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Abstract:
Autonomous surgical robots are a promising solution to the increasing demand for
surgery amid a shortage of surgeons. Recent work has proposed learning-based
approaches for the autonomous manipulation of soft tissue. However, due to vari-
ability in aspects such as tissue geometries and stiffnesses, these methods do not
always perform well, especially in out-of-distribution settings. To address this
challenge, we propose a novel second-order metric for uncertainty quantification,
agreement volatility, that enables successful and efficient collaborative handoffs
between a human operator and a robot during soft tissue manipulation by allowing
the robot to know when to cede control to human operators and when to resume
autonomous operation. We validate our approach using the daVinci Research Kit
(dVRK) surgical robot to perform risk-aware physical soft tissue manipulation.
Our experimental results demonstrate that our proposed agreement volatility met-
ric improves system success rates and leads to a 10% lower reliance on human
interventions compared to a variance-only baseline. We further demonstrate the
usefulness of our agreement volatility metric as a spatial uncertainty map over ge-
ometric point cloud data, enabling uncertainty attribution which provides insight
into regions of the input causing uncertainty.
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1 Introduction

Autonomous surgical robots have the potential to help solve the growing disparity between the
population’s need for surgery and the number of available surgeons [1, 2]. However, surgical robot
learning and automation is particularly challenging due to the nuanced and risk-sensitive nature of
the tasks, the partially observable and deformable nature of the (human tissue) environment, and
the scarcity of available data. Because autonomous surgical system failures can be detrimental to
patient health, it is crucial that they take into account uncertainty so that these autonomous systems
can be risk sensitive and safely cede control to the surgeon before causing any harm. To this end, we
aim to develop an interpretable surgical soft tissue manipulation handoff policy between a learned
autonomous agent and a surgeon supervisor using uncertainty quantification and attribution. In
doing so, our goal is to mitigate the risk of system failures while still offloading the work of soft
tissue manipulation to the robot, whenever it is safe to do so.

Our main goal is to enable uncertainty-based human-to-robot and robot-to-human handoffs in the
domain of soft tissue manipulation. To this end, we build on recent advances in robot learning
for deformable object manipulation. In particular, we extend the recently proposed, state-of-the-
art DeformerNet framework [3] which uses large-scale self-supervised training in simulation to
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Figure 1: Volatility-Aware DeformerNet (VAD-Net) contains an ensemble of DeformerNet [3] architectures
trained for manipulating soft tissue. Each model takes as input a current and goal partial-view point cloud of
the geometry of the tissue along with the manipulation point and produces a homogeneous transformation ma-
trix Â(i) for the end-effector of the robot. From each model’s prediction, we produce a predictive distribution
containing the final ensemble prediction Â along with variance values, σ2

t̂ and σ2
R̂

, for the positional and rota-
tional components of the set of predictions. These variance values are backpropagated through the ensemble
to determine the agreement volatility with respect to the model input, ∇Xσ

2
t̂ and ∇Xσ

2
R̂

. The variance values
and agreement volatilities are used to construct an uncertainty feature set U which are passed through a Sup-
port Vector Machine (SVM) handoff policy which determines if the system should request a human to begin
teleoperation, or if the system is capable of safely acting autonomously.

learn a closed-loop policy for manipulating deformable objects to desired goal geometries. While
DeformerNet has been shown to perform well on in-distribution data, patient-specific anatomical
variations, sub-optimal grasping locations, or poorly defined goal geometries can lead to out-of-
distribution soft tissue manipulation problems. We show that these out-of-distribution geometries
can lead to poor model performance which poses a potential safety risk during surgical manipula-
tion. We propose to address this issue through a novel framework for uncertainty quantification and
attribution in surgical robot learning.

Our main contributions are as follows: (1) We propose Volatility-Aware DeformerNet (VAD-Net)
the first real-world surgical robotic system capable of uncertainty quantification, attribution, and
human-robot collaborative handoffs during soft tissue manipulation. (2) We propose and experimen-
tally validate agreement volatility, a second-order measure of ensemble agreement. We show that
agreement volatility provides a more accurate indication of downstream task performance for surgi-
cal soft tissue manipulation than using prior ensemble-based uncertainty quantification metrics. (3)
We leverage uncertainty attribution to produce spatial uncertainty maps over geometric point cloud
data that enables human insight into which region of the geometry has the most influence over the
uncertainty.

2 Related Work

Soft Tissue Manipulation: Several data-driven approaches have been proposed to learn soft tis-
sue manipulation [4, 5, 6, 7, 8, 3]. These learning-based approaches are made possible by taking
advantage of recent advancements in high-fidelity deformable object simulation [9, 10, 11]. Other
work has shown success in using model-independent deformation estimation techniques [12]. Our
method takes inspiration from the recently proposed DeformerNet framework [3]. DeformerNet
takes a self-supervised learning approach to the problem of soft tissue manipulation. Given the cur-
rent geometry of the object, the grasping point, and the desired geometry of the object, DeformerNet

2



has been shown to have state-of-the-art performance for a variety of deformable object geometries
and tasks [3]. However, DeformerNet is a black-box policy with no uncertainty quantification and,
as we show in our experiments, DeformerNet often fails when given out-of-distribution inputs or
inaccurate grasp points. This work, VAD-Net, seeks to remedy these shortcomings by both quan-
tifying the uncertainty during soft tissue manipulation and also developing explainable uncertainty
attribution techniques that work with point cloud inputs and deformable object manipulation to en-
able uncertainty-informed collaborative human-robot handoffs during soft tissue manipulation.

