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ABSTRACT

Second-order methods seek to exploit loss curvature, but in deep networks the
Hessian often fails to approximate it well, especially near sharp gradient transitions
induced by common activation functions. We introduce an analytic framework
that characterizes curvature of expectation, showing how such transitions generate
pseudorandom gradient perturbations that combine into a glass-like structure,
analogous to amorphous solids. From this perspective we derive: (i) the density
of gradient variations and bounds on expected loss changes, (ii) optimal kernels
and sampling schemes to estimate both Hessian and glass curvature from ordinary
gradients, and (iii) quasi-Newton updates that unify these curvature terms with
exactness conditions under Nesterov acceleration. To probe their empirical role,
we implement ALICE, a lightweight diagnostic that inserts curvature estimates into
controlled updates, revealing which terms genuinely influence optimization. In
this way, our results support further optimization research: they introduce a new
theoretical picture of nonsmooth loss landscapes that can catalyze future advances
in pruning, quantization, and curvature-aware training.

1 INTRODUCTION

First-order optimizers such as SGD and Adam remain standard practice in deep learning, yet their
efficiency is limited by the lack of curvature information. Second-order methods promise faster
convergence by incorporating local curvature through the Hessian (Becker et al., 1988; LeCun et al.,
1989; Bottou et al., 2018). However, deep networks with rectified linear units (ReLUs) and related
activations introduce steep gradient transitions that break the smoothness assumptions underpinning
Hessian-based methods. In these regimes, instantaneous second derivatives are poorly suited for
extrapolation, leading to unreliable curvature estimates.

Across many parameters, each activation defines a boundary in parameter space. Crossing such a
boundary changes gradient flow abruptly, producing pseudorandom perturbations that accumulate
throughout the network. Collectively, these boundaries form a gradient glass: a structure analogous to
amorphous solids, comprising small domains of local alignment despite global disorder at larger scales.
Intuitively, parameters that influence early computations encounter many downstream boundaries and
thus exhibit stronger glass-like gradient behavior, while parameters closer to the output layer admit
smoother, Hessian-dominated loss analysis. Figure 1 illustrates this idea in two dimensions: gray lines
mark activation boundaries, and blue arrows indicate pseudorandom gradient shifts encountered upon
crossing them. A hypothetical training trajectory (violet) passes through successive domains. The
right panel shows how gradient and loss vary along the trajectory, with expectation curves providing
consistent bounds on the range of fluctuations.

An Empirical Motivation To test whether Hessian curvature explains these effects, we measured
how gradient variations scale with perturbation distance. Let L(θ) denote average training loss with
gradient g(θ) for parameters θ ∈ Rd. Perturbing parameters by a random Rademacher vector δ of
fixed distance λ, we measure gradient variations

v(λ) = E
[
γ2

]
∝ λp where γ = g(µ+ λδ)− g(µ). (1)

Here and going forward, all vector powers are taken elementwise. If variations were dominated
by the Hessian, we would expect quadratic scaling (p = 2). Yet experiments with ResNet18 on
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(a) Gradient glass (b) Loss effects

Figure 1: Illustration of gradient glass in 2D (left). Gray lines are domain boundaries due to changing
a ReLU state. Blue arrows show pseudorandom gradient perturbations. The resulting expectation
curvature (right) bounds how the loss evolves under parameter displacements.

Figure 2: Scaling of gradient variations with perturbation distance. A pure Hessian contribution gives
p = 2. Observed exponents p < 2 indicate additional curvature effects beyond the Hessian.

CIFAR-10 reveal consistently smaller exponents (Figure 2), indicating subquadratic growth. No
low-order Taylor expansion can yield p < 2, suggesting that gradient discontinuities contribute an
additional source of curvature beyond the Hessian. We further observe that p = 2 dependence is
recovered for parameters that follow the final activation layers, underscoring the connection between
curvature behavior and activation-induced gradient discontinuities.

Contributions We present an analytic framework for curvature of expectation, capturing how loss
evolves under parameter perturbations in the presence of activation-induced gradient discontinuities.
Our main contributions are:

1. a theoretical model of gradient glass, quantifying the density of gradient variations induced
by ReLU-like activation boundaries,

2. derivation of an optimal kernel for unbiased, minimum-variance diagonal estimation from
randomized matrix–vector products,

3. identification of the optimal perturbation distribution, showing that Rademacher samples
minimize estimator variance and recover Hutchinson trace estimation as a special case,

4. analytic bounds on expected loss changes, yielding a 3/2 power-law dependence that
complements Hessian-based quadratic growth,

5. a modified quasi-Newton update that unifies Hessian and glass curvature terms, producing
per-coordinate effective curvature with provable stability properties, and

6. exactness conditions under Nesterov acceleration, linking momentum and damping parame-
ters to guarantee correction of hidden linear gradient components.

Together, these results establish a principled theory of curvature in nonsmooth networks, explain
long-standing discrepancies in Hessian-based methods, and provide concrete algorithms for making
this hidden structure measurable and actionable.
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Figure 3: ReLU extrapolation. Hessian fitting cannot account for gradient discontinuities, whereas
curvature matching gradient changes provides a better fit on a local interval.

