The Amazing Stability of Flow Matching
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Abstract

The success of deep generative models in generating high-quality and diverse
samples is often attributed to particular architectures and large training datasets. In
this paper, we investigate the impact of these factors on the quality and diversity
of samples generated by flow-matching models. Surprisingly, in our experiments
on CelebA-HQ dataset, flow matching remains stable even when pruning 50% of
the dataset. That is, the quality and diversity of generated samples are preserved.
Moreover, pruning impacts the latent representation only slightly, that is, samples
generated by models trained on the full and pruned dataset map to visually similar
outputs for a given seed. We observe similar stability when changing the archi-
tecture or training configuration, such that the latent representation is maintained
under these changes as well. Our results quantify just how strong this stability
can be in practice, and help explain the reliability of flow-matching models under
various perturbations.

1 Introduction

Diffusion models [29, 30] have driven tremendous advances in generative modeling over the past
few years [27, 14, 4, 20]. Flow-matching (FM) methods, an alternative to diffusion models [13],
promise several advantages in efficiency and simplicity while achieving competitive performance
[18, 19, 31, 1, 20]. Yet, training these models remains demanding both in compute and data, therefore,
tailoring a dataset to desired generative properties has the potential to significantly reduce the
computational cost. In this paper, we study the stability of FM under data perturbation, and develop
informed approaches to data pruning. Using standard metrics, we probe stability and find a surprising
result: even under strong perturbation of data and model architecture, trajectories initialized with the
same random noise evolve to visually similar samples.

For diffusion models, stability in generating high-dimensional realistic data has been observed in
several works: Kadkhodaie et al. [15] observed that diffusion models produce similar outputs under
the same seed when trained on two disjoint subsets of the data, arguing that different splits converge
to a similar geometry-aligned basis that follows image contours. Mlodozeniec et al. [23] confirmed
the stability phenomenon for diffusion models while studying data attribution, and report that the
likelihood remains nearly constant across models trained on 50% random subsets. However, this was
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not shown for FM models, nor was it shown how this invariance can be exploited to train diffusion
models on less data. Furthermore, in diffusion models, the objective is related to entropic-transport
optimization (Schrodinger bridge) [6], which is stable to data perturbations [11]. By contrast, the
flow-matching objective fits a velocity field u(x, t), whose ODE transports noisy latents towards a
clean manifold. While diffusion’s stability is theoretically grounded, the behavior of FM models
under data and architectural perturbations remains largely underexplored.

We empirically analyze the behavior of FM models trained on subsets of data and with different
architectures. We summarize our contributions as follows:

* We show that FM models are remarkably stable. The generated images are visually similar
under a wide variety of perturbations, including training on disjoint subsets of the dataset,
including random or informed methods, labael-based or label-agnostic clustering, swapping
of the entire dataset, as well as model architecture shrinkage. Each perturbation affects the
generated data semantically only minimally.

* Inspired by previous work in discriminative models, we introduce three informed data
pruning methods to FM models and study their influence qualitatively and quantitatively.

* Our proposed cluster-based resampling method that balances the distribution between
different clusters can even improve the evaluation metrics of the generated images.

2 Approach

We probe the stability of FM models under various perturbations to the training data distribution, as
well as the model architecture. Data perturbations include dataset pruning, where given a dataset .S,
we find a subset S’ C S using the pruning methods proposed in [5]. We (i) use a random subset as a
baseline, whose performance serves as a lower bound for methods that require computation; (ii) rank
based on a sample’s training signal: gradient norm or loss computed along shared noise paths and
timesteps; and (iii) cluster samples using their semantic features in a pretrained embedding space.
For each method, we also apply the inverse criterion, i.e. we select samples with the lowest scores
instead of the highest ones, and denote it by the superscript —1.

Pruning methods

Gradient-based scoring (Grad) . Under this strategy, we train a small surrogate model = 7% of the
full training schedule, and use it to estimate the gradient magnitude for each sample using M = 2
fixed random noisy samples and 7" = 8 timesteps, creating shared noise paths for all the samples and
decreasing the variance stemming from randomness. The gradient norms are then averaged over M
and T using exponential moving average (EMA) estimate per ¢t € 71" to remove large scale bias of
larger noise bands.
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where p4(t)) is the EMA estimate at timestep ¢, over samples and noise endpoints of the squared

gradient norm ||Vgf(z;; tg, xém))H% with respect to the model parameters 6, computed inside the

loop, and xém) are the shared noise endpoints. The computation is easily parallelizable, however, this

is an expensive method and we only apply it to gain insights into the effect of high-gradient samples
on the model. Since samples with a large gradient influence the learned velocity field, we expect
retaining them has a positive impact on the model.

