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ABSTRACT

We present Generalized LoRA (GLoRA), a flexible approach for universal
parameter-efficient fine-tuning tasks. Enhancing Low-Rank Adaptation (LoRA),
GLoRA employs a generalized prompt module to optimize pre-trained model
weights and adjust intermediate activations, providing more flexibility and capa-
bility across diverse tasks and datasets. Moreover, GLoRA facilitates efficient pa-
rameter adaptation by employing a scalable, modular, layer-wise structure search
that learns individual adapter of each layer. Originating from a unified mathe-
matical formulation, GLoRA exhibits strong transfer learning, few-shot learning
and domain generalization abilities, as it adapts to new tasks through not only
weights but also additional dimensions like activations. Comprehensive experi-
ments demonstrate that GLoRA outperforms all previous methods in natural, spe-
cialized, and structured benchmarks in the vision field, achieving superior accu-
racy with fewer parameters and computations. To demonstrate the applicability
in the language domain, we perform GLoRA on LLaMA-1 and 2, which also
achieve considerable enhancements compared to the original LoRA. Furthermore,
our structural re-parameterization design ensures that GLoRA incurs no extra in-
ference cost, rendering it a practical solution for resource-limited applications.

1 INTRODUCTION

The remarkable achievements of large-scale deep neural networks in recent years have revolution-
ized the field of artificial intelligence, demonstrating unprecedented performance across various
tasks and domains. These highly complex models, often with millions or even billions of parame-
ters, have demonstrated remarkable capabilities in areas such as computer vision (Dosovitskiy et al.,
2021), natural language understanding (Vaswani et al., 2017), and speech recognition (Radford et al.,
2022). Typically, these colossal models are pre-trained on general and large-scale datasets, such as
ImageNet (Deng et al., 2009a), and are subsequently adapted to downstream target scenarios through
fine-tuning or transfer learning. Given the immense computational resources required by large pre-
trained architectures, many parameter-efficient fine-tuning (PEFT) methods (Hu et al., 2021; Shen
et al., 2021; Jia et al., 2022; Zhang et al., 2022; Luo et al., 2023) have been proposed. For instance,
Low-Rank Adaptation (LoRA) (Hu et al., 2021) aims to reduce the number of trainable parame-
ters by exclusively learning pairs of rank-decomposition matrices whilst keeping the original model
parameter static. Adapter (Houlsby et al., 2019) implements bottleneck adapter modules and in-
corporates a modest number of task-specific parameters into a fixed pre-trained model. Similarly,
Visual Prompt Tuning (VPT) (Jia et al., 2022) introduces a minimal number of learnable parameters
to the input of the Transformer, leaving the entire backbone frozen during fine-tuning.

However, distinct downstream datasets often possess unique characteristics, such as natural, spe-
cialized, and structured data, which differ significantly in distribution and composition. A static
fine-tuning strategy may not sufficiently account for these disparities, thereby hindering its capac-
ity to adapt to diverse datasets. To rectify this, we propose a flexible, parameter-efficient fine-
tuning scheme in this work to manage the variations of multiple downstream datasets within a
consolidated formulation. Our approach presents a generalized version of LoRA from a unified
parameter-efficient fine-tuning perspective, amplifying LoRA’s capability, scalability, and adaptabil-
ity by rescaling and shifting intermediate activations, in conjunction with implementing a structural
re-parameterization design, etc. It is challenging to devise a unified method that integrates all ad-
justable dimensions and possibilities when tuning a pre-trained network, especially in the case of
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transformer architectures, while our proposed approach presents a practicable solution to navigate
this complexity.

In detail, our approach proposes a unified framework that can achieve comprehensive fine-tuning
paradigms from a single formulation, i.e., a One-for-All fine-tuning architecture. It comprises a
supernet, which, when optimized cost-effectively through evolutionary search, yields results that
surpass those of prevailing fine-tuning methodologies necessitating expensive data-dependent hy-
perparameter search. The proposed approach exhibits the following advantages: (1) It concurrently
takes into account multiple dimensions to enhance capability and flexibility during fine-tuning, en-
compassing weights, features, and input tokens. (2) It conducts an implicit search devoid of any
manual hyperparameter tuning, thus justifying the increased training time. (3) It incurs no addi-
tional inference cost thanks to our structural re-parameterization architecture, whereby the extra
fine-tuning parameters will be fused to the proximate projection weights post-training.

