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ABSTRACT
Scene segmentation via unsupervised domain adaptation (UDA) en-
ables the transfer of knowledge acquired from source synthetic data
to real-world target data, which largely reduces the need for manual
pixel-level annotations in the target domain. To facilitate domain-
invariant feature learning, existing methods typically mix data from
both the source domain and target domain by simply copying and
pasting the pixels. Such vanilla methods are usually sub-optimal
since they do not take into account how well the mixed layouts
correspond to real-world scenarios. Real-world scenarios are with
an inherent layout. We observe that semantic categories, such as
sidewalks, buildings, and sky, display relatively consistent depth dis-
tributions, and could be clearly distinguished in a depth map. Based
on such observation, we propose a depth-aware framework to ex-
plicitly leverage depth estimation to mix the categories and facilitate
the two complementary tasks, i.e., segmentation and depth learning
in an end-to-end manner. In particular, the framework contains a
Depth-guided Contextual Filter (DCF) for data augmentation and a
cross-task encoder for contextual learning. DCF simulates the real-
world layouts, while the cross-task encoder further adaptively fuses
the complementing features between two tasks. Besides, it is worth
noting that several public datasets do not provide depth annotation.
Therefore, we leverage the off-the-shelf depth estimation network
to generate the pseudo depth. Extensive experiments show that our
proposed methods, even with pseudo depth, achieve competitive
performance on two widely-used benchmarks, i.e., 77.7 mIoU on
GTA→Cityscapes and 69.3 mIoU on Synthia→Cityscapes.

CCS CONCEPTS
• Computing methodologies→ Scene understanding; Transfer
Learning.

KEYWORDS
Unsupervised Scene Adaptation, Depth-aware Fusion, Transfer Learn-
ing, Self-supervised Learning

1 INTRODUCTION
Semantic segmentation refers to the task of assigning pixel-level
category labels in an image, which has achieved significant progress
in the last few years [2, 6, 35, 63]. It is worth noting that prevailing
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Figure 1: (a) Considering the driving scenario, we observe that
the object location is relatively stable according to the distance
from the camera. Therefore, we propose a Depth-guided Con-
textual Filter (DCF) which is aware of the semantic categories
distribution in terms of Near, Middle, and Far view to facilitate
cross-domain mixing. (b) Since we explicitly take the semantic
layout into consideration, our method achieves more realistic
mixed samples compared to the competitive MIC (Vanilla Mixed
Sample) [20]. As shown in the red dotted box, “new” buildings
are pasted before the parked cars.

models usually require large-scale training datasets with high-quality
annotations, such as ADE20K [78], to achieve good performance
and but such pixel-level annotations in real-world are usually un-
affordable and time-consuming [11]. One straightforward idea is
to train networks with synthetic data so that the pixel-level anno-
tations are easier to obtain [43, 44]. However, the network trained
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with synthetic data usually results in poor scalability when being
deployed to a real-world environment due to multiple factors, such
as weather, illumination, and road design. Therefore, researchers
resort to unsupervised domain adaptation (UDA) to further tackle the
variance between domains. One branch of UDA methods attempts
to mitigate the domain shift by aligning the domain distributions
[17, 37, 42, 51, 61]. Another potential paradigm to heal the domain
shift is self-training [30, 67, 76, 81, 82], which recursively refine the
target pseudo-labels. Taking one step further, recent DACS [50] and
follow-up works [8, 18–20, 23, 57, 62] combine self-training and
ClassMix [40] to mix images from both source and target domain.
In this way, these works could craft highly perturbed samples to
assist training by facilitating learning shared knowledge between
two domains. Specifically, cross-domain mixing aims to copy the
corresponding regions of certain categories from a source domain
image and paste them onto an unlabelled target domain image. We
note that such a vanilla strategy leads to pasting a large amount
of objects to the unrealistic depth position. It is because that every
category has its own position distribution. For instance, the back-
ground classes such as “sky” and “vegetation” usually appear farther
away, while the classes that occupy a small number of pixels such as
“traffic signs” and “pole”, usually appear closer as shown in Figure
1 (a). Such crafted training data compromise contextual learning,
leading to sub-optimal location prediction performance, especially
for small objects.

To address these limitations, we observe the real-world depth
distribution and find that semantic categories are easily separated
(disentangled) in the depth map since they follow a similar distri-
bution under certain scenarios, e.g., urban. Therefore, we propose
a new depth-aware framework, which contains Depth Contextual
Filter (DCF) and a cross-task encoder. In particular, DCF removes
unrealistic classes mixed with the real-world target training samples
based on the depth information. On the other hand, multi-modal
data could improve the performance of deep representations and the
effective use of the deep multi-task features to facilitate the final
predictions is crucial. The proposed cross-task encoder contains two
specific heads to generate intermediate features for each task and
an Adaptive Feature Optimization module (AFO). AFO encourages
the network to optimize the fused multi-task features in an end-
to-end manner. Specifically, the proposed AFO adopts a series of
transformer blocks to capture the information that is crucial to distin-
guish different categories and assigns high weights to discriminative
features and vice versa.

