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ABSTRACT

Fine-tuning large language models (LLMs) for reasoning is usually done by re-
inforcement learning on reasoning benchmarks, with a specific reward function,
often binary, for each benchmark. Here, we systematically investigate chain-of-
thought (CoT) training in LLMs using rewards derived from the probability or
log-probability of emitting the reference answer (or any other prompt continuation
present in the data). Several recent works have advocated for the use of similar
rewards (e.g., VeriFree, JEPO, RLPR, NOVER), which have the advantage of not
relying on specific verifiers and being available at scale.

We systematically compare such probability-based variants with standard base-
lines, testing performance both on standard mathematical reasoning benchmarks,
and on long-form answers where no external verifier is available. We find that
using the log-probability of the reference answer as the reward for CoT learning
is the only option that performs well in all setups. This is also consistent with the
next-token log-likelihood loss used during pretraining.

In verifiable settings, log-probability rewards bring comparable or better success
rates than reinforcing with standard binary rewards, and yield much better per-
plexity. In non-verifiable settings, they perform on par with SFT. On the other
hand, methods based on probability, such as VeriFree, flatline on non-verifiable
settings due to vanishing probabilities of getting the correct answer.

Overall, this establishes log-probability rewards as a viable method for CoT fine-
tuning, bridging the short, verifiable and long, non-verifiable answer settings.

1 INTRODUCTION

Large language models (LLMs) have achieved striking progress on tasks requiring reasoning, from
mathematics to code generation (Cobbe et al., 2021; Hendrycks et al., |2021b; |OpenAll 2023). A
central ingredient has been chain-of-thought (CoT) prompting, where models articulate intermediate
reasoning steps before producing a final answer (Wei et al., [2022; |Guo et all 2025). However,
CoTs are rarely available in raw training data, making reinforcement learning (RL) the predominant
approach: the CoT is treated as a sequence of actions, and correctness of the final answer determines
the reward. This paradigm works well in verifiable domains such as mathematics and programming,
where ground-truth correctness is available (Cobbe et al., 202 1; Hendrycks et al.,[2021b;|Chen et al.}
20215 |Austin et al.; 2021; Hendrycks et al., 2021a), but it does not naturally extend to non-verifiable
domains like long-form proofs or open-ended generation.

To overcome this limitation, we investigate reusing training signals closer to the log-likelihood signal
already employed during pretraining. Instead of sampling answers and relying on 0/1 correctness
rewards, we reward the model for increasing the probability or log-probability of the answers present
in the training data. Such criteria are universal—they apply in both verifiable and non-verifiable
settings and could provide a denser signal. Such approaches are present, e.g., in|/Zhou et al.[(2025)
(training with the probability of the reference answer) or|Tang et al.|(2025)) (training with a variant of
the log-probability of the reference answer). Note that reference answers are available for situations
in which 0/1 rewards are not, such as long-form question-answering. This makes it possible to test
these methods both in verifiable and nonverifiable, long-form answer settings. We particulary focus
on the case of log-probability, since it is conceptually the closest to the pretraining criterion.
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Our Approach and Contributions. We conduct the first comprehensive study of probability-
based RL rewards for CoT training, spanning verifiable and non-verifiable domains, across multiple
model families (Qwen-2.5, Llama-3.2). Our main contributions and findings are:

» Systematic evaluation across domains. We test many variants of probability-based re-
wards (probabilities and log-probabilities, including several variants from the literature
such as VeriFree, RLPR, JEPO) for CoT training, comparing against supervised fine-tuning
(SFT) and standard RL training (RLOO) baselines. We run the comparisons on two ver-
ifiable benchmarks — MATH (Hendrycks et al., 2021b), DeepScaleR (Luo et al.| [2025) —
and two non-verifiable settings - Alpaca (Taori et al., 2023)) and the non-verifiable ~proof
portion” of NuminaMath (L1 et al., 2024)).

 Universality of log-probability rewards. Among the variants tested, rewards based on
log-probabilities perform well in every scenario (short, verifiable answers and long, non-
verifiable answers), while all others fail in one or several settings.

¢ Advantages of probability-based rewards. For verifiable domains, all variants of
probability-based rewards perform similarly and slightly outperform base RL training in
terms of greedy success rate on verifiable domains. They also offer some computational
advantages during training (no need to sample an answer).

* Success and perplexity trade-offs. In verifiable domains, log-probability rewards perform
well both in terms of success rate and of perplexity — a key metric aligned with pretraining.
On the other hand, both base RL training and probability-based rewards perform extremely
poorly on perplexity. This highlights a distinct advantage of log-probabilites.

* Non-verifiable domain behavior. On long-form domains, both base RL and pure prob-
ability rewards collapse due to vanishing probabilities of long answers. Log-probability
rewards remain viable and perform similarly to SFT.

* CoT shortening with log-probability rewards. In every scenario, log-probability rewards
lead to an initial shortening of the CoT. For verifiable domains, the length of the CoT
recovers during training. On the other hand, for non-verifiable domains, the CoT stays very
short, meaning log-probability rewards largely follow SFT from that point. On verifiable
domains, base RL and pure probability rewards (VeriFree) do not exhibit this shortening.
Mitigating strategies such as CoT length rewards and KL penalties maintain CoT but hurt
performance. Thus, it seems that RL CoT training on nonverifiable domains can only match
SFT by eliminating the CoT. We discuss hypotheses around this phenomenon.

Overall, these results establish log-likelihood rewards as a simple way to bridge verifiable and non-
verifiable settings under a single training criterion, broadly applicable for fine-tuning LLM:s.