Uncertainty Quantification and Attribution: Uncertainty quantification for deep neural networks
has been studied in recent years as a way to aid in the safe design and implementation of deep learn-
ing systems [13]. Common approaches for uncertainty estimation include deep ensembles [14] and
Monte Carlo (MC) dropout [15, 16, 17]. Ensembles have been shown to improve predictive perfor-
mance by training multiple models with different random initializations and measuring the variance
in their output as a metric of model uncertainty [18, 19, 20] and have been shown to outperform other
techniques for uncertainty quantification such as MC dropout [18, 20, 21, 22, 23]. Most techniques
for uncertainty quantification rely on first-order metrics such as predictive variance or entropy for
quantifying uncertainty [19, 24, 25, 26, 23]. However, while these first-order metrics capture the
magnitude of agreement between predictions, they may fail to reflect the stability of model uncer-
tainty given input perturbations. In this work, we propose a novel second-order metric, agreement
volatility, which measures the sensitivity of ensemble agreement to input changes. Work has also
been done on attributing uncertainty to model inputs. While much of this work has been on gradient-
based attribution methods [27, 28, 29, 30], others have proposed the use of input augmentation [31].
Contrary to prior work that primarily focuses on image classification data, we demonstrate that our
method attributes uncertainty to geometric point cloud data on a real-world surgical manipulation
task. Through these uncertainty maps, we aim to enhance the transparency and trustworthiness of
autonomous surgical agents.

Human Interventions for Robot Policies: One of the major obstacles when applying robot learn-
ing to surgical domains is the inability to do online learning in the real world. While we can
collect demonstrations offline [32, 33, 34, 35, 36, 37, 38, 39] and can train policies in simula-
tion [40, 41, 42, 43], offline imitation learning leads to compounding errors [44] and the sim2real
gap is especially difficult to overcome for the types of deformable manipulation that are common
in surgery [45]. Enabling an autonomous surgical robotic system to cede control to a surgeon su-
pervisor in high-risk states addresses these challenges by enabling a human to correct the robot
during real-world execution. There are two common strategies for deciding when to pass control
from the autonomous agent to the human. In the first paradigm, the human decides when to inter-
vene [46, 47, 48]. However, this imposes a large burden on the supervisor. In the second paradigm,
which we follow, the robot actively requests human interventions [49, 50, 26, 51] based on some
form of uncertainty estimation. However, prior work has focused mainly on simulated tasks with
simulated human supervisors and simple control or manipulation tasks. By contrast, we study the
efficacy of uncertainty quantification when deployed on a surgical dVRK robot performing real de-
formable tissue manipulation. In contrast to prior work, we also introduce a novel second-order
metric for uncertainty quantification that results in improved performance and more efficient and
successful human-robot collaboration and enables uncertainty attribution.

3 Problem Definition

Given a learned surgical robot policy, πrobot, for soft tissue manipulation, we aim to develop a
risk-sensitive and efficient collaborative handoff framework that enables the robot to cede control
to a human supervisor when the probability of failure is high and request control from the human
supervisor when the probability of failure is low. Following prior work on deformable tissue manip-
ulation [3], we assume access to a partial-view point cloud of the current geometry of the soft tissue
to be manipulated as well as a goal point cloud that defines how the soft tissue should be manipu-
lated. In this work, goal point clouds are generated via manual manipulation of the tissue; however,
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these goal point clouds have been shown to be both heuristically definable on a task-specific basis [3]
as well as learnable from human demonstrations [52].

We define a meta-policy πmeta that operates over uncertainty features to decide whether the robot
should continue autonomous operation or request human intervention. This meta-policy can be for-
malized as a binary classifier πmeta : U → {0, 1}, where U is any feature space used for measuring
uncertainty. We consider true positives (TP) to be when the robot correctly requests an intervention
to prevent a task failure; a false positive (FP) occurs when the robot unnecessarily cedes control to
the human supervisor. Conversely, false negatives (FN) occur when the robot fails to request an in-
tervention when necessary, and true negatives (TN) occur when the robot successfully manipulates
the tissue without requesting an intervention.

Because we are focused on surgical robotic applications, we are most concerned with failures. Thus,
we want to minimize failures associated with false negatives. However, false positives may also lead
to failure because they unnecessarily distract a human expert and waste time that could be spent
addressing other concerns and preventing other failures (e.g., assisting a different patient or robot).
To formalize this tradeoff, we define the risk-sensitive objective:

π∗
meta = argmin

πmeta

E[cf · FN + ch · FP ], (1)

where cf and ch are the cost of robot failure and the cost of an unnecessary human handoff re-
spectively. We learn π∗

meta as an optimal classification threshold using uncertainty features from a
calibration set [53, 54, 55] of real-world autonomous execution data.

