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Clouds via 2D-3D Neural Calibration
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Abstract—This paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes.
Specifically, our approach, named NCLR, focuses on 2D-3D neural calibration, a novel pretext task that estimates the rigid transformation
aligning camera and LiDAR coordinate systems. First, we propose the learnable transformation alignment to bridge the domain gap
between image and point cloud data, converting features into a unified representation space for effective comparison and matching.
Second, we identify the overlapping area between the image and point cloud with the fused features. Third, we establish dense 2D-3D
correspondences to estimate the rigid transformation. The framework not only learns fine-grained matching from points to pixels but also
achieves alignment of the image and point cloud at a holistic level, understanding their relative pose. We demonstrate NCLR’s efficacy by
applying the pre-trained backbone to downstream tasks, such as LiDAR-based 3D semantic segmentation, object detection, and panoptic
segmentation. Comprehensive experiments on various datasets illustrate the superiority of NCLR over existing self-supervised methods.
The results confirm that joint learning from different modalities significantly enhances the network’s understanding abilities and
effectiveness of learned representation. Code will be available at https://github.com/Eaphan/NCLR.

Index Terms—Self-supervised Learning, 3D Perception, Cross-modal, Autonomous Driving.

✦

1 INTRODUCTION

THE LiDAR technology serves as a vital enhancement to
2D cameras by precisely capturing the surroundings of

a vehicle, offering robust performance in challenging con-
ditions, including low light, intense sunlight, or glare from
approaching headlights. This 3D perception, derived from
LiDAR point clouds, is essential for the effective navigation
of autonomous vehicles in three-dimensional spaces. While
current leading methods are based on extensive labeled
datasets, the process of labeling 3D data is exceedingly
expensive and time-intensive, given the limited availability
of annotation resources. Consequently, there is a growing
imperative to utilize unlabeled data. This approach aims to
minimize the need for extensive annotation while enhancing
the effectiveness of networks trained on a limited amount of
labeled data.

An effective strategy to tackle this challenge involves
initially pre-training a neural network solely on unanno-
tated data, for example, by employing a pretext task that
eliminates the need for manual labeling. Subsequently, this
self-supervised pre-trained network can be fine-tuned for
specific downstream tasks. Through thorough pre-training,
the network acquires initial weights that serve as a beneficial
foundation for additional supervised training. As a result,
training the network for a particular downstream task
generally demands fewer annotations to achieve comparable
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performance levels to those of a network trained from scratch.
The self-supervised approaches have been very successful
in 2D (images), even reaching the level of supervised pre-
training [1], [2].

A number of self-supervised approaches have also been
successful in the field of point cloud data processing. Several
methods explore different levels of representation (point-
level [3], [4], segment-level [5], region-level [6], [7]) and in-
troduce contrastive losses to capture the geometric and struc-
tural nuances of 3D data [8], [9]. Another class of methods
takes the temporal correlation as a form of supervision [10],
[11], [12]. For example, STRL [11] processes two adjacent
frames from 3D point cloud sequences. It transforms the
input with spatial data augmentation and learns an invariant
representation. And TARL [10] exploit vehicle movement to
match objects in consecutive scans. It then trains a model
to maximize the segment-level feature similarities of the
associated object in different scans, enabling the learning
of a consistent representation across time. Reconstruction-
based methods [13], [14] apply masked auto-encoding to
point cloud and reconstructed points coordinates using the
Chamfer distance. ALSO [15] proposes to use unsupervised
surface reconstruction as a pretext task to train 3D backbones.

Although multi-modal self-supervised learning holds
significant promise for point cloud applications, its poten-
tial has not been completely realized. Current approaches
predominantly utilize unlabeled data from synchronized
and calibrated camera-LiDAR setups to pretrain 3D back-
bones. The core strategy involves identifying correspond-
ing point-pixel pairs and ensuring their representations
closely align [16], [17], [18]. However, these methods face
two primary limitations: First, existing image-to-point self-
supervised learning methods only align the pixels and points
locally through contrastive learning, but ignore the holistic
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Fig. 1: Illustration of the proposed 2D-3D neural calibration
developed as the pretext task for self-supervised learning of
3D LiDAR point clouds. Our method not only learns the local
matching from points to pixels via contrastive losses, but
also estimates the (unknown) holistic rigid transformation
between camera and LiDAR systems. Besides, we propose
learnable transformation alignment to fill the domain gap
between the image and the point cloud.

spatial relationship between the image and point cloud.
Second, these methods neglect the inherent differences in the
characteristics of these distinct modalities when aligning the
corresponding features of pixels and points. As a result, their
performance is still limited.

In this paper, we introduce a novel pretext task, the 2D-
3D neural calibration, for the self-supervised pre-training of
networks for 3D perception in autonomous driving scenes,
as shown in Fig. 1. During pre-training, our pretext task not
only learns fine-grained matching from individual points to
pixels but also achieves a comprehensive alignment between
the image and point cloud data, i.e., understanding their
relative pose. Specifically, to impose supervision on the
rigid transformation estimation, we propose an end-to-end
differentiable framework distinguished by its integration of
a soft-matching strategy and a differentiable PnP solver. We
posit that this joint learning from different modalities for both
local and global-level alignment will enhance the network’s
capacity for sophisticated understanding and enable it to
develop effective representations. In addition, to fill the
substantial domain gap between point clouds and images,
we propose a learnable transformation alignment during
pre-training, replacing the direct cosine distance alignment.
This method converts features into a unified representation
space, allowing for more accurate feature comparison and
matching beyond the capabilities of cosine distance.

To evaluate our method, we carry out comprehensive
experiments and compare it against state-of-the-art studies
on downstream tasks, including 3D semantic segmentation,
object detection, and panoptic segmentation. The results
demonstrate that our method outperforms existing self-
supervised learning approaches, as evidenced by its superior
performance in adapting to various downstream tasks and
datasets [19], [20], [21], [22]. Fig. 2 shows that our pre-
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Fig. 2: Semantic and panoptic segmentation performance
comparison of our method against a recent self-supervised
learning method named SegContrast [5] and scratch training
on the SemanticKITTI dataset. Our approach achieves com-
parable results with only 10% annotated data, demonstrating
near-equivalent effectiveness to full dataset training from
scratch.

training method enables the network to reach performance
comparable to scratch training with fewer annotations for
downstream tasks.

To summarize, the main contributions of this work are as
follows:

• We introduce an innovative perspective to self-
supervised learning, centered on achieving a thor-
ough alignment between two distinct modalities.

• We identify the inherent domain gap between the
image and the point cloud and propose the learnable
transformation alignment for feature comparison.

• We propose an end-to-end network featured with the
soft-matching strategy and a differentiable PnP solver,
achieving state-of-the-art performance on the 2D-3D
neural calibration task.

• We demonstrate the superiority of our method over
existing self-supervised learning methods across three
distinct downstream tasks in 3D perception.

The rest of this paper is organized as follows. Section 2
provides an overview of related literature pertinent to our
research. In Section 3, we present the overall architecture
of NCLR and elaborate its principal elements. Section 4
presents an empirical evaluation of our proposed approach
across three distinct downstream tasks, along with ablation
studies to assess the impact of key components. The paper
concludes with Section 5, summarizing our findings.

2 RELATED WORK

2.1 Self-supervised Learning for Images

Self-supervised learning involves training models on unla-
beled data by generating pseudo-labels or tasks based on the
data itself, without human annotations. The model learns
representations by solving pretext problems derived from
the inherent structure of the unlabeled inputs. The field
of self-supervised learning on images has seen significant
evolution over the years. Initial approaches were centered
around pretext tasks, which are auxiliary tasks designed
to derive meaningful data representations. These tasks
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involved teaching models to restore color in black-and-white
images [23] and to ascertain the spatial relation between
image segments [24].