We conduct comprehensive experiments on VTAB-1K (Zhai et al., 2020), ImageNet (Deng et al.,
2009a) and its variants (Recht et al., 2019; Wang et al., 2019; Hendrycks et al., 2021b;a), and Hug-
gingface leaderboard benchmarks (Edward Beeching, 2023) for evaluating on language domain.
The VTAB-1K dataset comprises 19 heterogeneous vision datasets, enveloping a broad spectrum
of visual domains that include natural objects and scenes, textures and shapes, satellite imagery,
among others. GLoRA surpasses all previous state-of-the-art PEFT methods by a substantial mar-
gin in terms of average accuracy. Additionally, we evaluate the model’s few-shot learning capacity
on five fine-grained visual recognition datasets, akin to prior works (Zhang et al., 2022; Jia et al.,
2022), along with its ability for domain generalization and robustness on ImageNet-V2 (Recht et al.,
2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-
R (Hendrycks et al., 2021a) datasets. GLoRA significantly outperforms previous methods across all
these benchmarks, without incurring any extra computational overhead during the inference phase.

Our contributions:

• We propose Generalized LoRA (GLoRA), a novel parameter-efficient fine-tuning frame-
work. GLoRA enhances the low-rank adaptation approach with a more generalized prompt
module design per layer, offering enhanced capability and flexibility in finetuning.

• GLoRA offers a unified framework that achieves universal fine-tuning paradigms from a
single formulation, i.e., a One-for-All 1 fine-tuning architecture. During inference, the
adapters yielded through GLoRA seamlessly integrate into the base network, resulting in
no additional model weights. Thus, it incurs no extra inference computational load.

• We conduct extensive experiments on large vision (ViT-B) and language models (LLaMA-
1 and 2) with downstream fine-tuning, few-shot learning, and domain generalization using
various datasets. Our experimental results demonstrate that GLoRA outperforms all pre-
vious methods on these benchmarks while requiring only a small number of extra tunable
parameters in training and no additional inference cost.

2 GLORA

In this section, we start from providing a mathematical overview of existing state-of-the-art PEFT
methods and discuss the advantages and disadvantages for them. Then, we introduce a unified
formulation of integrating all existing SOTA PEFT methods and elaborate our proposed gener-
alized LoRA in detail following this unified formulation perspective. After that, a structural re-
parameterization design is presented to show the inference efficiency without additional cost. An
evolutionary search for optimal layer-wise configurations is also introduced to achieve the goal of
generalized LoRA. We further give the theoretical analysis and discussions on the higher capability
of the proposed method.

2.1 PREVIOUS SOLUTIONS WITH LIMITATIONS

Visual Prompt Tuning (Jia et al., 2022): VPT introduces a small amount of task-specific learnable
parameters into the input space while freezing the entire pre-trained Transformer backbone during

1One-for-All represents that one formulation can be transformed into various shapes of PEFT paradigms.
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downstream fine-tuning. It proposes two strategies: VPT-Shallow, i.e., only input space has the
trainable prompt:

[x1,Z1,E1] = L1 ([x0,P,E0])
[xi,Zi,Ei] = Li ([xi−1,Zi−1,Ei−1])

(1)

where P is a trainable prompt. x is the [CLS] token, E are the image patches. Prompts use <1%
trainable parameters as compared to the original model.

VPT-Deep, i.e., every layer has the trainable prompt. The formulation is:

[xi, . . . ,Ei] = Li ([xi−1,Pi−1,Ei−1]) (2)

VTP-Deep outperforms full fine-tuning on many vision tasks and also has better accuracy in a low
data regime. However, VPT increases cost in the inference stage which is not negligible.

