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Abstract

In the following work, we use a modified version of deep BrainNet convolutional neural
network (CNN) trained on the diffusion weighted MRI (DW-MRI) tractography connec-
tomes of patients with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI)
to better understand the structural connectomics of that disease. We show that with a
relatively simple connectomic BrainNetCNN used to classify brain images and explainable
AI techniques, one can underline brain regions and their connectivity involved in AD. Re-
sults reveal that the connected regions with high structural differences between groups are
those also reported in previous AD literature. Our findings support that deep learning
over structural connectomes is a powerful tool to leverage the complex structure within
connectomes derived from diffusion MRI tractography. To our knowledge, our contribution
is the first explainable AI work applied to structural analysis of a degenerative disease.

Keywords: Structural connectome, diffusion weighted MRI, deep learning, saliency maps,
Alzheimer’s Disease

1. Introduction

Early detection of neurodegenerative diseases like Alzheimer’s Disease (AD) along with
proper treatments can delay its progression (Livingston et al., 2017; Weller and Budson,
2018). Several approaches have been explored to better predict, detect and understand the
disease. These approaches include biological markers (Hampel et al., 2008; Kapaki et al.,
2007; Irizarry, 2004; Blennow et al., 2015; Patel et al., 2011; Zetterberg, 2008; Mattsson
et al., 2009; Gomar et al., 2011; Gomez-Isla and Frosch, 2019), blood-based bio-markers
(Henriksen et al., 2014; Thambisetty and Lovestone, 2010; Mayeux and Schupf, 2011; Doecke
et al., 2012), neuro-psychological tests (McKhann et al., 1984; Tierney et al., 2005; Jacobs
et al., 1995; Weintraub et al., 2012), artificial intelligence algorithms on medical images
(Liu et al., 2014; Moradi et al., 2015; Li et al., 2019; Jo et al., 2019; Lee et al., 2019; Litjens
et al., 2017; Liu et al., 2018). Besides, magnetic resonance imaging (MRI) has been a
modality of choice for AD diagnostics and has demonstrated its significance (Vemuri and
Jack, 2010). Most MRI-based techniques for studying AD can be grouped under two main
categories : i) MRI anatomical images analysis and ii) structural and functional connectomes
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(connectivity matrices) (Contreras et al., 2015). Standard techniques employing MRI can
be distinguished between: clinical analysis (Engelborghs, 2013; Cummings et al., 2019),
segmentation techniques (Biju et al., 2017) and machine/deep learning algorithms (Jo et al.,
2019). In this work, we focus on deep learning classification using the structural connectomes
derived from diffusion-weighed MRI.

In structural and functional connectivity analysis, the human brain complexity is rep-
resented as an interconnected network. This connectome is a graph whose nodes are brain
anatomical regions and edges are connectivity “strength”. Several studies explored brain
networks using functional imaging modalities (Prescott et al., 2014; Filippi et al., 2018).
The knowledge and characterization of this connectome, and underlying changes in brain
structure and activity, is essential to study cognitive and behavioral impairments.

Both fMRI and dMRI connectivity matrices have been used widely for studying AD
due to the rich information they held. Prescott et al. (2014) studied the differences in the
structural connectomes among patients with normal cognition (NC), mild cognitive impair-
ment (MCI), and AD while discovering associations between the structural connectome and
cortical amyloid deposition. Changes in weighted structural connectome metrics were ob-
served between NC, MCI and AD, with decreases from the NC group to the MCI and AD
groups. Filippi et al. (2018) investigated the structural and functional brain connectomes
in patients with AD and MCI. Severe graph analysis abnormalities were distinguished for
both the functional and structural connectomes in AD patients compared to NC, where
all brain lobes are involved except the basal ganglia and parietal lobes. Ye et al. (2019)
observed connectome abnormalities between different phases of the AD. Results underlines
13 brain regions involved in the disease.

In this paper, we intend to explore to what extent a deep convolutional neural network
trained on the connectome of a large number of ADNI subjects can help underline the
characteristics of the AD structure (adni.loni.usc.edu). In that perspective, we trained a
modified version of the BrainNetCNN (Kawahara et al., 2017) on the connectivity matrices
of a heterogeneous set of patients to predict three groups of subjects: normal control (NC),
mild cognitive impairment (MCI) and AD. Then, with the help of visualization techniques
and a thorough node ablation analysis, we get to visualize brain regions as well as their
connectivity that are involved in the prediction of AD.

Our work is a contribution to more explainable AI in advance medical imaging, using
deep learning to better understand the specific connectivity of AD through connectivity
ablation analysis and saliency map extraction, for understanding how the brain connectivity
differs and change based on the different brain’s alteration with dementia.

