
Published in Transactions on Machine Learning Research (07/2025)

Knockout: A simple way to handle missing inputs

Minh Nguyen† bn244@cornell.edu
Cornell University

Batuhan K. Karaman† kbk46@cornell.edu
Cornell University

Heejong Kim† hek4004@med.cornell.edu
Weill Cornell Medicine

Alan Q. Wang† aw847@cornell.edu
Cornell University

Fengbei Liu† fl453@cornell.edu
Cornell University

Mert R. Sabuncu msabuncu@cornell.edu
Cornell University and Weill Cornell Medicine
for the Alzheimer’s Disease Neuroimaging Initiative ∗

Reviewed on OpenReview: https: // openreview. net/ forum? id= K71y5pge84

Abstract

Deep learning models benefit from rich (e.g., multi-modal) input features. However, multi-
modal models might be challenging to deploy, because some inputs may be missing at
inference. Current popular solutions include marginalization, imputation, and training mul-
tiple models. Marginalization achieves calibrated predictions, but it is computationally
expensive and only feasible for low dimensional inputs. Imputation may result in inaccurate
predictions, particularly when high-dimensional data, such as images, are missing. Training
multiple models, where each model is designed to handle different subsets of inputs, can
work well but requires prior knowledge of missing input patterns. Furthermore, training
and retaining multiple models can be costly. We propose an efficient method to learn both
the conditional distribution using full inputs and the marginal distributions. Our method,
Knockout, randomly replaces input features with appropriate placeholder values during
training. We provide a theoretical justification for Knockout and show that it can be inter-
preted as an implicit marginalization strategy. We evaluate Knockout across a wide range
of simulations and real-world datasets and show that it offers strong empirical performance.

1 Introduction

In many real-world applications of machine learning (ML) and statistics, not all variables might be available
for every data point. This issue, also known as missingness, is well-studied in the literature (Little & Rubin,
2019) and common in fields like healthcare, social sciences, and environmental studies. From a Bayesian
perspective, missingness can be solved by marginalization, where we would like a model to marginalize out
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(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be
found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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the missing variables from the conditioning set. However, during training, we often do not know which
features will be missing at inference.

In lieu of training multiple models for every missingness pattern, a common strategy is imputation, which uses
a point estimate (usually the mean or mode or a constant) to impute the missing features (Le Morvan et al.,
2020b). This can be seen as approximating the marginalization with a delta function. More sophisticated
imputation methods use EM (Josse et al., 2019) or neural-based networks (Mattei & Frellsen, 2019; Ipsen
et al., 2022). Although many prior methods may work well in some instances, they may not scale readily
to high-dimensional inputs like images (Kyono et al., 2021; You et al., 2020), require additional networks
for generation of missing variables (Ipsen et al., 2022), only apply to continuous inputs (Le Morvan et al.,
2020a; 2021), assume linearity of predictors (Le Morvan et al., 2020b), or make assumptions about the data
distribution (Hazan et al., 2015).

In this work, we propose a simple, effective, and theoretically-justified augmentation strategy, called Knock-
out, for handling missing inputs. During training, features are randomly “knocked out” and replaced by
constant “placeholder” values. At inference time, using the placeholder value corresponds mathematically to
estimation with the appropriate marginal distribution. Knockout can be seen as implicitly maximizing the
likelihood of a weighted sum of the conditional estimators and all desired marginals in a single model. We
demonstrate the broad applicability of Knockout in a suite of experiments using synthetic and real-world data
from multiple modalities (image-based and tabular). Real world experiments include Alzheimer’s forecasting,
noisy label learning, multi-modal MR image segmentation, multi-modal image classification, and multi-view
tree genus classification. We show the effectiveness of Knockout in handling low and high-dimensional missing
inputs compared against competitive baselines.

2 Method

2.1 Background

The goal of supervised ML is to learn the conditional distribution p(Y |X) where Y is the output (pre-
dictive target) and X ∈ RN is the vector of inputs or features. The prediction for a new sample x is
ŷ = arg maxY p(Y |X = x). However, in many practical applications, not all features may be present. When
a feature Xi is missing, the vector X−i denotes the non-missing features. In general, multiple features
may be missing at a time. We can represent this with a missingness indicator set M and corresponding
non-missing features as X−M. In this case, what we really want is p(Y |X−M). How can we account for
missingness?

A simple approach is to train a separate model for p(Y |X−M), i.e. a model that takes only the non-missing
features X−M as inputs. However, this is expensive because a separate model is needed for each missingness
pattern. Furthermore, there is no sharing of information between these separate models, even though they
are theoretically related.