The main contributions are as follows: (1) We propose a simple
Depth-Guided Contextual Filter (DCF) to explicitly leverage the key
semantic categories distribution hidden in the depth map, enhancing
the realism of cross-domain information mixing and refining the
cross-domain layout mixing. (2) We propose an Adaptive Feature
Optimization module (AFO) that enables the cross-task encoder
to exploit the discriminative depth information and embed it with
the visual feature which jointly facilitates semantic segmentation
and pseudo depth estimation. (3) Albeit simple, the effectiveness
of our proposed methods has been verified by extensive ablation
studies. Despite the pseudo depth, our method still achieves com-
petitive accuracy on two commonly used scene adaptation bench-
marks, namely 77.7 mIoU on GTA→Cityscapes and 69.3 mIoU on
Synthia→Cityscapes.

2 RELATED WORK
2.1 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) aims to train a model on
a label-rich source domain and adapt the model to a label-scarce
target domain. Some methods propose learning the domain-invariant
knowledge by aligning the source and target distribution at differ-
ent levels. For instance, AdaptSegNet [51], ADVENT [54], and
CLAN [37] adversarially align the distributions in the feature space.
CyCADA [17] diminishes the domain shift at both pixel-level and
feature-level representation. DALN [4] proposes a discriminator-free
adversarial learning network and leverages the predicted discrim-
inative information for feature alignment. Both Wu et al.[61] and
Yue et al. [68] learn domain-invariant features by transferring the
input images into different styles, such as rainy and foggy, while
Zhao et al. [74] and Zhang et al. [71] diversify the feature distribu-
tion via normalization and adding noise respectively. Another line of
work refines pseudo-labels gradually under the iterative self-training
framework, yielding competitive results. Following the motivation
of generating highly reliable pseudo labels for further model op-
timization, CBST [81] adopts class-specific thresholds on top of
self-training to improve the generated labels. Feng et al.[12] acquire
pseudo labels with high precision by leveraging the group infor-
mation. PyCDA [32] constructs pseudo-labels in various scales to
further improve the training. Zheng et al.[75] introduce memory reg-
ularization to generate consistent pseudo labels. Other works propose
either confidence regularization [76, 82] or category-aware rectifi-
cation [69, 70] to improve the quality of pseudo labels. DACS [50]
proposes a domain-mixed self-training pipeline to mix cross-domain
images during training, avoiding training instabilities. Kim et al.[25],
Li et al.[31] and Wang et al.[56] combine adversarial and self-
training for further improvement. Chen et al.[5] establish a delib-
erated domain bridging (DDB) that aligns and interacts with the
source and target domain in the intermediate space. SePiCo [62] and
PiPa [8] adopt contrastive learning to align the domains. Liu et al.[34]
addresses the label shift problem by adopting class-level feature
alignment for conditional distribution alignment. Researchers also
attempted to perform entropy minimization [7, 54], and image trans-
lation [15, 65]. consistency regularization[1, 10, 39, 79]. Recent
multi-target domain adaptation (MTDA) methods enable a single
model to adapt a labeled source domain to multiple unlabeled target
domains [13, 28, 47]. However, the above methods usually ignore
the rich multi-modality information, which can be easily obtained
from the depth sensor and other sensors.

2.2 Depth Estimation and Multi-task Learning in
Semantic Segmentation

Semantic segmentation and geometric information are shown to
be highly correlated [24, 49, 53, 58, 64, 72, 73]. Recently depth
estimation has been increasingly used to improve the learning of
semantics within the context of multi-task learning, but the depth
information should be exploited more precisely to help the domain
adaptation. SPIGAN [27] pioneered the use of geometric informa-
tion as an additional supervision by regularizing the generator with
an auxiliary depth regression task. DADA [55] introduces an ad-
versarial training framework based on the fusion of semantic and
depth predictions to facilitate the adaptation. GIO-Ada [9] leverages
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the geometric information on both the input level and output level
to reduce domain shift. CTRL [45] encodes task dependencies be-
tween the semantic and depth predictions to capture the cross-task
relationships. CorDA [57] bridges the domain gap by utilizing self-
supervised depth estimation on both domains. Wu et al. [60] propose
to further support semantic segmentation by depth distribution den-
sity. Our work follows a similar spirit to leverage depth knowledge
as auxiliary supervision. It is worth noting that our work is primarily
different from existing works in the following two aspects: (1) from
the data perspective, we explicitly delineate the depth distribution
to refine data augmentation and construct realistic training samples
to enhance contextual learning. (2) from the network perspective,
our proposed multi-task learning network not only adopts auxiliary
supervision for learning more robust deep representations but also
facilitates the multi-task feature fusion by iterative deploying of
transformer blocks to jointly learn the rich multi-task information
for improving the final predictions.

3 METHOD
3.1 Problem Formulation
In a typical Unsupervised Domain Adaptation (UDA) scenario, we
have a source domain, denoted 𝑆 , which consists of abundant labeled
synthetic data. On the other hand, the target domain, represented
by 𝑇 , contains unlabeled real-world data. For example, we have
labeled training samples

(
x𝑆 , y𝑆 , z𝑆 ∼ X𝑆 ,Y𝑆 ,Z𝑆

)
in the source do-

main, where x𝑆 , y𝑆 are the training image and the corresponding
ground truth for semantic segmentation. z𝑆 is the label for the depth
estimation task. Similarly, we have unlabeled target images sampled
from target domain data

(
x𝑇 , z𝑇 ∼ X𝑇 ,Z𝑇

)
, where x𝑇 is the unla-

beled sample in the target domain and z𝑇 is the label for the depth
estimation task. Since depth annotation is not supported by common
public datasets, we adopt pseudo depth that can be easily generated
by the off-the-shelf model [14].