4 Methodology

4.1 Volatility-Aware DeformerNet

We propose Volatility-Aware DeformerNet (VAD-Net), an extension of DeformerNet [3], a learned
closed-loop policy for manipulating deformable objects, that leverages a deep ensemble of feed-
forward, self-supervised shape-servoing models for deformable object manipulation with a second-
order uncertainty metric, agreement volatility, which quantifies the sensitivity of ensemble agree-
ment to input perturbations and enables uncertainty attribution.

VAD-Net takes as input the current and goal geometries of a deformable object, Pc and Pg , rep-
resented as partial-view point clouds, along with a designated manipulation point m. It outputs a
predicted end-effector action Â as a homogeneous transformation matrix consisting of R̂, the pre-
dicted change in orientation, and t̂, the predicted change in position of the end-effector. The input
geometries are encoded using PointConv-based feature extractors [56], and the model is trained
using data of the form (Pc,Pg,m,A), where A is the known transformation applied to the end-
effector. We create this training dataset in a self-supervised fashion using Isaac Gym [57] to learn to
predict the effects of randomly sampled end-effector manipulation points and manipulation actions
on deformable objects given only partial-view point cloud observations. By training an ensemble
and computing both predictive variance and agreement volatility, VAD-Net is capable of assessing
its own reliability. These uncertainty estimates are used downstream by a learned SVM-based hand-
off policy (see Section 4.4) to determine when control should be deferred to a human operator. We
train VAD-Net consisting of five DeformerNet policies. We use the source code and training and
testing datasets provided by Thach et al. [3], consisting of 11,566 training and 1,285 test examples
of deformable object manipulations. Following prior work [14, 20, 18], each ensemble component
model was trained using the same training dataset with different random weight initializations. See
Appendix A in the supplement for more details.

4.2 Uncertainty Quantification

We seek to enable more risk-aware and efficient autonomous handoffs in deformable soft tissue ma-
nipulation. Following prior work on ensemble uncertainty [14, 18, 19, 20], we can simply compute
the variance across ensemble predictions as a first-order measure of ensemble agreement; however,
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Figure 2: An example of uncertainty attribution on the dVRK experimental setup. The blue points represent the
current point cloud of the chicken tissue geometry while the red points represent the goal point cloud geometry.
The green intensity indicates regions of higher agreement volatility scores, highlighting their contribution to
the ensemble’s uncertainty. (left) Spatial uncertainty map using positional agreement volatility. (Right) Spatial
Uncertainty map using rotational agreement volatility.

we also propose and derive a second-order sensitivity metric called agreement volatility that enables
a more detailed and comprehensive measure of uncertainty and naturally lends itself to interpretabil-
ity via uncertainty attribution. Agreement volatility measures the local sensitivity of ensemble vari-
ance with respect to the model’s input. High agreement volatility indicates that small perturbations
to the input can lead to large fluctuations in predictive confidence, signaling fragile or unreliable
regions of the input space. This is particularly important in the context of deformable object manip-
ulation as minor geometric variations caused by sensor noise, occlusions, or slight deformations can
pose a risk for reliable task execution.

Our ensemble of M models {f (1), . . . , f (M)} produces a set of 4× 4 homogeneous transformation

matrices consisting of a predicted rotation R̂(i) and a predicted translation t̂
(i)

,

f (i)(X) =

[
R̂(i)(X) t̂

(i)
(X)

0 1

]
where X is the model input containing the current and goal point clouds (Pc and Pg) of the tissue
geometry along with a manipulation point m. We measure uncertainty for both the positional and
rotational components.

Positional Volatility: We compute the ensemble’s positional prediction as the arithmetic mean of
each model’s prediction. t̂(X) = 1

M

∑M
i=1 t̂

(i)
(X). The ensemble agreement with respect to the

positional prediction is measured as the mean squared deviation of t̂
(i)

from t̂:

σ2
t̂
(X) =

1

M

M∑
i=1

∥t̂(i)(X)− t̂(X)∥22 . (2)

We define the agreement volatility as the gradient of the ensemble’s variance with respect to the
model input X = (Pc,Pg,m).

∇Xσ
2
t̂
(X) =

2

M

M∑
i=1

(t̂
(i)
(X)− t̂(X))T (∇Xt̂

(i)
(X)−∇Xt̂(X)) (3)

This gradient characterizes the local stability of the ensemble’s agreement in response to input
changes. We then define an agreement volatility score for each point in the input point clouds
by taking the ℓ2-norm of the gradient vector at each input point, yielding a distribution of agreement
volatility scores:

Vt̂(p) = ∥∇Xσ
2
t̂
(X)|p∥2, ∀p ∈ X . (4)

Rotational Volatility: Computing analogous metrics for the rotational component of the ensem-
ble’s predictions is less straightforward due to the specific structure of rotation matrices. We
first compute the arithmetic mean S of the set of rotation matrices produced by the ensemble,
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S(X) = 1
M