Another approach rewrites p(Y |X−M) using the already available p(Y |X):

p(Y |X−M) =
∫

p(Y, XM|X−M)dXM =
∫

p(Y |X)p(XM|X−M)dXM. (1)

The goal now is to obtain p(XM|X−M) and perform the integration over all possible XM. Imputation
methods approximate Eq. (1) by replacing p(XM|X−M) with a delta function. For example, “mean impu-
tation” uses the mean of the missing features XM, i.e. E[XM], for XM itself. In Eq. 1, this corresponds to
approximating p(XM|X−M) ≈ δ(E[XM]), a delta function. While convenient and commonly used, mean
imputation ignores the dependency between XM and X−M, and does not account for any uncertainty.

More sophisticated imputation methods capture the interdependencies between inputs (Troyanskaya et al.,
2001; Stekhoven & Bühlmann, 2012), for example by explicitly modeling p(XM|X−M) by training a separate
model. The point estimate xM = arg maxXM

p(XM|X−M) can be used at inference time for the missing
XM. While properly accounting for interdependencies between inputs, this approach requires fitting a
separate model for p(XM|X−M). In multiple imputation, multiple samples from p(XM|X−M) are drawn
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and a Monte Carlo approximation is used to estimate the integral on the RHS of Eq. 1 (Mattei & Frellsen,
2019; Kyono et al., 2021; Ipsen et al., 2022). Although this is more accurate than single imputation, it is
not effective in high dimensional space.

2.2 Knockout

We propose a simple augmentation strategy for neural network training called Knockout that enables estima-
tion of the conditional distribution p(Y |X) and all desired marginals p(Y |X−M) in a single, high capacity,
nonlinear model, such as a deep neural network. During training, features are augmented by randomly
“knocking out” and replacing them with constant, “placeholder” values. At inference time, using the place-
holder value corresponds mathematically to estimation with the suitable marginal distribution.

Specifically, let M = [M1, M2, . . . , MN ] ∈ {0, 1}N denote a binary, induced missingness indicator vector.
Let x̄ := [x̄1, x̄2, . . . , x̄N ] ∈ RN denote a vector of placeholder values. Then, define X ′(M , X) = M ⊙
x̄ + (1 − M) ⊙ X as augmented Knockout inputs, where 1 is a vector of ones and ⊙ denotes element-wise
multiplication. During one training iteration, a different Knockout input is used corresponding to a different
randomly sampled M for every data sample. The model weights are trained to minimize the loss function
with respect to Y , as is done regularly.

Two mild conditions are required to ensure proper training. First, the placeholder values must be “appro-
priate,” as we will elaborate below. For our theoretical treatment, we will use out-of support values as
appropriate; i.e. x̄M ̸∈ Support(XM). Second, M must be independent of X and Y , i.e. M ⊥⊥ X, Y .1 It
follows straightforwardly that these two conditions lead to modeling the desired conditional and marginal
distributions simultaneously. First, since x̄M is not in the support of XM,

X ′
M = x̄M ⇔ MM = 1, X ′

M ̸= x̄M ⇔ MM = 0 and X ′
M = XM, (2)

where 0 and 1 are vectors of zeros and ones of appropriate shape. Second, since M is independent of X
and Y , it follows that imputing with the default value x̄M is equivalent to marginalization of the missing
variables defined by M:

p(Y |X ′
M=x̄M, X ′

−M=x−M) = p(Y |MM=1, M−M=0, X−M=x−M) (3)
= p(Y |X−M=x−M). (4)

At the two extremes, no Knockout (M = 0) corresponds to the original conditional distribution, and full
Knockout (M = 1) to the full marginal:

p(Y |X ′=x) = p(Y |M=0, X=x) = p(Y |X=x), (5)
p(Y |X ′=x̄) = p(Y |M=1) = p(Y ). (6)

For a new test input x, the prediction when xM is missing is simply

arg max
Y

p(Y |X−M=x−M) = arg max
Y

p(Y |X ′
M=x̄M, X ′

−M=x−M), (7)

i.e., the learned estimator with the augmented Knockout input.

2.2.1 Knockout as an Implicit Multi-task Objective

The missingness indicator M determines how inputs are replaced with appropriate placeholder values dur-
ing training. To satisfy the independence condition of M with X and Y , the variables M are sampled
independently from a distribution p(M) during training. We show that this training strategy can be viewed
as a multi-task objective (Caruana, 1997) decomposed as a weighted sum of terms, where each term is a
separate marginal weighted by the distribution of M . Let ℓ denote the loss function to be minimized (e.g.,
mean-squared-error or cross-entropy loss):

1Note it is not necessary that Mi ⊥⊥ Mj for any i, j.
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L(θ) = EX′,Y ℓ(Y ; fθ(X ′(M , X)) (8)

= EX,Y EM

∑
m∈M

I(M=m) ℓ(Y ; fθ(X ′(M , X))) (9)

= EX,Y

∑
m∈M

p(M=m) ℓ(Y ; fθ(X ′(m, X))) (10)

=
∑
m

p(M=m) EX,Y ℓ(Y ; fθ(X ′(m, X))), (11)

where I is the indicator function.