Related Work. Several prior works have proposed to modify the binary rewards in standard RL
post-training settings. We can globally distinguish these rewards into intrinsic rewards that do not
require ground-truth, and those that use the confidence or log-likelihood of the ground-truth answer.
The former category utilizes measures of confidence, entropy or diversity as measured by the gen-
erating language model itself (Prabhudesai et al., [2025; |Agarwal et al. 2025} |Zhao et al.| 2025}
Li et al.|, 20254} [Gao et al., [2025). Nevertheless, these intrinsic rewards generally cannot surpass
rewards grounded in true correctness except under strong coverage assumptions, and tend to lead
to reward hacking or diversity collapse. Huang et al.| (2025a) show that self-rewarding can only
“sharpen” knowledge already covered by the base model—it cannot create new information—so
performance is bounded by model coverage (i.e. its pass @k rate). |Song et al.| (2024) formalizes the
generation—verification gap and shows self-improvement hinges on sufficient coverage and verifier
quality; when these are weak, intrinsic/self-verification stalls and fails to match correctness-based
training. Finally, Huang et al.| (2025b) proves that inference-time alignment with imperfect reward
models suffers reward hacking and lacks guarantees under realistic coverage, again falling short of
what verified rewards can achieve. Another study (sur Kayal et al.,[2025])), shows that certain intrinsic
signals (like policy entropy or state novelty) can fail in high-dimensional or complex output spaces,
and sometimes result in exploration that diverges from the downstream task. Some works com-
bine intrinsic and binary rewards (Song et al., 2025; L1 et al., [2025b) to encourage exploration. Yet
another line of works explores using LLM-as-a-judge synthetic rewards in RL-based post-training
(RLAIF), explored as an alternative to human feedback (Lee et al.| 2024; [Bai et al.| [2022) or for
(semi-)verifiable domains (Whitehouse et al., 2025; Jayalath et al., 2025} |[Simonds et al., 2025)).
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Closer to our line of work are works that use the probability or log-likelihood of the reference
answer given a generated reasoning chain under the initial policy model to provide a verifier-free
scoring function. We highlight the works relevant to our setting and label them with distinctive
keywords for clarity. To the best of our knowledge, none of these studies investigate log-likelihoods
as a primary reward signal, with the exception of [Tang et al.| (2025), who include it as an ablation
against their proposed JEPO reward and report weaker performance. In contrast, we introduce log-
likelihood rewards as a primary training signal, and our experiments consistently demonstrate their
competitiveness across models and datasets, including those evaluated in prior work.

* VeriFree (Zhou et al.|[2025)) uses probabilities of reference answers as reward in verifiable domains

* JEPO (Tang et al.| 2025)) introduces a Jensen based ELBO loss with log-probs. In experiments
they mix verifiable with non-verifiable data to show that the verifiable part improves with this loss.

* RLPR (Yu et al.,[2025)) uses average probability of the ground truth for non-verifiable domains.

* NOVER (Liu et al. 2025) is a variant of probability-based rewards, using a geometric mean of
per-token perplexities.

* Reinforcement-pretraining (Dong et al.,[2025) performs small-scale pretraining from scratch, in-
serting CoTs at specific points and using logprob rewards.

* LongForm (Gurung & Lapata, [2025) designs a clever reward function (VR-CLI) that allows them
to use an unlabeled book dataset as a learning signal for reasoning.

2  METHOD

Context: Chain-of-thought fine-tuning via Reinforcement Learning. We consider the general
context of fine-tuning an LLM to improve performance on a set of questions-answers via a Chain-
of-Tought (CoT) optimized by reinforcement learning. For each prompt p, the fine-tuned model
should first print a CoT z, then an answer a. Then a reward R is computed depending on a (such as
correctness, or matching some reference answer). Fine-tuning should optimize the expected reward.

Denoting 7y the generative probabilistic model with parameter 6, and D the dataset (a distribution
of questions or prompts p), we want to maximize

Jop = EpND H'Ez~71'g(z|p)7 a~mg(alp,z) [R(Z, CL)] (1
where R(z,a) is the reward obtained for CoT z and answer a.
This task is often tackled with RL variants of the basic Reinforce algorithms, such as RLOO (Ah-
madian et al.,[2024), GRPO (Guo et al., 2025}, or PPO (Schulman et al., 2017)).

RL fine-tuning with probability-based rewards. We focus on the case when a reference answer
a™* is available for each prompt in the dataset. Then it is possible to estimate the probability of this
answer given the CoT. We will compare RL training with several rewards derived in this setting.

For instance, we can set a reward similar to the log-loss used during pretraining,
R(z,a) = log mo(a*|p, 2). @)

We call this setting log-prob rewards. Given a CoT z, this quantity can be computed in one pass of
a transformer on the reference answer a*. In particular, since the reward depends on z but not on a,
sampling of an answer a given the CoT z is not necessary.

We also consider the average log-prob reward variant
1 *
R(z,a) = Tar| log mg(a*|p, z) 3)
namely, we compute the per-token log-probability by downscaling the reward by the length |a*| of
the answer. This results in a different weighting of the various data samples in the dataset.

Log-prob rewards are aligned with the pretraining phase of LLM training, where the criterion is the
log-probability of the next token. They do not require access to a verifier, only to a reference answer
(or any continuation) in the data. Thus, they can potentially be applied any question-answer pairs.
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The logprob reward setting is also considered in|Tang et al.|(2025), although they largely focus on a
“multi-sample” variant. The gradient of the expected reward is derived there as

VJQ - EpND Ezwfrg(z\p), a~mg(alp,z)
log m (a” |p, 2)V log mg (z|p) + Vlog mo(a”|p, 2)]  (4)
As noted in Tang et al.| (2025)), the second term is analogous to a supervised fine-tuning term that
directly optimizes the log-likelihood of the reference answer a* given what comes before, and the

first term is a traditional Reinforce term with reward log mg(a*|p, z). For completeness, we derive
this gradient in Appendix [A] together with its application to RL algorithms such as RLOO.

A related but different reward appears in|Zhou et al.| (2025)):

RVeriFree(Za a) = 7T0( |P7 ) anﬂg(a\p z)[la:a*} (5
thus, without the logarithm. This is the expected success rate for matching the reference answer
a*: in expectation, it is the same as sampling an answer a given the CoT, and setting a reward 1 if
a = a*. Zhou et al.[(2025) prove that working with the expectation reduces variance compared to
sampling a, and this affects training dynamics.

The VeriFree reward diverges from logprob rewards when probabilities are very small. For instance,
if initially the model has an almost-zero probability to reach the reference answer, then the VeriFree
reward produces no learning. Similarly, for long free-form answers, the probability of an exact
match with a* is tiny, so we would expect a difference between VeriFree and logprob rewards. On
the other hand, if the initial probability to reach the correct answer is reasonably high, then we expect
the VeriFree and logprob rewards to be well aligned.

Algorithms tested. We now give an outline of the algorithms compared in the experiments.