Alice To ground the theory in experiment, we introduce ALICE, a streamlined probe designed to
expose the role of curvature extraction. Alice functions as an investigative instrument: it isolates
Hessian and glass contributions through controlled updates, providing clear evidence of when
curvature-of-expectation matters. Our experimental results with Alice show that curvature terms are
not only theoretically coherent, but empirically accessible, opening paths for future work in pruning,
quantization, regularization, and the design of curvature-aware training methods.

2 RELATED WORK

Second-Order Optimization Second-order methods approximate curvature to accelerate training
beyond first-order updates. Early work incorporated Hessian information into multilayer perceptrons,
computing diagonal terms for pruning (LeCun et al., 1989) and improving convergence through
quasi-Newton (QN) updates (Becker et al., 1988). A comprehensive survey is provided by Bottou
et al. (2018). Recent techniques avoid explicit Hessian construction by using matrix-vector products,
enabling scalable spectral analysis and visualization of loss landscapes (Yao et al., 2020).

Active Developments Curvature remains a focus of active research due to its link with general-
ization. Plasticity and catastrophic forgetting have been tied to Hessian eigenvalues (Lyle et al.,
2023; Kong et al., 2023). Other studies connect curvature to transfer performance (Hemati et al.,
2023), adversarial robustness (Li and Spratling, 2023), and federated optimization (Sen et al., 2023).
Sharpness-Aware Minimization (SAM) leverages Hessian eigenvalue control to improve flatness
(Kaur et al., 2023), while suppression of curvature along training trajectories can guide convergence
to flat minima (Lee et al., 2023a;b). Extensions combining QN methods with Nesterov acceleration
(Ninomiya, 2017; Indrapriyadarsini et al., 2020) and variational inference (Duersch, 2024) further
illustrate the breadth of ongoing developments.

Hessian Shortcomings and Glass Analogies Despite these advances, Hessian-based curvature is
not reliable near sharp activation transitions. For ReLU-like units, extrapolation based on instanta-
neous second derivatives clearly cannot anticipate the gradient discontinuities (Figure 3). Empirical
studies confirm the jagged loss topography that emerges in quantization (Frumkin et al., 2023) and the
v-shaped loss structures observed along random directions (Li et al., 2024). These observations align
with results from statistical physics, where spin-glass analogies explain the proliferation of saddle
points and the role of curvature rectification (Dauphin et al., 2014; Parisi, 2007). Later work connects
glass-like behavior to generalization phase transitions (Choromanska et al., 2015; Spigler et al., 2019).
Our approach builds on this perspective by modeling gradient discontinuities as a gradient glass, and
by deriving analytic tools to exploit the resulting curvature of expectation for optimization.

3 EXTRACTING AND EXPLOITING GLASS-LIKE CURVATURE OF EXPECTATION

We now present our framework to model curvature in networks with gradient discontinuities induced
by ReLUs. Each ReLU introduces a parameter boundary where the gradient shifts abruptly, and
collectively these create a glass-like structure in the loss landscape. We quantify this effect by deriving
the density of gradient variations and show how it complements Hessian curvature. Using randomized
gradient evaluations, we obtain optimal estimators for both glass and Hessian diagonals, derive bounds
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on expected loss changes, and construct a modified quasi-Newton step. We also establish exactness
conditions for Nesterov acceleration under this structure. These results provide the foundation for
curvature-aware optimization in nonsmooth settings. All proofs appear in Appendix A.
Theorem 1 (Glass from ReLUs). Consider a network with many ReLUs. Hold network inputs fixed
and assume each pre-activation is locally linear in small parameter perturbations θ = µ+ δ:

y(µ+ δ) = y(µ) + δ⊤γ̂ with γ̂ = ∇µy(µ). (2)

Let the upper bound on pre-activation shifts be |δ⊤γ̂| ≤ ψ, and define the set of near-threshold units
Sψ = {k : |y(k)(µ)| < ψ}. Within this set, suppose pre-activations are uniformly distributed in
[−ψ,ψ].
If gradient jumps from individual activation flips are independent, zero-mean pseudorandom variables,
then the vector of gradient-variations v(δ) given by Equation (1) satisfies

v(δ) ≤ R|δ| where Rij =
1
2ψ

∑
k∈Sψ

(
dL(µ)
dz(k)

)2

γ̂
(k)2
i |γ̂(k)

j |. (3)

The density matrix R quantifies additional gradient variation per unit length, beyond the Hessian.
Any activation with ReLU-like derivative discontinuities will induce such terms, and averaging over
inputs diminishes but does not eliminate their effects. Pointwise Hessians cannot detect them.