The advent of deep learning brought about a paradigm
shift in the field. One such approach is contrastive learn-
ing [25], [26]. Contrastive learning involves training networks
to distinguish between different augmentations of the same
image versus those from distinct images. It minimizes
the representation distance for augmentations of the same
image (positive pairs) while maximizing it for different
images (negative pairs). Generative models [2], [27] have also
emerged as a significant trend in self-supervised learning.
These models, often employing Variational Autoencoders
(VAEs) or Generative Adversarial Networks (GANs), learned
to generate images that closely resemble the training data.
By learning to generate images, these models captured the
underlying data distribution, which can be leveraged for
various downstream tasks. In addition to these, there have
been several exciting advancements in the field. Masked
image modeling, for instance, involves masking parts of an
image and training a model to predict the masked parts [28].
Multi-modal models aim to learn representations across
different modalities (e.g., text, image, audio) using self-
supervised learning. The Vision Transformer (ViT) adapted
the transformer architecture, initially developed for natural
language processing, to computer vision tasks [29]. Addition-
ally, there has been explored into incorporating physics-based
priors in self-supervised learning.

2.2 Self-supervised Learning for Point Clouds
The advances in self-supervision on point clouds have closely
followed the improvements made in images. Early self-
supervised methods used pretext tasks such as predicting
transformations applied to the point cloud or reconstructing
parts of the point cloud [30], [31]. These methods were
applied on dense scans of single objects [32], [33].

Discriminative-based Methods. This type of method ex-
plored different levels of representation (point-level [3],
[4], segment-level [5], region-level [6], [7]) and introduced
contrastive losses to capture the geometric and structural
nuances of 3D data [8], [9]. Nunes et al. introduced a
novel contrastive learning approach focused on under-
standing scene structure. This method involves extracting
class-agnostic segments from point clouds and employing
contrastive loss on these segments to differentiate between
structurally similar and dissimilar elements [5].

Temporal-consistency-based Methods. STRL [11] utilized
pairs of temporally-linked frames from 3D point cloud
sequences, applying spatial data augmentation to learn
invariant representations. STSSL [12] incorporated spatial-
temporal positive pairs, introducing a point-to-cluster tech-
nique for spatial object distinction and a cluster-to-cluster
method using unsupervised tracking for temporal correla-
tions. TARL [10] used vehicle motion to align objects over
time in different scans, focusing on enhancing segment-level
feature similarities for consistent temporal representations.
These works demonstrated how leveraging temporal infor-
mation can lead to robust and invariant representations,
which are beneficial for various downstream tasks.

Reconstruction-based Methods. Reconstruction-based meth-
ods have also been successful for self-supervision on point
clouds. Some methods reconstructed point coordinates us-
ing the Chamfer distance [13], [14]. Point-BERT randomly
masked some patches and fed them into Transformers to
recover the original tokens at the masked locations [34].
Recently, ALSO [15] proposed to use unsupervised surface
reconstruction as a pretext task to train 3D backbones on
automotive LiDAR point clouds. Using the knowledge of
occupancy before and after an observed 3D point along a
LiDAR ray, it learned to construct an implicit occupancy
function and good point features.

Multi-modal Self-supervised Learning Another line of work
leveraged synchronized and calibrated cameras and LiDAR
to pretrain a 3D backbone. The underlying idea is to find
pairs of corresponding points and pixels and ensure that the
associated point and pixel representations are as close as
possible [16], [17], [18].

2.3 LiDAR-based 3D Perception

LiDAR-based 3D perception is a critical component in many
applications, particularly in autonomous driving. It encom-
passes several tasks, including 3D semantic segmentation,
3D object detection, and 3D panoptic segmentation. Due to
space limitations, this paper only discusses the methods we
employed. For additional methodologies, we refer readers to
the review paper [35].

3D Semantic Segmentation. One of the foundational works
in this area is PointNet [36], which marked a significant
departure from previous methods by directly processing
point clouds for tasks like segmentation. MinkUNet adapted
the U-Net architecture for sparse 3D point clouds, using
Minkowski Engine for efficient segmentation [37]. SPVCNN
combined sparse and continuous convolutions for scalable
and efficient 3D point cloud segmentation [38].

3D Object Detection. Advancements in 3D object detection
have led to its categorization into voxel-based, point-based,
and hybrid methods [39], [40], [41], [42]. Voxel-based tech-
niques convert point clouds into uniform grid structures
for feature extraction using sparse convolutions [43], [44].
Point-based methods directly handle raw 3D point clouds
to make predictions. Hybrid models, such as PV-RCNN [45]
and PDV [46], merge the advantages of both voxel and point-
based approaches, optimizing both accuracy and efficiency
in detection.

3D Panoptic Segmentation. The task requires a holistic
understanding of both objects and scenes. Hong et al. intro-
duced the Dynamic Shifting Network (DS-Net) as a potent
framework for panoptic segmentation in the field of point
clouds [47]. This approach utilized cylinder convolution tai-
lored for LiDAR data. The features derived were concurrently
used by both the semantic and instance branches, functioning
through a bottom-up clustering approach.
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Fig. 3: The overall pipeline for 2D-3D neural calibration serves as a pretext task for generating self-supervised representation
for LiDAR 3D point cloud data. This process involves four key steps: (1) Feature extraction from both the image and point
cloud. (2) Detection of overlapping areas using fused features from both modalities. (3) Transformation of image and point
cloud features into a unified representation space for similarity computation. We filter the points and pixels in estimated
non-overlapping areas. (4) Application of a soft-matching strategy to establish 2D-3D correspondences, followed by the use
of a differentiable EPnP solver for camera pose estimation.

3 PROPOSED METHOD

3.1 Overview
We propose a novel approach to generating self-supervised
features for 3D point clouds, utilizing the 2D-3D neural
calibration as a pretext task. The 2D-3D neural calibration
aims to identify the unknown rigid transformation, com-
prising a rotation R ∈ SO(3) and a translation t ∈ R3,
through a neural network. This transformation aligns the
coordinate systems of the camera and the point cloud. We
denote the input image as I ∈ R3×H×W and point cloud
as P = {pi ∈ R3|i = 1, 2, ..., N}, where H and W are the
height and width of the image, and N is the number of points.
To achieve effective representations, our pre-training method
not only learns fine-grained matching from points to pixels
but also achieves alignment of the image and point cloud at
a holistic level, i.e., understanding their relative pose. Then
the point cloud backbone could be used for downstream 3D
perception tasks.

Fig. 3 illustrates our overall framework. Initially, we
extract features from both the image and point cloud using
dedicated backbones. Next, we identify overlapping regions
in both the image and point cloud leveraging the fused
features, as overlaps between them are partial. Subsequently,
a learnable transformation is applied to harmonize the image
and point cloud features into a single representation space
before similarity computations between them. The final step
involves employing a soft-matching approach to establish
2D-3D correspondences. These correspondences are inputted
into a differentiable EPnP solver for camera pose estimation.
The proposed framework is designed to be end-to-end
trainable.

3.2 Feature Extraction
Both the image and point cloud branches employ an encoder-
decoder structure. After the encoder stage, we fuse the down-

sampled 2D feature map and sampled keypoint features to
combine these diverse features into a unified representation.

Transformer-based Feature Fusion. We perform bidirectional
feature fusion based on the attention mechanism. We de-
note the downsampled 2D feature map after encoder as
FI

E ∈ RHE×WE×CE and features of sampled keypoints as
FP

E ∈ RNE×CE . Each fusion layer comprises three compo-
nents: firstly, a multi-head self-attention layer for image
and point features; secondly, a multi-head cross-attention
layer that refines each domain’s features using data from the
other; and thirdly, a point-wise feed-forward network. These
cross-attention layers facilitate the model’s understanding
of interrelations and complementary aspects across diverse
data types. To incorporate the positional information, we add
sinusoidal position encoding to the inputs of transformer
layers [48]. Then the fused features are passed to the decoders
to obtain higher-resolution feature maps. The outputs of
decoder are features FI ∈ RH′×W ′×C and FP ∈ RN×C .