∑M
i=1 R̂

(i)(X). To obtain a valid rotation matrix, we take the singular value decom-
position, S(X) = UDV′, and multiply U and V′ to obtain a rotation matrix that minimizes the
Euclidean norm to S and is therefore the rotation matrix that minimizes the average geodesic dis-
tance to the set of rotations produced by the ensemble [58]: R̂(X) = UV′. The ensemble agreement
with respect to the rotational prediction is then measured as the mean geodesic distance between
R̂(i) and R̂:

σ2
R̂
(X) =

1

M

M∑
i=1

arccos
(Tr(R̂(i)(X)R̂(X)T )− 1

2

)
(5)

Similarly to the positional case, we compute the gradient of the rotational variance with respect to
the input point clouds to obtain the rotational agreement volatility:

∇Xσ
2
R̂
(X) =

−1

2M

M∑
i=1

∇XTr(R̂
(i)(X)R̂(X)T )√

1− (Tr(R̂
(i)(X)R̂(X)T )−1

2 )2
(6)

Using the same method as for the positional component, we compute the per-point agreement volatil-
ity score of the gradient vector at each input point:

VR̂ = ∥∇σ2
R̂
(X)|p∥2, ∀p ∈ X . (7)

which produces a distribution of agreement volatility scores across the input point clouds.

4.3 Uncertainty Attribution

The variance and agreement volatility metrics described above not only serve as indicators of pre-
dictive uncertainty, but also enable attribution of that uncertainty to specific regions of the input.
Since both the positional and rotational agreement volatility scores are computed per input point,
the ensemble effectively produces an uncertainty map over the current and goal point clouds. Points
with a high agreement volatility score indicate regions with high influence over the ensemble’s pre-
dicted action and confidence. Fig. 2 shows an example of this attribution performed on the dVRK
with ex vivo chicken muscle tissue.

4.4 Collaborative Handoff Policy

To learn the meta-policy π∗
meta introduced in Sec. 3, we train a Support Vector Machine (SVM)

as a binary classifier over the uncertainty feature space U , which includes both ensemble variance
and agreement volatility. We choose to use an SVM in this case due to the limited availability of
data and their low computational cost. This classifier learns a decision boundary that approximates
π∗
meta, separating successful and failed trials using features computed from autonomous execution

data. We use this decision boundary as a handoff policy that determines when control should be
passed between the autonomous agent and the human teleoperator.

Given a dataset of completed trials D, each labeled with task success based on a Chamfer dis-
tance [59] threshold, we extract uncertainty features and train the SVM to classify each trial out-
come. Chamfer distance acts as a proxy for how accurately the tissue was manipulated to the goal.
During deployment, the trained classifier serves as the real-time decision mechanism: if the uncer-
tainty features at the current timestep indicate likely failure, control is given to the human operator.
Conversely, if the prediction indicates success, the robot either retains or reclaims control. As rec-
ommended by Hoque et al. [26], we implement a hysteretic switching policy that requires a higher
confidence for handing control to the robot than for handing control to the human to prevent thrash-
ing between robot and human control. This band introduces stability by requiring the system to
accumulate sufficient confidence before autonomous operation, helping to ensure smoother transi-
tions between human and robot control. The output of the SVM handoff policy is a probability that
the given task will succeed. If the human is currently teleoperating the robot, this probability must
increase above 60% before control will be handed back to the robot. This prevents unnecessary
thrashing of control between the human and the robot while also acting as a conservative handoff
policy. This framework enables a collaborative policy that balances robustness (false negatives) with
efficiency (false positives), aligning with the risk-sensitive objective defined in Eq. (1).
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Figure 3: SVM accuracy and F1-score results across varying Chamfer distance success thresholds. We show
results using only variance, only agreement volatility, and both variance and agreement volatility. We find that
the introduction of agreement volatility in general improves both the accuracy and the F1-score of the classifier.

5 Physical Experimental Setup

The deep ensemble is implemented using a zero-shot sim2real framework. Trained entirely on a
simulated box-shaped deformable object, the system is tasked with manipulating ex vivo chicken
tissue of varying geometries. To generate goal shapes for evaluation purposes only, using ex vivo
tissue we teleoperated the robot to manually manipulate the tissue to a desired goal geometry. We
then reset the system and task the robot with manipulating the tissue to the same desired geometry
(with no knowledge of how the shape was generated). We use an Intel Realsense D405 camera for
tracking point cloud representations of the tissue geometry both in goal generation for evaluation
and during method execution. We track the ensemble variance and agreement volatility as the robot
manipulates the tissue toward the goal geometry and measure task success as whether the Chamfer
distance between the final tissue geometry and the goal geometry is below a predefined threshold.
We define a termination criterion for the method as when ∥p̂∥ < 0.001 as this is when there are no
more substantial deformations that occur in the tissue. We implement this system on the daVinci
Research Kit (dVRK) surgical robot [60] using the patient-side manipulators for tissue manipulation
and the surgeon-side console for teleoperation.