If there is knowledge about the missingness patterns at inference (e.g., some Xi and Xj exhibit correlated
missingness), one can design p(M) appropriately to cover all the expected missing patterns, i.e. by sampling
m during training with different weights. In the absence of such knowledge, the most general distribution for
M is i.i.d. Bernoulli. A common way correlated missingness arises in real-world applications is in structured
inputs like latent features or images, where the entire feature vector or whole image is missing. In our
experiments, we demonstrate the superiority of structured Knockout, over naive i.i.d. Knockout, when such
correlated missingness is known a priori.

2.3 Choosing Appropriate Placeholder Values

Our theoretical analysis assumes that the placeholder value x̄i lies outside the support of Xi (see Ap-
pendix A.2 for further discussion). Previous work by Josse et al. (2019) and Bertsimas et al. (2024) has
shown that, with infinite data, mean imputation (for continuous variables) and out-of-support imputation
(for both continuous and discrete variables) can be optimal. However, in practice, data is finite, and em-
pirical performance becomes more important. In such cases, using out-of-support values as placeholders is
often preferable and can be mathematically justified—particularly when Xi is low-dimensional. That said,
for high-dimensional inputs such as vectors or images, out-of-range placeholders may lead to practical issues
like unstable gradients or limited model capacity, making them less effective. In the sections that follow, we
relax the out-of-support assumption and offer practical recommendations for choosing placeholder values for
different types of Xi, based on these considerations.

2.3.1 Non-structured

In this section, we recommend suitable placeholder values for non-structured, scalar-valued inputs.

• Categorical variable: x̄i can be NXi + 1 if Xi are integer-valued classes from 1 to NXi . If one-hot
encoded, x̄i can be a vector of 0s.

• Continuous variable and Non-empty Infeasible Set: we can scale Xi to [0, 1] and choose
x̄i = −1. More generally, if Xi has unbounded range but a non-empty infeasible set, then x̄i can be
set to a value in the infeasible set. For example, if Xi only takes positive values, then we can set
x̄i = −1.

• Continuous variable and Empty Infeasible Set: we suggest applying Z-score normalization and
choosing x̄i such that it lies in a low probability region of the normalized Xi such that p(Xi=x̄i) ≈ 0.
As we argue in Appendix A.1, this approach leads to an approximation of the desired marginal.

Although different distributions have different regions of low probability, we use the behavior of the Gaussian
distribution as a guide to choose x̄i. Fig. 1 shows the histogram of the norm of points sampled from standard
Gaussian distributions with different dimensionality. For a univariate standard Gaussian, most of the points
lie close to the origin so we should choose x̄i far away from the origin. However, as the dimension increases,
most of the points lie on the hyper-sphere away from the origin so we should choose x̄i to be the point at
origin (i.e. a vector of zeros). Table 1 summarizes the choices of x̄i for different types of inputs Xi.
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Figure 1: The region of high density of standard Gaussian shifts away from the origin as the number of
dimensions increases. This motivates different choices of placeholder values at different dimensions.

Table 1: List of different types of Xi and the recommended x̄i

Type of Xi Example Dimension Support Normalized? x̄i

Categorical Gender 1 {1, . . . , NXi} N/A NXi+1
Continuous Test scores 1 [a, b] Scale to [0, 1] -1
Continuous Temperature 1 [a, ∞) or (−∞, b] Scale to [0, ∞) -1
Continuous White noise 1 (−∞, ∞) Z-score ±10
Structured Images >1000 [a, b] Scale to [0, 1] 0
Structured Latent vectors >16 (−∞, ∞) Z-score 0

2.3.2 Structured

For structured inputs like images and feature vectors, there are multiple choices of placeholder. However, we
found that Knockout applied with some out-of-support placeholder like −1, can cause issues like unstable
gradients. Therefore, we recommend an appropriate placeholder to be either the image of all 0s or the mean
image. When Z-score normalization is applied, the 0 image and the mean image coincide. Theoretically,
it is well known that the mean of a high dimensional random variable, such as a Gaussian, has very low
probability (Vershynin, 2018) (also see Fig. 1). We believe this recommendation balances the tension be-
tween ensuring an extremely-low probability placeholder with proper convergence and performance. For an
empirical demonstration, see Appendix A.3.

2.4 Observed Missingness during Training

The treatment above assumes complete training data, and inference-time missingness only. We now consider
the situation where training data has observed missing inputs. Let N be the binary mask indicating the ob-
served data missingness. N is different from M , which denotes the missingness induced by Knockout during
training. Thus, N is fixed for a data sample, while M is stochastic. Observed missingness generally falls
under the following scenarios (Little & Rubin, 2019).

Missing Completely at Random (MCAR): This implies that N ⊥⊥ X, Y . Let M ′ := N ∨ M be the
augmented masking indicator, where ∨ denotes the logical OR operation. Since N ⊥⊥ X, Y and M ⊥⊥ X, Y ,
so M ′ ⊥⊥ X, Y . Therefore, we can obtain the same result in Section 2.2 when using M ′ instead of M as
the masking indicator vector. This implies that Knockout can be applied to MCAR training data simply by
masking all the missing values using the same placeholders x̄.