Note that our framework is effective for not only point-
based but also voxel-based backbone for the point cloud
branch. If we need to pre-train a voxel-based backbone for
downstream tasks, we can incorporate it and obtain the final
point features by aggregating the voxel-wise features and
fine-grained point-wise features.

3.3 Feature Discrimination
Building dense point-to-pixel correspondences relies on
learning discriminative features. Previous work [49] simply
uses the cosine distance as descriptor loss to bring point
and image features of positive pairs closer and those of
negative pairs farther apart. The loss function drives the
matching features to be similar. Although such a method
tries to minimize the distribution gaps between the two
different modalities by feature fusion, it is impossible to fully
eliminate such discrepancy.
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Fig. 4: Visual illustration of t-SNE clustering for image
and point cloud features as learned by the model, shown
(a) without and (b) with the incorporation of learnable
transformation alignment.

To align the two modalities, we apply an InfoNCE [50]
loss on the fused features. Specifically, we sample a subset of
points PS inside the overlapped areas with the RGB image,
then we can compute the InfoNCE loss for these points as:

LP
f = −Epi∈PS

log f(pi, Ipi
)

f(pi, Ipr(i)) +
∑

I−
pr(i)

f(pi, I
−
pr(i))

 ,

(1)
where pr(i) is the index of pixel corresponding to point pi,
Ipr(i) and I−pr(i) denote pixels that match and do not match
point pi, respectively. These pairs are determined according
to the distance between the projection of points and pixels
on the image plane. We denote the positive and negative
margins as rp and rn.

Here, we adopt the log-bilinear model for f(·, ·) following
[50]. To address the disparity in features between different
modalities, we implement a learnable linear transformation
(LTA) on the features from both modalities before computing
the dot product. This approach is chosen over the tradi-
tional method of calculating feature similarities using cosine
distance directly. The formula is expressed as:

f(pi, Ij) = e(F̃
p
i Wf F̃

I⊤
j )/τ = e(F̃

p
i QDQ⊤F̃I⊤

j )/τ , (2)

where Wf represents a learnable linear transformation
matrix, τ is the temperature factor, and QDQ⊤ is the
decomposition result of Wf , F̃I and F̃P denote normalized
image and point features. In the implementation, we ensure
the symmetry of Wf such that it can be decomposed
according to the properties of spectral decomposition. And
computing similarities between features, i.e., F̃p

i Wf F̃
I⊤
j , is

facilitated to be bidirectional. Similarly, we can obtain the
discriminative loss LI

f for the image. This method, termed
learnable transformation alignment, enables the alignment
of features across different modalities through a learnable
transformation.

We illustrate the learned features using cosine distance
and learnable transformation alignment, respectively, in
Fig. 4. We can observe that it is non-trivial to drive the
matching 2D and 3D features to be similar with respect to
cosine distance due to the inherent domain gap between
point clouds and images. In contrast, when we use the learn-
able transformation alignment for computing similarities
during training, the 2D and 3D features are closer and evenly

distributed in the transformed unified representation space.
We further analyze the effect of learnable transformation
alignment in Section 4.5.

3.4 Building Dense Correspondence
Overlapping Area Detection. In our 2D-3D neural calibra-
tion framework, an essential component is overlapping area
detection. Due to differences in the operational principles
and the field of view of the camera and LiDAR sensors,
the image and point cloud do not perfectly overlap. This
module is responsible for identifying regions where the
point cloud and image data overlap [49]. Accurate detection
of these overlapping areas is crucial for effective feature
alignment and calibration accuracy. Specifically, we detect
the overlapping areas for input images and point clouds
based on their corresponding fused features FI and FP [49].
We denote the SP and SI as the predicted probabilities of
points and pixels in overlapping areas, respectively.

The points and pixels with scores higher than pre-set
thresholds are considered inside the overlapping areas. We
denote the estimated points and pixels in the overlapping
areas as Po ∈ RNP×3 and Io ∈ RNI×3, where NP and NI are
the number of points and pixels in the overlapping area.

During the training phase, the model supervises pre-
dicted overlap scores through binary cross-entropy loss. The
loss function of overlapping area detection is defined as
follows:

Lo =− 1

N

N∑
i=1

[
Io(i) log(SP

i ) + (1− Io(i)) log(1− SP
i )

]

− 1

H ′ ×W ′

H′×W ′∑
j=1

[
Io(j) log(SI

j) + (1− Io(j)) log(1− SI
j)
]
,

(3)
where Io() is an indicator function that equals 1 if the point
pi or pixel Ij is in the overlapping area and 0 otherwise.

Soft Matching. Previous work simply applies the hard
assignment strategy, i.e., non-differentiable argmax operation,
to build correspondences between the points and pixels, i.e.,
assigning points in the overlapped area to the pixels most
similar to them [49]. To make the overall framework end-
to-end differentiable, here we predict the location of points
in the image plane as a weighted sum of the target pixel
coordinates:

ĈP
i =

∑
Ij∈Io

wij ·CI
j , (4)

where ĈP
i represents the predicted coordinate of the point

cloud point pi in the image plane, and CI
j denotes the 2D

coordinate of the j-th pixel. The weight wij signifies the
feature similarity between the point pi and the pixel Ij , and
is calculated based on the soft assignment principle:

wij =
exp(F̃p

i Wf F̃
I⊤
j )∑

Ik∈Io
exp(F̃p

i Wf F̃I⊤
k )

. (5)

This softmax-based weighting scheme ensures that the
contribution of each pixel to the final predicted point location
is proportional to its similarity with the point cloud point.
Using the softmax function in this context allows for a
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differentiable and probabilistic approach to assigning cor-
respondences, as opposed to the hard assignment methods
used in previous works.

3.5 Estimation of Rigid Transformation

The final module in our framework estimates the rigid
transformation based on the soft matching results computed
in Section 3.4. The neural calibration problem is defined
as determining the rigid transformation {R, t} that best
maps points in overlapping areas Po onto the estimated 2D
coordinates in the image plane, i.e.,

R̂, t̂ = argmin
R,t

∑
pi∈Po

[
K(Rpi + t)− ĈP

i

]
. (6)

In this paper, we solve Eq. (6) using a differentiable EPnP
algorithm [51].

The rigid transformation estimation is optimized by the
loss function defined as:

Lp =
∥∥∥R⊤

gtR̂−E
∥∥∥
H
+

∥∥∥tgt − t̂
∥∥∥
H
, (7)

where ∥·∥H is the Huber-loss, {Rgt, tgt} indicates the
ground-truth pose, E is an identify matrix.

3.6 Training Pipeline

Initially, each pair of an image and a point cloud is associated
with a relative pose, denoted as {Rraw, traw}. Since the
camera and LiDAR sensors are fixed in a relatively close
position of the cars, the original transformation from the
camera coordinate to the point cloud coordinate is similar. To
avoid the network overfitting to such scenarios, we simulate
a range of sensor placements and orientations by applying
random rotation Rr and translation tr to the original point
cloud during the pre-training process. The ground-truth pose
is recalculated to accommodate these adjustments:

tgt = traw −Rrawtr,

Rgt = RrawR
−1
r .

(8)

Our network is trained end-to-end, with supervision from
the ground truth poses {Rgt, tgt}. The loss function is a
weighted sum of three components: L = λfLf+λoLo+λpLp.
These components are weighted as follows: λf = 1.0, λo =
0.5, and λp = 0.2. This training strategy ensures that our
network learns to accurately estimate poses under varied
conditions, enhancing the generalizability and effectiveness
of learned representation.