Loss-based scoring (Loss). We apply the same setup used in Grad and define st similarly,
replacing | Vg/||3 by ¢ and 114 by pue.

Cluster-based scoring (Clust). We extract the image embeddings using the pretrained visual model
CLIP [26]). We then use k-means [22] to cluster the samples, producing groups that share similar
semantic characteristics. There are two criteria to consider here, (i) how many samples to select from
a cluster, and (ii) which samples. For (i), we select either a number proportional to the cluster size or
a balanced number, i.e. selecting an equal number of samples from each cluster. The first inherits
the underlying distribution imbalance, while the latter balances skewed datasets. For (ii), we score a
cluster’s population based on their distance from the cluster center, and select either those located



nearest to its center or furthest. The nearest samples form a representative subset retaining the core

characteristics of the distribution, while the furthest samples cover more difficult and scarce samples.
We refer to these variants as Clust;/ ;1, indicating nearest/furthest and proportional/balanced. In our

experiments, we choose k = 24 based on analysis of the clusters’ inertia.

3 Experiments

(b) DIT-XL/4 — DiT-S/2 — U-Net o () CelebHQ ~y FFHQ

Figure 1: Stability of the generated images. (a) We train the model on two disjoint random subsets of
the data, and obtain visually very similar images. (b) The data is split into two sets based on zero-shot
classification as male/female. Images we visually interpret as belonging to the retained partition are
semantically preserved, while images of the complementary class swap the semantic interpretation.
(c) Model capacity change from DiT-XL to DiT-S retains high similarity, while switching to a U-Net
architecture retains similarity to a lesser degree. (d) Changing the training dataset from CelebHQ to
FFHQ, while still using CelebHQ VAE, retains similarity too.
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(a) FID on CelebHQ with 4k generated samples at pr = 0.5. Random is averaged over 3 seeds.
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(b) ArcFace cosine similarity between each pruned model and Unpruned for pr = 0.5. N = 4k pairs matched
by seed are evaluated. Here, 4= denotes standard deviation over image pairs. Unmatched pairs yield 0.37 £0.11.

Experimental setup

We use the transformer-based architecture DiT [25], and replace diffusion with flow-matching
transport [9] (we name it FM-DiT), training a velocity field ug(x, t) along linear interpolants between
Gaussian noise and the data. We also train a vector-quantized variational autoencoder (VQ-VAE) [32]
using the same target dataset to encode the images, similar to Stable Diffusion [27]'. DiT is based
on a ViT-style transformer [8], which operates on image patches with global self-attention. For the
architectural change experiment, we additionally train a U-Net backbone [28], following multi-scale
convolutional encoder—decoder with skip connections as done in diffusion models [13, 27].

For quantitative evaluation, we report FID [12], which measures the Fréchet distance between feature
embeddings of the generated and training distributions. For quantifying FM stability, we measure

'Code and experimental details are available at https://github.com/briqr/fm_stability.
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ArcFace pairwise cosine similarity for faces [7], a standard embedding model for face identification.
Unpruned refers to the model trained on the full dataset. N = 4096 denotes the number of generated
samples. All experiments are carried out by training the respective models on the standard CelebHQ
dataset [16], which is based on CelebA dataset [21]. We acknowledge the imbalance in the dataset,
which can affect qualitative judgments and subgroups performance. We further emphasize that
features and attributes of human faces are subjective. All reported images are chosen from the same
sequence of random o ~ AN(0, I). The images were not hand-picked; we only selected a range
inside a longer sequence.

Stability tests

We investigate FM stability using several stress tests, including substantial data perturbation through
pruning and data swapping, and architectural changes either in the model capacity or architecture
design.

Disjoint subsets. In Fig. 1a, we train two FM model instances on two disjoint random subsets of
the data. When integrating the velocity field starting from the same random points xg, we observe
that the outputs are nearly identical. We quantify this consistency using ArcFace pairwise similarity,
and obtain stm = 0.69 £ 0.12 between N = 4096 sample pairs generated by both models, where +
denotes the standard deviation over pairs. For comparison, unrelated pairs yield siém = 0.34 £ 0.10.

Cluster removal. Fig. 1c depicts another experiment that alters the training data substantially. The
first FM model is trained on images classified as female by PaliGemma VLM [3], while the second on
images classified as male, yielding ArcFace similarity 0.76 £ 0.17 and 0.58 = 0.16 respectively. This
experiment is analogous to dropping an entire cluster or mode of the distribution. The results show
that apart from the removed cluster, the models continue to generate similar outputs, demonstrating
FM stability to mode removal. We want to acknowledge that we performed the binary split on the
gender attribute as a technical experiment, and that the societal concept and implications of gender
are clearly much more complex.