6 Physical soft tissue Manipulation Results

6.1 Performance Validation

Prior work shows DeformerNet to be capable of 100% success rates on in-distribution cases [3].
To validate that VAD-Net achieves similar performance, we performed 20 in-distribution trials and
achieved a 100% success rate across these cases. However, to highlight the need for a collaborative
handoff policy, we also performed 15 out-of-distribution trials across 3 cases: Bad Manipulation
Point, OOD Geometry, and Nonlocal Control. VAD-Net (without uncertainty quantification) failed
to complete the task in all but 1 of these trials, highlighting the need for human intervention in OOD
cases.

6.2 Uncertainty Quantification

We collected 40 trials that contain both in-distribution and out-of-distribution cases of DeformerNet
that act on ex vivo chicken muscle tissue and measured the predictive variances and agreement
volatilities across the trials using the methodology in Sec. 4.2.

Handoff Policy Calibration Using these 40 trials as a calibration dataset, we trained an SVM
across various Chamfer distance success thresholds. We defined 3 distinct uncertainty feature sets
containing variance values from Eqs. (2) and (5) as well as the median and inter-quartile range from
the agreement volatility distributions found from Eqs. (4) and (7). Fig. 3 shows the accuracy and
F1-score for SVMs trained on each feature set. We find that the introduction of agreement volatility
improves both the accuracy and the F1-score of the SVM from the variance only baseline, illustrating
how our novel, second-order metric serves to improve the reliability of a learned handoff policy.
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Figure 4: Results from deploying our handoff policy on the dVRK surgical robot for a soft tissue manipulation
task. For each trial, we gathered results across three conditions: Fully Autonomous, Variance Only, and VAD-
Net, where the latter two utilized the corresponding SVM to trigger handoffs between a human operator and
the autonomous agent. (Left) Task success rates across each condition. (Middle) Percent of total task time
spent in each operating mode. (Right) Percent of total time spent teleoperating split across cases where the
Fully Autonomous system succeeded and failed. The left bars show cases where interventions were requested
but unnecessary while the right bars show that in cases where interventions were necessary (fully autonomous
robot fails), VAD-Net requires less intervention than the baseline.

Handoff Policy Evaluation We compared the performance of an SVM trained on raw variance
values to one augmented with agreement volatility metrics across a set of 30 test trials. Each trial
had one of three conditions: Fully Autonomous, Variance Only, and VAD-Net, where the latter two
utilized the corresponding SVM to trigger handoffs between a human operator and the autonomous
agent. A trial was considered successful if the Chamfer distance between the geometry of the tissue
and the goal geometry fell below 1 cm.

Fig. 4 summarizes the results. As expected, the Fully Autonomous baseline condition had the low-
est success rate, reinforcing the need for a collaborative handoff policy. VAD-Net achieved a 100%
success rate, an improvement over the Variance Only baseline. VAD-Net also spends approximately
10% less time on average in teleoperation mode than the Variance Only baseline, indicating that
VAD-Net more efficiently utilizes human interventions. In cases where the Fully Autonomous sys-
tem failed, VAD-Net required 15% less time teleoperating than the baseline while still achieving a
100% success rate. While the baseline spends more time teleoperating, in failure cases, the base-
line never requested an intervention. This highlights VAD-Net’s ability to efficiently utilize human
interventions to facilitate task success while maximizing the time spent autonomously operating.

Uncertainty Attribution In addition to improved success rates and reduced teleoperation time,
our method produces real-time interpretable spatial attributions over the tissue geometry (Fig. 2)
at a rate of 20 Hz. These highlight regions of the geometry that contribute the most to model
uncertainty, allowing the system to not only decide when to hand off control, but also provide some
level of insight into why the system is uncertain. Fig. 2 shows an example of this attribution using
both positional and rotational agreement volatility. See Appendix C for more detailed examples of
uncertainty attribution being applied during real-time execution.

7 Conclusion

In this work, we presented VAD-Net, a volatility-aware extension of DeformerNet that enables real-
time uncertainty estimation and interpretable collaborative control for surgical soft tissue manipula-
tion. By combining ensemble variance with a novel second-order metric, agreement volatility, our
system can preemptively identify unstable predictions and trigger handoffs between a human and the
autonomous system. Through experiments on physical soft tissue using the dVRK surgical robot,
we demonstrated that incorporating agreement volatility improves the task success rate of the sys-
tem and reduces reliance on human interventions compared to a baseline handoff policy using only
ensemble variance. We further introduced a spatial attribution method that highlights the geometric
regions contributing most to predictive uncertainty, allowing for more transparent and explainable
robot behavior. These results highlight the potential of uncertainty-aware learning to improve both
system safety and trust in high-stakes surgical robotic manipulation tasks.
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8 Limitations

While our results demonstrate the effectiveness of VAD-Net for collaborative surgical manipulation,
several limitations remain for future work. Our work focuses on a complex, real-world soft tissue
manipulation task with real human interventions. Due to the time required for this kind of complex
evaluation, we only evaluated our method on a single ex vivo tissue task. In future work, we plan to
extend this evaluation to more diverse surgical tasks and settings. Additionally, our handoff policy
relies on fixed thresholds for Chamfer distance and hysteresis, which may limit adaptability across
different task domains or robot platforms. A more principled approach to threshold selection, such
as learning thresholds from task-level outcomes, could improve generalization.
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for uncertainty estimation and motor imagery classification. Sensors, 21(21):7241, 2021.