4 EXPERIMENTS

In this section, we begin with an overview of the datasets and
evaluation metrics in Sec.4.1. Following this, Sec.4.2 to Sec.4.4
detail the experimental setup and the fine-tuning results for
three downstream tasks. Subsequent sections, Sec.4.5 and
Sec.4.6, delve into comprehensive ablation studies and in-
depth analyses to assess critical aspects of our framework.
Finally, we explore the reasons why the pre-text task is
effective in Sec 4.8.

4.1 Dataset

In this part, we briefly describe the datasets used for pre-
training and fine-tuning downstream tasks.

SemanticKITTI (SK) dataset contains RGB image and point
cloud data pairs from KITTI scenes for the task of urban
scene semantic segmentation [19]. The data is collected
from sensor systems mounted on a car, comprising over
200,000 images and corresponding point clouds from 21
different scenes/sequences. The images and point clouds
are synchronized to ensure a fixed relative transformation.
The original images have a resolution of 1241x376 pixels.
Each point cloud contains approximately 40,000 3D points.
Following common practice, the dataset is split into a training
set using the 10 sequences and a validation set using the
eighth sequence.

KITTI 3D Object Detection Dataset (KITTI3D) is a pre-
vailing collection of data specifically designed for 3D object
detection in advancing autonomous driving technology [20].
The dataset is collected from various urban and suburban en-
vironments under different weather and lighting conditions.
Each sample contains two modalities of 3D point clouds
and RGB images. The LiDAR sensor used in the KITTI
dataset is a Velodyne HDL-64E LiDAR. The FOV of the
camera in the KITTI dataset aligns closely with the range
of the LiDAR sensor, ensuring comprehensive coverage of
the surroundings of the vehicle. Additionally, the dataset
provides calibration information between the camera and the
LiDAR sensor, which is essential for tasks that require the
fusion of data from different sensors. The dataset includes
several types of objects commonly encountered in driving
scenarios, such as cars, pedestrians, and cyclists. Each object
in the dataset is annotated with a 3D bounding box, which
provides precise information about the object’s location,
orientation, and dimensions in the 3D space. Following
common practice, we further split all training samples into
a subset with 3712 samples for training and the remaining
3769 samples for validation. We evaluate the performance
by the Average Precision (AP) metric under IoU thresholds
of 0.7, 0.5, and 0.5 for car, pedestrian, and cyclist categories,
respectively. We computed APs with 40 sampling recall
positions by default, instead of 11.

NuScenes Dataset is comprised of driving footage captured
in Boston and Singapore using a vehicle outfitted with a 32-
beam LiDAR sensor and other sensors [21]. Equipped with
a full suite of sensors typical of autonomous vehicles, the
dataset features a 32-beam LiDAR system, six cameras, and
radar units, all providing a complete 360-degree coverage.
The creators provide 850 total driving scene snippets, seg-
mented into 700 training scene samples and 150 validation
scene samples for the purposes of benchmarking models.
Each of these scenes spans a duration of 20 seconds and
is annotated at a frequency of 2Hz. The dataset provides
detailed annotations for multiple object classes, such as
vehicles, pedestrians, bicycles, and road barriers. Each object
is annotated with a 3D bounding box, along with attribute
information like visibility, activity, and pose. It has also been
extended to include capabilities for semantic segmentation
and panoptic segmentation, known as nuScenes-seg.
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In an effort to enable fair evaluations against previously
published models, we make use of 600 of the 700 training
scenes to pretrain our model, reserving the leftover 100
training scenes to calibrate hyperparameters. After this
tuning period, model performance is measured using the full
150 validation scenes provided in the dataset. This validation
set therefore functions as our test set. It is useful to note
that the nuScenes data includes LiDAR sweeps that have not
been manually annotated - the sensors record at 20 Hz, while
human annotations are only provided for every 10th LiDAR
sweep. These unannotated scans could be utilized in a self-
supervised manner to pretrain models. However, to stay
consistent with prior work, we only leverage the annotated
scans during our pre-training phase, while ignoring the
annotations themselves. After pretraining, we fine-tune our
model on various subsets of the 700 scene in the training
set. More specifics on this precise evaluation protocol can
be found in these published benchmark papers [21]. In
our experiments, we follow this same protocol to allow for
standardized comparisons.

SemanticPOSS Dataset is a valuable asset for 3D seman-
tic segmentation studies [22], consisting of 2988 diverse
and complex LiDAR scans featuring numerous dynamic
instances. Collected at Peking University, it conforms to
the SemanticKITTI data format. This dataset is especially
relevant for autonomous driving research, encompassing 14
categories like people, riders, and cars. In line with the official
evaluation guidelines, the third sequence is designated as
the validation set, while the remaining sequences form the
training set.

4.2 Semantic Segmentation

Network Architectures. In order to assess the versatility
of our method across various architectures and ensure an
equitable comparison with prior studies, we conducted
experiments using multiple backbone networks. Our tests
included two versions of MinkUNet [37], along with Re-
sUNet18 applied to SemanticKITTI, ResUNet34 for nuScenes,
and the SPVCNN [38]. For the image branch, we utilize the
ResNet backbone with the FPN structure to extract features.
During the fine-tuning process for semantic segmentation,
the image branch is omitted, and we substitute the final
layer of the point cloud backbone. This replacement involves
introducing a new fully-connected layer, designed with
the channel matching the number of segmentation classes.
This modification facilitates per-point predictions specifically
adapted for the segmentation task at hand.

Pre-training Protocol. We pre-train the backbones for 50
epochs with a total batch size of 32 distributed across 8 GPUs
for SemanticKITTI, and a batch size of 16 distributed on 4
GPUs for nuScenes dataset. We train the network with the
AdamW optimizer [52], a learning rate of 0.001, a weight
decay of 0.001, a temperature hyperparameter τ of 0.07
in Eq. (2), and a cosine annealing scheduler. During the
pre-training process, all points, including those labeled as
“ignore” are taken as input, and those not labeled points are
filtered out for downstream fine-tuning. The input range on
the x-y plane is [-51.2m, 51.2m] and [-3m, 1m] on the z-axis.
Point clouds are voxelized with a grid size of 0.05m and
0.1m for SemanticKITTI and nuScenes datasets, respectively.
During training, the image size is resized to 160x512 and
160x320 for SemanticKITTI and nuScenes, respectively. The

TABLE 1: Results of semantic segmentation models fine-tuned on three distinct datasets. This comparison considers the
quantity of annotated data, the dataset employed for pre-training, and variations in model architecture. Our analysis
contrasts NCLR with a baseline that lacks pre-training and other contemporary self-supervised methods, using the mean
Intersection over Union (mIoU) percentage metric.

Dataset Backbone Method 0.1% 1% 10% 50% 100%

nuScenes [21]

MinkUNet [37]

No pre-training 21.6 35.0 57.3 69.0 71.2
PointContrast [3] 27.1 +5.5 37.0 +2.0 58.9 +1.6 69.4 +0.4 71.1 -0.1
DepthContrast [8] 21.7 +0.1 34.6 -0.4 57.4 +0.1 69.2 +0.2 71.2 0
ALSO [15] 26.2 +4.6 37.4 +2.4 59.0 +1.7 69.8 +0.8 71.8 +0.6
NCLR (Ours) 26.6 +5.0 37.8 +2.8 59.5 +2.2 71.2 +2.2 72.7 +1.5

SPVCNN [38]
No pre-training 22.2 34.4 57.1 69.0 70.7
ALSO [15] 24.8 +2.6 37.4 +3.0 58.4 +1.3 69.5 +0.5 71.3 +0.6
NCLR (Ours) 25.8 +3.6 37.8 +3.4 59.2 +2.1 71.0 +2.0 73.0 +2.3

SemanticKITTI [19]

MinkUNet [37]