Missing at Random (MAR) and Missing not at Random (MNAR): This implies that N ⊥̸⊥ X, Y .
Thus, we cannot replace the missing values in training data using the same placeholders. However, we can
substitute these values using placeholders that are different from x̄ but are also outside the support of the
input variables (or very unlikely values). Let the placeholders for the data missingness be ẋ ̸= x̄. During
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Table 2: Summary of experimental setups

Task Type of Xi Dimension Normalized? x̄i ẋ

Simulations Categorical/Continuous 1 Z-score (Cont. Xi) 10 -10
Alzheimer’s Forecasting Continuous 1 Z-score 10 -10
Privileged Information Continuous 1 Scale to [0, 1] -1 N/A
Tumor Segmentation Structured (images) 2563 Scale to [0, 1] 0 N/A
Tree Genus Classification Structured (latent) 768 or 2048 Z-score 0 N/A
Prostate Cancer Detection Structured (latent) 256 Z-score 0 N/A
Food Classification Structured (latent) 768 Z-score 0 N/A

training, Knockout still randomly masks out input variables, including those that are not observed in the
data. Thus, the results in Section 2.2 still hold since M ⊥⊥ X, Y .

During inference, if we know a priori that xi of a sample is missing not at random, then we can use ẋi as the
placeholder. Otherwise, if we know xi is missing completely at random, we use x̄i. Unless stated otherwise,
Knockout always uses a different placeholder for MAR and MNAR variables.

3 Related Work

Knockout is inspired by other methods with different objectives. Dropout (Srivastava et al., 2014; Gal &
Ghahramani, 2016) prevents overfitting by randomly dropping units (hidden and visible) during training,
effectively marginalizing over model parameters. During inference, this marginalization can be approxi-
mated by predicting once without dropout (Srivastava et al., 2014) or averaging multiple predictions with
dropout (Gal & Ghahramani, 2016). Blankout (Maaten et al., 2013) and mDAE (Chen et al., 2014) learn
to marginalize out the effects of corruption over inputs. In contrast, Knockout learns different marginals to
handle varied missing input patterns.

Imputation techniques impute missing inputs explicitly, e.g., using mean, median, or mode values. Model-
based imputation methods predict missing values via k-nearest neighbors (Troyanskaya et al., 2001), chained
equations (Van Buuren & Groothuis-Oudshoorn, 2011), random forests (Stekhoven & Bühlmann, 2012),
autoencoders (Gondara & Wang, 2018; Ivanov et al., 2019; Lall & Robinson, 2022), RNN (Nguyen et al.,
2020), GANs (Yoon et al., 2018; Li et al., 2019; Belghazi et al., 2019), or normalizing flows (Li et al.,
2020). Although more accurate than simple imputation, model-based imputation incurs significant additional
computation costs, especially with high-dimensional inputs. Some approaches (Ma et al., 2021; Peis et al.,
2022) require additional training of multiple VAEs or sub-networks. Other approaches (Mattei & Frellsen,
2019; Ma et al., 2019) require training only one VAE but assume homogeneous data (all continuous variables
or all binary variables), limiting flexibility. In contrast, Knockout uses a single classifier, avoiding the need
for separate models to impute missing inputs explicitly.

Another relevant line of work is causal discovery (Spirtes et al., 2000), which often involves fitting a model
using different subsets of available inputs and multiple distributions simultaneously (Lippe et al., 2022;
James et al., 2023). To reduce computational cost, it is common to train a single model that can handle
different subsets of inputs using dropout (Brouillard et al., 2020; Lippe et al., 2022; Ke et al., 2023; Nguyen
& Sabuncu, 2024; Nguyen et al., 2024a).

Techniques like Knockout are often used in practice to train a single neural network that models multiple
distributions, but are often justified empirically with little care taken in choosing placeholder values. Many
works use zeros without theoretical justification (Belghazi et al., 2019; Ke et al., 2023; Brouillard et al., 2020;
Lippe et al., 2022). GAIN (Yoon et al., 2018) and MisGAN (Li et al., 2019) impute using out-of-support
values similar to Knockout. However, both are limited in their treatment by assuming that the supports are
bounded, and do not consider categorical variables. While the approach is similar to some prior work for
structural inputs (Neverova et al., 2015; Parthasarathy & Sundaram, 2020) or low-dimensional inputs (Bert-
simas et al., 2024), Knockout’s theoretical backing shows that it can handle multiple data types and multiple
missingness types (complete/MCAR/MAR/MNAR). Similarly, methods like Selective MIM (Van Ness et al.,
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Figure 2: Test MSE evaluated against Bayes optimal prediction (E[Y |X]) averaged over 10 repetitions
(lower is better). X axis indicates the number of missing variables at inference time. mFr: missForest, Drop:
dropout, Knock: Knockout, CB: common baseline, ZI: zero-imputation with mask, sMIWAE: supMIWAE.
KNN: k-nearest-neighbor imputation, LI: linear regression imputation