10



[16] R. Camarasa, D. Bos, J. Hendrikse, P. Nederkoorn, E. Kooi, A. Van Der Lugt, and M. De Brui-
jne. Quantitative comparison of monte-carlo dropout uncertainty measures for multi-class seg-
mentation. In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and
Graphs in Biomedical Image Analysis: Second International Workshop, UNSURE 2020, and
Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima,
Peru, October 8, 2020, Proceedings 2, pages 32–41. Springer, 2020.

[17] Y. Mae, W. Kumagai, and T. Kanamori. Uncertainty propagation for dropout-based bayesian
neural networks. Neural Networks, 144:394–406, 2021.

[18] S. Fort, H. Hu, and B. Lakshminarayanan. Deep ensembles: A loss landscape perspective.
arXiv preprint arXiv:1912.02757, 2019.

[19] T. Pearce, A. Brintrup, M. Zaki, and A. Neely. High-quality prediction intervals for deep
learning: A distribution-free, ensembled approach. In International conference on machine
learning, pages 4075–4084. PMLR, 2018.

[20] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30,
2017.

[21] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan,
and J. Snoek. Can you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. Advances in neural information processing systems, 32, 2019.

[22] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov. Pitfalls of in-domain uncertainty esti-
mation and ensembling in deep learning. arXiv preprint arXiv:2002.06470, 2020.

[23] D. Shin, A. D. Dragan, and D. S. Brown. Benchmarks and algorithms for offline preference-
based reward learning. Transactions on Machine Learning Research, 2023.

[24] M. Sensoy, L. Kaplan, and M. Kandemir. Evidential deep learning to quantify classification
uncertainty. Advances in neural information processing systems, 31, 2018.

[25] J. Mena, O. Pujol, and J. Vitria. A survey on uncertainty estimation in deep learning classi-
fication systems from a bayesian perspective. ACM Computing Surveys (CSUR), 54(9):1–35,
2021.

[26] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg.
Thriftydagger: Budget-aware novelty and risk gating for interactive imitation learning. arXiv
preprint arXiv:2109.08273, 2021.

[27] H. Wang, D. Joshi, S. Wang, and Q. Ji. Gradient-based uncertainty attribution for explainable
bayesian deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12044–12053, 2023.

[28] H. Wang, S. Wang, and Q. Ji. Semantic attribution for explainable uncertainty quantification.
In International Workshop on Epistemic Uncertainty in Artificial Intelligence, pages 101–112.
Springer, 2023.

[29] I. Perez, P. Skalski, A. Barns-Graham, J. Wong, and D. Sutton. Attribution of predictive
uncertainties in classification models. In Uncertainty in Artificial Intelligence, pages 1582–
1591. PMLR, 2022.

[30] B. Kantz, S. Steger, C. Staudinger, C. Feilmayr, J. Wachlmayr, A. Haberl, S. Schuster, and
F. Pernkopf. Input uncertainty attribution by uncertainty propagation. In ICASSP 2025-2025
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2025.

11



[31] S. Jha, S. Raj, S. Fernandes, S. K. Jha, S. Jha, B. Jalaian, G. Verma, and A. Swami. Attribution-
based confidence metric for deep neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

[32] D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1), 1991.

[33] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence (IJCAI), 7 2018.

[34] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An algorithmic
perspective on imitation learning. arXiv preprint arXiv:1811.06711, 2018.

[35] S. Arora and P. Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. arXiv preprint arXiv:1806.06877, 2018.

[36] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement
primitives: learning attractor models for motor behaviors. Neural computation, 25(2), 2013.

[37] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives. In
Advances in neural information processing systems, pages 2616–2624, 2013.

[38] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, pages
158–168. PMLR, 2022.

[39] W. Zhang, H. Xu, H. Niu, P. Cheng, M. Li, H. Zhang, G. Zhou, and X. Zhan. Discriminator-
guided model-based offline imitation learning. In Conference on Robot Learning, pages 1266–
1276. PMLR, 2023.

[40] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learning
for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI),
pages 737–744. IEEE, 2020.

[41] A. Pashevich, R. Strudel, I. Kalevatykh, I. Laptev, and C. Schmid. Learning to augment syn-
thetic images for sim2real policy transfer. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2651–2657. IEEE, 2019.

[42] M. Kaspar, J. D. M. Osorio, and J. Bock. Sim2real transfer for reinforcement learning without
dynamics randomization. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4383–4388. IEEE, 2020.

[43] S. Sharma, E. Novoseller, V. Viswanath, Z. Javed, R. Parikh, R. Hoque, A. Balakrishna, D. S.
Brown, and K. Goldberg. Learning switching criteria for sim2real transfer of robotic fabric
manipulation policies. In 2022 IEEE 18th International Conference on Automation Science
and Engineering (CASE), pages 1116–1123. IEEE, 2022.

[44] S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011.

[45] M. Haiderbhai, R. Gondokaryono, T. Looi, J. M. Drake, and L. A. Kahrs. Robust sim2real
transfer with the da vinci research kit: A study on camera, lighting, and physics domain ran-
domization. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3429–3435. IEEE, 2022.

