenge of collecting expert strategy samples for imitation learning when applying machine learning
techniques to solve MILPs. By introducing variable shifting, CAMBranch generates AMILPs from
the original MILPs, harnessing the collective power of both to enhance imitation learning. Our uti-
lization of contrastive learning enhances the model’s capability to capture MILP features, resulting
in more effective branching decisions. We have evaluated our method on four representative combi-
natorial optimization problems and observed that CAMBranch exhibits superior performance, even
when trained on only 10% of the complete dataset. This underscores the potential of CAMBranch,
especially in scenarios with limited training data.
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Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
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A BACKGROUND

A.1 BRANCH AND BOUND (B&B)

The B&B algorithm operates in an iterative way at each node. It commences with solving the LP
relaxation of the original MILP problem Eq. (1). This LP relaxation serves as a lower bound estimate
for the original MILP (1). If the optimal solution x∗ of this LP relaxation satisfies all the constraints
in (1), its objective value provides an upper bound estimate for the original problem. However, if x∗

contains non-integer variables x∗
j (where j ∈ I), the algorithm proceeds by splitting the problem

into two sub-problems, each with additional constraints: xj ≤
⌊
x∗
j

⌋
and xj ≥

⌈
x∗
j

⌉
, where ⌊.⌋ and

⌈.⌉ represent the floor and ceiling functions, respectively.

Throughout this iterative process, any sub-problem that exceeds the upper bound estimate is pruned,
eliminating the need for further branching. This pruning strategy significantly enhances computa-
tional efficiency. The algorithm repeats the above process until either all nodes are pruned or the
optimality gap reaches a predetermined threshold. At this point, the global optimal solution, along
with its corresponding objective value, is successfully obtained.

A.2 STRONG BRANCHING

The core idea behind the Strong Branching strategy (Applegate et al., 1995) is to identify the can-
didate variable that, when chosen for branching, provides the maximum improvement in the lower
bound of the problem. Specifically, this strategy involves pre-branching all candidate variables, solv-
ing their respective Linear Programming (LP) relaxation problems, and then selecting the variable
that contributes the most to lower bound enhancement as the actual branching variable. When pre-
branching is applied to all available candidate variables, and each LP relaxation problem is solved
to optimality, this strategy is known as Full Strong Branching (FSB), which is the expert strategy for
imitation learning in this paper. Essentially, Full Strong Branching can be seen as a greedy approach
aimed at identifying the locally optimal variable for branching.

Full Strong Branching often leads to the smallest branching search tree. However, it comes at a
considerable computational cost. Consequently, several variants of Full Strong Branching have been
developed to mitigate this computational burden. These variants involve selecting only a subset of
candidate variables for branching or limiting the number of iterations during the solution of each
LP relaxation problem. It’s important to note that while these modifications enhance computational
efficiency, they do not fundamentally reduce the computational complexity inherent in the Strong
Branching strategy.

B PROOFS

Lemma 3.1. For MILPs (Eq.(1)) and AMILPs (Eq.(3)), let the LP relaxation optimal solutions be
denoted as x∗ and x̂∗, respectively. Then, there exists a correspondence between these solutions
such that x̂∗ = x∗ + s.

Proof. The LP relaxation problems of MILP and AMILP can be expressed as follows:

x∗ = argmin
x

{
cTx | Ax ⩽ b, l ⩽ x ⩽ u

}
(9)

and

x̂∗ = argmin
x̂

{
cTx̂− cTs | Ax̂ ⩽ b̂, l̂ ⩽ x̂ ⩽ û

}
(10)

We now assume that y = x∗ + s, so that Eq.(9) can be written as

y − s = argmin
x

{
cTx | Ax ⩽ b, l ⩽ x ⩽ u

}
(11)
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which implies that

y = argmin
x

{
cTx | Ax ⩽ b, l ⩽ x ⩽ u

}
+ s

= argmin
x

{
cT(x̂− s) | A(x̂− s) ⩽ b, l ⩽ x̂− s ≤ u

}
+ s

= argmin
x+s

{
cTx̂− cTs | Ax̂ ≤ As+ b, l+ s ⩽ x̂ ⩽ u+ s

} (12)

Clearly, Eq.(10) is equal to Eq.(12), that is, x̂∗ = x∗ + s. □

Theorem 3.1. For MILPs Eq.(1) and AMILPs Eq.(3), let the optimal solution of the dual problem
of the LP relaxation solution be denoted as y∗ and ŷ∗, respectively. Then, there exists a correspon-
dence between these solutions such that y∗ = ŷ∗.