AdaptFormer (Chen et al., 2022): AdaptFormer introduces a parallel learnable branch of two linear
layers and ReLU over the MLP block and updates only this path while freezing other parts.

x̃ℓ = ReLU (LN (x′
ℓ) ·Wdown) ·Wup (3)

xℓ = MLP (LN (x′
ℓ)) + s · x̃ℓ + x′

ℓ (4)
where x′

ℓ are the tokens after MHSA at the ℓ-th layer. Wdown and Wup are weights corresponding
to a down-projection layer and an up-projection layer from the parallel branch, respectively. s is a
scale factor. AdaptFormer also increases the inference cost due to the presence of a parallel branch.

LoRA (Hu et al., 2021): LoRA proposes to freeze the pre-trained model weights and injects trainable
low-rank decomposition matrices into each layer. It learns only the residual from pre-trained weight.
Assuming W0, b0, x are pre-trained weights, bias and input, let f be a linear layer, thus f(x) =
W0x+ b0. During fine-tuning, W0 and b0 are frozen, the learning process can be:

f(x) = W0x+∆Wx+ b0 = WLoRAx+ b0 (5)

where ∆W is the low-rank decomposition weights that are learnable.

Scaling & Shifting Features (SSF) (Lian et al., 2022): SSF module scales and shifts features after
every MLP, MHSA, Layernorm module during training, and performs re-parameterization during
inference as it is a linear structure.

y = γ ⊙ x+ β (6)
where y is the output features. γ and β are the scale and shift factors, ⊙ is the dot product. This
method has no increase in inference but the capability is limited to feature adaptation.

FacT (Jie & Deng, 2022): FacT proposes to use a tensorization-decomposition method to store the
additional weight, the weights of the model are tensorized into a single 3D tensor, and their additions
are then decomposed into lightweight factors. In fine-tuning, only the factors will be updated and
stored.

f(x) = W0x+ b0 +UΣVx = (W0 +UΣV)x+ b0 (7)
where ∆W in LoRA is decomposed into U, V and Σ. This is Tensor-Train in FacT.

f(x) = W0x+ b0 +UCPVx = (W0 +UCPV)x+ b0 (8)

where ∆W in LoRA is decomposed into U, C, P and V. This is Tucker in FacT.

RepAdapter (Luo et al., 2023): RepAdapter inserts lightweight networks into the pre-trained mod-
els, and the additional parameters will be re-parameterized to the nearby projection weights after
training. Adding sequential (not parallel) adapter to both MHA and MLP, adapter is linear thus
can be re-parameterized, and has two layers: downsampling dense FC layer to downsample inputs;
upsampling downsampled features that are divided into group, and each group has an upsampling
layer. The group of upsampling layers can be merged into a single sparse upsampling layer and can
be re-parameterized directly into the original MLP/MHSA. The formulation can be:

f(x) = W0 (x+Wu (Wdx+ bd) + bu) + b0

= (W0 +W0WuWd)x+W0Wubd +W0bu + b0
(9)

where Wu, Wd, bu and bb are learnable weights and biases, respectively.

Limitations: In general, many existing PEFT methods such as (VPT, Adapter) increase the infer-
ence time since the proposed structure cannot be re-parameterized. Direct prompt tuning is also
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hard to design as it brings in computational burden and requires hyper-parameter tuning i.e., how
and where to place prompts. LoRA can be re-parameterized at inference but it doesn’t scale up for
larger matrices and the adaptation ability is constrained on weight space. SSF / Repadaptor cannot
learn the weight change i.e., ∆W in weight space, whereas LoRA / FacT cannot efficiently learn
the scaling and shifting of feature change i.e., ∆H in features space. Both feature and weight space
need flexibility while performing transfer learning from a large model. Our proposed idea in this
work attempts at: ∆W tuning, ∆H tuning, along with W and H scale and shift learning.

2.2 A UNIFIED FORMULATION OF ONE-FOR-ALL
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Figure 1: Schematic representation of a linear
layer adapted with GLoRA.