[46] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive
imitation learning with human experts. In Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 2019.

12



[47] J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ramadge, and S. Srinivasa.
Learning from interventions: Human-robot interaction as both explicit and implicit feedback.
In Proc. Robotics: Science and Systems (RSS), 2020.

[48] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Human-in-the-
loop imitation learning using remote teleoperation, 2020.

[49] K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer. EnsembleDAgger: A Bayesian Ap-
proach to Safe Imitation Learning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2019.

[50] J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end autonomous driving.
In Association for the Advancement of Artificial Intelligence (AAAI), 2017.

[51] G. Datta, R. Hoque, A. Gu, E. Solowjow, and K. Goldberg. Iifl: Implicit interactive fleet
learning from heterogeneous human supervisors. In Conference on Robot Learning, pages
2340–2356. PMLR, 2023.

[52] B. Thach, T. Watts, S.-H. Ho, T. Hermans, and A. Kuntz. Defgoalnet: Contextual goal learning
from demonstrations for deformable object manipulation. In 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3145–3152. IEEE, 2024.

[53] P. A. Flach. Roc analysis. In Encyclopedia of machine learning and data mining, pages 1–8.
Springer, 2016.

[54] O. O. Koyejo, N. Natarajan, P. K. Ravikumar, and I. S. Dhillon. Consistent binary classification
with generalized performance metrics. Advances in neural information processing systems, 27,
2014.

[55] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger. On fairness and calibration.
Advances in neural information processing systems, 30, 2017.

[56] W. Wu, Z. Qi, and L. Fuxin. Pointconv: Deep convolutional networks on 3d point clouds. In
Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pages
9621–9630, 2019.

[57] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[58] S. Sarabandi, A. Shabani, J. M. Porta, and F. Thomas. On closed-form formulas for the 3-d
nearest rotation matrix problem. IEEE Transactions on Robotics, 36(4):1333–1339, 2020.

[59] T. Wu, L. Pan, J. Zhang, T. Wang, Z. Liu, and D. Lin. Density-aware chamfer distance as a
comprehensive metric for point cloud completion. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, pages 29088–29100, 2021.

[60] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio. An open-
source research kit for the da vinci surgical system. In IEEE Intl. Conf. on Robotics and Auto.
(ICRA), pages 6434–6439, Hong Kong, China, 2014.

[61] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations in
neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5745–5753, 2019.

13



Appendix A DeformerNet Details

Figure 5: Example VAD-Net Execution

Our VAD-Net method (an example execution of which is shown in Fig. 5) is an ensemble consisting
of five independently initialized instances of the DeformerNet architecture. The original Deformer-
Net architecture is composed of two PointConv-based feature extractors that independently process
the current and goal geometries, Pcm and Pg , both represented as partial-view point clouds of the de-
formable object. Each point cloud initially has the shape 1024×3, corresponding to 1024 3D points.
To encode task-relevant context, the current geometry Pc is augmented with the manipulation point
m to produce Pcm ∈ R1024×4, where the first three channels encode the spatial coordinates of
each point, and the fourth channel is a binary indicator marking the 50 points nearest to m. This
augmented input enables the model to focus on regions relevant to the planned manipulation.

Figure 6: DeformerNet Architecture

In our VAD-Net ensemble, each of the five independently initialized instances of the DeformerNet
architecture outputs a predicted 4 × 4 transformation matrix Â composed of a rotation matrix R̂ ∈
SO(3), and a translation vector t̂ ∈ R3.

Fig. 6 shows a visualization of the full DeformerNet architecture. The feature extractors contain
three sequential PointConv layers with increasing feature dimensions of 64, 128, and 256. The
encodings of Pcm and Pg are then concatenated into a vector of length 512. This vector is then
passed through a sequence of four feedforward fully connected layers separated by a GroupNorm
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layer and a ReLU activation function to produce a 9-dimensional output vector containing t̂ and a
6D vector which gets mapped to a rotation matrix R̂ using the method described in Zhou et al. [61].

Training data is collected entirely in Isaac Gym [57] on a deformable box object. Given a current
geometry of the object Pc and a random manipulation point m, a random action A is applied to the
robot’s end-effector. The final geometry of the object is recorded as Pg . The model is then trained
on tuples of the form (Pc,Pg,m,A) where A contains the ground-truth translation t and rotation
R. The model loss is a linear combination of the mean squared error between the t̂ and t and the
geodesic distance between R̂ and R.

We train the model using an Adam optimizer with a learning rate of 0.001 over 200 epochs using a
dataset containing 11,566 training and 1,285 test examples. After 100 epochs, the learning rate is
reduced to 0.0001.
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Appendix B Additional Handoff Trial Results

To further analyze the performance of our uncertainty-aware handoff framework, we include ad-
ditional experimental results that provide deeper insight into the relationship between predictive
uncertainty and task success, as well as the efficacy of the handoff policies.