No pre-training 30.0 46.2 57.6 61.8 62.7
PointContrast [3] 32.4 +2.4 47.9 +1.7 59.7 +2.1 62.7 +0.9 63.4 +0.7
DepthContrast [8] 32.5 +2.5 49.0 +2.8 60.3 +2.7 62.9 +1.1 63.9 +1.2
SegContrast [5] 32.3 +2.3 48.9 +2.7 58.7 +1.1 62.1 +0.3 62.3 -0.4
ALSO [15] 35.0 +5.0 50.0 +3.8 60.5 +2.9 63.4 +1.6 63.6 +0.9
TARL [10] 37.9 +7.9 52.5 +6.3 61.2 +3.6 63.4 +1.6 63.7 +1.0
NCLR (Ours) 39.2 +9.2 53.4 +7.2 61.4 +3.8 63.5 +1.7 63.9 +1.2

SPVCNN [38]
No pre-training 30.7 46.6 58.9 61.8 62.7
ALSO [15] 35.0 +4.3 49.1 +2.5 60.6 +1.7 63.6 +1.8 63.8 +1.1
NCLR (Ours) 38.8 +8.1 52.8 +6.2 61.1 +2.2 64.0 +2.2 64.1 +1.4

SemanticPOSS [22] MinkUNet [37]

No pre-training 36.9 46.4 54.5 55.3 55.1
PointContrast [3] 39.3 +2.4 48.1 +1.7 55.1 +0.6 56.2 +0.9 56.2 +1.1
DepthContrast [8] 39.7 +2.8 48.5 +2.1 55.8 +1.3 56.0 +0.7 56.5 +1.4
SegContrast [5] 41.7 +4.8 49.4 +3.0 55.4 +0.9 56.2 +0.9 56.4 +1.3
ALSO [15] 40.7 +3.8 49.6 +3.2 55.8 +1.3 56.4 +1.1 56.7 +1.6
NCLR (Ours) 41.7 +4.8 49.8 +3.4 56.0 +1.5 56.6 +1.3 56.7 +1.6
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Fig. 5: Qualitative analysis of semantic segmentation on SemanticKITTI: fine-tuning performance with 1% of annotated
training data. We highlight some areas that are easily misclassified with red circles.

point clouds undergo random transformations, including
rotation around the z-axis and 2D translation in the x-y plane,
where the rotation angle and translation of each direction
uniformly drawn from [-π, π] and [-15m, 15m], respectively.

Downstream Fine-tuning Protocol. Following the pre-
training phase, we fine-tune the neural network backbones
specifically for the task of semantic segmentation. This
fine-tuning is conducted on selected data subsets from the
SemanticKITTI and nuScenes datasets. We adhere to the
fine-tuning hyperparameters and dataset splits as detailed
in ALSO [15]. In the case of nuScenes, we implement a
batch size of 8, and for SemanticKITTI, we opt for a smaller
batch size of 2. The final per-point scoring is determined by
assigning each point the prediction of the voxel in which it
is located. It should be noted that the epoch count varies in
relation to the percentage of training data used: for 0.1% of
the data, 1000 epochs are used; for 1%, it’s 500 epochs; 100
epochs are applied to 10% of the data; 50 epochs for 50%;
and 30 epochs when training with the full dataset.

Quantitative Evaluation Results. Table 1 presents the
experimental results experiments on fine-tuning semantic
segmentation models using three distinct datasets: nuScenes,
SemanticKITTI, and SemanticPOSS. We observe that NCLR
consistently outperformed other methods across different
data volumes, showing particularly strong gains over the
baseline training from scratch. For instance, with 0.1% of the
data, NCLR achieved a 5.0% and 3.6% improvement in mIoU
over the baseline for MinkUNet and SPVCNN, respectively.
Similarly, NCLR demonstrated substantial improvements on
the SemanticKITTI dataset, especially with limited training
data. For MinkUNet, it showed a 9.2% increase in mIoU
with just 0.1% of the data compared to the baseline. Similar

trends were observed with SPVCNN. In the SemanticPOSS
dataset, NCLR exhibits superior performance compared to
traditional non-pre-trained models and other self-supervised
approaches. The improvement is consistent across all data
levels, demonstrating the generalization and effectiveness
of NCLR in learning useful representations for 3D semantic
segmentation tasks.

Qualitative Results. Fig. 5 illustrates qualitative results
derived from various methods. Our self-supervised pre-
training method produced more accurate segmentation re-
sults compared to other self-supervised learning approaches.
The segmentation results from our method contain more
precise boundaries and finer details. Specifically, it achieved
better performance at distinguishing between visually similar
object classes like the road and sidewalk.

4.3 3D Object Detection

Network Architectures. In the downstream 3D object detec-
tion task, we explore two prevalent network architectures:
the SECOND [44] and PV-RCNN [45] object detectors. Both
architectures are built upon a shared foundational design,
which includes a 3D sparse encoder. This encoder processes
the input voxels through 3D sparse convolutional operations.
In addition, they incorporate a bird’s-eye-view encoder
(termed the 2D-backbone), which is activated post BEV
projection. The key difference between them lies in their
respective detection heads. SECOND employs a region pro-
posal network (RPN) directly on the 2D backbone, whereas
PV-RCNN enhances the RPN predictions through point-level
refinement. This refinement leads to more accurately defined
bounding boxes and improved confidence estimations.
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TABLE 2: Comparisons between our method and other self-supervised learning methods fine-tuned on the KITTI3D dataset.
We report the AP evaluated with 40 recall positions on the val set of the KITTI3D dataset. Note ProposalContrast [7] is
specifically tailored for 3D object detection and pre-trained with the large-scale Waymo dataset.

Detector Pre-training
Schedule

Car Pedestrian Cyclist AvgEasy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SECOND
Scratch 90.20 81.50 78.61 53.89 48.82 44.56 82.59 65.72 62.99 67.65
ALSO [15] 90.20 81.53 78.83 57.30 53.21 48.32 82.92 69.12 64.57 69.56
NCLR (Ours) 90.23 81.99 79.05 59.20 54.75 49.32 83.64 70.16 65.13 70.38

PV-RCNN

Scratch 91.74 84.60 82.29 65.51 57.49 52.71 91.37 71.51 66.98 73.80
ALSO [15] 92.15 84.85 82.59 65.63 57.83 53.14 91.81 73.85 69.71 74.62
STRL [11] - 84.70 - - 57.80 - - 71.88 - -
PointContrast [3] 91.40 84.18 82.25 65.73 57.74 52.46 91.47 72.72 67.95 73.99
ProposalContrast [7] 92.45 84.72 82.47 68.43 60.36 55.01 92.77 73.69 69.51 75.49
NCLR (Ours) 92.43 84.86 82.58 67.89 60.48 55.47 92.45 74.05 70.29 75.61

TABLE 3: The results (mAP) for models fine-tuned with
varying quantities of annotated data. These results specifi-
cally reflect the performance in 3D object detection under
moderate difficulty conditions on the validation set of the
KITTI3D dataset.

Ratio Detector Pre-training
Schedule Car Ped. Cyc. mAP (%)

10%
SECOND Scratch 75.02 40.53 46.09 53.88

NCLR (Ours) 76.57 42.69 49.69 56.31(+2.43)

PV-RCNN Scratch 79.65 51.42 61.06 64.04
NCLR (Ours) 82.32 55.95 62.52 66.93(+2.89)

20%
SECOND Scratch 78.12 42.35 60.97 60.48

NCLR (Ours) 79.17 44.62 64.78 62.85(+2.37)

PV-RCNN Scratch 82.37 53.70 67.31 67.79
NCLR (Ours) 82.56 57.29 69.92 69.92(+2.13)

50%
SECOND Scratch 80.84 46.55 64.02 63.81

NCLR (Ours) 81.80 49.38 66.27 65.81(+2.00)

PV-RCNN Scratch 82.45 56.87 70.36 69.89
NCLR (Ours) 82.95 58.91 73.67 71.84(+1.95)

Pre-training Protocol. In alignment with the requirements
of downstream detection tasks, we process the point clouds
through a voxelization step. This involves setting the grid
size to [0.05m, 0.05m, 0.1m] along the x, y and z axes
respectively. The maximum number of non-empty input
voxels is limited to 60,000. The raw image is resized to (512,
160) as input. We utilize the default AdamW optimizer. The
settings of the optimizer include a peak learning rate of
0.001 and a weight decay factor of 0.001. Cosine learning
rate schedule [53] is adopted. We pretrain the backbone
for 50 epochs on SemanticKITTI dataset with a batch size
of 8 on a single GPU. Regarding the configuration of the
VoxelNet backbone [43], we ensure consistency by employing
parameters identical to those used in the corresponding 3D
object detectors.