Proof. By incorporating the boundary constraints of variable x into the set of other constraints, the
MILP problem can be reformulated as the following LP relaxation form

x∗ = argmin
x

{cTx|Āx ≤ b} (13)

We can obtain its dual problem as follows

y∗ = argmax
y

{−yTb|cT + yTĀ = 0,y ≥ 0} (14)

Similarly, for AMILPs, we also combine the boundary constraints of variable x̂∗ with other con-
straints, then we have

x̂∗ = argmin
x̂

{cTx̂− cTs|Āx̂ ≤ b+ Ās} (15)

The dual problem of this AMILP can be obtained as follows:

ŷ∗ = argmax
ŷ

{−ŷT(b+ Ās)− cTs|cT + ŷTĀ = 0, ŷ ≥ 0}

= argmax
ŷ

{−ŷTb|cT + ŷTĀ = 0, ŷ ≥ 0}
(16)

According to Eq.(14) and Eq.(16), it can be inferred that the optimal solutions for the dual problem
associated with LP relaxation of both MILP and AMILP is identical. The proof is completed. □

Theorem 3.3. For MILPs Eq.(1) and their corresponding AMILPs Eq.(3), let the reduced cost
corresponding to LP relaxations for a MILP and an AMILP be denoted as σi and σ̂i, respectively.
Then, there is a correspondence between these reduced costs such that σi = σ̂i.

Proof. Let’s consider the variable xj in the MILP. Its reduced cost, denoted as σj , can be expressed
as

σj = cj − cTBB−1Âj (17)
Here, B represents the matrix composed of the column vectors of the current basis, cB denotes
the coefficient vector of the objective function at basic variables, and Âj represents the jth column
of the matrix Â. Similarly, for the AMILP, the reduced cost of variable x̂, denoted as σ̂j , can be
expressed in the same way:

σ̂j = cj − cTBB−1Âj = σj (18)
This equality demonstrates that the reduced cost values for the variables in both the MILP and the
AMILP are indeed equivalent. Hence, the proof is complete. □

C METHODOLOGY DETAILS

C.1 OVERVIEW OF BIPARTITE GRAPH NODE FEATURES

The relationships between MILP and AMILP node features are illustrated in Table 4 for constraint
nodes and Table 5 for variable nodes. Note that in Table 5, the notation B ↔ Z denotes the potential
mutual conversion between binary variables and integer variables.
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Table 4: Relationship between MILP and AMILP constraint node features.

Node feature of constraint i MILP AMILP

obj cos sim Ci,1 Ci,1

bias Ci,2 Ci,2 + aT
i s

is tight Ci,3 Ci,3

dualsol val Ci,4 Ci,4

age Ci,5 Ci,5

Table 5: Relationship between MILP and AMILP variable node features.

Node feature of variable j MILP AMILP

type Vj,1 Vj,1 or B ↔ Z
coef Vj,2 Vj,2

has lb Vj,3 Vj,3

has ub Vj,4 Vj,4

sol is at lb Vj,5 Vj,5

sol is at ub Vj,6 Vj,6

sol frac Vj,7 Vj,7

basis status Vj,8 Vj,8

reduced cost Vj,9 Vj,9

age Vj,10 Vj,10

sol val Vj,11 Vj,11 + sj

inc val Vj,12 Vj,11 + sj

avg inc val Vj,13 Vj,13 + sj

C.2 CONTRASTIVE LEARNING

This section will provide details the forward propagation process. Specifically, once we have ac-
quired the updated constraint and variable node features C′

ori and V′
ori for the MILP, along with

C′
aug and V′

aug for the AMILP, we can formulate the feature merging process as follows:

cGori = MLP
(
Concat

(
MaxPool

(
C′

ori
)
,MeanPool

(
C′

ori
)))