Because diagonal entries scale cubically with the same coordinate while off–diagonals are only
quadratic–linear products, the largest coordinates of γ̂(k) push their mass disproportionately onto
the diagonal. Summing over many such contributions amplifies this diagonal dominance, making a
diagonal approximation of R a reasonable simplification in practice.
Theorem 2 (Optimal Kernel for Diagonal Estimation). Let M be a linear operator accessible
through matrix–vector products y = Mδ. Let p(δ) =

∏d
i=1 p(δi) be a product distribution with

i.i.d. zero-mean, unit-variance coordinates. For each i ∈ [d], define the relative off-diagonal mass
ω2
i =

∑
j ̸=iM

2
ij/m

2
i where m = diag(M). Then any kernel κi that yields an unbiased estimator

of mi from a single product satisfies

E[κi(δi)yi] = mi. (4)

Among all such kernels, the unique minimum-variance choice is

κ∗i (δi) =
c−1 δi

δ2i + ω2
i

, c =

∫
δ2i

δ2i + ω2
i

dp(δi). (5)

This applies to any i.i.d. sample density. When the perturbation distribution is also optimized, the
kernel simplifies further.
Theorem 3 (Optimal Perturbation Density). Among product perturbation densities with i.i.d. factors
p(δ) =

∏d
i=1 p(δi), each with zero mean and unit variance, the variance-minimizing choice in

Theorem 2 is the Rademacher distribution on each factor, i.e. probability 1/2 of±1. Then Equation (5)
simplifies to κ∗(δi) = δi.

This result recovers Hutchinson-style trace estimation as a special case, but here derived formally to
permit estimation of diagonals for both R as well as the Hessian.
Theorem 4 (Curvature of Expectation in Glass Loss). As we displace parameters by δ, the increase
in loss ∆L(δ) = L(µ + δ) − L(µ) is maximized if a local floor enforces ∆L(δk) ≥ 0. Using
the diagonal approximation v ≈ ρ∗ |δ| with ρ ⪰ 0, and treating coordinates independently, the
expected loss increase is bounded by

E[∆L(δ)] ≤
√

2
3π ρ

1
2T |δ| 32 . (6)

Without a local floor, the symmetry of gradient perturbations would lead to flat expectation. The floor
ensures perturbations only increase expected loss, consistent with “reflection” phenomena observed
empirically (Li et al., 2024).
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Theorem 5 (Modified Quasi-Newton Step). Combining the bound of Equation (6) with the gradient
g and nonnegative Hessian diagonal h ⪰ 0 gives

L(µ+ δ) ≤ L(µ) + δ⊤
(
g + 1

2h∗ δ
)
+

√
2
3π ρ⊤|δ|3.

The minimizer is δ = −g∗ h̄−1
with modified Hessian

h̄ = ĥ+ h+
√
ĥ∗(ĥ+ 2h) + ε, ĥ = 3ρ∗(4π|g|+ ε)−1, (7)

where ε > 0 ensures numerical stability.

Here ε > 0 ensures numerical stability. The effective curvature interpolates between Hessian and
glass terms, shortening optimal steps in both regimes.

Having established how glassy gradient fluctuations lead to a modified quasi-Newton step with
diagonal correction (Theorem 5), the natural question is how such steps interact with momentum
and acceleration schemes. In particular, Nesterov’s method separates the parameter update from the
evaluation point, and so provides an opportunity to test whether the quadratic loss model with h̄ can
be made exactly consistent with the accelerated gradient dynamics. The following theorem shows
that a specific choice of update and evaluation fractions aligns the quasi-Newton model with Nesterov
acceleration, while ensuring contraction of residual gradient errors.

Theorem 6 (Exact Nesterov Accelerated Quasi-Newton). In Nesterov acceleration, parameters and
gradient evaluations evolve by

µ(s+1) = µ(s) + φ δ(s), ν(s+1) = µ(s) + ω δ(s), (8)

g(s+1) = β1g
(s) + (1− β1)g(ν(s)), (9)

where δ(s) is the tentative update, φ ≤ 1 is the update fraction, and ω ≥ φ is the evaluation fraction.

Suppose we approximate the loss quadratically with the modified Hessian h̄ from Equation (7), so
that the local gradient is

g(µ(s) + δ) = g(s) + h̄∗ δ, (10)

with optimal step δ(s) = −g(s) ∗ h̄−1
. Yet assume the true dependence is linear but unknown

g∗(µ(s) + δ) = g∗(µ(s)) +Hδ (11)

that remains valid through δ(s). Then choosing

φ = 1− β1, ω = 1, (12)

ensures that the momentum update Equation (9) matches the quadratic model Equation (10), while
capturing the unknown linear dependence in Equation (11). Moreover, if

g(s) = g∗(µ(s)) + γ(s) then g(s+1) = g∗(µ(s+1)) + β1γ
(s), (13)

so errors are reduced by factor β1 each step.

This links the damping factor and momentum parameter, showing that β1 governs memory, damping,
and correction of off-diagonal effects simultaneously.