Downstream Fine-tuning Protocol. In the subsequent stage,
the detection module from either SECOND or PVRCNN
is integrated with the pre-trained neural network, and the
combined detector is further fine-tuned on the KITTI3D
dataset. This process utilizes the OpenPCDet framework1,
specifically its implementation of these detectors, along

1. https://github.com/open-mmlab/OpenPCDet

with the standard training parameters provided by Open-
PCDet. Consistent with the methodology outlined in a prior
study [15], this fine-tuning process is repeated three times
independently, and the highest mean Average Precision
(mAP) achieved on KITTI3D’s validation set is recorded
and presented.

Quantitative Evaluation Results. We evaluate the trans-
ferability of our pre-trained model by first pre-training on
the SemanticKITTI dataset and subsequently fine-tuning on
the KITTI3D dataset. We report the experimental results in
Table 2. It is evident that our approach consistently surpasses
the baseline established by training from scratch, achieving
an enhancement for both SECOND and PV-RCNN. With our
pre-training method, the performance improves, particularly
in the Pedestrian and Cyclist categories, reaching an average
mAP of 70.38%. Our method performs comparably to state-of-
the-art models like ProposalContrast [7], which is specifically
tailored for detection tasks and pre-trained with the large-
scale Waymo dataset.

One of the primary benefits of self-supervised learning
lies in its ability to improve the performance of downstream
tasks when the annotation source is limited. To further assess
this aspect, we evaluated our method in label-efficient 3D
object detection. We consider a model trained from a state
of random initialization as our standard for comparison.
The superiority of our pre-trained model compared to this
standard is detailed in Table 3. Essentially, our pre-trained
model consistently boosts the performance in detection
tasks using both SECOND and PV-RCNN architectures,
particularly notable under conditions of limited labeled data
– showing an improvement of 2.43% and 2.89% in mAP
with just 1% labeled data for SECOND and PV-RCNN,
respectively. Besides, our model surpasses the baseline
performances across all variations of available annotated
data quantities.

4.4 Panoptic Segmentation

To assess the instance-level features learned by our method,
we further fine-tune our pre-trained models for the task of
panoptic segmentation.

Network Architectures. In this part, we choose the
MINKUnet-34 [37] as the 3D point-wise feature backbone.
For the fine-tuning process, semantic and instance heads
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TABLE 4: The performance metrics (PQ and IoU) for panoptic segmentation on SemanticKITTI showcase the effectiveness of
the pre-trained models when fine-tuning with various proportions of annotated data.

Pre-training
Schedule

0.10% 1% 10% 50% 100%
PQ IoU PQ IoU PQ IoU PQ IoU PQ IoU

From Scratch 4.76 11.13 22.72 30.84 47.20 53.53 55.32 61.94 55.40 59.75
PointContrast [3] 5.86 11.51 27.37 32.49 47.57 54.63 54.21 59.48 55.85 61.49
DepthContrast [8] 7.65 13.56 27.31 32.30 46.85 51.27 54.55 59.60 56.15 60.81
SegContrast [5] 7.58 14.46 26.14 32.85 47.02 53.47 55.38 60.04 56.73 61.96
TARL [10] 10.26 17.01 29.24 34.71 51.27 57.59 56.10 62.36 56.57 62.05
NCLR (Ours) 12.79 19.14 30.69 36.24 52.79 58.78 56.78 62.54 56.87 62.69

TABLE 5: Experimental results from models pre-trained
through self-supervised and supervised training on Se-
manticKITTI, subsequently fine-tuned for panoptic segmen-
tation tasks using both the mini and complete training sets
of nuScenes. We report the PQ and IoU metrics on the full
validation set of nuScenes.

Pre-training
Schedule

Mini Full
PQ IoU PQ IoU

From Scratch 23.78 23.96 52.98 58.17
Supervised pre-training 24.77 23.6 53.19 58.05

PointContrast [3] 26.58 25.46 51.06 56.39
DepthContrast [8] 28.66 27.3 51.51 57.06
SegContrast [5] 28.84 26.79 52.31 57.24
TARL [10] 32.22 30.73 53.26 59.14

NCLR (Ours) 33.37 31.62 53.97 59.76

are integrated with the pre-trained 3D backbone, followed
by clustering post-processing to identify the instances [10].
This clustering stage leverages semantic predictions to
exclude background points, focusing solely on foreground
instances such as vehicles, pedestrians, and cyclists. Once the
irrelevant points are removed, the remaining points undergo
a clustering process to discern distinct instances based on the
features from the instance head. For the clustering phase, we
opt for the mean shift algorithm [54] with a set bandwidth of
1.2 and a minimum cluster size requirement of 50 points. The
other architectures and settings are the same as Section 4.2
during pre-training.

Protocol for Fine-tuning on Downstream Tasks. Our
methodology employs the AdamW optimizer, utilizing a
max learning rate set at 0.2. In the context of panoptic
segmentation applied to the SemanticKITTI dataset, the fine-
tuning of our model is conducted across various subsets
of the annotated training data, specifically 0.1%, 1%, 10%,
50%, and the full 100% subset. For the nuScenes dataset, we
fine-tune using both the complete training set and the mini
training subset that is provided. The performance of the fine-
tuned model is then assessed on the complete validation set
of all datasets. We fine-tune the model for fixed 50 epochs.

Results of Fine-tuning. We pre-train the backbone on
the SemanticKITTI dataset and fine-tune it on different
percentage subsets of SemanticKITTI dataset. As shown in
Table 4, our method is consistently better than previous self-

TABLE 6: Ablation study on nuScenes semantic segmentation.
End-to-end pose estimation indicates using soft-matching,
differentiable EPnP solver, and loss of pose estimation.

Baseline ✓ ✓ ✓ ✓

Learnable Transformation Alignment × ✓ ✓ ✓

Overlapping Area Detection × × ✓ ✓

End-to-End Pose Estimation × × × ✓

mIoU (%) 35.90 36.52 37.13 37.92

supervised pre-training approaches. When the segmentation
model is trained with fewer labels, we can observe an
obvious improvement compared to the baseline of scratch
training.

Generalization of Learned Features. Our study also investi-
gates the adaptability of learned features focusing on panop-
tic segmentation tasks. We initially pre-train the 3D backbone
on the SemantiKITTI dataset and subsequently fine-tune it on
both the full and mini training sets of nuScenes. As presented
in Table 5, while all approaches enhance performance on
the nuScenes dataset, the features generated through our
technique demonstrate greater adaptability when employed
in a different domain dataset. Furthermore, in comparison to
supervised pre-training on SemanticKITTI, our approach
exhibits improved results. This finding underscores the
enhanced effectiveness and potential of our method in
scenarios of transfer learning, surpassing the conventional
supervised pre-training methods.

In general, the experiments conducted further confirm
that our approach effectively extracts semantic nuances and
identifies instance-level details, achieving higher scores in
IoU and PQ metrics than former methodologies.