3.2 Depth-guided Contextual Filter
In UDA, recent works Recent UDA works [8, 18–20, 40, 57] often
employ pixel mixing to create cross-domain augmented samples.
The basic idea is straightforward: take a portion of pixels from a
source domain image and transplant them onto an equivalent area
in a target domain image. However, this simple approach faces
challenges due to the inherent differences in structure and layout
between source and target domain data. To decrease noisy signals
and simulate augmented training samples with real-world layouts,
we propose Depth-guided Contextual Filter (DCF) to reduce the
noisy pixels that are naively mixed across domains. The implemen-
tation of DCF is represented as pseudo-code in Algorithm 1, where
the image x𝑆 and the corresponding semantic labels y𝑆 are sam-
pled from source domain data. The image x𝑇 and the depth label
z𝑇 are from target domain data. Pseudo label ŷ𝑇 is then generated
as ŷ𝑇 = F𝜃

(
x𝑇

)
, where F𝜃 is a pre-trained semantic network. In

practice, F𝜃 usually has been trained on the source domain dataset
via supervised learning. Based on the hypothesis that most semantic
categories usually fall under a finite depth range, we introduce DCF,
which divides the target depth map z𝑇 into a few discrete depth

Algorithm 1 Depth-guided Contextual Filter Algorithm with Cross-
Image Mixing and Self Training

Input: Source domain: (x𝑆 , y𝑆 , z𝑆 ∼ X𝑆 ,Y𝑆 ,Z𝑆 ), Target domain:
(x𝑇 , z𝑇 ∼ X𝑇 ,Z𝑇 ). Semantic network F𝜃 .

1: Initialize network parameters 𝜃 randomly.
2: for iteration = 1 to 𝑛 do
3: ŷ𝑇 ← F𝜃

(
x𝑇

)
, Generate pseudo label

4: Pre-calculate the density value p for each class 𝑖 at each depth
interval from the target depth map z𝑇 ,

5: ŷ𝑀 ← M ⊙ y𝑆 + (1 −M) ⊙ ŷ𝑇 , Randomly select 50% cat-
egories and copy the category ground truth label from the
source image to target pseudo label
x𝑀 ← M ⊙ x𝑆 + (1 −M) ⊙ x𝑇 , Copy the corresponding
category region from the source image to the target image

6: Re-calculate the density value p̂ after the mixing,
7: Calculate the depth density distribution difference before and

after mixing,
8: Filter the category once the difference exceeds the threshold,
9: Re-generate the depth-aware binary maskM𝐷𝐶𝐹 ,

10: ŷ𝐹 ← MDCF ⊙ y𝑆 +
(
1 −MDCF

)
⊙ ŷ𝑇 , Generate the

filtered training samples with new DCF mask
x𝐹 ←MDCF ⊙ x𝑆 +

(
1 −MDCF

)
⊙ x𝑇 ,

11: Compute predictions
ȳ𝑆 ← 𝑎𝑟𝑔𝑚𝑎𝑥

(
F𝜃

(
x𝑆

))
,

ȳ𝐹 ← 𝑎𝑟𝑔𝑚𝑎𝑥

(
F𝜃

(
x𝐹

))
,

12: Compute loss for the batch:
ℓ ← L

(
ȳ𝑆 , y𝑆 , ȳ𝐹 , ŷ𝐹

)
.

13: Compute ∇𝜃 ℓ by backpropagation.
14: Perform stochastic gradient descent.
15: end for
16: return F𝜃

intervals (Δ𝑧1, ...,Δ𝑧𝑛). For a given real-world target input image
x𝑇 combined with the pseudo label ŷ𝑇 and target depth map z𝑇 ,
the density value at each depth interval (Δ𝑧1, ...,Δ𝑧𝑛) for each class
𝑖 ∈ (1, . . . ,𝐶) can be counted and normalized as a probability. We de-
note the density value for class 𝑖 at the depth interval Δ𝑧1 as 𝑝𝑖 (Δ𝑧1).
All the density values make up the depth distribution in the target
domain image. Then we randomly select half of the categories on
the source images to paste on the target domain image. In practice,
we apply a binary maskM to denote the corresponding pixels. Then
naive cross-domain mixed image x𝑀𝑖𝑥 and the mixed label ŷ𝑀𝑖𝑥

can be formulated as:

x𝑀𝑖𝑥 =M ⊙ x𝑆 + (1 −M) ⊙ x𝑇 , (1)

ŷ𝑀𝑖𝑥 =M ⊙ y𝑆 + (1 −M) ⊙ ŷ𝑇 , (2)

where ⊙ denotes the element-wise multiplication of between the
mask and the image. The naively mixed images are visualized in
Figure 2. It could be observed that due to the depth distribution
difference between two domains, pixels of “Building” category are
mixed from the source domain to the target domain, creating unreal-
istic images. Training with such training samples will compromise
contextual learning. Therefore, we propose to filter the pixels that