Figure 7: Uncertainty Metric Correlations

Correlation Between Uncertainty Metrics and Task Error Fig. 7 shows log plots of the corre-
lation between each of our uncertainty metrics (ensemble variance and agreement volatility) and the
Chamfer distance between the current and goal tissue geometries after taking the predicted action.
Across both positional and rotational components, we observe a positive linear relationship. This
supports our hypothesis that agreement volatility captures higher-order information about predictive
stability and is indicative of downstream task success. These results reinforce the decision to use
agreement volatility as an uncertainty feature in the learned handoff policy.

Figure 8: Relative Condition Speed

Task Efficiency Across Conditions Fig. 8
compares the relative task efficiency between
the Variance Only and VAD-Net policies. For
each trial in our 30-trial test set, we record
which condition (Variance Only or VAD-Net)
completed the task in less total time. We report
the percentage of trials in which each method
was faster. VAD-Net completed the task faster
in approximately 80% of cases (with an average
reduction in time of 32.07%), demonstrating its
ability to operate more efficiently than the Vari-
ance Only baseline. This result highlights the
practical advantage of incorporating agreement
volatility into the handoff-policy, enabling the
system to operate more efficiently while still
maintaining high success rates.

Table 1 presents a summary of key performance
metrics across the three experimental conditions. As expected, the Fully Autonomous baseline
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Table 1: Comparison of key performance metrics across control conditions.

Metric Fully Autonomous Variance Only VAD-Net
Success Rate (%) 50 90 100
Avg. Teleoperation Time / Handoff (s) – 12.197 4.571
Avg. Autonomous Time / Handoff (s) – 16.249 16.566
% Teleoperation – 36.292 27.170
% Autonomous – 63.708 72.83
Avg. # of Handoffs – 2 2.1

achieves the lowest task success rate, reinforcing the need for uncertainty-aware handoffs. The Vari-
ance Only policy improves the success rate to 90%, but still requires substantial human intervention
with an average of 12.2 seconds spent in teleoperation mode and 2.0 handoffs per trial. In contrast,
VAD-Net achieves a 100% success rate while reducing average teleoperation time to just 4.6 sec-
onds, indicating greater trust in the policy’s predictions. Despite a similar number of handoffs, the
more efficient decision-making enabled by agreement volatility reduces overall reliance on human
intervention. We note that the raw number of seconds spent in teleoperation/autonomous mode is
not as interpretable as the percentages as there can be a wide range of variance between the length of
each trial. Thus, the percentages normalize these values to be independent of the length of the trial.
These results demonstrate that VAD-Net not only enhances reliability in challenging manipulation
tasks, but also enables more autonomous operation without compromising safety.

Monte Carlo Dropout As an additional baseline for comparison, we also implemented a Monte
Carlo Dropout (MC Dropout) version of VAD-Net. However, in testing this version of VAD-Net
(without uncertainty quantification) we found that in 10 in-distribution trials, this model failed to
manipulate the tissue in 9 out of 10 trials. This illustrates that the introduction of dropout to the net-
work severely hinders model performance. Thus, this MC Dropout version was not used throughout
our experiments.
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Appendix C Uncertainty Attribution Examples

In this section, we present additional insight into VAD-Net’s uncertainty attribution mechanism dur-
ing real-world execution on the dVRK. VAD-Net generates spatial uncertainty maps that highlight
regions in the model input that have the greatest influence on the model’s uncertainty, enabling both
interpretability and collaborative handoffs.

Figure 9: VAD-Net Trial Examples

Case 1: Fully Autonomous Execution In the first example (top row of Fig. 9), VAD-Net suc-
cessfully operates fully autonomously without the need for human intervention. Success without
the need for human intervention is currently atypical in out-of-distribution scenarios, as mentioned
above and motivating our approach, however when the system is capable, this demonstrative exam-
ple shows our method identifying that no human intervention is needed and autonomous manipula-
tion proceeds successfully. While in this case the spatial uncertainty maps still identify regions with
the highest influence over uncertainty, the agreement volatility plots show a relatively low overall
agreement volatility. This indicates high ensemble confidence, allowing the system to complete the
soft tissue manipulation task without requesting a human intervention.

Case 2: Intervention and Recovery In contrast, the second example (bottom row of Fig. 9)
demonstrates an out-of-distribution scenario where the manipulation point is poorly selected, leading
to a high chance of task failure. In this case, the agreement volatility plots show a relatively large
overall initial agreement volatility particularly for the positional component. The spatial uncertainty
map also immediately identifies the high agreement volatility near the manipulation point as well
as the non-overlapping geometry of the goal point cloud. As a result, VAD-Net triggers a human
intervention. After the human corrects the manipulation point, we see a steep decline in both the
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positional and rotational agreement volatilities, indicating an increase in model confidence. VAD-
Net subsequently reclaims control and successfully completes the task autonomously. This example
highlights VAD-Net’s ability not only to detect uncertainty in real-time, but also to attribute that
uncertainty to regions of the input and reclaim control after human intervention.

Together, these cases demonstrate the value of agreement volatility not only as a signal of model
uncertainty but also a tool for interpretability, enabling users to understand the source of uncertainty,
which is critical for high-stakes applications like surgical robotics.
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