2. Methods

Since structural connectomes from DW-MRI tractography contain edge weights between
pairs of regions, they can easily be represented by a 2D matrix of all connections (Jeurissen
et al., 2019). This matrix is an adjacency matrix A of size N ×N , where N is the number
of regions and Ai,j is the weight between regions i and j. While this connectivity matrix
can be pictured as a 2D image (c.f. Figure 1 for an example of a connectivity matrix), it
cannot be inputted directly into a regular convolution neural networks (CNN), as the local
neighborhood around each element (i, j) is not isotropic. This is due to the very nature of
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Figure 1: The BrainNetCNN-like architecture of our method.

a connectivity matrix, where neighbors of a node are distributed along horizontal lines and
columns, i.e. connections to different brain regions.

As such, we implemented a modified version of BrainNetCNN (Kawahara et al., 2017)
originally used to predict cognitive and motor activities in premature infants. This network
implements two convolution filters adapted to the context of a connectivity matrix: a so-
called edge-to-edge (E2E) filter and an edge-to-node (E2N) filter.

Edge-to-Edge (E2E) and Edge-to-Node (E2N) layers

By definition, each region i of a symmetric adjacency matrix A is connected to all elements
in the ith row (Ai·) and ith column (A·i). As such, it is not related to its local neighbors like
a pixel of a regular image would be. Thus, if such adjacency matrix is to be processed by
a CNN, the usual 2D convolution operation need to be redefined. In that perspective, the
E2E filter is made of two 1D convolution filters: one spanning along the rows of A and one
spanning along the columns of A. These filters all process the connectivity matrix A and
produce M feature maps as shown in Figure 1. This simple, but effective operation, filters
the topological locality of brain networks, combining weights of connected edges.

After the E2E layer comes the E2N layer. The E2N filters extract features from all
the weights in each row in the preceding feature maps and convert it into a single scalar.
The E2N layers captures the second order connectivity (indirect connections) of the brain.
As shown in Figure 1, the E2N layer is formed of L filters and thus returns L vectors of
dimensions N × 1. We implement this operation with a 1D convolution filter.
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The proposed architecture

Our proposed network architecture is formed of an E2E layer followed by an E2N layer and
two fully-connected (FC) layers. The E2E and E2N layers are hierarchical brain networks
feature extraction functions. Note that for better convergence during training, a batch-
norm operation was added at the end of each layer. These layers are then followed by
two FC layers and then the output layer. To obtain a binary classification (e.g. NC-AD),
a sigmoid function is added to the output layer. Otherwise, for a three-class prediction
(NC-MCI-AD), a softmax function is used at the output.

HpBandSter (2018) algorithm was used to fine-tune the model’s hyperparameters includ-
ing the number of E2E and E2N filters and the activation function (ReLu or LeakyReLu).
This algorithm relies on Falkner et al. (2018) algorithm which combines both HyperBand
(Li et al., 2017) and Bayesian optimization algorithm.

The final best architecture is formed of a E2E layer with 23 filters and a LeakyReLu
activation function with a negative slope of 0.015976 followed by an E2N layer with 59
filters with a ReLu activation function. Meanwhile, the FC layers each contain 19 units,
the learning rate is 0.007812 and the batch size is of 25. Subsequent good configurations
among the other possible ones are reported in the appendix.

Training

The proposed architecture was implemented using Pytorch with the use of HpBandSter, to
optimize all hyperparameters. In order to ensure that configurations with best performance
were retained, 10 fold cross validation was utilized. The loss function is the well-known
cross-entropy which we minimize with the Adam optimizer. For the learning procedure,
along with the 10-fold cross-validation, the dataset was split into three sets: training (70%),
validation (15%) and test (15%).

3. Dataset

We used the ADNI (Alzheimer’s Disease Neuroimaging Initiative) dataset (Iwatsubo, 2011)
which is a well-known a longitudinal dataset with different time acquisition for the images,
baselines and after 6 months, 12 months, 24 months, 48 months, where baseline images are
MRI images acquired for the first time (day 1). Different releases of ADNI exist. Here,
ADNI2 and ADNI-Go were used with clinical-like DW-MRI acquisitions with 41 direc-
tions, 2mm isotropic and b-value 1000 s/mm2. In order to compute the tractography from
DW-MRI, Theaud et al. (2020) pipeline with default parameters was employed, ensuring
reproducibility and fast processing. Connectivity matrices were estimated from tractog-
raphy using the “Lausanne 2008” brain parcellation, an atlas of anatomical regions (Dale
et al., 1999; Hagmann et al., 2008), and streamline count between every pair of regions (see
Figure 1).