3
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Figure 2: Source domain images 𝑥𝑆 and 𝑥𝑇 are mixed together,
using the ground truth label 𝑦𝑆 . The mixed images are de-noised
by our proposed Depth-guided Contextual Filter (DCF) and then
trained by the network. We illustrate DCF with a set of practical
sample. As illustrated, the unrealistic “Building” pixels from the
source image are mixed pasted to the target image, leading to
a noisy mixed sample. The proposed DCF removes these pixels
and maintain mixed pixels of “Traffic Sign” and “Pole” shown
in the white dotted boxes, enhancing the realism of cross-domain
mixing. (Best viewed when zooming in.)

do not match the depth density distribution in the mixed image.
After the naive mixing, we re-calculate the density value for each
class at each depth interval. For example, the new density value for
class 𝑖 at the depth interval Δ𝑧1 is denoted as 𝑝𝑖 (Δ𝑧1). Then we
calculate the depth density distribution difference for each pasted
category and denote the difference for class 𝑖 at the depth interval
Δ𝑧1 as Δ𝑝𝑖 (Δ𝑧1) = |𝑝𝑖 (Δ𝑧1) −𝑝𝑖 (Δ𝑧1) |. Once Δ𝑝𝑖 (Δ𝑧1) exceeds the
threshold of that category 𝑖, these pasted pixels are removed. After
performing DCF, we confirm the final realistic pixels to be mixed
and construct a depth-aware binary maskMDCF , which is changed
dynamically based on the depth layout of the current target image.

The filtered mixing samples are then generated. In practice, we
directly apply the updated depth-aware mask to replace the original
mask. Therefore, the new mixed sample and the label are as follows:

x𝐹 =MDCF ⊙ x𝑆 +
(
1 −MDCF

)
⊙ x𝑇 , (3)

ŷ𝐹 =MDCF ⊙ y𝑆 +
(
1 −MDCF

)
⊙ ŷ𝑇 . (4)

Because large objects such as “sky” and “terrain” usually aggregate
and occupy a large amount of pixels and small objects only occupy
a small amount of pixels in a certain depth range, we set different
filtering thresholds for each category. DCF uses pseudo semantic
labels for the target domain as there is no ground truth available.
Since the label prediction is not stable in the early stage, we apply a
warmup strategy to perform DCF after 10,000 iterations. Examples
of the input images, naively mixed samples and filtered samples

are presented in Figure 2. The sample after the process of the DCF
module has the pixels from the source domain that match the depth
distribution of the target domain, helping the network to better deal
with the domain gap.

3.3 Multi-task Scene Adaptation Framework
In order to exploit the relation between segmentation and depth learn-
ing, we introduce a multi-task scene adaptation framework including
a high resolution semantic encoder, and a cross-task shared encoder
with a feature optimization module, which is depicted in Figure 3.
The proposed framework incorporates and optimizes the fusion of
depth information for improving the final semantic predictions.

High Resolution Semantic Prediction. Most supervised methods
use high resolution images for training, but common scene adapta-
tion methods usually use random crops of the image that is half of
the full resolution. To reduce the domain gap between scene adap-
tation and supervised learning while maintaining the GPU memory
consumption, we adopt a high-resolution encoder to encode HR
image crops into deep HR features. Then a semantic decoder is used
to generate the HR semantic predictions ȳℎ𝑟 . We adopt the cross
entropy loss for semantic segmentation:

L𝑆
ℎ𝑟

(
x𝑆 , y𝑆

)
= E

[
−y𝑆 log ȳ𝑆

ℎ𝑟

]
, (5)

L𝐹
ℎ𝑟

(
x𝐹 , y𝐹

)
= E

[
−ŷ𝐹 log ȳ𝐹

ℎ𝑟

]
, (6)

where ȳ𝑆
ℎ𝑟

and ȳ𝑇
ℎ𝑟

are high resolution semantic predictions. y𝑆 is the
one-hot semantic label for the source domain and ŷ𝐹 is the one-hot
pseudo label for the depth-aware fused domain.

Adaptive Feature Optimization. In addition to the high resolution
encoder, We use another cross-task encoder to encode input images
which are shared for both tasks. Depth maps are rich in spatial depth
information, but a naive concatenation of depth information directly
to visual information causes some interference, e.g. categories at
similar depth positions are already well distinguished by visual infor-
mation, and attention mechanisms can help the network to select the
crucial part of the multitask information. In the proposed multi-task
learning framework, the visual semantic feature and depth feature is
generated by a visual head and a depth head, respectively. As shown
in Figure 3, after applying batch normalization, an Adaptive Feature
Optimization module then concatenates the normalized input visual
feature and the input depth feature to create a fused multi-task fea-
ture by concatenation as 𝑓 𝑖𝑛