For every algorithm except JEPO, the advantages used for the Reinforce gradient updates are ob-
tained by RLOQO, i.e., by subtracting from the reward a leave-one-out estimate of the mean reward
estimated on a minibatch for a given prompt; this is an unbiased version of GRPO (Guo et al.,[2025).

e SFT: standard fine-tuning with the next-token cross-entropy loss. Namely, we omit the CoT, and
fine-tune the model to predict the ground truth directly from the prompt.

* Base RL: this is the most direct RL. method. For each prompt p, we sample a CoT z ~ my(z|p),
then an answer a ~ 7y (a|p, z), and check whether the answer is correct:
Rrroo(z,a) = la=q (6)
given the reference answer a*. As for all other RL methods, we employ a leave-one-out advantage
estimation (RLOO).

e Probability (VeriFree): As mentioned above, the reward is

RProbability(Za a) = To (a*|pa Z) = ]EaNﬂ'g (alp,z) [1a=a*] @)
namely, instead of sampling an answer a from the model, we directly compute the probability of
the reference answer a* given z using the model 7.

* Average prob (AvgProb): Similarly to RLPR (Yu et all 2025)), the reward is set to the average
per-token probabilities of the reference answer:

la*]

Ravgpron (2, @) = T *| Zﬁe (a7[p: 2, af1p—1p) ®)

* Log-prob: the reward is
Riog-prob (2, a) = log mg(a”|p, 2) 9)
namely, we directly compute the log-likelihood of the reference answer a* given z.
. Average log-prob (Angogprob) In log-probs, longer answers have rewards of a bigger magni-
tude, since log mg(a*|p, z) is a sum over all tokens in a*. Average log-probs rescales the reward
accordingly:

1
Ravglogprob(z G,) | *‘ IOgﬂ-é)( *|pa Z) (10)

where |a*| is the number of tokens in a*. Compared to log-probs, this just means that different
answers in the dataset are weighted in a different way.
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* JEPO (Tang et al.|[2025) used a refined version of the group reward in GRPO and RLOO, by not-
ing that the expected log- probability . ~ry(2lp) log Tg(a*|p, 2) is an underestimate of the actual
log of the probability to get a* using g, which is log E, (2 |p) 7r9( *|p, z). So, starting from
GRPO, they introduce a group-level reward based on G samples 21, ..., zg for a given prompt,

R(z,...,2¢) =log = Zm *|p, z). (11)

Compared to log-probs over a similar minibatch z;, the reward is the log-mean-exp of rewards in
the minibatch. For Reinforce advantage estimation, they subtract the similar estimate over G — 1
samples without the sample z;. We will use G = 4 as in[Tang et al (2025).

Success metrics. For each algorithm, we report several success metrics. These metrics largely
follow the quantities tracked by the different algorithms.

We denote by D the distribution of prompts and reference answers in the dataset.
Given a prompt p, the probability to obtain the correct answer using a CoT model 7 is

WCOT(a* IP) = E.n(zpp) [T(a*[p, 2)] . (12)
* Success rate: This is the probability to get a correct answer, averaged over the dataset,

IE(p,a*)N'D [FCOT(a*|pa Z)] . (13)
It can be estimated directly by sampling a prompt and answer in the dataset, sampling a CoT z,
and computing 7y (a*|p, z). This is the estimate we report. VeriFree and Direct RLOO directly
optimize the success rate. We consider two modes for generating the answers given a prompt and
chain of thought: Greedy success, where the most likely token is used at each step, and 7' = 1
sampling success from the softmax probabilities at temperature 7' = 1.

* Log-probability: This is a family of metrics that aggregate the likelihood of answer tokens across
the dataset.

E(p,ax)~D [log 7T (a*|p, z)] . (14)
To keep these quantities comparable, we consider two averaging schemes - per-token and per-
answer.

— Per-token log-probabilities sums the log-probabilities of all answer tokens in the dataset, and
divides by the total number of those tokens. Equivalently

1
—— E(panen |log 7T (a*|p (15)
Eganeplar] e 108 ()
— Per-answer log-probabilities averages across each answer, then averages over the dataset:

1 *
E(p,a*)GD La* log WCOT(G P)] (16)

These also correspond to the quantities optimized by the Log-probs and Average log-probs meth-
ods, respectively.

Note however that this is difficult to estimate directly due to the expectation over z inside the log,
since 7T is an expectation. A simple solution is to estimate the average via Monte Carlo using
N samples (Tang et al., 2025)):

N
1 *
Ewp.a )~ llog N Z m(a*|p, Zz)] 17
=1

where the z; are sampled from 7 (z;|p). We refer to this as logprob-MCN. We apply this modifi-
cation to both per-answer and per-token averaged logprobs.

We will use both the “naive” estimate logprob-MC1 with N = 1, and a more precise estimate,
logprob-MC32, computed less frequently during training.

For supervised fine-tuning (SFT) with no CoT, this is irrelevant as there is no expectation over z,
and we can report log 7(a*|p) directly.

The MC estimate is always an underestimate of the actual logprob log 7“°" (a*|p, z), since log is
concave. This is especially relevant when comparing logprob-MC1 to SFT log-probabilities.

CoT
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* We also report perplexity, which is just the exponential of minus per-answer log-probabilities.
This corresponds to the geometric mean over the dataset, of the perplexity of the answer for each
prompt. Technically, this corresponds to per answer perplexity-MC1; we shorten to perplexity.

* Average CoT length: We also report the average length of the CoTs used by a model,
Ep.at)ep Bznnzip) [12]] (18)

as a relevant quantity for analysis. Note that this includes formatting tokens.

3 EXPERIMENTAL RESULTS

3.1 SETUP: DATASETS, MODELS, AND PROTOCOL

Models. We evaluate on two instruction-tuned models: LLAMA-3.2-3B-INSTRUCT (Dubey et al.,
2024), and QWEN-2.5-3B-INSTRUCT (Yang et al.,2024).