(19)

vG
ori = MLP

(
Concat

(
MaxPool

(
V′

ori
)
,MeanPool

(
V′

ori
)))

(20)

cGaug = MLP
(
Concat

(
MaxPool

(
C′

aug

)
,MeanPool

(
C′

aug

)))
(21)

vG
aug = MLP

(
Concat

(
MaxPool

(
V′

aug

)
,MeanPool

(
V′

aug

)))
(22)

where Concat denotes the concatenation operation. The process of obtaining graph-level embed-
dings can be formulated as follows:

gori = MLP
(
Concat

(
cGori ,v

G
ori

))
gaug = MLP

(
Concat

(
cGaug,v

G
aug

))
(23)

where gori and gaug represent the graph-level embeddings of the MILP bipartite graph and the
AMILP bipartite graph, respectively. Once these graph-level embeddings are obtained, we proceed
to apply contrastive learning in the subsequent steps.

18



Published as a conference paper at ICLR 2024

C.3 IMITATION LEARNING TRAINING PROCEDURE

We employ behavior cloning Pomerleau (1991) to train the CAMBranch, focusing on imitat-
ing Strong Branching policies. Expert strategies are collected using the optimization suite SCIP
Gleixner et al. (2018) and are stored in a dataset that consists of expert state-action pairs, denoted as
D = (si,a

∗
i )

N
i=1. Within this dataset, si = (G,C,E,V), while a∗i represents the branch decision of

Strong Branching strategy under st. To optimize the network, cross-entropy is used as a supervised
learning loss function

L(sup ) = − 1

N

∑
(si,a∗

i )∈D

log πθ (a
∗
i | si) (24)

In addition, to enhance the consistency in the probability distribution of variable selection between
the MILP and the AMILP, we incorporate consistency constraints. Specifically, we extract the prob-
ability distribution Pori and Paug of variables outputted by MILP and the AMILP, respectively. The
aim is to minimize the divergence between these two distributions, i.e.

L(Aux ) =

nbatch∑
i=1

(Pori (i)− Paug(i))
2 (25)

Finally, the final loss function by combining the three loss above is obtained

L = L(sup) + λ1L(infoNCE) + λ2L(Aux) (26)

Where λ1 and λ2 are hyperparameters used to adjust the weights between loss functions.

D EXPERIMENT DETAILS

D.1 EXPERIMENTAL SETTINGS

In this paper, all experiments are run on a cluster with Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
processors, 128GB RAM, and Nvidia RTX 2080Ti graphics cards.

D.1.1 DATA COLLECTION AND SPLIT

In our experiments, we conducted a systematic investigation of our model’s performance by cate-
gorizing each problem instance into three difficulty levels: Easy, Medium, and Hard, following the
established settings used in Gasse et al. (2019). Additional information about the instance data split
for each problem can be found in Gasse et al. (2019).

D.1.2 SOLVER CONFIGURATION

In our experiments, we employed the open-source solver SCIP (version 6.0.1) (Gleixner et al., 2018)
as our backend solver. We imposed a maximum solving time limit of 3600 seconds, allowing cut
generation operations solely at the root node while disabling solver restarts. To ensure a fair com-
parison among the methods, we maintained all other solver parameters at their default values Khalil
et al. (2016); Kilinç-Karzan et al. (2009); Matteo Fischetti (2012).

D.1.3 TRAINING PARAMETERS

In our experiments, we implemented models using PyTorch (Paszke et al., 2019) and PyTorch Geo-
metric (Fey & Lenssen, 2019). We utilized the Adam optimizer Kingma & Ba (2015) with β1 = 0.9
and β2 = 0.999. In case the model shows no significant improvement over a period of 10 epochs,
we applied a learning rate reduction to 20% of its initial value. We set the hidden layer size of
the GCNN network to 64. We conducted a grid search for the learning rate, considering values
from {1× 10−3, 5× 10−4, 1× 10−4}. Additionally, we selected the weight values λ1 = 0.05 and
λ2 = 0.01 for the loss function.
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D.1.4 METRICS

We evaluate performance using the shift geometric mean (SGM) for solving time and the geometric
mean of nodes for the number of B&B search tree nodes. The SGM is calculated for a set of
n numbers, denoted as t1, t2, . . . , tn, with s representing the shift. The SGM formula is given
by SGM = n

√∏n
i=1(ti + s) − s. In this context, smaller values for the solving time and node

count metrics indicate better performance, while a higher number of wins metric signifies superior
performance. In this paper, s is set to 1 for time and 100 for Nodes, following the previous work
(Gasse et al., 2019; Zarpellon et al., 2021).