Summary Theorems 1–6 provide a compact pipeline: ReLU-induced gradient jumps produce a
measurable glass density (Theorem 1); diagonal elements of both glass and Hessian operators can
be estimated optimally from randomized matrix–vector products when using Rademacher samples
(Theorem 2, 3); the glass term tightens expected loss growth to a 3/2 power law (Theorem 4), which
directly yields a modified per-coordinate curvature used in quasi-Newton updates (Theorem 5); finally,
damping and Nesterov-style evaluation choices make these updates stable and exact for hidden linear
corrections (Theorem 6). Full proofs appear in Appendix A.
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Algorithm 1 Alice Topography Update
Input: evaluation center: ν; gradient function: g(θ).
Input and Output: running averages: g, ρ, and h.
Hyperparameters: λ, β1, β2.

1: Draw Rademacher t.
2: Evaluate g(±) = g(ν ± λt) and g(0) = g(θ).
3: g ← β1g + (1− β1)g(0).
4: h← β2h+ (1− β2) 1

2λ

∣∣g(+) − g(−)
∣∣.

5: ρ← β2ρ+ (1− β2) 2λ
(

1
2 (g

(+) + g(−))− g(0)
)2

.

4 EXPERIMENTS AND RESULTS

To assess our theoretical framework empirically, we implement Alice, a lightweight optimization
testbed. Alice is intended to enable diagnostic probing of curvature effects during optimization by
implementing both Hessian- and glass-based curvature approximations using ordinary gradient evalu-
ations and inserting them into controlled training updates. This allows us to measure which curvature
contributions are informative for different architectures, to test the predictions of Theorems 4–6, and
to situate glass curvature alongside Hessian curvature in practical settings.

4.1 ALICE AS A PROBE

By construction, Alice is minimal: it strips away auxiliary design choices in optimizers so as to isolate
the effect of curvature terms. Its role is to provide a consistent baseline for comparing Hessian, glass,
and combined curvature in practice. While its performance is competitive, this is incidental—the
purpose is not to propose “yet another optimizer,” but to demonstrate how curvature-of-expectation
can be estimated and how it shapes optimization dynamics. In downstream work, more sophisticated
methods may leverage these terms differently; Alice provides the measurement baseline against
which such designs can be assessed.

Empirical Questions. Our experiments are organized to probe three aspects of the theory: (i)
Do glass curvature terms improve predictive accuracy of loss changes (Theorem 4)? (ii) How do
combined Hessian + glass updates affect step size and stability (Theorem 5)? (iii) Does Nesterov
acceleration capture hidden linear gradient structure as predicted (Theorem 6)? All results should be
read in this diagnostic light.

Estimating Curvature. To compute the three parameter-length quantities g, ρ, and h, Alice uses
three gradient evaluations anchored at ν to remain consistent with Theorem 6,

g(±) = g(ν ± λδ) = g(ν)± λHδ + γ(±) and g(0) = g(ν). (14)

These capture the average linear dependencies as matrix-vector multiplies Hδ, while γ(±) reveal
glass density via

Hδ = E
[(
g(+) − g(−)

)
/(2λ)

]
, (15)

R|δ| = E
[(

1
2 (g

(+) + g(−))− g(0)
)2

/(2λ)

]
. (16)

Algorithm 1 summarizes the running update. Further implementation details appear in Appendix B.

4.2 EXPERIMENTAL RESULTS

Nesterov Acceleration. We now test whether the exactness property of Theorem 6 is observed in
practice. Figure 4 examines the effect of NAQ when applied with different curvature terms: habs

(absolute Hessian from Line 4) and ρ (glass density from Line 5). We also include an RMS form
hrms similar to AdaHessian (Yao et al., 2021).
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Figure 4: Alice with different curvature terms: a) full QN steps/ α = 1.0, w = 1.0, b) NAQ steps
(Theorem 6)/ φ = 1.0, w = 1.0.

Settings Test Accuracy

φ Terms Min Median Max
1.0 ρ 90.6% 91.2% 91.5%
1.0 habs 89.7% 90.1% 90.8%
1.0 ρ+ habs 91.0% 91.8% 92.7%
1.0 hrms 90.5% 90.8% 91.2%
0.1 ρ 92.1% 92.6% 92.7%
0.1 habs 91.8% 91.9% 92.1%
0.1 ρ+ habs 92.1% 92.4% 92.8%
0.1 hrms 91.8% 92.3% 92.7%

Table 1: ResNet18 / CIFAR-10: comparison of
curvature terms under Nesterov acceleration.

Settings Test Loss

φ Terms Min Median Max
1.0 ρ 4.49 4.49 4.55
1.0 habs 4.45 4.49 4.73
1.0 ρ+ habs 4.41 4.48 4.48
1.0 hrms 4.46 4.47 4.65
0.1 ρ 4.08 4.09 4.12
0.1 habs 4.13 4.13 4.14
0.1 ρ+ habs 4.05 4.07 4.11
0.1 hrms 4.14 4.15 4.15

Table 2: ViT / Imagenet: comparison of curvature
terms under Nesterov acceleration.