𝑓 𝑢𝑠𝑒
= CONCAT

(
𝑓 𝑖𝑛
𝑣𝑖𝑠

, 𝑓 𝑖𝑛
𝑑𝑒𝑝𝑡ℎ

)
. The fused

feature is then fed into a series of transformer blocks to capture the
key information between the two tasks. The attention mechanism
adaptively adjusts the extent to which depth features are embedded
in visual features:

𝑓 𝑜𝑢𝑡
𝑓 𝑢𝑠𝑒

=W𝑇𝑟𝑎𝑛𝑠

(
𝑓 𝑖𝑛
𝑓 𝑢𝑠𝑒

)
, (7)

whereW𝑇𝑟𝑎𝑛𝑠 is the transformer parameter. The learned output of
the transformer blocks is a weight map 𝛾 which is multiplied back to
the input visual feature and depth feature resulting in an optimized
feature as:

𝜸 = 𝝈
(
W𝐶𝑜𝑛𝑣 ⊗ 𝑓 𝑜𝑢𝑡

𝑓 𝑢𝑠𝑒

)
, (8)

4
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Figure 3: The proposed multi-task learning framework. The input images 𝑥𝐹 are mixed from the source image 𝑥𝑆 and target domain
𝑥𝑇 according to the depth (Please refer to Figure 2). Then we are fed 𝑥𝑆 and 𝑥𝐹 into the high resolution encoder to generate high
resolution predictions. To enhance multi-modal learning, the visual and depth feature created by the cross-task encoder are fused
and fed into the proposed Adaptive Feature Optimization module (AFO) for multimodal communication. Finally, the multimodal
communication via several transformer blocks incorporates and optimizes the fusion of depth information, improving the final visual
predictions.

where W𝐶𝑜𝑛𝑣 denotes the convolution parameter, ⊗ denotes the
convolution operation and 𝝈 represents the sigmoid function. The
weight matrix 𝜸 performs adaptive optimization of the muti-task
features. Then, the fused feature 𝑓 𝑜𝑢𝑡

𝑓 𝑢𝑠𝑒
is fed into different decoders

for predicting different final tasks, i.e., the visual and the depth task.
The output features are essentially multimodal features containing
crucial depth information:

𝑓 𝑜𝑢𝑡𝑣𝑖𝑠 = 𝑓 𝑖𝑛𝑣𝑖𝑠 ⊙ 𝜸 , 𝑓 𝑜𝑢𝑡
𝑑𝑒𝑝𝑡ℎ

= 𝑓 𝑖𝑛
𝑑𝑒𝑝𝑡ℎ

⊙ 𝜸 , (9)

where ⊙ represents element-wise multiplication. The optimized vi-
sual and depth feature is then fed into the multimodal communication
module for further processing. The multimodal communication mod-
ule refines the learning of key information between two tasks by
iterative use of transformer blocks. the inference is merely based on
the visual input when the feature optimization is fished. The final se-
mantic prediction ȳ𝑆

𝑣𝑖𝑠
and depth prediction z̄𝑆 can be generated from

the final visual feature 𝑓
𝑓 𝑖𝑛𝑎𝑙

𝑣𝑖𝑠
and depth feature 𝑓

𝑓 𝑖𝑛𝑎𝑙

𝑑𝑒𝑝𝑡ℎ
by the visual

head and depth head . Similar to the high resolution predictions, we
use the cross entropy loss for the semantic loss calculation:

L𝑆
𝑣𝑖𝑠

(
x𝑆 , y𝑆

)
= E

[
−y𝑆 log ȳ𝑆𝑣𝑖𝑠

]
, (10)

L𝐹
𝑣𝑖𝑠

(
x𝐹 , y𝐹

)
= E

[
−ŷ𝐹 log ȳ𝐹𝑣𝑖𝑠

]
. (11)

We also employ the berHu loss for depth regression at source do-
main:

L𝑆
𝑑𝑒𝑝𝑡ℎ

(
z𝑆
)
= E

[
berHu

(
z̄𝑆 − z𝑆

)]
, (12)

where 𝑧 and 𝑧 are predicted and ground truth semantic maps. Fol-
lowing [45, 55], we deploy the reversed Huber criterion [26], which

is defined as :

ber𝐻𝑢 (𝑒𝑧) =
{

|𝑒𝑧 | , |𝑒𝑧 | ≤ 𝐻
(𝑒𝑧 )2+𝐻 2

2𝐻 , |𝑒𝑧 | > 𝐻

𝐻 = 0.2 max ( |𝑒𝑧 |) ,
(13)

where 𝐻 is a positive threshold and we set it to 0.2 of the maximum
depth residual. Finally, the overall loss function is:

L = L𝑆
ℎ𝑟
+ L𝑆

𝑣𝑖𝑠 + 𝜆𝑑𝑒𝑝𝑡ℎL
𝑆
𝑑𝑒𝑝𝑡ℎ

+ L𝐹
ℎ𝑟
+ L𝐹

𝑣𝑖𝑠 , (14)

where hyperparameter 𝜆𝑑𝑒𝑝𝑡ℎ is the loss weight. Considering that
our main task is semantic segmentation and the depth estimation
is the auxiliary task, we empirically 𝜆𝑑𝑒𝑝𝑡ℎ = 0.1 × 10−2. We also
designed the ablation studies to change the weight of depth task
𝜆𝑑𝑒𝑝𝑡ℎ to the level of 10−1 or 10−3.