D.2 ADDITIONAL RESULTS

Our results are also presented in a tabular format, available in Table 6 for imitation learning accuracy,
Table 7 and Table 8 for the ablation study. Additionally, we delve into the influence of varying the
training sample ratio on performance. Given that our proposed CAMBranch requires additional
computations compared to the original GCNN in Gasse et al. (2019), we also evaluated the training
overhead of these models.

Table 6: Imitation learning accuracy on the test sets of expert samples.
Model Set Covering Combinatorial Auction Capacitated Facility Location Maximum Independent Set

acc@1 acc@5 acc@10 acc@1 acc@5 acc@10 acc@1 acc@5 acc@10 acc@1 acc@5 acc@10

GCNN 70.39 ± 0.28 93.09 ± 0.14 98.40 ± 0.09 68.95 ± 0.32 92.79 ± 0.16 97.87 ± 0.09 61.70 ± 0.23 95.48 ± 0.12 99.68 ± 0.01 80.70 ± 0.72 92.78 ± 0.19 95.83 ± 0.22
GCNN (10 %) 58.98 ± 0.69 82.97 ± 0.52 91.61 ± 0.44 64.44 ± 0.90 90.37 ± 0.17 96.70 ± 0.08 59.20 ± 0.21 95.10 ± 0.08 99.68 ± 0.02 75.36 ± 0.45 90.84 ± 0.39 94.39 ± 0.30
CAMBranch 65.27 ± 3.92 89.46 ± 2.98 96.14 ± 1.90 67.85 ± 0.97 91.52 ± 0.50 97.14 ± 0.39 60.50 ± 0.30 95.24 ± 0.13 99.64 ± 0.01 80.38 ± 0.11 92.34 ± 0.20 95.47 ± 0.20

Table 7: Results of ablation experiments on imitation learning accuracy in Set Covering.

Type acc@1 acc@5 acc@10

CAMBranch w/o CL (10%) 64.75 ± 1.43 88.94 ± 1.31 96.16 ± 0.72

CAMBranch (10%) 65.27 ± 3.92 89.46 ± 2.98 96.14 ± 1.90

D.2.1 ANALYSIS OF IMPACT OF TRAINING SAMPLE RATIOS

To investigate the influence of training sample ratios, we conducted experiments using subsets com-
prising 5%, 10%, and 20% of the training data for both GCNN and CAMBranch. We evaluated their
performance on the Combinatorial Auction problem, and the results are summarized in Table 9. Our
observations indicate that as the problem’s difficulty level increases, the performance differences
among the training sample ratios become progressively obvious. Moreover, for both GCNN and
CAMBranch, their best performances are consistently achieved when the training sample ratio is set
at 20%, suggesting that leveraging a larger portion of data leads to performance improvement. Sim-
ilar trends are evident on the Maximum Independent Set problem (Table 10), especially in the Hard
level instances. As shown in Table 10, the performance on Hard instances improves with larger
sample sizes, with reduced solving time and a lower number of nodes. Notably, CAMBranch (20%)
achieved the highest number of solved instances in the Hard level, 49 instances in total, underscor-
ing its superiority. Furthermore, the comparison between the two methods reveals that CAMBranch
consistently outperforms GCNN across all three ratios, highlighting the superior capabilities of our
proposed CAMBranch framework.

Table 8: Results of ablation experiments on instance solving evaluation in Set Covering.