2023) have been proposed to enhance model performance in high-dimensional settings by selectively encod-
ing informative missing patterns. Many self-supervised learning techniques can be interpreted as training to
reconstruct the inputs with Knockout. In addition, Knockout can be trained with standard empirical risk
minimization while some approaches need more complex optimization (Ma et al., 2021; 2022). For example,
masked language modeling (Devlin et al., 2019) randomly maps tokens to an unseen “masked” token. De-
noising autoencoders (Vincent et al., 2010) randomly replace image patches with black patches, which are
arguably out of the support of natural images.

4 Experiments

In all experiments, unless stated otherwise, we compare Knockout against a common baseline model
trained on complete data, which, at inference time, imputes missing variables with mean (if continuous)
or mode (if discrete) values. If the training is done on incomplete data with observed missing variables,
imputed with mean/mode, we denote this as common baseline*. For most results we report a variant of
Knockout but with sub-optimal placeholders (i.e. mean/mode for continuous/categorical features). We de-
note this variant as Knockout*. Note that both Knockout* and common baseline* use the same placeholder
(mean/mode), with the only difference being that Knockout*-trained models observe randomly knocked-out
missingness in addition to (possible) observed missingness during training.

In all Knockout implementations, we choose random knockout rates such that, in expectation, half of the
mini-batches have no induced missing variable. If d is the number of input variables and r is the knockout
rate, we choose r such that the probability of not knocking out any variables in a mini-batch, i.e. (1 − r)d

is approximately 0.5. In batches with induced missingness, variables (or groups of variables in structured
Knockout) are independently removed, with a probability equal to the knockout rate. The summary of the
experimental setups are shown in Table 2.

4.1 Simulations

We perform regression simulations to predict the output Y from the input X ∈ R9. In each simulation,
we sample 30k data points in total and use 10% for training. Since the input is low-dimensional, we
can additionally compare against sophisticated but computationally expensive imputation methods. The
baselines for the simulation are:
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• Inpute Dropout (Srivastava et al., 2014): Randomly sets a subset of input features to zero during
training.

• Zero Impute with Indicator: Replaces missing values with zeros and adds a binary indicator variable
to denote the presence of missing data.

• MICE (Van Buuren & Groothuis-Oudshoorn, 2011): Iteratively imputes missing values by modeling
each variable with missing data as a function of other variables in a round-robin fashion.

• missForest (Stekhoven & Bühlmann, 2012): Uses random forests to iteratively predict and fill in
missing values.

• MIWAE Mattei & Frellsen (2019): Imputes missing data using a VAE trained with importance-
weighted bounds.

• supMIWAE (Ipsen et al., 2022): A supervised extension of MIWAE.
• KNN Impute: Fills in missing values by averaging the values of the k-nearest neighbors.
• Linear Regression Impute: Imputes missing values using predictions from a linear regression model.

All methods use the same neural network architecture composed of a 3-layer multi-layer perceptron (MLP)
with hidden layers 100 and ReLU activations. Training is done using Adam (Kingma & Ba, 2014) with
learning rate 3e-3 for 5k steps.

We generate training data corresponding to complete training data, MCAR training data, and MNAR
training data. For MCAR data, each feature is independently missing with a probability of 10%. For MNAR
data, we adopt the self-censored missing setup where a variable is missing if its value is above the variable
90th percentile. To ensure that performance comparisons reflect only differences in the training data, we keep
the test data consistent across experiments. Specifically, during testing, we apply a predefined missingness
pattern (i.e., a specific set of missing variables) uniformly to all samples in the test set. We repeat this
procedure exhaustively for all missingness patterns involving up to 3 missing variables. This resulted in 130
different missing patterns.

We evaluate the models’ predictions against the MMSE-minimizing Bayes optimal predictions: E[Y |X]
(please see Appendix B.1.1 for evaluation against observations Y ). Fig. 2 shows the results of 10 repetitions
of this simulation. Knockout outperforms all the baselines regardless of the types of training data (complete,
MCAR, or MNAR). Dropout and Knockout* achieve similar performance but both are worse than Knockout;
this underscores the importance of choosing an appropriate placeholder value. We also experimented with
varying the training-test split size to simulate low-data and data-rich regimes in Appendix B.1.1.