Datasets. We consider two verifiable math benchmarks and two non-verifiable long-form datasets.
(i) MATH (Hendrycks et al.l [2021b):We report accuracy on the official test split. The resulting
training set contains ~7,000 short-answer problems. (ii) DeepScaleR (Preview) (Luo et al., [2025):
we hold out a random 10% for validation to report performance. The training set has ~39,000
short-answer problems. (iii) Alpaca (cleaned) (Taori et al., 2023): we use the standard cleaned
variant; 1,000 random examples are used for validation, leaving ~50,000 training samples with
predominantly long-form answers. (iv) NuminaProof: starting from NUMINAMATH-1.5 (Li et al.|
2024), we filter for theorem—proof style items. We reserve 1,000 examples for validation, yielding
~50,000 long-form training samples. Mote detail in Appendix B}

Algorithms tested. We compare the algorithms mentioned in Section [2, namely, SFT and the fol-
lowing RL variants: Base RL, Probability (VeriFree), Logprob, Avgl.ogprob, AvgProb, and JEPO.
These differ by the rewards used, as described in Section 2] Details in Appendix

Verifiable. We run experiments with all methods on verifiable domains with G = 4 and G = 32,
except for JEPO, where we only run with group size G = 4 (the value used in |Tang et al.| (2025))
as JEPO is harder to implement efficiently for larger In the loss function we include a KL
divergence regularization term as proposed by |Guo et al.[(2025) with a coefficient of 0.001.

Non-verifiable. In non-verifiable domains, we run with G = 4 throughout. Here, we do not use a
KL divergence term in the main results, but we explore its impact on CoT-length and performance
in the ablations.

3.2 RESULTS ON VERIFIABLE DOMAINS

We present the results on verifiable domains in Table[T] and Figures T]and [5]to[7]in Appendix [C]for
G = 32 and in Table [3] and Figures [8]to [T1]in Appendix [C]for G = 4, the latter including JEPO.
The key takeaway is that all RL variants based on ground-truth answers perform comparably for
greedily decoded answers. More precisely, all (log-) probability-based variants perform better than
Base RL when run with standard group size G = 32.

Sampling answers at temperature 7" = 1 generally makes performance worse across the board. It
also affects the ranking of methods: methods that use logprobs or average logprobs underperform
both Base RL and the Prob variant. We believe 7" = 1 sampling is the reason why logprobs did
not perform well on MATH in |Tang et al.[(2025). Overall, we do not detect any strong difference
between JEPO and simple Logprob when greedy sampling is used. Conceptually, JEPO is a more
precise, more computationally heavy version of Logprob (larger N for Monte Carlo estimation of
log-probabilities, see Section[2)). The additional complexity is not justified in our setting.

The picture shifts when we consider perplexity: here, only Logprob, AvgLogprob and JEPO achieve
good perplexities. Perplexity may not be the metric of most direct interest for verifiable questions,
but it nevertheless informs us on the qualitative behavior of different models. For instance, a prob-
trained model makes little difference between predicting a wrong answer with probability 0.99 or

'Because the JEPO reward depends on the whole group and cannot be computed for each sample indepen-
dently, efficient implementation with large G is more delicate.
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Base model Base RL Log-prob Avg Logprob Probability Avg Probability  SFT (no CoT)

Llama 3B, MATH

Greedy success 17.13 +0.00 42.74 £ 0.66 43.30 +0.10 43.66 + 0.25 44.19 +0.57 43.95 +0.44 14.43
T=1 Sampled Success 10.77 £ 0.27 41.36 £ 0.15 34.66 +0.81 34.83 +0.00 41.39 +0.09 38.38 £0.74 10.00
Per-answer avg logprob MC32 — — -0.68 + 0.00 -0.69 + 0.01 -1.32+£0.01 -0.77 £ 0.00 -0.97
Per-answer avg logprob -4.21 +£0.00 -2.63+0.02 -0.79 +0.03 -0.81 + 0.04 -1.97 £0.04 -1.08 +0.03 -0.97
Perplexity 67.29 +0.00 13.87 £0.34 2.21 +0.06 2.25+0.09 7.14 +£0.26 2.95+0.08 2.63
CoT length 326.77+0.71 321.01 +24.42 298.97+2.82 302.74+221 31358+1.87  320.17 +5.69 5.00
Qwen 3B, MATH

Greedy success 21.19 £ 0.00 55.85+0.46 56.84 +0.21 56.11 £0.20 56.46 + 0.05 57.41+0.16 18.32
T=1 Sampled Success 16.63 +0.30 55.36 +£0.17 44.18 £0.42 42.45+0.51 53.32+0.22 47.34 £0.87 12.00
Per-answer avg logprob MC32 — — -0.39 + 0.00 -0.40 + 0.01 -1.03 £0.01 -0.42 +0.00 -0.69
Per-answer avg logprob -2.19 £0.00 -2.11+0.10 -0.44 +0.02 -0.50 +£0.00 -1.77 £0.01 -0.68 +0.05 -0.69
Perplexity 8.92 +0.00 8.25+0.80 1.55 £ 0.03 1.64 £ 0.00 5.85+0.03 1.97 £0.09 1.99
CoT length 22235+0.73 451.83+14.14 381.49+1022 372.01+18.76 42935+1.25 419.51+431 5.00
Llama 3B, DeepScaleR

Greedy success 10.05 + 0.00 25.45 +1.06 30.60 +2.01 28.73+1.13 29.03 + 0.88 29.60 + 1.91 843
T=1 Sampled Success 5.95+0.07 25.46 +0.69 15.17 + 1.96 15.77 £0.75 25.19 +0.97 19.62 + 1.44 4.27
Per-answer avg logprob MC32 — — -0.85 £ 0.02 -0.85 +0.02 -1.77+0.18 -0.90 +0.00 -1.07
Per-answer avg logprob -4.92 £ 0.00 -3.18+£0.07 -0.94 +0.03 -1.02 £0.12 -2.41+£0.19 -1.17 £0.03 -1.07
Perplexity 137.25 £ 0.00 2401 +1.73 2.56 +0.08 2.77+0.34 1128 +2.13 3.22+0.09 292
CoT length 34575+ 1540 26694 £59.84 321.53+11.91 346.77+£16.29 343.26+4840 350.66+7.19 5.00
Qwen 3B, DeepScaleR

Greedy success 14.02 + 0.00 37.02 + 0.46 35.38 +0.11 36.93 + 0.85 37.35+0.35 37.59 +1.22 9.96
T=1 Sampled Success 9.55 +0.07 36.43 +0.48 21.12+3.77 22.38+0.92 35.85+0.45 24.30 +£0.34 5.47
Per-answer avg logprob MC32 — — -0.61 + 0.01 -0.61 + 0.00 -1.74 £0.02 -0.63 £ 0.00 -0.78
Per-answer avg logprob -2.57 £0.00 -2.96 +£0.09 -0.78 £ 0.15 -0.78 £ 0.10 -0.97 £ 0.06 -0.78 £ 0.11 -0.78
Perplexity 13.12 £ 0.00 19.40 + 1.65 2.20 +0.34 2.19+0.22 18.86 +0.20 2.65+0.16 2.19
CoT length 22327 +4.44 509.50 +40.83 448.19+11.23 457.67+13.76 448.46+9.55 405.22+16.92 5.00