Our ViT model uses linear-complexity attention (Shen et al., 2021) trained on 64× 64 downsampled
Imagenet (Deng et al., 2009; Chrabaszcz et al., 2017). The first column of Figure 4 shows full quasi-
Newton steps; the second applies the NAQ coefficients. Results in Fig. 4 and Tables 1–2 confirm these
expectations. For ResNet18 on CIFAR-10, Nesterov acceleration (φ = 0.1) consistently outperforms
the unaccelerated case across ten random seeds, with the gradient-glass term ρ yielding the best
median accuracy and the combination ρ + habs achieving the best maximum accuracy. Although
the RMS Hessian approximation trails slightly, its performance remains competitive. For the ViT on
downsampled ImageNet, the same pattern holds: acceleration again provides a clear gain, and the
combined ρ+ habs term delivers the lowest minimum and median losses across five seeds. Taken
together, these experiments support the theoretical claim that NAQ corrects hidden linear gradient
components and that glass curvature contributes measurably to improved generalization.

Exploration and Stability. Theorem 5 predicts that curvature-aware steps can shrink optimally,
but may also overshoot if not bounded. In practice, we observe that the raw quasi-Newton step can
become excessively large and exceed the range where curvature extrapolation is reliable. To stabilize
training, Alice applies step-length bounds λmin and λmax, interpretable as Adam-style learning rates.
Between these bounds, NAQ steps are used. Conveniently, by setting φ = ω = 1 and λmin = λmax =
learn-rate recovers Adam exactly, so hyperparameters exist for which Alice will not underperform
this baseline. Figure 5 illustrates this effect using the Tensorized Transformer (Ma et al., 2019) on
WikiText-103 (Merity et al., 2016): increasing λmax accelerates early loss reduction, confirming the
value of stability constraints. Table 3 provides additional statistics. Results show that the stability
bound λmax is the decisive factor: all curvature terms achieve markedly lower perplexity when λmax

is increased from 1.0× 10−3 to 2.5× 10−3. Indeed, the minimum perplexity at the smaller bound
is higher than the maximum perplexity at the larger bound in nearly every case. While different
curvature computations shift the relative best values—the glass term ρ attains the lowest absolute
minimum and habs achieves the lowest median—the dominant effect comes from the exploration
limit imposed by λmax. These findings highlight that step-size safeguards are not merely a precaution
but a key enabler of stable and efficient curvature exploitation.

Method Comparisons. Finally, to situate curvature effects in familiar training scenarios, we com-
pare Alice against standard baselines. Figure 6 reports results on ResNet18/CIFAR-10 and Tensorized
Transformer/WikiText-103. On ResNet18 (a), Alice achieves substantially lower validation loss
and higher validation accuracy than SGD with momentum, Adam, and AdaHessian, with the im-
provement over AdaHessian being particularly pronounced. On the Tensorized Transformer (b), we
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Figure 5: Effect of learning-rate bounds on stability and early loss reduction.

Settings Validation PPL

λmax Terms Min Median Max
1.0 × 10−3 ρ 40.4 43.2 49.1
1.0 × 10−3 habs 38.6 43.7 47.1
1.0 × 10−3 ρ+ habs 39.8 45.1 48.2
1.0 × 10−3 hrms 39.4 42.9 51.2
2.5 × 10−3 ρ 28.8 33.6 35.8
2.5 × 10−3 habs 30.0 32.5 36.8
2.5 × 10−3 ρ+ habs 31.0 34.8 39.1
2.5 × 10−3 hrms 28.9 33.7 39.9

Table 3: Tensorized Transformer / WikiText-103: diagnostic comparison of curvature terms under
step-length bounds.

compare Adam, AdaHessian, and Alice with glass-only and Hessian-only curvature. Here, Alice with
Hessian-based curvature slightly improves over Adam, and both outperform AdaHessian.

The purpose is not to claim optimization superiority, but to demonstrate that curvature-of-expectation
can be extracted consistently across architectures and may yield measurable training benefits. This
diagnostic role makes the influence of glass curvature empirically visible, and establishes a baseline
for future work in pruning, quantization, and curvature-aware regularization.

5 BROADER IMPLICATIONS OF CURVATURE-OF-EXPECTATION

Curvature-of-expectation extends the reach of curvature methods beyond the Hessian. In smooth
regimes, the Hessian remains valid as a local quadratic surrogate. In nonsmooth regimes, glass
curvature arises from cumulative gradient discontinuities. Together these form a unified picture:
Hessian and glass curvature are not competing notions, but limiting cases of one framework. This
perspective clarifies why Hessian-based methods succeed in some settings but fail in others, and
explains the variability long observed in their empirical performance.

Compression and Pruning. Diagonal Hessian approximations are widely used to estimate the
effect of weight removal. Our results suggest that glass curvature contributes an additional diagonal
term that can dominate when many activation boundaries intersect a parameter’s influence. This
explains mismatches between pruning theory and practice, and motivates new criteria that explicitly
incorporate glass terms. Quantization also introduces discontinuities, thus curvature-of-expectation
may inform when quantization schemes destabilize training and how stability can be recovered.

Generalization and Flatness. Hessian eigenvalues are often used as proxies for sharpness, yet their
relation to generalization remains debated. Expectation curvature offers an alternative: glass terms
bound expected loss increases with a 3/2 power law, distinct from quadratic Hessian growth. This
provides a sharper diagnostic of flatness in nonsmooth regions and could serve as a complementary
generalization metric.