After quality control sanity checks, the final dataset is formed of 480 connectivity matri-
ces distributed as follows: 152 NC, 181 MCI and 147 AD. Meanwhile, the baseline sample
is formed of 57 NC, 95 MCI and 34 AD. The connectivity matrices were obtained with
the Freesurfer Desikan-Killiany parcellation tool (Desikan et al., 2006). This resulted into
83 regions : 68 cortical regions, 14 subcortical (nuclei) regions and 1 brainstem region.
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These connectivity matrices represent an undirected (symmetric) complete weighted graph
of dimensions 83 × 83. It is worth mentioning that connectivity matrices were normalized
to sum to 1, in such a way that each element of the matrix represents a probability of a
tractography connection occurring between region i and region j in the brain. The Fig-
ure 1 (bottom-left) presents a connectivity matrix from DW-MRI tractography in between
cortical regions.

Furthermore, it is known that streamline count between regions is heavily dependent on
the size or surface area of cortical regions (Girard et al., 2014). Hence, the local volume of
each cortical region was added in the previously generated connectivity matrices. In order
to obtain the connectivity matrices with the cortical volume, the diagonal of the initial
connectivity matrices has been filled with cortical volume of each region. This diagonal
was also normalized, summing to 1, resulting in reconstructed connectivity matrices with a
total sum equal to 2. As a result, our experiments were tested for both types of matrices,
with and without cortical region volume in the diagonal.

4. Experiments

As mentioned before, we hypothesize that the use of a trained CNN can help better un-
derstand the specifics of the AD connectomics. We do this through two experiments: 1)
an ablation analysis to measure to which extent a region and/or an edge can affect the
prediction of the neural network and 2) a visualization experiment to recover which areas
of the brain drive the most of the output of the neural network.

Regions and connections ablation analysis

The main idea here is to change the connectivity between regions of the brain in order to
evaluate the impact of that change on the overall performance of the model. For this, three
approaches were implemented: a node ablation, a node randomization and an edge ablation.
The node ablation forces to zero the connections between a region i and every other regions.
The node randomization “randomizes” values of connectivity between a region i and the
other regions while keeping the same average instead of forcing them to zero. As for edge
ablation, we set to zero the connection between regions i and j. This last approach is also
tested with a combination of edges, to a maximum of 4 connections simultaneously. The
ablation analysis is done in turn for each region and each edge.

Saliency map extraction

The goal of the ablation analysis is to identify if a node or an edge is responsible on its own
for certain predictions of the network. In this section, we want to identify if a group of nodes
or edges is responsible for certain outputs of the neural net. Hence, a legitimate step to
understand the regions driving the model prediction is by retroprogating the gradient from
a maximally activated output neuron all the way to the input connectivity map A. We did
so after training the network to discriminate between NC, MCI and AD. The magnitude of
the gradient shall thus give us a clue on which combination of regions and edges are most
important for predicting these classes.
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For interpretability and explainability of the results, advice from an expert neuroanatomist
are included in the discussion. Hence, the interpretation will depend on the resulting fea-
tures visualized over averaged inputs for each class and prior knowledge from the AD liter-
ature.

5. Results

Results given in this section are from the learned model applied to the test set, after
training and validation, including a 10 fold cross-validation. The accuracy of the one-to-
one prediction are as follows: 78% for NC-MCI (45 test samples), 91% for NC-AD (45
test samples) and 81% MCI-AD (49 test samples). Table 1 summarizes the one-to-one
predictions with the following metrics: prediction precision, recall, F1-score, accuracy of
training, validation and test. For both datasets: with and without cortical volume for
each region in the diagonal (Table 1). For the one-to-all prediction, NC-MCI-AD (72 test
samples), when incorporating cortical region volume in the diagonal of the matrices, the
score improves from 76% to 78%.

Prediction
Cortical
regions
volume

precision recall F1-score
valid.
acc.

test
acc.

NC - MCI 86% 70% 77% 79% 78%
NC - AD no 95% 86% 90% 85% 91%
MCI - AD 78% 81% 80% 71% 81%

NC - MCI 74% 74% 74% 77% 72%
NC - AD yes 91% 91% 91% 95% 91%
MCI - AD 80% 90% 85% 75% 86%

Table 1: Reported metrics for the experiments with and without regions volume.

Regions and connections ablation analysis

To our surprise, shutting down nodes and edges did not decrease in any significant way the
predicted scores. In addition, the node randomization decreased our prediction accuracy
to 50%, which emphasizes the importance of the structure within connectomes and how
regions are connected between each other.