4 EXPERIMENT
4.1 Implementation Details
Datasets. We evaluate the proposed framework on two scene adapta-
tion settings, i.e., GTA→ Cityscapes and SYNTHIA→ Cityscapes,
following common protocols [1, 18–20, 50, 57]. Particularly, the
GTA5 dataset [43] is the synthetic dataset collected from a video
game, which contains 24,966 images annotated by 19 classes. Fol-
lowing [57], we adopt depth information generated by Monodepth2 [14]
model which is trained merely on GTA image sequences. SYN-
THIA [44] is a synthetic urban scene dataset with 9,400 training
images and 16 classes. Simulated depth information provided by
SYNTHIA is adopted. GTA and SYNTHIA serve as source domain
datasets. The target domain dataset is Cityscapes, which is collected
from real-world street-view images. Cityscapes contains 2,975 unla-
beled training images and 500 validation images. The resolution of
Cityscapes is 2048 × 1024 and the common protocol downscales the
size to 1024 × 512 to save memory. Following [57], the stereo depth

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM Multimedia ’24, 28 October 2024 - 1 November 2024, Melbourne, Australia Anon. Submission Id: 269

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Qualitative results on GTA→ Cityscapes. From left to right: Target Image, Ground Truth, the visual results predicted by
HRDA, MIC and Ours. We highlight prediction differences in white dash boxes. The proposed method could predict clear edges.

estimation from [46] is used. We leverage the Intersection Over
Union (IoU) for per-class performance and the mean Intersection
over Union (mIoU) over all classes to report the result. The code is
based on Pytorch [41]. We will make our code open-source for
reproducing all results.
Experimental Setup. We adopt DAFormer [18] network with MiT-
B5 backbone [63] for the high resolution encoder and DeepLabV2
network with ResNet-101 backbone for the cross-task encoder to
reduce the memory consumption. All backbones are initialized
with ImageNet pretraining. Our training procedure is based on self-
training methods with cross-domain mixing [18–20, 50] and en-
hanced by our proposed Depth-guided Contextual Filter. Following
[19, 50], the input image resolution is half of the full resolution for
the cross-task encoder and full resolution for high resolution encoder.
We utilize the same data augmentation, e.g., color jitter and Gaussian
blur and empirically set pseudo labels threshold 0.968 following [50].
We train the network with batch size 2 for 40k iterations on a Tesla
V100 GPU.
Data Resolution. Our proposed depth-aware multi-task framework
contains a high resolution encoder and a cross-task encoder with an
adaptive feature optimization module (AFO). Previous works [31,
50, 52] downsample Cityscapes to 1024 × and GTA to 1280 × 720.
Following [19], for the high resolution encoder, we resize GTA to
2560 × 1440 and SYNTHIA to 2560 x 1520. Then the crop size
is 1024 × 1024. In addition, SegFormer [63] MLP decoder with an
embedding dimension of 256 is used for the high resolution branch.

For the cross-task encoder branch, we follow common UDA meth-
ods [18, 50] to adopt 1024 × 512 pixels (half of the full resolution)
for Cityscapes, 1280 × 760 for SYNTHIA and 1280 × 720 for GTA.
In addition, a 512 × 512 random crop is extracted.

4.2 Comparison with SOTA
Results on GTA→Cityscapes. We show our results on GTA →
Cityscapes in Table 1 and highlight the best results in bold. It could
be observed that our method yields significant performance improve-
ment over the state-of-the-art method MIC [20] from 75.9 mIoU to
77.7 mIoU. Usually, classes that occupy a small number of pixels are
difficult to adapt and have a comparably low IoU performance. How-
ever, our method demonstrates competitive IoU improvement on
most categories especially on small objects such as +5.7 on “Rider”,
+5.4 on “Fence”, +5.2 on “Wall”, +4.4 on “Traffic Sign” and +3.4 on
“Pole”. The result shows the effectiveness of the proposed contextual
filter and cross-task learning framework in the contextual learning.
Our method also increases the mIoU performance of classes that
aggregate and occupy a large amount of pixels in an image by a
smaller margin such as +1.8 on “Pedestrain” and +1.1 on “Bike”,
probably because the rich texture and color information contained
in the visual feature already has the ability to recognize these rela-
tively easier classes. The above observations are also qualitatively
reflected in Figure 4, where we visualize the segmentation results
of the proposed method and the comparison with previous strong
transformer-based methods HRDA [19], and MIC [20]. The qualita-
tive results highlighted by white dash boxes show that the proposed
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Table 1: Quantitative comparison with previous UDA methods on GTA→ Cityscapes. We present pre-class IoU and mIoU. The best
accuracy in every column is in bold. Our results are averaged over 3 random seeds.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU
AdaptSegNet [51] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CyCADA [17] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
CLAN [37] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
SP-Adv [48] 86.2 38.4 80.8 25.5 20.5 32.8 33.4 28.2 85.5 36.1 80.2 60.3 28.6 78.7 27.3 36.1 4.6 31.6 28.4 44.3