Table 1: Results on verifiable domains, G=32. Final performance of models across all our algorithms and
metrics. Results are averaged over two seeds. Rows are labeled by the test metrics, columns by the algorithms.
We observe that methods which use the log-probability as a reward (Log-prob, Avg Logprop, JEPO) often
underperform the baseline when the answer is sampled. However, the gap closes when the answer is produced
deterministically (greedy success). Perplexity and log-prob based metrics universally improve for the log-prob
family of rewards, even surpassing SFT levels, while base RL lags behind in this metric, and probability-based
rewards situate themselves in the middle between those. Learning curves are shown in Figures E]andE]toE}

1 and giving the correct answer with probability 0.01 or 0, while this makes a large difference for
log-probabilities. Namely, logprob-trained models make sure that if they are wrong, they are not
confidently wrong, by attributing some nonzero probability to all plausible answers.

Overall, logprob-trained models get both good success rates and good perplexity, while models
trained directly for the success rate sacrifice perplexity. Presumably, logprob-trained models smooth
out their predictions, while verifier or probability-based variants emit “sharper” probabilities.

3.3 RESULTS ON NONVERIFIABLE DOMAINS

We present the results on NuminaProof and Alpaca with the Llama and Qwen models in Table [2]
and Figure 2] and Figures [12] to [T4]in Appendix [C] We observe that training with logprobs, or with
average logprobs or JEPO, consistently matches the performance of SFT. As predicted, Probability
(VeriFree) fails to improve on these metrics, and Average Probability (RLPR) is noisier but trails the
logprob family closely. This establishes the log-prob family of rewards as a universal method for
both verifiable and non-verifiable domains.

3.4 LENGTH OF THE CHAIN-OF-THOUGH DURING TRAINING

We now report some intriguing observations on the behavior of the CoT during training, for which
we have no complete explanation. In Figure[I] we see that CoTs trained with Logprob variants show
an initial dip in length, followed by a recovery in verifiable domains. This pattern does not occur for
Prob variants or Base RL. For non-verifiable rewards, we see an even starker pattern in Figure[2} the
CoT dips to a length of 10 tokens (including formatting tokens) and never recovers. This means that
the CoT is largely eliminated, and Logprob methods effectively become SFT — indeed we observe
that the perplexity of methods with a collapsed CoT closely match those of the SFT baseline.

We tried two types of interventions on this pattern: increasing the KL divergence regularization to
the base model, and introducing a length penalty that adds a negative reward for every token below
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Figure 1: Verifiable. Llama 3.2 3B Instruct on MATH, G=32. Learning curves of our algorithms for various
metrics. Dashed curves represent the RL baseline and (no-CoT) SFT; green shades for the logprob family of
rewards (Logprob, Average logprob and JEPO) and blue for probability-based rewards Probability (VeriFree)
and Average Probability (RLPR). Numerical values can be found in Table El

Base model  Log-prob  Avg Logprob  Probability — Avg Probability JEPO SFT (no CoT)

Llama 3B, NuminaProof

Per-answer avg logprob -1.2871 -1.1124 -1.1175 -1.2859 -1.1157 -1.1104 -1.1127
Perplexity 3.62 3.04 3.06 3.62 3.05 3.04 3.04
Per-answer avg logprob MC32 — -1.1124 -1.1175 -1.2850 -1.1157 -1.1102 -1.1127
CoT length 474.0 9.1 9.0 469.6 9.1 34.1 5.0
Qwen 3B, NuminaProof

Per-answer avg logprob -1.1838 -1.0174 -1.0235 -1.1862 -1.0217 -1.0218 -1.0172
Perplexity 3.27 2.77 2.78 3.27 2.78 2.78 2.77
Per-answer avg logprob MC32 — -1.0174 -1.0235 -1.1852 -1.0217 -1.0218 1.0172
CoT length 225.6 53 9.0 225.2 10.0 14.1 5.0
Llama 3B, Alpaca

Per-answer avg logprob -1.3493 -0.9397 -0.9449 -1.5772 -0.9513 -0.9443 -0.9381
Perplexity 3.85 2.56 2.57 4.84 2.59 2.57 2.56
Per-answer avg logprob MC32 — -0.9396 -0.9449 -1.5724 -0.9512 -0.9436 -0.9381
CoT length 1342 14.2 14.1 58.6 9.1 14.8 5.0
Qwen 3B, Alpaca

Per-answer avg logprob -1.3968 -0.8903 -0.8933 -1.2982 -0.8989 -0.8976 -0.8905
Perplexity 4.04 2.44 2.44 3.66 2.46 245 2.44
Per-answer avg logprob MC32 — -0.8902 -0.8931 -1.2955 -0.8988 -0.8969 -0.8905
CoT length 83.7 16.7 14.3 16.6 15.2 16.6 5.0

Table 2: Results on non-verifiable domains. Final performance across all initial models and metrics, on
nonverifiable datasets. Probability rewards fail to learn due to their extremely low rewards. We observe that
methods which use the log-probability experience a CoT collapse, reducing to SFT. The corresponding learning
curves are shown in Figure [2]and Figures [[2]to[T4]in Appendix [C}

a certain threshold in the CoT (see Appendix |D| for details). These interventions worked in that
they prevented the CoT length dip, but this came at the cost of actual performance, as shown in
Figures [T6)to [I9]in Appendix [D] It looks like these methods perform best on nonverifiable domains
only by reducing the CoT and mimicking SFT. We tried to understand the mechanism behind this
dip: we assumed that early in training, shorter CoTs might lead to better predictions since the base
model has been trained without CoTs. An initial negative correlation between CoT length and reward
may push the model towards shorter CoTs during reinforcement learning. Figures [3]and [] plot the
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Figure 2: Non-verifiable: Qwen 2.5 3B Instruct on NuminaProof. Learning curves of our algorithms for
three metrics. Numerical values can be found in Table 2] Log-prob family models match the (per-answer)
average log-prob and perplexity from SFT, while probability rewards fail to improve on these metrics due to
the sparsity of the rewards. We observe a rapid “collapse” in CoT-length for the log-prob family.