Saliency map visualisation

As mentioned before, we retroprapagated the gradient from the maximally activated output
neuron associated with AD, MCI and NC. Regions with higher values in the AD and MCI
saliency maps are: hippocampus, amygdala, parahippocampal, entorhinal, fusiform regions.

To further illustrate the difference between the activated regions of AD, MCI and those
of NC, we subtracted the NC saliency map from the AD and the MCI. We did so with
the purpose of underlying the specifics of the AD and MCI connectomes. The subtracted
saliency maps are illustrated in Figure 2. This revealed that the entorhinal was the most
intense difference between AD and NC along with hippocampus for MCI and NC. These
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regions are reported in AD research from voxel-based morphometry, cortical thickness or
functional connectomics (Jhoo et al., 2010; Choo et al., 2010; Pennanen et al., 2004; Hojjati
et al., 2017).

Figure 2: Saliency map features visualization resulting from the difference of two saliency
maps generated with the one-to-all model: A) MCI minus NC, B) AD minus NC.
Diagonal values are presented with node color, and other values represented with
edge color. The red and green circle are around the hippocampus and entorhinal
nodes, two regions known for their implication in AD.

6. Discussion

We have shown that CNNs adapted to the structure of DW-MRI tractography connectomes
can be used to classify MCI and AD afflicted brains. Moreover, we showed that our trained
network could be used to gain insights into the structural connections that drive the AD
pathology.

AD prediction

Previously reported results for MCI and AD prediction are in the order of 80%, e.g. 60%-
70% from MRI morphological methods (Lisowska et al., 2019), and from 80%-90% with
functional MRI approaches (Hojjati et al., 2017). On the other hand, Abrol et al. (2020)
proposed a deep residual neural network for predicting the progression of AD, achieving a
median accuracy of 91% for AD vs NC, 86% for both MCI vs NC and MCI vs AD. While the
method published in Li et al. (2015), consists of a deep learning neural network to identify
the progression of AD based on MRI and PET modalities, while using advanced techniques
for improving the model prediction like dropout, stability selection, adaptive learning factor
and multitask learning strategy, and reported an accuracy of 91.4% for AD vs NC, 77.4%
for MCI vs NC and 70.1% for MCI vs AD.
Our work shows competitive prediction percentages and also emphasizes that the key chal-
lenge in AD prediction is the prediction between MCI and AD, and between NC and MCI.
These are the hardest classification tasks, where disease prediction is not clear-cut, and
most likely requires more information (multi-modality, genetics, amongst others).
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Regions and connections ablation analysis

The results of the ablation procedure support the idea that no single region and its connec-
tions are responsible for AD prediction, but the combined effect of several cortical regions,
that are directly or indirectly connected via long-range fiber tracks. By indirect connectivity,
we mean that a 2nd order connectivity exists between these regions. DW-MRI tractogra-
phy is the only non-invasive modality that can provide this structural connectivity brain
architecture, which is essential and should be considered in future AD studies.

Saliency map visualization

The amplitude of the retropropagated gradient underlines which regions strongly correlate
with the neural net prediction. However, this correlation could be explained by a lower or
higher structural connectivity estimated from the DW-MRI thus the analysis of the saliency
map should be interpreted with care.

Limitations and future directions

One of the current limitations of our work is the absence of anatomical priors for the
structural connectome reconstruction. As such, more insights from the disease along with
anatomical constraints could improve results. Since incorporating cortical region volumes
can improve the prediction, adding more information from relevant brain features could,
furthermore, increase the model power. For example, more information from diffusion
such as fractional anisotropy (FA), mean diffusivity (MD), as well as more information
from other MRI contrasts (e.g. cortical thickness, myelin, functional connectivity). As
a result, future direction in predicting AD, and it’s progression with MCI, is within the
application of advance geometric or graph CNN over the connectome (Bronstein et al.,
2017). Furthermore, along with continuous progress and efforts in creating larger datasets,
a regression problem for AD progression prediction could be formulated, so that the disease
progression can be assessed as a continuum in time.

7. Conclusion

In this paper, we conducted an explainable AI experiment to better understand the con-
nectomic structure of the AD. From a CNN trained on the brain connectomes of ADNI
patients, we showed from an ablation procedure that no single region is responsible for AD,
but the combined effect of several cortical regions. We also showed that the entorhinal is
the most intense difference between AD and NC along with hippocampus for MCI and NC.
These regions are reported in AD research from voxel-based morphometry, cortical thick-
ness or functional connectomics ((Jhoo et al., 2010); (Choo et al., 2010); (Pennanen et al.,
2004); (Hojjati et al., 2017)). Our findings thus show that deep convolution networks can
be used to gain insights into the specifics of a neurodegenerative disease such as AD. This
could have important implications in neurodegenerative diseases analysis.
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