MaxSquare [7] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.3 34.2 44.3
ASA [80] 89.2 27.8 81.3 25.3 22.7 28.7 36.5 19.6 83.8 31.4 77.1 59.2 29.8 84.3 33.2 45.6 16.9 34.5 30.8 45.1

AdvEnt [54] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
MRNet [75] 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5
APODA [66] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9
CBST [81] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRKLD [82] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
FADA [56] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

Uncertainty [76] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
FDA [67] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

Adaboost [77] 90.7 35.9 85.7 40.1 27.8 39.0 49.0 48.4 85.9 35.1 85.1 63.1 34.4 86.8 38.3 49.5 0.2 26.5 45.3 50.9
DACS [50] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
BAPA [33] 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4
ProDA [69] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
CaCo [22] 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0

DAFormer [18] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
CAMix [79] 96.0 73.1 89.5 53.9 50.8 51.7 58.7 64.9 90.0 51.2 92.2 71.8 44.0 92.8 78.7 82.3 70.9 54.1 64.3 70.0
HRDA [19] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
MIC [20] 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9

CorDA† [57] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
FAFS† [3] 93.4 60.7 88.0 43.5 32.1 40.3 54.3 53.0 88.2 44.5 90.0 69.5 35.8 88.7 34.1 53.9 41.3 51.7 54.7 58.8
DBST† [3] 94.3 60.0 87.9 50.5 43.0 42.6 50.8 51.3 88.0 45.9 89.7 68.9 41.8 88.0 45.8 63.8 0.0 50.0 55.8 58.8

Ours† 97.5 80.7 92.1 66.4 62.3 63.1 67.7 75.7 91.8 52.4 93.9 81.6 61.8 94.7 88.3 90.0 81.2 65.8 69.6 77.7
†: Training with depth data.

method largely improved the prediction quality of challenging small
object “Traffic Sign” and large category “Terrain”.
Results on Synthia→Cityscapes. We show our results on SYN-
THIA→ Cityscapes in Table 1 and the results show the consistent
performance improvement of our method, increasing from 67.3 to
69.3 (+2.0 mIoU) compared to the state-of-the-art method MIC [20].
Especially, our method significantly increases the IoU performance
of the challenging class “SideWalk” from 50.5 to 63.1 (+12.6 mIoU).
It is also noticeable that our method remains competitive in segment-
ing most individual classes and yields a significant increase of +6.8
on “Road”, +6.6 on “Bus”, +3.9 on “Pole”, +3.7 on “Road”, +3.2 on
“Wall” and +2.9 on “Truck”.

4.3 Ablation Study and Further Disccussion
Ablation Study on Different Scene Adaptation Frameworks. We
combine our method with different scene adaptation architectures
on GTA→Cityscapes. Table 4 shows that our method achieves con-
sistent and significant improvements across different methods with
different network architectures. Firstly, our method improves the
state-of-the-art performance by +1.8 mIoU. Then we evaluate the
proposed method on two strong methods based on transformer back-
bone, yielding +3.2 mIoU and +2.3 mIoU performance increase on
DAFormer [18] and HRDA [19], respectively. Secondly, we evaluate
our method on DeepLabV2 [6] architecture with ResNet-101 [16]
backbone. We show that we improve the performance of the CNN-
based cross-domain mixing method, i.e., DACS by +4.1 mIoU. The
ablation study verifies the effectiveness of our method in leverag-
ing depth information to enhance cross-domain mixing not only on
Transformer-based networks but also on CNN-based architecture.

Ablation Study on Different Components of the Proposed Method.
In order to verify the effectiveness of our proposed components, we
train four different models from M1 to M4 and show the result in
Table 3. “ST Base" means the self training baseline with seman-
tic segmentation branch and depth regression branch. “Naive Mix"
denotes the cross-domain mixing strategy. “DCF" represents the pro-
posed depth-aware mixing (Depth-guided Contextual Filter). “AFO"
denotes the proposed Adaptive Feature Optimization module and
we used two different method to perform AFO. Firstly, we leverage
channel attention (CA) that could select useful information along
the channel dimension to perform the feature optimization. In this
method, the fused feature is adaptively optimized by SENet [21], the
output is a weighted vector which is multiplied back to the visual
and depth feature. We leavrage “AFO (CA)” to denote this method.
Secondly, we leverage the iterative use of transformer block to adap-
tively optimize the multi-task feature. In this case, the output of the
transformer block is a weighted map. The Multimodal Communi-
cation (MMC) module is then used to incorporate rich knowledge
from the depth prediction. We denote this method as “AFO (Trans +
MMC)”. M1 is the self training baseline with depth regression based
on DAFormer architecture. M2 adds the cross-domain mixing strat-
egy for improvement and shows a competitive result of 76.0 mIoU.
M3 is the model with the Depth-guided Contextual Filter, increas-
ing the performance from 76.0 to 77.1 mIoU (+1.1 mIoU), which
demonstrates the effectiveness of transferring the mixed training
images to real-world layout with the help of the depth information.
M4 adds the multi-task framework that leverages Channel Atten-
tion (CA) mechanism to fuse the discriminative depth feature into
the visual feature. The segmentation result is increased by a small
margin (+0.2 mIoU), which means CA could help the network to
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Table 2: Quantitative comparison with previous UDA methods on SYNTHIA→ Cityscapes. We present pre-class IoU, mIoU and
mIoU*. mIoU and mIoU* are averaged over 16 and 13 categories, respectively. The best accuracy in every column is in bold.Our
results are averaged over 3 random seeds.