Interpretation with Alice. Because Alice isolates curvature contributions, it enables practitioners
to test directly when glass curvature is negligible, comparable, or dominant. If glass terms vanish,
Hessian-based methods suffice. If they dominate, one may prefer smoother activations or rely on the
stabilizing influence of the modified quasi-Newton update. Either way, Alice provides a diagnostic
baseline that translates theoretical distinctions into actionable practice.
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(a) ResNet18/CIFAR-10 (b) Tensorized Transformer/WikiText-103

Figure 6: Comparisons with standard optimizers provide context for curvature terms. Alice is used
diagnostically to test the role of Hessian vs. glass curvature.

Method Test Accuracy

Min Median Max
Adam 93.23% 93.41% 93.73%
SGDM 92.65% 93.19% 93.75%

AdaHessian 78.41% 90.25% 91.50%
Alice, ρ+ habs 93.30% 93.69% 94.09%

Table 4: ResNet18 / CIFAR-10: diagnostic compari-
son with standard optimizers.

Method Validation PPL

Min Median Max
Adam 20.84 21.83 21.86

AdaHessian 22.12 24.23 25.79
Alice, ρ 21.07 23.43 24.95

Alice, habs 18.66 21.50 23.74

Table 5: Tensorized Transformer / WikiText-
103: curvature diagnostic comparisons.

6 CONCLUSION

We developed a theoretical framework for curvature-of-expectation in nonsmooth loss landscapes,
where activation-induced gradient discontinuities accumulate into a dense field, i.e. a gradient glass.
Our analysis introduced: (i) a model of gradient glass and its density, (ii) optimal kernels and pertur-
bation distributions for diagonal estimation, (iii) bounds on expected loss change with a 3/2 power
law, (iv) quasi-Newton steps that unify Hessian and glass curvature, and (v) exactness conditions for
Nesterov acceleration. To translate these contributions into practice, we built ALICE, a streamlined
optimizer designed as an investigative probe. Alice isolates Hessian and glass curvature effects by
inserting their estimates into controlled updates, thereby showing when and how curvature extraction
alters training dynamics. Our experiments confirm that curvature-of-expectation is measurable,
relevant, and capable of influencing stability and effective step size. In this way, Alice is not a general-
purpose optimizer but a scientific instrument: it validates that curvature-of-expectation is measurable,
relevant, and capable of guiding training. By making these effects visible, Alice lays a reproducible
foundation for a new research direction in optimization — one that builds on a consistent theoretical
picture to enable curvature-aware methods across pruning, quantization, and regularization.

7 LIMITATIONS

Our framework and probe introduce several constraints. First, extracting curvature requires three
gradient evaluations per batch. This adds overhead, though far less than full second-order back-
propagation, and curvature terms evolve slowly enough to amortize cost across steps. Second, our
analysis assumes gradient discontinuities from ReLU-like units are approximately uniform at the
chosen perturbation scale. This captures large networks well, but smoother activations may diminish
the glass effect. Third, Alice includes hyperparameters for perturbation radius and step-size bounds.
These are interpretable extensions of Adam defaults and need only modest tuning, but they add knobs
that must be set. These constraints reflect design tradeoffs, not conceptual limits. Alice demonstrates
that glass curvature is empirically accessible, while leaving open how future optimizers may exploit
it more efficiently. Together, these results show that curvature-of-expectation offers a principled
and practical complement to the Hessian, revealing structure in loss landscapes that was previously
hidden.

Use of LLMs. We used ChatGPT (GPT-5, OpenAI) to assist with improving the clarity and
consistency of exposition, formatting LaTeX, and checking grammar. All ideas, experiments, and
analyses were conceived, designed, and executed by the authors.
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The authors used an AI-assisted writing tool (OpenAI’s ChatGPT) for language editing and clarity
improvements. All conceptual contributions, experiments, and programming were carried out by the
authors.

A PROOFS

Proof of Theorem 1 (Glass from ReLUs). For a unit k ∈ Sψ , write ∆k = δ⊤γ̂(k). With uniform
density on [−ψ,ψ], the probability of a flip is

p(flip k) =
|∆k|
2ψ

. (17)

Given z(k) = max(0, y(k)), a flip changes ∂z(k)

∂y(k)
by ±1. By the chain rule, the gradient changes by

γ(k) = ± dL
dz(k)

γ̂(k). By the independence assumption,

vi(δ) =
∑
k∈Sψ

p(flip k)
(
dL
dz(k)

)2
γ̂
(k)2
i .

Finally, |∆k| ≤
∑
j |γ̂

(k)
j | |δj | gives the stated bound in Equation (3). ■

Proof of Theorem 2. Write yi =
∑
jM ijδj . Since E[δj ] = 0, E[δ2j ] = 1, and E[δiδj ] = 0 for

i ̸= j, integrating over all {δj}j ̸=i gives∫
{yi, y2

i }
∏
j ̸=i

dp(δj) = {mi δi, m
2
i (δ

2
i + ω2

i )}.