CoT length against the log-probability of the answer for the base model: while the correlation is
consistently negligible with nonverifiable answers, it is clearly negative in a verifiable context.

We also considered that the SFT term overpowers the RL part, as the model is not used to writing
proofs. To address this, we attempted initializing from a model SFT-ed with masked CoTs to produce
a warm start model which can use the CoT effectively. We describe these results in Appendix
however they also fail to improve on the SFT baseline under a reasonable compute budget.

It is worth noting that in a similar setting, Tang et al.|(2025) show JEPO eventually exceeding the
SFT performance with long-form answers. The critical difference between our settings is thatTang
et al.| (2025)) train for significantly longer (an order of magnitude) at a larger batch size and lower
learning rate. So it is possible that JEPO enables training with long-form answers, at the cost of
much higher compute requirements compared to RL with short-form, verifiable answers.

Discussion: Why does RL eliminate CoTs for nonverifiable domains? We can put forward sev-
eral hypothetical explanations for the elimination of CoTs in nonverifiable domains. One possibility
is that it takes longer to train long CoTs than short CoTs. RL has a worse signal-to-noise ratio when
the number of actions increases, because of the well-known “credit-assignment problem”. For CoT
training, the actions are the tokens, so it is harder to identify good correlations in long CoTs than
short ones. If this is the case, then a correlation between short CoTs and better performance would
appear in the early phases of training, only to disappear once long CoTs catch up in performance.
This could explain the dip-and-recovery pattern for verifiable domains, even if initially no such cor-
relation exists. However, this does not explain why this pattern occurs for Log-prob but not for Prob
in verifiable domains. Also, in this situation, we would expect the length penalties to help.

Another possibility is that, with long answers, the model has time to deploy a hidden CoT within
its internal layers. Indeed, the survey by [Zhu et al. (2025) puts forward increasing evidence for
the existence of such hidden CoTs in LLMs. Conversely, for the very short answers in verifiable
domains, there may be too few tokens to have an efficient internal CoT during the answer, and an
actual, non-hidden CoT may be necessary. If this is the case, it may be interesting to build datasets
that interpolate between short and long answers, and see if there is a transition. We leave these
investigations to future work.

4 CONCLUSION AND DISCUSSION

Our work establishes log-probability rewards as a unifying training signal effective in both verifi-
able and non-verifiable domains, without relying on ground-truth correctness labels. On reasoning
benchmarks like MATH and DeepScaleR, log-probability rewards match the success rates of stan-
dard 0/1 RL objectives while substantially improving perplexity; on long-form proofs, they match
supervised fine-tuning while other probability-based variants fall well below. This shows that the
same criterion can be carried seamlessly across settings. This highlights their potential as a general
recipe for post-training reasoning LLMs, valid over the full range of possible answer types. In future
work, we hope to hope to further develop this approach on non-verifiable domains, enabling efficient
RL training on any dataset, leveraging the CoT capabilities.
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Reproducibility Statement To enable independent re-implementation, we provide in the paper
and Appendix: (i) datasets and base models used for training and evaluation (ii) full hyperparameter
details and training objective; (iii) prompt template and inference settings for evaluation; (iv) verifier
used; (v) number of runs per result, with mean + std; and (vi) compute details.

LLM Usage We used LLMs for drafting and polishing the writing. The research itself, and the
bulk of the writing effort, were done by humans.
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A LOSSES AND ADVANTAGES FOR THE REWARDS CONSIDERED

Lemma 1. Let z be a chain-of-thought variable sampled from a model my with parameters 0, and
let Ry(z) be a reward function that depends on z and also possibly on g (for instance, Ry(z) =
log mp(a*|z) or Re(z) = mg(a*|2)).

Then the expected reward
Jo =E,on,[Ro(2)] (19)
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has the same gradients (up to sign) as the loss function
Lo =E,unyse [(Ro(2) — cg)*® log mg(2) + Ry (2)] (20)

where ¢ denotes a stop-grad operator, and cy is any expression independent of z.

For instance, in RLOO, ¢y is the average of Ry(z') over samples z’ ~ 7y independent from z.

Proof. The gradient of Jy is

VB, [Ro(2)] = Ve Z mo (2 @1)
= Z (m9(2) Ve log 7o (2 ) + Z mo(2)VoRy(2) (22)
= IEMS [Ro(2)Vlogma(2)) + VeRe( )] (23)

hence the statement without cg.

Now we have E. ., Vglogmg(z) = >, m9(2)Velogme(z) = 3, Vema(z) = Vgl = 0. There-
fore, we have E., [co Vg log mg(z)] = 0 as long as ¢y is independent of z. Hence we can subtract
co Vo log mp(2) from the expression above, which leads to the conclusion. O

B EXPERIMENTAL DETAILS

For each experiment, we use a synchronous implementation of RLOO running in parallel across 8
processes. We use the AdamW (Kingma & Ba, [2014) optimizer with a learning rate of 10~°, and
a cosine schedule with a 20 step warm-up. During our research, we tried a few learning rates for
the probability rewards, but noticed that the chosen value worked consistenly for all variants. We
clip the global gradient norm to a global threshold of 1.0. Each batch contains 8 questions from the
dataset with G different CoTs; such a batch corresponds to one step in all our figures.

Full Details on the Datasets. We consider two verifiable math benchmarks and two non-verifiable
long-form datasets. (i) MATH (Hendrycks et al.| 2021b): we concatenate all official subsets, parse
the final answer from \boxed{. ..}, discard intermediate solutions, and hold out a random 10%
for validation. We report accuracy on the official test split. The resulting training set contains
~7,000 short-answer problems. (ii) DeepScaleR (Preview) (Luo et al. 2025): we discard long
solutions, use the provided final answer as ground truth, hold out a random 10% for validation, and
report performance on this held-out set. The training set has ~39,000 short-answer problems. (iii)
Alpaca (cleaned) (Taori et al., 2023): we use the standard cleaned variant; 1,000 random examples
are used for validation, leaving ~50,000 training samples with predominantly long-form answers.
(iv) NuminaProof: starting from NUMINAMATH-1.5 (Li et al.| 2024)), we filter for theorem—proof
style items (full solutions are proofs), remove instances with hyperlinks, and sanitize the remaining
solutions. We reserve 1,000 examples for validation, yielding ~50,000 long-form training samples.