Data swapping. The experiment depicted in
Fig. 1d is the most extreme form of data alter-
ation. The FM model is trained on a differ-
ent but same-domain dataset, FFHQ [17], which
also comprises human faces. Even then, the out-
puts retain resemblance and we obtain ArcFace
similarity sim = 0.58 £ 0.15 (unrelated pairs
yield sim = 0.30 £ 0.10), indicating that with
a fixed latent space, a different but same-domain
dataset such as FFHQ lies on the same manifold
as CelebA-HQ, allowing FM models to continue
to learn similar trajectories with a matching seed.

Architectural change. Fig. 1b illustrates a differ-
ent type of stability tests. Instead of perturbing
the distribution, we train three model variants that
differ in their capacity or architecture. The first
two variants share the same transformer DiT archi-
tecture but differ in their size: DiT/XL-2 (675M
parameters, 24 layers) and DiT/S-4 (33M, 12 lay-
ers). The third variant is based on U-Net architec-

ture. The outputs were consistently similar under Figure 2: Stability of the generated images
model capacity change, retaining ArcFace similar- nder different pruning strategies and their in-
1ty. 0.81 +0.12, 1pdlcat1ng identity pres;ryahgn. verse, pr = 0.5. In order: Grad'/—', Loss*/ 1,
With the full architectural change, the similarity
drops to 0.55 + 0.13. While the drop is clearly €4S
more visible compared to capacity shrinkage, we

observe that the coarse attributes are preserved, which again hints at global stability.

Pruning strategies. In Fig. 2, we apply the proposed pruning methods and their inverse. Even
though Grad~—! (row 2) and Loss (row 3) produce artifacts, perceptually the images are similar to
the inverse method. We apply the pruning methods using pruning fraction pr = 0.5 and report the



results in table la. Random’s FID deteriorates slightly from Unpruned. Using Grad almost does
not change the FID, while its inverse (selecting lowest-grad samples) deteriorates significantly, as
expected when dropping samples most influencing the model’s weights. Selecting the highest-loss
samples (Loss) substantially worsens the FID, compared to discriminative models [24]. In FM, these
samples’ predicted velocity fields deviate from the target flow, which is typical of samples present
in low-density regions. Increasing these samples’ representation therefore would lead to adversely
impacting the flow. This explains why Loss~! has the opposite effect. Clust;, even improves the FID,
thanks to its uniform coverage across clusters, indicating that performance does not only depend
on the sheer amount of data, but also on how balanced the data is. Across pruned variants versus
their inverse, we obtain ArcFace cosine similarity in the range 0.72 — 0.74 4 0.13, compared to
0.37 £ 0.11 for randomly shuffled pairs, indicating that matched outputs remain much closer than
unmatched ones even when the training subsets are disjoint.

In table 1b, we quantify the stability of FM by comparing each pruned variant with Unpruned. We
compare N = 4096 pairs matched by seed and observe that all methods maintain high similarity
(above 0.79), compared to unrelated pairs (0.37 £ 0.12). This suggests FM models are very robust to
perturbation in their training set: even methods that degraded the performance in FID, such as Loss
and Grad~!, maintained high similarity with Unpruned.

4 Discussion and Outlook

We interpret our observation in terms of how well our model learns to approximate the true velocity
field. We observe that for models trained under various perturbations, when starting from the same
initial point x, the trajectories obtained by integrating the flow ODE end in points x; that are very
close, and decode to perceptually similar images.

Recent works have begun to investigate FM models’ ability in generalization, for example, Bertrand
et al. [2] show that learning using the derived closed-form of the velocity field [10] in the finite
data regime yields a similar performance as when using stochastic target u(z,t), suggesting that
stochasticity is averaged out and is therefore not the source of generalization. Our experiments on
stability are complementary to this view; despite extreme data perturbations and architectural changes,
trajectories starting from the same noise converge to nearby endpoints, suggesting their generalization
does not stem from a single factor.

We studied removing entire clusters within the data distribution. For this model, trajectories starting
from x( that would have ended up in endpoints in this cluster for a model trained on the full dataset,
were rerouted to different endpoints. The corresponding images are clearly different, while images
from retained clusters remain similar. In particular, trajectories sufficiently far away from the ones
influenced by excluded clusters are only weakly impacted. We interpret this as a global stability: The
flow field is only adjusted locally where necessary, while the global structure remains unaltered. This
stability when removing data systematically allows enables training models with less data.

We also show that dataset pruning can be performed with little negative impact, or even with positive
impact when done correctly. Some methods exhibit strong adverse effects, which hints at an intricate
interaction of the dataset choice and generalization of FM models. We believe that understanding
this interplay better is of high relevance for future powerful generative models trained on very large
amounts of data, and could improve their efficiency substantially.
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