Consider estimators Zi = κi(δi)yi. The zero-bias condition Equation (4) is equivalent to∫
κi(δi) δi dp(δi) = 1. (18)

The variance is then

Var[Zi] = E[Z2
i ]−m2

i = m2
i

(∫
κi(δi)

2 (δ2i + ω2
i ) dp(δi)− 1

)
.

To minimize this subject to Equation (18), apply the variational principle. Let κi = κ∗i + ε η where η
satisfies

∫
η(δi) δi dp(δi) = 0. Differentiating at ε = 0 yields

∂Var[Zi]

∂ε

∣∣∣∣
ε=0

= 2m2
i

∫
η(δi)κ

∗
i (δi) (δ

2
i + ω2

i ) dp(δi) = 0.

Thus κ∗i (δi) (δ
2
i+ω2

i ) ∝ δi, i.e. κ∗i (δi) ∝ δi/(δ
2
i+ω2

i ). The normalization is fixed by Equation (18).
Uniqueness holds in the weightedL2 class since the objective is strictly convex under weight (δ2i+ω2

i )
and the constraint space is affine. ■

Proof of Theorem 3. Let p∗ denote the optimal factor distribution and write a perturbation p(δi) =
p∗(δi) + ε η(δi), restricted so that η(δi) = 0 when p∗(δi) = 0. Normalization requires∫

η(δi) dδi = 0. (19)

With the optimal kernel Equation (5), the variance takes the form

m−2
i Var[Zi] =

∫
κ∗i (δi)

2 (δ2i + ω2
i ) dp(δi)− 1 = c−1 − 1,

where c =
∫ δ2

i

δ2
i+ω2

i
dp(δi). Differentiating w.r.t. ε gives

∂

∂ε
Var[Zi]

∣∣∣
ε=0

= −m2
i c

−2

∫
δ2i

δ2i + ω2
i

η(δi) dδi = 0.
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Thus, on the support of p∗ the function δ2
i

δ2
i+ω2

i
must be constant, since Equation (19) provides the

only restriction on η there. This is possible only if the support consists of two symmetric points {±x}.
Imposing zero mean forces symmetry, and unit variance requires x = 1, giving the Rademacher
distribution. ■

Proof of Theorem 4. Fix a coordinate k. Divide the path µk → µk + δk into n segments. Let γ(j)
k

be i.i.d. zero-mean increments with E[(γ(j)
k )2] = ρk|δk|/n so that density ρk is preserved. The loss

change before applying the floor is

∆n(δk) =

n∑
j=1

n− j
n

γ
(j)
k δk.

Each term has mean zero, so variances add:

E[∆n(δk)
2] =

n∑
j=1

(
n−j
n

)2
ρk|δk|
n δ2k.

Taking n→∞ gives
E[∆(δk)

2] = 1
3 ρk|δk|

3.

By the Lyapunov CLT, ∆(δk) ∼ N
(
0, ρk|δk|3/3

)
. Imposing the floor ∆L(δk) = |∆(δk)| makes

this a folded normal, whose mean is
√

2/π σ with variance parameter σ2. Summing over coordinates
yields the bound in Equation (6). ■

Proof of Theorem 5. The bound separates by coordinate k. Stationarity requires

0 = gk + hkδk +

√
3ρk
2π sign(δk)|δk|1/2.

To enforce descent, set δk = − sign(gk)x
2 with x > 0. Substituting ĥk = 3ρk/(4π|gk|+ ε) gives

0 = −
√

|gk|
2 +

√
ĥk x+ hk√

2|gk|
x2.

Solving the quadratic (positive root) yields

x =

√
2|gk|√

ĥk +
√
ĥk + 2hk

.

Thus δk = −gk/(ĥk + hk +

√
ĥk(ĥk + 2hk) + ε), which matches Equation (7). ■

Proof of Theorem 6. From Equation (8) and Equation (10),

g(µ(s+1)) = g(s) + φh̄∗ δ(s) = g(s) − (φ)g(s) = (1− φ)g(s).

Thus setting φ = 1− β1 makes g(µ(s+1)) = β1g
(s), consistent with Equation (9). Next, substitute

the evaluation point ω = 1 into Equation (11), combine with the error decomposition Equation (13),
and place the result in Equation (9):

g(s+1) = β1g
(s) + (1− β1)

(
g(s) − γ(s) +Hδ(s)

)
= g∗(µ(s+1)) + β1γ

(s).

This shows that the update both tracks the hidden linear structure and contracts errors by β1. ■

B METHODOLOGICAL DETAILS

Algorithms. Algorithm 2 shows the full topography update in a memory-efficient form using one
temporary variable. Line 6 additionally enables an RMS Hessian approximation: taking the square
root of the running second moment yields a non-negative diagonal suitable for quasi-Newton steps.
This is similar to AdaHessian (Yao et al., 2021), except that we maintain per-parameter statistics
instead of block averages. Algorithm 3 then applies quasi-Newton updates combining glass and
Hessian diagonals, with bounds for stability.
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Algorithm 2 Alice Diagnostic Topography Update
Input: evaluation center ν; gradient function g(θ).
Input/Output: running averages g, ρ, habs, h2

rms, and s.
Hyperparameters: λ, β1, β2.
Implements Eqs. 14–16 to adapt Theorems 1–3, requiring only one parameter-length temporary
variable t.