In addition, we perform an ablation to verify that choosing appropriate placeholders is critical for getting
good performance (see Fig. 3). In this ablation, the value of the placeholder of Knockout is selected from
the set {0, 2, 4, 6, 8, 10}. After feature normalization, the mean value of a feature is 0 and using the
placeholder value of 0 resulting in bad prediction performance (higher MSE). Choosing placeholder value
that is away from 0 (i.e. away from the feature mean) lowers the test MSE in both complete data (Fig. 3a)
and missing data (Fig. 3b) setup. We also include an comparison aganist the common baseline with x̄
imputation in Appendix B.1.2 to illustrate the benefit of Knockout training strategy. This baseline is similar
to Knockout during inference but does not employ the augmentation strategy of Knockout during training.

To support our proposal for handling NMAR data, we include an ablation study comparing Knockout against
its ablated version named Knockout-. While Knockout follows the procedure outlined in Section 2.4,
Knockout- treats all observed data uniformly, without distinguishing NMAR observations. Both methods
were trained using the same MNAR data detailed previously. The results of this comparison are presented in
Table 3, which reports the MSE across varying levels of missingness. Knockout consistently achieves lower
MSEs, demonstrating the benefit of explicitly accounting for NMAR mechanisms.

4.2 Missing Clinical Variables in Alzheimer’s Disease Forecasting

We demonstrate Knockout’s effectiveness in handling observed missing data during a real-world clinical task:
predicting whether patients with mild cognitive impairment will progress to Alzheimer’s Disease within the
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Figure 3: Lower test MSE in the regression simulation is achieved by selecting placeholder value that is far
from the mean (i.e. 0). Observations: evaluate against Y . Bayes Optimal: evaluate against E[Y |X].

Method fm = 0 fm = 1 fm = 2 fm = 3
CB 0.361 ± 0.183 2.953 ± 3.870 4.053 ± 5.616 4.585 ± 6.109
Knockout- 0.144 ± 0.039 0.089 ± 0.055 0.107 ± 0.071 0.163 ± 0.141
Knockout 0.095 ± 0.044 0.072 ± 0.058 0.095 ± 0.062 0.175 ± 0.156

Table 3: Knockout’s vs. Knockout-’s MSE across varying numbers of missing features (fm) during inference.

next five years. We use data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (Mueller
et al., 2005) and adopt the state-of-the-art model from (Karaman et al., 2022). Input features X include
subject demographics, genetics, and clinical/imaging biomarkers. The target Y is a binary vector and
indicates AD diagnosis in each of the five follow-up years. For Knockout, we use an out-of-range value of
10 for induced missingness and -10 for observed missingness, both during training and testing. Further
details about the dataset and experimental setup are provided in Appendix B.2. Fig. 4 shows the average
AUROC scores when individual input features are omitted during inference. These results are averaged over
10 random 80-20 train-test splits. For each split, we compute the AUROC by averaging AUROC scores
across the five follow-up years. Knockout outperforms both the common baseline and Knockout* in the vast
majority of cases,highlighting the importance of selecting an effective placeholder strategy.

4.3 Privileged Information for Noisy Label Learning

Knockout can be used to incorporate privileged information (PI) into the learning process. For instance,
PI might include demographic details that may be partially or completely missing during inference (Nguyen
et al., 2024b). We focus on a noisy label learning task, where the objective is to leverage additional PI—such
as the annotator’s ID or the time of annotation—to improve the model’s robustness against label noise. Due
to the absence of PI in testing, existing methods (Ortiz-Jimenez et al., 2023; Wang et al., 2023) require an
auxiliary classification head for PI utilization. Knockout can be directly applied with a method that accepts
PI as input and achieve competitive performance. We follow previous experiment setups (Wang et al., 2023)
and evaluated model performance on CIFAR-10H (Peterson et al., 2019) and CIFAR-10/100N (Wei et al.,
2021). These datasets involve relabeled versions of the original CIFAR. For more details, see Appendix B.5.
As a no-PI baseline, we train a Wide-ResNet-10-28 (Zagoruyko & Komodakis, 2016) model that ignores
PI. We also compare against recent noisy label learning methods: HET (Collier et al., 2021) and SOP (Liu
et al., 2022). We implement Knockout with a similar architecture and training scheme as the no-PI baseline,
where we concatenate the PI with the image-derived features and randomly knock PI out during training.
For the common baseline, we train the same architecture with complete training data, but mean imputation
for PI data during inference. Table 4 lists test accuracy results. For the CIFAR-10H dataset, where we have
high quality PI, Knockout outperforms all baselines by a large margin, improving test accuracy by 6%. For
CIFAR-10/100N datasets, where we have low quality PI during training, Knockout’s boost is more modest,
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Figure 4: AUROC scores obtained for the three model variants when each input feature is missing during
inference (x-axis) in the Alzheimer’s Disease forecasting experiment. Error bars indicate the standard error
across 10 train-test splits.

Table 4: Average test accuracy (over 5 runs) of different methods on noisy label datasets with PI. For Quality,
“High” and “Low” indicate access to sample-wise PI and batch-average PI respectively. Best results in bold,
second-best underlined.