Model
Easy Medium Hard

Time Wins Nodes Time Wins Nodes Time Wins Nodes

CAMBranch w/o CL (10%) 6.55 77/100 202 66.09 22/100 2788 1472.84 23/49 69215
CAMBranch (10%) 6.79 23/100 188 61.00 78/100 2339 1427.02 32/55 66943
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Table 9: The results of sample ratio analysis on the instance solving evaluation for Combinatorial
Auction.

Model
Easy Medium Hard

Time Wins Nodes Time Wins Nodes Time Wins Nodes

GCNN (5%) 1.61 37/100 95 10.66 7/100 803 117.90 5/100 10692
GCNN (10%) 1.99 1/100 102 12.38 0/100 787 144.40 0/100 10031
GCNN (20%) 1.66 15/100 94 9.81 51/100 796 107.02 27/100 9626

CAMBranch (5%) 1.61 38/100 97 10.64 12/100 825 121.81 2/100 10582
CAMBranch (10%) 2.03 0/100 91 12.68 0/100 758 131.79 2/100 9074
CAMBranch (20%) 1.68 9/100 91 9.92 30/100 762 103.38 64/100 9050

Table 10: The results of sample ratio analysis on the instance solving evaluation for Maximum
Independent Set.

Model
Easy Medium Hard

Time Wins Nodes Time Wins Nodes Time Wins Nodes

GCNN (5%) 5.97 9/100 90 64.07 13/100 1824 607.48 2/39 16850
GCNN (10%) 7.18 0/100 103 51.40 37/100 1331 695.96 0/20 17034
GCNN (20%) 5.84 22/100 88 55.22 26/98 1534 465.00 16/43 12998

CAMBranch (5%) 5.85 65/100 92 70.91 3/100 1982 592.81 1/41 15480
CAMBranch (10%) 6.92 0/100 90 61.51 14/100 1479 496.86 1/40 10828
CAMBranch (20%) 6.19 4/100 95 68.47 7/100 2008 416.24 20/49 10455

D.2.2 ANALYSIS OF TRAINING OVERHEAD

Since our proposed CAMBranch introduces additional computation, we further assessed the training
overhead of CAMBranch and GCNN proposed in Gasse et al. (2019). Table 11 demonstrates that,
despite the introduced computation by CAMBranch, the observed difference in computational speed
is deemed acceptable—merely a matter of several milliseconds. In summary, the training overhead
associated with CAMBranch is within acceptable bounds.

E DISCUSSION

E.1 WHEN TO USE CAMBRANCH?

In this section, we further explore the scenarios in which CAMBranch is most effective. To this
end, we conducted the following experiments on Combinatorial Auction Problem to analyze the
relationships between performance and both the number of MILP instances and expert samples.
The results of these experiments are detailed in Table 12.

Impact of expert sample size. From experiment pairs (I, II), (III, IV), and (V, VI), we delve
into the relationship between performance and the number of expert samples, holding the number of
MILP instances constant. The results indicate that increasing the number of expert samples generally
enhances performance, as evident in pairs (I, II) and (III, IV). However, in scenarios with a relatively
small number of instances, such as (V, VI), augmenting expert sample size may not necessarily lead
to a performance increase.

Influence of MILP instance count. Examining pairs (I, III, IV) and (II, IV, VI), we further explore
the relationship between performance and the number of MILP instances, maintaining a consistent
expert sample size. The observations suggest a general trend of performance improvement with an
increase in the number of MILP instances.

Based on these observations, to answer the question of when to use CAMBranch, our initial con-
clusion is that CAMBranch demonstrates more potential when there is a sufficient number of MILP
instances, but not necessarily too large scale. Using several hundreds of MILP instances can already

21



Published as a conference paper at ICLR 2024

Table 11: Results of training time per batch of GCNN and CAMBranch on the Set Covering prob-
lem. Each batch contains 64 samples.

Model Training time per batch (s)

CAMBranch (10%) 0.09666
GCNN (10%) 0.09216

Table 12: Results for the impacts of expert sample size and MILP instance count.