1: Draw Rademacher t. Set θ ← ν + λt.
2: Evaluate g(θ) = g(+).
3: Set θ ← ν − λt. Store t← g(+).
4: Evaluate g(θ) = g(−).
5: habs ← β2habs + (1− β2) 1

2λ |t− g(−)|.
6: h2

rms ← β2h
2
rms + (1− β2) 1

4λ2 (t− g(−))2.
7: Store t← 1

2 (t+ g(−)). Set θ ← µ.
8: Evaluate g(θ) = g(0).
9: g ← β1g + (1− β1)g(0).

10: ρ← β2ρ+ (1− β2) 2λ (t− g(0))2.
11: s← β2s+ (1− β2)g(0)2.

Algorithm 3 Alice Quasi-Newton Step with Diagnostic Curvature Terms
Input: running averages g, ρ, h, s.
Input/Output: parameters µ.
Output: evaluation center ν.
Hyperparameters: limit-method, λ, λmin, λmax, ε.
Implements Theorems 4, 5, and 6, with stability enforced by Adam-style limits.

1: Compute glass term ĥ = 3
4πρ∗(|g|+ ε)−1.

2: Compute modified Hessian h̄ = ĥ+ h+

√
ĥ∗(ĥ+ 2h) + ε.

3: Quasi-Newton scale δ = |g|∗ h̄−1.
4: Apply limits: Fixed scale: δmin/max = λmin/max; SGD-M: δmin/max = λmin/max|g|;

Adam: δmin/max = λmin/max|g|∗(√s+ ε)−1.
5: Enforce bounds: δ ← max(δmin,min(δmax, δ)).
6: Correct sign: δ ← − sign(g)δ.
7: Update evaluation center ν ← µ+ ωδ.
8: Update parameters µ← µ+ φδ.

C EXPERIMENTAL SETUP

We evaluate Alice as a diagnostic probe on standard benchmarks. Results are reported as minimum,
median, and maximum values over multiple seeds, showing both variability and best-case outcomes.

Hardware and Software. Experiments were run on compute nodes with AMD 32-core CPUs and
one NVIDIA A100 GPU (40GB memory). Code is implemented in PyTorch 2.2.1 (BSD 3-Clause
License) with CUDA 11.8.

Licenses. PyTorch: BSD 3-Clause. ResNet: BSD 3-Clause. Tensorized Transformer and
CIFAR-10: MIT. WikiText-103 (and Wikipedia): CC BY-SA 3.0. ImageNet: non-commercial
research/educational use only.

ResNet18, Power Law. Figure 2 uses a specialized Alice variant with additional memory and
evaluations to store gradient variations at λ and 2λ. We train a modified ResNet18 with multiplicative
channel masks, improving prediction quality for SGDM, Adam, and Alice. Training: 40 epochs,
λ = 0.002, β1 = 0.9, β2 = 0.999, ε = 10−8, φ = 0.1, ω = 1.0, λmin = 0, λmax = 0.002,
quick_steps = 0, Adam-based limiting. Curvature terms: ρ and habs.
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ResNet18, NAQ. Figure 4: ResNet18 with tuned λ = 0.005 and fixed-scale limiting (λmax =
5×10−3). Grid search over {0.001, 0.002, 0.005, 0.01, 0.02, 0.05} and limiting strategies. 10 seeds
per setting.

ViT, NAQ. Vision Transformer with 8 layers, linear-complexity attention (Shen et al., 2021),
Imagenet-64x64. Training: 4 epochs, λ = 0.005, β1 = 0.9, β2 = 0.999, ε = 10−8, λmin = 0,
λmax = 0.01, quick_steps = 3, Adam-based limiting. 5 seeds per setting.

Tensorized Transformer, Stability Limit. Tensorized Transformer (Ma et al., 2019), dropout 0.1,
batch size 60, 50k steps. Settings: λ = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8, φ = 0.1, ω = 1.0,
quick_steps = 3, Adam-based limiting.

ResNet18, Training Methods. For Figure 6: Adam (λ = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8);
SGD-M (λ = 0.001, β = 0.9); AdaHessian (λ = 0.15, tuned from {0.1, 0.15, 0.2, 0.25, 0.3}); Alice
(λ = 0.005, β1 = 0.9, β2 = 0.999, ε = 10−8, φ = 0.1, ω = 1.0, λmin = 0, λmax = 0.01,
quick_steps = 3, Adam-based limiting). Curvature: ρ and habs.

Tensorized Transformer, Training Methods. For Figure 6: 200k steps. Adam and Alice: λ =
0.00025, β1 = 0.9, β2 = 0.999, ε = 10−8. Alice also: φ = 1.0, ω = 1.0, λmax = 0.000375,
quick_steps = 1, Adam-based limiting. AdaHessian: λ = 0.00025.
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