4.5 Ablation Studies
In our ablation studies on the nuScenes dataset, we adhere
to the evaluation protocol from ALSO [15]. This involves
splitting the nuScenes training set into two parts: ablation-
train and ablation-val. Fine-tuning is performed with just 1%
of annotations from the ablation-train set. This ensures pa-
rameter tuning does not involve the validation set, reserved
for comparing against other methods. We limit the training
period for these studies to 100 epochs.

Effect of Key Components. We analyze the impact of each
component incorporated into our method in Table 6,. We
can observe that our proposed key components benefit the
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Fig. 6: Visual comparison of the similarities between image and point cloud features learned by the model w/o and
w/ learnable transformation alignment. For a selected 3D query point (indicated by a purple dot), we calculate its
similarities with image features, forming a 2D similarity map. These similarity maps are illustrated using examples from the
SemanticKITTI validation set.

Fig. 7: Visual comparison of the similarities between image and point cloud features learned by the model w/o and w/
learnable transformation alignment. For a selected 2D query pixel (marked with a purple dot), we calculate its similarities
with point features and project these similarities onto the image plane, forming a similarity map. These similarity maps are
illustrated using examples from the SemanticKITTI validation set.

TABLE 7: Comparison of similarities of image and corre-
sponding point features learned w/o and w/ learnable
transformation alignment (LTA). We measure the mean
and standard value of similarities on the validation set of
SemanticKITTI.

Method Similarity

w/o LTA 0.55 ± 0.17
w/ LTA 0.69 ± 0.13

pre-training framework in learning useful representation and
yield better performance in downstream tasks. For exam-
ple, the introduction of learnable transformation alignment
increases the mIoU from 35.90% to 36.52%. This indicates
that allowing the model to adaptively transform features
enhances its ability to capture the inherently non-linear and
complex relationship between point cloud data and RGB
images. Besides, the supervision of advanced tasks, including
overlapping area detection and pose estimation also prompts
the network to fully understand the two modalities and learn
useful representation. Then we analyze the effect of learnable
transformation alignment in detail.

Effect of Learnable Transformation Alignment. The gap
between the features of the two modalities – point clouds and
RGB images – is a significant challenge in computing their
similarity for matching purposes (see Fig. 4). By transforming
features from both modalities into a common feature space,
the learnable transformation Wf helps in aligning these
features more effectively. We further visualize the similarities
between image and point features in Fig. 6 and Fig. 7.

We also provide the quantitative comparison of similari-
ties between features of two modalities in Table 7. Specifically,
we compute the cosine similarity between the features of
the points and corresponding pixels with and without linear
feature transformation, respectively. We can observe that
directly computing the cosine similarities yields smaller
values for the corresponding points and pixels. However,
applying the learnable feature transformation bridges the
gap between the two modalities and brings more reasonable
similarities.

4.6 Feature Matching Accuracy
We present a comparative analysis of feature matching
accuracy using various feature alignment and point-to-pixel
matching methods. The mean and standard deviation of
error distances are detailed in Table 8. To assess the precision
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Fig. 8: Evaluating the accuracy of feature matching across various techniques. (a) Similarities between image and point
features are determined using cosine distance, without the aid of learnable transformation alignment, and correspondences
between points and pixels are established through hard assignment. (b) In contrast, this approach incorporates learnable
transformation alignment for calculating feature similarities and employs soft-matching to establish the relationships
between points and pixels. The matching accuracy reflects the discrepancy between the locations of matched pixels and the
actual projections of points on the image plane.

TABLE 8: Feature matching accuracy on SemanticKITTI
dataset. The error indicates the discrepancy between the
locations of matched pixels and the actual projections of
points on the image plane. “Cosine” denotes directly com-
puting the cosine distance of image and point features as
similarities. “Learnable” denotes learnable transformation
alignment. “Acc.” indicates the percentage of fine matchings
with errors less than 5 pixels.

Method Error (pixel) Acc. (%)

Cosine + Hard-Match 4.58 ± 4.70 69.22
Cosine + Soft-Match 3.91 ± 4.06 74.27
Learnable + Hard-Match 3.08 ± 2.40 83.18
Learnable + Soft-Match 2.34 ± 1.05 90.28

of different methods, we calculate the matching accuracy
(Acc.), defined as the percentage of fine matchings with
errors less than 5 pixels. Results in Table 8 demonstrate
that the integration of learnable transformation alignment
and the soft-matching approach enhances matching accuracy
on the SemanticKITTI dataset. Consequently, our method
facilitates the network’s comprehensive understanding of the
relationship between image and point cloud data, learning
effective representation to process information from each
domain.

Additional visualization of feature matching is presented
in Fig. 8. Within the overlapping region, we determine the
corresponding 2D pixel for each point and evaluate the
error. This is done by initially projecting the point onto the
image space and then calculating the Euclidean distance
between the projected point and its matched 2D pixel. It is
evident from our observations that the implementation of
our proposed learnable transformation alignment combined
with soft-matching markedly reduces the feature-matching
error, in comparison to approaches that do not utilize these
methods. Notably, in most instances, the errors are confined
to within a 3-pixel range.

Fig. 9: Illustration of the registration recall performance of
various methods against different Relative Translation Error
(RTE) and Relative Rotation Error (RRE) thresholds on the
SemanticKITTI datasets. The x-axis represents the threshold
levels for RTE and RRE, while the y-axis indicates the recall
rate, reflecting the proportion of samples where RREs or
RTEs remain below the corresponding threshold.

4.7 Accuracy of Image-to-Point Cloud Calibration

We compared our approach with other leading methods
for image-to-point cloud registration/calibration [49], [55],
[56]. Following standard practices in this field, we used
the SemanticKITTI dataset to measure the accuracy of our
method, employing metrics such as Relative Translational
Error (RTE) and Relative Rotational Error (RRE) [49]. We pro-
vided a detailed analysis by illustrating the registration recall
at various RTE and RRE thresholds on the SemanticKITTI
dataset, as shown in Fig. 9. The results clearly indicate
the enhanced performance of our technique in terms of
registration accuracy.

While numerous studies have addressed the task of
image-to-point cloud registration, it is noteworthy that these
methods predominantly utilize simulated data. In these sim-
ulations, point clouds are subjected to random rotation and
translation transformations. Consequently, the transformed
point clouds are not aligned with the corresponding images.
However, the transformations applied in these simulations
are idealized, restricted to limited axes and not reflective
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Fig. 10: Visual results of detecting overlapping areas between images and point clouds. The first row depicts the actual
projection of the point cloud onto the image plane, with varying colors indicating the depth of the points. The detection
results on the image and point cloud are shown in the second and third rows, respectively. In these rows, green pixels and
points represent correct detections within the overlapping regions of the image and point cloud. Conversely, red indicates
the pixels and points are incorrectly classified in the overlapping areas, and yellow highlights areas are incorrectly identified
as non-overlapping.

of the general camera poses found in realistic scenes. This
limitation potentially reduces the practical applicability of
such methods in real-world scenarios, such as robot localiza-
tion. In our research, we broaden the scope of image-to-point
cloud registration/calibration by extending its application to
self-supervised pre-training for 3D perception tasks.

4.8 Further Discussions

Fig. 10 demonstrates the precise detection of overlapping
areas in both image and point cloud domains. In the image
domain, inaccuracies are mostly confined to boundary areas.
On the side, Fig. 11 illustrates the registration performance
on the SemanticKITTI dataset. The figures in first column
reveal noticeable misalignments between the image and the
point cloud initialized with random rotation and translation.
Despite the challenging initial conditions, our method accu-
rately estimates the applied rigid transformation. This precise
detection of overlapping areas and accurate estimation
of rigid transformations indicate that the network could
effectively understand the information and relationships
between each domain. Such insights help explain why the
representations learned in the pretext task are advantageous
for downstream tasks.