Exp ID Training Data
Easy Medium Hard

Time Nodes Time Nodes Time Nodes

I 362 instances
10k expert samples 2.03 91 12.68 758 131.79 9074

II 388 instances
20k expert samples 1.68 91 9.92 762 103.38 9050

III 100 instances
10k expert samples 1.67 94 10.02 757 111.52 9242

IV 100 instances
20k expert samples 1.64 90 10.03 751 109.58 9195

V 50 instances
10k expert samples 3.25 98 20.58 796 158.24 9834

VI 50 instances
20k expert samples 3.18 97 20.59 819 166.02 10892

achieve superior performance. Moreover, increasing the number of expert samples provides benefits
for performance, as supported by our empirical findings.

E.2 RELATIONSHIP BETWEEN IMITATION LEARNING AND INSTANCE EVALUATION

In Section 4.2, we presented the results of various branching strategies. However, due to space
limitations, we aim to delve deeper into these results in this discussion section. Specifically, we’ll
focus on the relationship between the results of imitation learning accuracy and instance evaluation.

Regarding imitation learning accuracy, it’s notable that CAMBranch doesn’t consistently outperform
GCNN in imitating the Strong Branching strategy. However, when we shift our attention to instance
evaluation, CAMBranch exhibits superior performance in most cases, particularly on challenging
problems, with the exception of Set Covering. This intriguing observation prompts us to explore
the underlying reasons. Analyzing CAMBranch’s training signal, i.e., loss function, one possible
explanation is that contrastive learning empowers CAMBranch to transcend mere imitation of Strong
Branching. While Strong Branching often results in the creation of the smallest B&B trees due to
its tendency to produce high-quality branching decisions, it doesn’t guarantee an optimal branching
strategy. Recent studies by Scavuzzo et al. (2022), Dey et al. (2023), and Gamrath et al. (2020) have
even suggested that Strong Branching may underperform in certain cases, falling short of problem-
specific rules.

Within our CAMBranch framework, the introduction of contrastive learning offers a key advan-
tage. It enables CAMBranch to learn MILP representations better, allowing it to uncover alternative
branching strategies beyond Strong Branching. This means that CAMBranch can now explore and
learn from alternative policies that might yield better performance than Strong Branching, guided
by the contrastive learning loss function. Essentially, our proposed framework serves as a pathway
to learning potentially superior branching strategies, extending beyond the confines of merely imi-
tating Strong Branching. Therefore, this will enhance decision-making capabilities in the realm of
MILP solving. We will delve deeper into this aspect in our future research.
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F RELATED WORK

Learning to branch. The integration of machine learning techniques into branching strategies has
been a topic of growing interest, with Gasse et al. (2019) marking a significant breakthrough in this
domain, signifying a pivotal moment. Prior to this, conventional approaches in relevant literature
(Khalil et al., 2016; Alvarez et al., 2017; Balcan et al., 2018) often rely on extracting statistical
features from MILPs during the solving process. However, these feature extraction methods were
deemed incomplete for capturing the full essence of MILP problem instances. By contrast, the work
of Gasse et al. (2019) introduced a novel perspective by leveraging bipartite graphs to create more
accurate modeling of MILPs and trained models with imitation learning to approximate the Strong
Branching. Subsequent research efforts predominantly build upon the foundations laid by Gasse
et al. (2019). For instance, Gupta et al. (2020) proposed a hybrid model tailored for efficient branch-
ing on CPU-constrained machines. This model replaced computationally expensive graph networks
with more lightweight Multilayer Perceptrons (MLPs), except at the root node. Meanwhile, Nair
et al. (2020) achieved notable enhancements in both runtime performance and the average primal-
dual gap by introducing Neural Diving and Neural Branching techniques.

While these methods demonstrated impressive results, they were primarily designed for homoge-
neous MILPs, where training and test instances belong to the same problem class. In order to extend
the applicability to heterogeneous MILPs, where problem instances vary across different classes,
Zarpellon et al. (2021) and Lin et al. (2022) adopted approaches that parameterize the states of B&B
search trees. They achieved this by imitating the SCIP default branching scheme known as RPB, a
suitable expert policy renowned for its effectiveness in guiding search trees. For more comprehen-
sive insights into this field, readers can refer to related surveys by Khalil et al. (2017) and Zhang
et al. (2023).