Datasets Quality No-PI HET SOP Common baseline Knockout
CIFAR-10H (Worst) High 51.1±2.2 50.8±1.4 51.3±1.9 55.2±0.8 57.4±0.6

CIFAR-10N (Worst) Low 80.6±0.2 81.9±0.4 85.0±0.8 82.3±0.3 84.7±0.7

CIFAR-100N (Fine) Low 60.4±0.5 60.8±0.4 61.9±0.6 60.7±0.6 62.1±0.3

performing similarly with SOP and slightly better than HET and the no-PI baseline. Knockout can offer
competitive results when we have access to high quality PI during training.

4.4 Missing Images in Tumor Segmentation

Here, we investigate the ability of Knockout to handle missingness in a high-dimensional, 3D dense image
segmentation task. In particular, we experiment on a multi-modal tumor segmentation task (Baid et al.,
2021), where the goal is to delineate adult brain gliomas in 3D brain MRI volumes given 4 modalities per
subject: T1, T1Gd, T2, and FLAIR. We use a 3D UNet as the segmentation model (Ronneberger et al.,
2015). We minimize a sum of cross-entropy loss and Dice loss with equal weighting and use Adam optimizer
with a learning rate of 1e-3. See Appendix B.3 and A.3 for further details. At inference time, we evaluate on
all modality missingness patterns. Fig. 5 shows Dice scores. We observe that the Knockout-trained model
has better Dice performance across all missingness patterns. When all modalities are available, Knockout
and the common baseline achieve the same performance level. See Appendix A.3 for additional experiments
on the effect of various placeholders.

4.5 Missing Views in Tree Genus Classification

We demonstrate Knockout’s ability to deal with missing data at the latent feature level in a classification
task. The Auto Arborist dataset (Beery et al., 2022), a multi-view (street and aerial) image dataset, is used
for this purpose. In this experiment, we used the top 10 genera for multi class prediction. A frozen ResNet-
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Figure 5: Dice performance of multi-modal tumor segmentation across varying missingness patterns of
modality images. Knockout trained models have better Dice performance across all missingness patterns
than the common baseline. Error bars depict the 95% confidence interval over test subjects.

Table 5: F1-scores of Auto Arborist averaged over 5 random seeds. Each column represents non-missing
modalities at inference time. Best results in bold, second-best underlined.

Aerial+Street Aerial Street
ResNet-50 Common baseline 0.483±0.016 0.312±0.017 0.356±0.024

Knockout (Features) 0.493±0.020 0.284±0.023 0.381±0.022
Knockout (Structured) 0.496±0.016 0.308±0.024 0.416±0.014

ViT-B-16 Common baseline 0.464±0.018 0.305±0.022 0.388±0.011
Knockout (Features) 0.473±0.019 0.315±0.008 0.383±0.010
Knockout (Structured) 0.480±0.017 0.324±0.019 0.408±0.015

50 (He et al., 2016) and ViT-B-16 (Dosovitskiy et al., 2021) pretrained with ImageNet-v2 (Recht et al., 2019)
is used as a feature extractor. The two features from street and aerial images are concatenated and were fed
into 3-layer MLP with ReLU activations. We trained Knockout to randomly replace the whole latent vectors
with vectors of 0s as placeholders after normalization. This variant is denoted as Knockout (Structured).
We additionally trained two baselines for comparison: 1) Knockout (Features) where individual features in
the latent vectors are independently replaced with placeholders, and 2) an imputation baseline, substituting
latent vectors from missing views with vectors of zeros during inference. Table 5 shows Knockout (Structured)
outperforming Knockout (Features), suggesting that matching p(M) with missing patterns that we expect
to see at inference can be more effective.

4.6 Missing MR Modalities in Prostate Cancer Detection

We demonstrate structured Knockout in the context of a binary image classification task, where Knockout is
applied at the latent level. The dataset consists of T2-weighted (T2w), diffusion-weighted (DWI) and
apparent diffusion coefficient (ADC) MR images per subject (Saha et al., 2022). A simple “ensemble baseline”
approach to address missingness is to train a separate convolutional classifier for each modality, and average
the predictions of available modalities at inference time (Kim et al., 2023; Hu et al., 2020). For further
details, please see Appendix B.4. To train a model with latent-level structured Knockout, we use the same
3 feature extractors. Each feature extractor is trained with a different modality. The loss function is binary
cross entropy loss and we use an Adam optimizer with a learning rate of 1e-3. We randomly knock out
each modality. For the common baseline, we trained the same architecture with complete modalities. At
inference time, the latent features from missing modalities are imputed with 0s. In the “ensemble baseline”
approach, we averaged the predicted values from the three extractors without additional training. As shown
in Table 6, Knockout generally outperforms the baselines in the majority of scenarios, except for inputs with
ADC. Notably, the F1 scores from the popular ensemble baseline are significantly lower than Knockout.
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Table 6: F1 scores of prostate cancer dataset averaged over 5 random seeds across varying missingness
patterns at inference time. Each column represents non-missing modalities. Best results in bold, second-
best underlined.