5 CONCLUSION

We have introduced an innovative perspective to self-
supervised learning by achieving a thorough alignment
between two distinct modalities. In the pretext task of 2D-
3D neural calibration, this network not only learns fine-
grained matching from individual points to pixels but also
achieves a comprehensive alignment between the image
and point cloud data, i.e., understanding their relative pose.
The integration of a soft-matching strategy alongside a
differentiable PnP solver makes our framework end-to-end
differentiable, thereby facilitating a more comprehensive

understanding of multi-modal data. Besides, our method
overcomes the limitations of traditional contrastive learning
by introducing a transformation alignment technique that
effectively mitigates the domain gap between image and
point cloud data. The efficacy of our proposed pre-training
method is substantiated through extensive experiments
across various datasets and fine-tuning tasks, including
LiDAR-based 3D semantic segmentation, object detection,
and panoptic segmentation. Our results indicate a notable
superiority over existing methods, underscoring the potential
of our approach in enhancing 3D perception tasks.
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tiotemporal self-supervised learning for point clouds in the wild,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 5251–5260.

[13] Y. Pang, W. Wang, F. E. Tay, W. Liu, Y. Tian, and L. Yuan, “Masked
autoencoders for point cloud self-supervised learning,” in European
Conference on Computer Vision, 2022, pp. 604–621.

[14] R. Zhang, Z. Guo, P. Gao, R. Fang, B. Zhao, D. Wang, Y. Qiao,
and H. Li, “Point-m2ae: multi-scale masked autoencoders for hier-
archical point cloud pre-training,” Advances in Neural Information
Processing Systems, vol. 35, pp. 27 061–27 074, 2022.

[15] A. Boulch, C. Sautier, B. Michele, G. Puy, and R. Marlet, “Also:
Automotive lidar self-supervision by occupancy estimation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 13 455–13 465.

[16] Z. Li, Z. Chen, A. Li, L. Fang, Q. Jiang, X. Liu, J. Jiang, B. Zhou,
and H. Zhao, “Simipu: Simple 2d image and 3d point cloud
unsupervised pre-training for spatial-aware visual representations,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2022,
pp. 1500–1508.

[17] C. Sautier, G. Puy, S. Gidaris, A. Boulch, A. Bursuc, and R. Marlet,
“Image-to-lidar self-supervised distillation for autonomous driving

data,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 9891–9901.

[18] A. Mahmoud, J. S. Hu, T. Kuai, A. Harakeh, L. Paull, and S. L.
Waslander, “Self-supervised image-to-point distillation via seman-
tically tolerant contrastive loss,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
7102–7110.

[19] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “Semantickitti: A dataset for semantic scene
understanding of lidar sequences,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9297–9307.

[20] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2012, pp. 3354–3361.

[21] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 621–11 631.

[22] Y. Pan, B. Gao, J. Mei, S. Geng, C. Li, and H. Zhao, “Semanticposs:
A point cloud dataset with large quantity of dynamic instances,”
in IEEE Intelligent Vehicles Symposium, 2020, pp. 687–693.

[23] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,”
in European Conference on Computer Vision, 2016, pp. 649–666.

[24] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual
representation learning by context prediction,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2015, pp.
1422–1430.

[25] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive
learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 18 661–18 673, 2020.

[26] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
International Conference on Machine Learning, 2020, pp. 1597–1607.

[27] J. Donahue and K. Simonyan, “Large scale adversarial represen-
tation learning,” Advances in Neural Information Processing Systems,
vol. 32, 2019.



15

[28] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 16 000–16 009.

[29] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski,
and A. Joulin, “Emerging properties in self-supervised vision
transformers,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 9650–9660.

[30] O. Poursaeed, T. Jiang, H. Qiao, N. Xu, and V. G. Kim, “Self-
supervised learning of point clouds via orientation estimation,” in
International Conference on 3D Vision, 2020, pp. 1018–1028.

[31] J. Sauder and B. Sievers, “Self-supervised deep learning on point
clouds by reconstructing space,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[32] Q. Zhang and J. Hou, “Pointvst: Self-supervised pre-training for
3d point clouds via view-specific point-to-image translation,” IEEE
Transactions on Visualization and Computer Graphics, 2023.

[33] Q. Zhang, J. Hou, and Y. Qian, “Pointmcd: Boosting deep point
cloud encoders via multi-view cross-modal distillation for 3d shape
recognition,” IEEE Transactions on Multimedia, 2023.

[34] X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, “Point-bert: Pre-
training 3d point cloud transformers with masked point modeling,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 19 313–19 322.

[35] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, no. 12, pp. 4338–4364, 2020.

[36] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2017, pp. 652–660.

[37] C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 3075–3084.

[38] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Search-
ing efficient 3d architectures with sparse point-voxel convolution,”
in European Conference on Computer Vision, 2020, pp. 685–702.

[39] Y. Zhang, Q. Zhang, Z. Zhu, J. Hou, and Y. Yuan, “Glenet: Boosting
3d object detectors with generative label uncertainty estimation,”
International Journal of Computer Vision, pp. 3332–3352, 2023.

[40] Y. Zhang, Q. Zhang, J. Hou, Y. Yuan, and G. Xing, “Unleash the
potential of image branch for cross-modal 3d object detection,” in
Advances in Neural Information Processing Systems, 2023.

[41] Y. Zhang, J. Hou, and Y. Yuan, “A comprehensive study of the
robustness for lidar-based 3d object detectors against adversarial
attacks,” International Journal of Computer Vision, 2023.

[42] Y. Zhang, Z. Zhu, J. Hou, and D. Wu, “Spatial-temporal enhanced
transformer towards multi-frame 3d object detection,” arXiv
preprint arXiv:2307.00347, 2023.

[43] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point
cloud based 3d object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4490–4499.

[44] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolu-
tional detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[45] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-
rcnn: Point-voxel feature set abstraction for 3d object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 529–10 538.

[46] J. S. Hu, T. Kuai, and S. L. Waslander, “Point density-aware
voxels for lidar 3d object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
8469–8478.

[47] F. Hong, H. Zhou, X. Zhu, H. Li, and Z. Liu, “Lidar-based panoptic
segmentation via dynamic shifting network,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 13 090–13 099.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[49] S. Ren, Y. Zeng, J. Hou, and X. Chen, “Corri2p: Deep image-to-point
cloud registration via dense correspondence,” IEEE Transactions on
Circuits and Systems for Video Technology, pp. 1198–1208, 2022.

[50] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning
with contrastive predictive coding,” arXiv preprint arXiv:1807.03748,
2018.

[51] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” International journal of computer vision,
pp. 155–166, 2009.

[52] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” arXiv preprint arXiv:1711.05101, 2017.

[53] Loshchilov, Ilya and Hutter, Frank, “Sgdr: Stochastic gradient
descent with warm restarts,” in International Conference on Learning
Representations, 2016, pp. 1–16.

[54] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[55] J. Li and G. H. Lee, “Deepi2p: Image-to-point cloud registration
via deep classification,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 15 960–15 969.

[56] J. Zhou, B. Ma, W. Zhang, Y. Fang, Y.-S. Liu, and Z. Han,
“Differentiable registration of images and lidar point clouds with
voxelpoint-to-pixel matching,” in Advances in Neural Information
Processing Systems, 2023.


	Introduction
	Related Work
	Self-supervised Learning for Images
	Self-supervised Learning for Point Clouds
	LiDAR-based 3D Perception

	Proposed Method
	Overview
	Feature Extraction
	Feature Discrimination
	Building Dense Correspondence
	Estimation of Rigid Transformation
	Training Pipeline

	Experiments
	Dataset
	Semantic Segmentation
	3D Object Detection
	Panoptic Segmentation
	Ablation Studies
	Feature Matching Accuracy
	Accuracy of Image-to-Point Cloud Calibration
	Further Discussions

	Conclusion
	References