Prompting and formatting. All experiments use a DEEPSEEK-R 1—style instruction format (Guo
et al., |2025)) with the instruction as the system prompt and the question as the user message, ren-
dered with each model family’s standard instruct template (Llama or Qwen). We prefill the as-
sistant turn with "<think>" to initiate the reasoning trace. The final sentence of the system
prompt—encouraging concise, easily parsable answers—is enabled only in verifiable settings (see

[Template T).

At each training step, each process receives a question prompt, and generates GG completions with a
maximum length of T tokens to that question. Unless noted otherwise, we use G = 32 in verifiable
domains, and G = 4 in nonverifiable domains, and 7" = 1024. We generate completions until
they reach the pattern </answer, but for the likelihood-based rewards, we truncate the CoT at
<answer. This is inspired by Zhou et al.|(2025) who pointed out that in both the Llama and Qwen
tokenizers, there is no individual token that contains the pattern r>, and thus it is guaranteed to be a
consistent token boundary.

For Base RL, the verifier tries to parse <answer>answer</answer> and match it with the
ground truth. If the answer is correct, the reward is 100. If the answer is incorrect but the format

13
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Figure 3: A scatterplot displaying the relation between CoT length and the probability of obtaining
the correct answer, when generating the CoT with Llama 3.2 3B Instruct. Left: NuminaProof.
We observe a low correlation, leaning negative. Right: DeepScaleR. We observe a clear negative
correlation. This explains the initial dip in the CoT length on verifiable domains, but does not explain
the collapse on nonverifiable tasks.
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Figure 4: A scatterplot displaying the relation between CoT length and the probability of obtaining
the correct answer, when generating the CoT with Qwen 2.5 3B Instruct. Left: NuminaProof.
We observe a low correlation, leaning positive. Right: DeepScaleR. We observe a clear negative
correlation.

is kept correctly (parsing was succesful), the reward is 10. If the format is incorrect and an answer
cannot be parsed, the reward is 0. We train and evaluate with exact match on the answer.

Template 1 (System prompt). A conversation between User and Assistant.
The user asks a question, and the Assistant solves it. The
assistant first thinks about the reasoning process in the mind
and then provides the user with the answer. The reasoning
process and answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>reasoning
process here</think> <answer>answer here</answer>. Inside the
answer tag, put only the answer and no additional commentary.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LENGTH-LOGPROB CORRELATIONS

Here we provide scatterplots that visualize the correlations between CoT length and correct answer
logprob, as discussed in Section [3.4]
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C.2 VERIFIABLE DOMAINS

Here, we complement Figure[T|with the corresponding learning curves for other model-dataset com-
binations (Figures [3] to [7) and provide the corresponding Figures [§] to [TT] and Table [3] for training
with G = 4 (including JEPO, which for efficiency reasons we only ran for G = 4).

Greedy success rate Sampled success rate Per-answer average logprob

0.1p, L L L L L L L L L L L L L L L L L
0 150 300 450 600 750 0 150 300 450 600 750 0 150 300 450 600 750
Step Step Step
Perplexity Per-token average logprob CoT length

0 150 300 450 600 750 0 150 300 450 600 750 0 150 300 450 600 750
Step Step Step
---- Base RL —— Logprob —— Average Logprob —— Probability —— Average Probability ---- SFT (no CoT)

Figure 5: Verifiable. Qwen 2.5 3B Instruct on MATH with a group size of 32.
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Figure 6: Verifiable. Llama 3.2 3B Instruct on DeepScaleR with a group size of 32.
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Figure 7: Verifiable. Qwen 2.5 3B Instruct on DeepScaleR with a group size of 32.
Base model Base RL Log-prob Avg Logprob JEPO Probability Avg Probability ~ SFT (no CoT)

Llama 3B, MATH
Greedy success 17.13£0.00  42.09 +1.08 40.58 +2.63 40.52 +0.01 43.19+0.10 40.48 +0.42 41.56 +0.52 14.38
T=1 Sampled Success 10.77+£0.07  40.34 +1.30 31.81 + 1.40 31.06 + 1.82 35.85 +0.80 38.03 £0.99 35.03£0.73 9.96
Per-answer avg logprob MC32 — — -0.72 £ 0.02 -0.73 £ 0.02 -0.79 £0.01 -1.52£0.04 -0.82 £0.00 -0.96
Per-answer avg logprob -4.21 £0.00 -2.98 +0.06 -0.83 +£0.01 -1.02£0.01 -1.23 £0.04 -2.56 +0.06 -1.11 £0.01 -0.96
Perplexity 67.29 +0.00 19.65 + 1.17 2.30 +£0.03 2.77 +0.04 3.41+0.14 12.97 +0.81 3.03+0.04 2.62
CoT length 331.66 £2.02 373.52+23.15 283.84+2747 305.76 £40.62 326.15+21.00 345.83+10.13 333.47 +£45.09 5.00
Qwen 3B, MATH
Greedy success 21.19£0.00  53.19+0.18 51.70 +2.65 53.87£0.24 54.01 £2.10 54.59 +0.24 53.52+1.47 18.32
T=1 Sampled Success 16.10+0.06  50.31 £ 0.03 36.36 + 1.71 37.53£1.32 42.55 +3.69 48.75+0.77 42374222 12.00
Per-answer avg logprob MC32 — — -0.47 £ 0.00 -0.46 £ 0.01 -0.47 £0.02 -1.00 +0.03 -0.49 £ 0.02 -0.69
Per-answer avg logprob -2.19 £0.00 -1.89 £0.01 -0.67 £ 0.09 -0.68 £ 0.01 -0.78 £ 0.02 -1.77 £0.02 -0.79 £0.11 -0.69
Perplexity 8.92 +0.00 6.60 +0.03 1.97 £0.19 1.98 + 0.02 2.18 +0.05 5.85+0.13 2.22+0.24 1.99
CoT length 22243+0.80 429.31+0.17 326.69+49.32 387.34+7.17 362.67+70.73 447.37+34.30 380.90 +10.57 5.00
Llama 3B, DeepScaleR
Greedy success 10.05+£0.00  23.95+0.92 2528 +5.14 24.51 £ 0.93 26.35+1.13 25.78 +0.11 25.14+1.22 9.68
T=1 Sampled Success 4.80 +£0.42 18.40 +1.38 12.34 £3.55 12.74 £ 0.45 1634 £2.27 21.91£2.28 15.92 +0.06 4.53
Per-answer avg logprob MC32 — — -0.90 +0.03 -0.91 £ 0.01 -0.91 £ 0.01 -1.67 £0.21 -0.95 £ 0.02 -1.07
Per-answer avg logprob -4.92 +0.00 -3.02 +0.03 -0.97 +0.03 -1.21+0.19 -1.15+0.10 -2.77+0.41 -2.26+0.17 -1.07
Perplexity 137.25+0.00  20.43 +0.69 2.64 +0.08 3.38+0.65 3.16 £0.31 16.66 + 6.64 9.67 +1.60 291
CoT length 34850 +£2.22 31551 +60.02 328.66 +127.51 282.46+40.37 351.95+82.12 323.45+32.93 32647 +23.48 5.00
Qwen 3B, DeepScaleR
Greedy success 14.02+£0.00  37.00 +£0.57 28.46 £ 0.46 31.42+£3.67 30.14 £9.20 35.17 £2.16 33.68 £ 0.45 11.33
T=1 Sampled Success 9.15+0.07 33.87 £0.02 15.33 £0.46 1691 £3.19 20.17 £5.69 28.76 £2.77 20.90 £ 0.98 5.62
Per-answer avg logprob MC32 — — -0.67 £ 0.00 -0.67 +£0.04 -0.68 + 0.04 -1.44 £0.03 -0.67  0.00 -0.77
Per-answer avg logprob -2.57 +0.00 -2.83+0.24 -1.12+0.28 -1.23+0.47 -0.99 +0.02 -2.62 +0.08 -1.23+0.19 -0.77
Perplexity 13.12 £0.00 17.12 £4.02 3.15+0.95 3.61+1.65 2.68 +0.05 13.82+1.13 3.45+0.67 2.17
CoT length 22245+1.24 506.71+57.31 336.45+111.93 368.17 £37.71 349.85+89.50 392.60+76.07 390.58 +59.18 5.00