T2 ADC DWI ADC
+DWI

T2
+DWI

T2
+ADC All

Ensemble 0.21±0.09 0.37±0.01 0.28±0.03 0.32±0.01 0.18±0.04 0.33±0.03 0.30±0.05

Common 0.43±0.01 0.68±0.02 0.61±0.02 0.70±0.01 0.51±0.03 0.65±0.01 0.67±0.01

Knockout 0.63±0.02 0.60±0.02 0.62±0.02 0.67±0.01 0.66±0.01 0.65±0.02 0.68±0.01

4.7 Missing Modalities in UPMC Food-101 Classification

To further evaluate the generalizability of our approach, we extend our experiments to the UPMC Food-101
dataset (Wang et al., 2015), a widely used benchmark for multi-modal learning with both textual and visual
inputs. Our multi-modal architecture combines pretrained ResNet50 (vision) and RoBERTa-base (text)
backbones. The output from ResNet50 is fed into a single linear layer to transform its dimension to match
that of Roberta’s output. Feature vectors from each modality are concatenated and passed through an MLP
with two hidden layers of size 256 and ReLU activations. Models are trained using AdamW with a learning
rate of 3 × 10−5, for 8 epochs and a batch size of 72. We follow the standard train-test split, reserving 7,000
samples from the training set for validation.

As shown in Table 7, our multi-modal model with Knockout achieves 92.7% accuracy, outperforming the
common Baseline (91.5%) and matching the previous state-of-the-art reported by (Gallo et al., 2020). Table 7
also reports performance under unimodal ablations. Knockout exhibits greater robustness, especially in the
image-only setting, improving accuracy from 47.5% to 63.2%.

Table 7: Test accuracy (%) on the Food-101 dataset for multi-modal models under three input settings: (1)
both Image and Text, (2) Image only (without Text), and (3) Text only (without Image). For comparison,
test accuracies of multi-modal models from previous work are also included.

Method Image Model Text Model Image + Text w/o Text w/o Image
Wang et al. (2015) VGG19 TF-IDF 85.1 N/A N/A
Kiela et al. (2018) ResNet152 FastText 90.8 N/A N/A
Gallo et al. (2020) Inception-v3 BERT-LSTM 92.5 N/A N/A
Common baseline ResNet50 RoBERTa 91.5 47.5 85.0
Knockout ResNet50 RoBERTa 92.7 63.2 85.3

5 Discussion

We introduced Knockout, a novel, easy-to-implement strategy for handling missing inputs, using a math-
ematically principled approach. By simulating missingness during training via random “knock out” and
substitution with appropriate placeholder values, our method allows a single model to learn the conditional
distribution and all desired marginals. Our evaluation demonstrates Knockout’s the versatility and robust-
ness across diverse synthetic and real-world scenarios, consistently outperforming conventional imputation
and ensemble techniques for both low and high-dimensional missing inputs. We also extend Knockout to
handle observed missing values in training and present a structured version that is more effective when entire
feature vectors or input modalities are missing.

There has been a growing focus on developing multimodal datasets, tasks, and models that integrate in-
formation across modalities to improve performance and generalization Ngiam et al. (2011); Srivastava &
Salakhutdinov (2012); Nguyen et al. (2018); Lu et al. (2019); Alayrac et al. (2022); Boecking et al. (2022),
motivating continued efforts to improve robustness to missing or incomplete inputs. Although modern mul-
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timodal models are increasingly tolerant of missing modalities, Knockout can still play a crucial role in
promoting robustness and adaptability. This is especially useful during deployment, where models often face
unpredictable or incomplete inputs due to sensor failures or missing data. Multimodal foundation models
like LLaVA (Liu et al., 2023) and VILA (Lin et al., 2024) are generally more robust to missing modalities
than earlier models, but they are not immune to failure. Their ability to handle missing inputs largely stems
from pretraining on massive, diverse datasets. However, when applied to tasks with input distributions that
differ significantly from their training data, these models may still struggle in the absence of a modality.
Even SOTA transformer-based models have been shown to be sensitive to missing modalities (Ma et al.,
2022).

There are several future directions for further investigation. While our paper highlights the importance of
choosing an appropriate placeholder value, and there appears to be a practical tension between selecting
an unlikely/infeasible value versus achieving numerical stability (e.g., avoiding exploding gradients), one
can conduct a more detailed study of this to optimize the placeholder value. Additionally, our method
assumes model training with SGD, where samples are seen multiple times. Extending it to models that
do not use SGD, such as XGBoost, is a valuable avenue. Another promising direction of future research
is adapting Knockout to address distribution shifts in the presence of missingness. Finally, Knockout’s
theoretical treatment hinges on the use of a high capacity, non-linear model trained on very large data. In
applications, where low capacity models are used and/or training data are limited, Knockout might not be
as effective.
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