Contrastive learning. Contrastive learning has emerged as a powerful paradigm in various ma-
chine learning domains. It has been successfully applied in computer vision (Chen et al., 2020a;
Falcon & Cho, 2020; He et al., 2020; Chen et al., 2020c;b; Caron et al., 2020; Grill et al., 2020;
Chen & He, 2021), natural language processing (Mikolov et al., 2013; Arora et al., 2019; Iter et al.,
2020; Fang & Xie, 2020; Giorgi et al., 2021), recommendation system (Yu et al., 2022) and drug
discovery (Xu et al., 2022). The core idea involves encouraging similarity between positive pairs
(similar data points) and pushing apart negative pairs (dissimilar data points) in a latent space. In
this paper, CAMBranch leverages the contrastive learning paradigm to maximize the utilization of
both MILPs and their corresponding AMILP data.

G MILP FORMULATION

Following Gasse et al. (2019), we evaluated the models on four combinatorial optimization prob-
lems, i.e., Set Covering, Combinatorial Auction, Capacitated Facility Location, and Maximum In-
dependent Set represent. These problem classes have served as standard benchmarks for evaluating
the efficacy of optimization techniques in the research community. Despite considerable attention
and research efforts, these problems remain computationally demanding, even for state-of-the-art
solvers. In the following sections, we provide detailed descriptions of the MILP models for each of
these problems.

(1) Set Covering: given a finite set U and its n subsets S1, · · · , Sn, the problem seeks to identify the
minimum number of subsets that can be used to cover U completely.

minimize
n∑

j=1

xj (27)

subject to
∑

j∈{1,··· ,n}|v∈Sj

xj ⩾ 1 ∀v ∈ U (28)

xj ∈ {0, 1} ∀j ∈ {1, · · · , n} (29)
where each xj is a decision variable. If the subset Sj is chosen, then xj = 1; otherwise xj = 0.
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(2) Combinatorial Auction: consider a scenario where there are n bids and m available. Each item
is associated with a subset Sj ⊆ {1, · · ·n} representing the bidders interested in that particular item.
The revenue generated by each bid i is denoted as bi. The Combinatorial Auction problem aims to
allocate the bids to maximize the expected return.

maximize
n∑

i=1

xibi (30)

subject to
∑
i∈Sj

xi ⩽ 1 ∀j ∈ {1, · · · ,m} (31)

xi ∈ {0, 1} ∀i ∈ {1, · · · , n} (32)
where each xi is a decision variable. If bid xi is selected, then xi = 1, otherwise xi = 0.

(3) Capacitated Facility Location: assuming there are m facilities and n customers, the goal is to
satisfy customers at a minimum cost. Let fi denote the cost of building facility i ∈ {0, · · · ,m}
and cij denote the transportation cost of products from facility i to customer j ∈ {0, · · · , n}. The
demand of customer j is dj > 0, and the capacity of facility i is ui > 0.

minimize
m∑
i=1

n∑
j=1

cijyij +

m∑
i=1

fixi (33)

subject to
m∑
i=1

yij = 1 ∀j ∈ {1, · · · , n} (34)

n∑
j=1

diyij ⩽ uixi ∀i ∈ {1, · · · ,m} (35)

yij ⩾ 0 ∀i ∈ {1, · · · ,m}, j ∈ {1, · · · , n} (36)

xj ∈ {0, 1} ∀j ∈ {1, · · · , n} (37)
where each Boolean variable xj and each continuous variable yij are decision variables. If facility
j is built, xj = 1, otherwise xj = 0. In addition, variable yij represents the percentage of demand
dj that is assigned to facility i.

(4) Maximum Independent Set: consider an undirected graph G = (V, E), wherein a subset S ∈ V
of nodes is deemed an independent set when no edges interconnect any couple of nodes within S.
The task at hand is to determine the largest possible number of independent sets in the graph G.

maximize
∑
v∈V

xv (38)

subject to xu + xv ⩽ 1 ∀(u, v) ∈ E (39)

xv ∈ {0, 1} ∀v ∈ V (40)
where each Boolean variable xv is a decision variable. If node v ∈ V is selected in the independent
set, then xv = 1, otherwise, xv = 0.
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