Method Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU* mIoU
MaxSquare [7] 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 45.8 39.3

SIBAN [36] 82.5 24.0 79.4 − − − 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3 −
PatchAlign [52] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 40.0

AdaptSegNet [51] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 −
CLAN [37] 81.3 37.0 80.1 − − − 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 −
SP-Adv [48] 84.8 35.8 78.6 − − − 6.2 15.6 80.5 82.0 66.5 22.7 74.3 34.1 19.2 27.3 48.3 −
AdvEnt [54] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 41.2

ASA [80] 91.2 48.5 80.4 3.7 0.3 21.7 5.5 5.2 79.5 83.6 56.4 21.0 80.3 36.2 20.0 32.9 49.3 41.7
CBST [81] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.9 42.6
MRNet [75] 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 80.8 61.3 21.7 84.4 32.4 14.8 45.7 50.2 43.2

MRKLD [82] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 50.1 43.8
CCM [29] 79.6 36.4 80.6 13.3 0.3 25.5 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9 45.2

Uncertainty [76] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9 47.9
BL [31] 86.0 46.7 80.3 − − − 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4 −
DT [59] 83.0 44.0 80.3 − − − 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1 −

IAST [38] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 -
DAFormer [18] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4 60.9

CAMix [79] 87.4 47.5 88.8 − − − 55.2 55.4 87.0 91.7 72.0 49.3 86.9 57.0 57.5 63.6 69.2 −
HRDA [19] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 72.4 65.8
MIC [20] 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 94.6 81.0 58.9 90.1 61.9 67.1 64.3 74.0 67.3

DADA [55] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8 42.6
CorDA† [57] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 62.8 55.0

Ours† 93.4 63.1 89.8 51.1 9.1 61.4 66.9 64.0 88.0 94.5 80.9 56.6 90.9 68.5 63.7 66.6 75.9 69.3
†: Training with depth data.

Table 3: Ablation study of different components of our proposed
framework on GTA→Cityscapes. The results are averaged over
3 random seeds.

Method ST Base. Naive Mix. DCF. AFO. (CA) AFO. (Trans + MMC) mIoU↑
M1 ✓ 73.1
M2 ✓ ✓ 76.0
M3 ✓ ✓ ✓ 77.1
M4 ✓ ✓ ✓ ✓ 77.3
M5 ✓ ✓ ✓ ✓ 77.7

Table 4: Compatibility of the proposed method on different UDA
methods and backbones on GTA→Cityscapes. Our results are
averaged over 3 random seeds.

Backbone UDA Method w/o w/ Diff.
DeepLabV2 [6] DACS [50] 52.1 56.2 +4.1
DAFormer [18] DAFormer [18] 68.3 71.5 +3.2
DAFormer [18] HRDA [19] 73.8 76.1 +2.3
DAFormer [18] MIC [20] 75.9 77.7 +1.8

adaptively learn to focus or to ignore information from the auxiliary
task to some extent. M5 is our proposed depth-aware multi-task
model with both Depth-guided Contextual Filter and Adaptive Fea-
ture Optimization (AFO) module. Compared to M3, M5 has a mIoU
increase of +0.6 from 77.1 to 77.7, which shows the effectiveness
of multi-modal feature optimization using transformers to facilitate
contextual learning.
Ablation study on GTA+SYNTHIA→ Cityscapes. We evaluate
the proposed method on multi-source domains setting and report the
quantitative result on GTA+SYNTHIA→ Cityscapes. With multi-
source domain data, the model can be trained more robust to the
unlabelled target environment. We adopt DACS [50] as our baseline

Table 5: Quantitative results on GTA+SYNTHIA→ Cityscapes.
The performance is provided as mIoU in %.

Baseline (Single Source) Multi Source Multi Source + Depth
52.1 54.2 56.7

with 52.1 mIoU (Only GTA) performance shown in Table 5. With
more source-domain data, the model yields a better result of 54.2
mIoU. Then, we can observe that our method yields a larger im-
provement from 54.2 to 56.7 mIoU, demonstrating that the proposed
model could adapt multi-domain depth to the target domain and
hence increase performance.

5 CONCLUSION
In this work, we introduce a new depth-aware scene adaptation frame-
work that effectively leverages the guidance of depth to enhance data
augmentation and contextual learning. The proposed framework not
only explicitly refines the cross-domain mixing by stimulating real-
world layouts with the guidance of depth distributions of objects, but
also introduced a cross-task encoder that adaptively optimizes the
multi-task feature and focused on the discriminative depth feature to
help contextual learning. By integrating our depth-aware framework
into existing self-training methods based on either transformer or
CNN, we achieve state-of-the-art performance on two widely used
benchmarks and a significant improvement on small-scale categories.
Extensive experimental results verify our motivation to transfer the
training images to real-world layouts and demonstrate the effective-
ness of our multi-task framework in improving scene adaptation
performance.
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