Table 3: Results on verifiable domains, G=4. Final performance of models trained with a group size of 4,
across all our algorithms (including JEPO) and metrics. Conclusions mirror those of Table[T] The correspond-
ing learning curves are presented in Figures 8] to[TT}
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Figure 8: Verifiable: Llama-3.2-3B on MATH with a group size of 4.
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Figure 9: Verifiable. Qwen 2.5 3B Instruct on MATH with a group size of 4.
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Figure 10: Verifiable. Llama 3.2 3B Instruct on DeepScaleR with a group size of 4.
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Figure 11: Verifiable. Qwen 2.5 3B Instruct on DeepScaleR with a group size of 4.
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C.3 NON-VERIFIABLE DOMAINS

Here we provide the Figures complementary to Figure [2] for other model/dataset combinations in
Figures[12]to[T4]

Per-answer average logprob Perplexity CoT length

o 200 400 600 800 o 200 400 600 800 0 200 400 600 800
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Logprob —— Average Logprob JEPO —— Probability —— Average Probability ---- SFT (no CoT)

Figure 12: Non-verifiable. Llama 3.2 3B Instruct on NuminaProof.

Per-answer average logprob Perplexity CoT length
-10f . 7
/
il
/
—12f! 6
-14 s
-16
4
-18
3
-2.0 o - == e
o 200 400 600 800 o 200 400 600 800 0 200 400 600 800
Step Step Step
—— Logprob —— Average Logprob JEPO —— Probability —— Average Probability —---- SFT (no CoT)
Figure 13: Non-verifiable. Llama 3.2 3B Instruct on Alpaca.
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Figure 14: Non-verifiable. Qwen 2.5 3B Instruct on Alpaca.
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D ATTEMPTED REGULARIZATION METHODS

In Section 3.4 we use two types of regularization to stabilize the CoT in nonverifiable domains. The
first is straight-forward — we include a KL divergence term in the loss, which keeps the model close
to the initial model, as proposed by |Guo et al.| (2025)).

The second type introduces an additional reward term:

Ri(z) = r - min{|z| — Iy, 0}

that is, for each missing token below a threshold for [y, a negative reward r is applied. We vary the
threshold [y and report results for values of 100, 150, 300 and 500. To set the value of r, we design
it so that it approximately compensates the increase of the reward during the initial CoT length drop
over the initial 40 training steps. Specifically, we take the base nonverifiable experiments for each
algorithm, model and dataset, and set

AR
AL
where AR is the increase in validation reward, and AL is the decrease in the average CoT length.

r

The results of these ablations are presented in Figures [I6]to [I9]
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—— Logprob, no KL —— Logprob, KL —— Avg Logprob, no KL —— Avg Logprob, KL —— JEPO, no KL JEPO, KL ==-=- SFT (no CoT)

Figure 15: Non-verifiable. Llama 3.2 3B Instruct-Warmstart on Numina.

Warm start When training the warm start models, our goal was to improve the initial performance
of the model. We observed that at initialization the perplexity of the correct answer is better if it
is appended directly after the question, and worse if there is an autoregressively generated CoT
between them. To this end, we generated a static dataset of CoTs generated from the initial model,
and trained it with SFT on (question, completion, answer) triples, masking out everything but the
answer with the intuition that this would train the model to use CoTs.

We display the results in Figure [I5] Most variants still collapse the CoT and achieve a performance
comparable with SFT. The variants that are regularized to not collapse have a performance lower
than SFT. One interesting case is unregularized JEPO, which maintains a CoT of about 100 tokens,
and almost matches the performance of SFT.

It is however important to keep in mind that due to the initial warm start phase, this comparison is
no longer “fair” in terms of the data used in training, as the SFT baseline did not undergo the warm
start mid-training.
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Figure 16: Non-verifiable. Llama 3.2 3B Instruct on NuminaProof. Training curves of various attempts at
stabilizing the CoT on nonverifiable domains with Llama 3.2 3B on NuminaProof. When the KL divergence
coefficient, or the length threshold for the penalty are increased, the CoT does better at maintaining a non-trivial
length. However, the actual log-prob of the correct answer decreases accordingly.
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Figure 17: Non-verifiable. Qwen 2.5 3B Instruct on NuminaProof. Conclusions are similar to Figure
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Figure 18: Non-verifiable. Llama 3.2 3B Instruct on Alpaca. Conclusions are similar to Figure
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Figure 19: Non-verifiable. Qwen 2.5 3B Instruct on Alpaca. Conclusions are similar to Figure
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