For model fine-tuning, we propose a unified
formulation that encompasses tuning in both
weight and feature space along with VPT-Deep
level prompt design. Additionally, we adopt a
re-parameterization strategy to incorporate aux-
iliary parameters into the adjacent projection
weights during the inference stage. Broadly
speaking, our method serves as a superset of
all prior solutions, i.e., one-for-all mechanism.
By setting different support tensors to zero, our
GLoRA can be reduced to any of these prede-
cessor methods. Unlike NOAH (Zhang et al.,
2022), our architecture can be succinctly artic-
ulated as a unified mathematical equation. The
consolidated formulation to represent all tunable spaces can be represented as follows:

f(x) = (W0 +W0A+B)x+CW0 +Db0 +E+ b0 (10)

where A, B, C, D, E are the trainable support tensors for downstream tasks in our GLoRA, W0

and b0 are frozen during whole fine-tuning. A is utilized to scale the weight. B has the role to scale
the input and shift the weight. C is the layer-wise prompt serving a similar function of VPT-Deep, D
and E are used to scale and shift the bias, respectively. A detailed illustration is shown in Figure 1.

Module Design. In this subsection, we delineate the methodology for designing layer-wise adap-
tors or prompt modules for A, B, C, D, E. In a broad sense, these can take the form of scalars,
vectors, low-rank decompositions, or none. Based on the role of these trainable sup-
port tensors, they can be sampled from the following respective search spaces:

A = {LoRA, vector, scalar,none}
B = {LoRA, vector, scalar,none}
C = {LoRA, vector,none}
D = {vector, scalar,none}
E = {vector, scalar,none}

(11)

where none indicates zero, if all the trainable support tensors are zero, the model will be degraded
to the original formulation and training recipe. In particular, suppose W0 ∈ Rd×d is the original
weight matrix. For every layer, we define Ad ∈ Rd×r, Au ∈ Rr×d, Bd ∈ Rd×r, Bu ∈ Rr×d,
Cd ∈ Rd×r, Cu ∈ Rr×1, D ∈ Rd×1 and E ∈ Rd×1. We also define a multi-path supernet of
all possible subnets and randomly sample a subnet during any given supernet training iteration for
optimization. A subnet comprises of a single path network with different layerwise support tensors
sampled from 11. Depending upon the current subnet configuration, in case of LoRA with rank
r1 < r, Ar1

d ∈ Rd×r1 , Ar1
u ∈ Rr1×d is indexed from Ad and Au respectively; and A = Ar1

d ×Ar1
u

is used as the final tensor, in case of vector A ∈ Rd×1 is indexed from Ad and in case of scalar
A ∈ R1×1 is indexed from Ad. A similar strategy is followed for all other support tensors depending
upon the current sampled configuration in the subnet. This weight entanglement strategy helps to
increase the search space without increasing the number of parameters substantially and also shows
faster convergence due to weight sharing in different subnets.

Moreover, without defining any existing adapter/module in the network explicitly, GLoRA proposes
a much more general formulation that implicitly mimics the behavior of many existing works. In
Table 1, we show how GLoRA is able to approximately mimic the behavior of many existing works
by setting support tensors to specific attributes of the search space.
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Method A B C D E
LoRA LoRA None None None None
VPT None None Vector None None
SSF Vector None Vector Vector None

RepAdapter LoRA None None Vector None
Table 1: Support tensor attributes for mimicking prior methods using GLoRA’s formulation.

2.3 STRUCTURAL RE-PARAMETERIZATION DESIGN AND INFERENCE EFFICIENCY ANALYSIS

The fundamental aspect enabling re-parameterization (Ding et al., 2021) is the elimination of non-
linearity amidst adjacent transformations, thereby permitting the absorption of supplementary pa-
rameters into the preceding ones. As mentioned in RepAdapter (Luo et al., 2023), the removal of
such non-linear layers does not detrimentally impact the performance of the networks. The precise
concept of GLoRA re-parameterization is explicated as follows:

f(x) = Wunix+ buni (12)

where Wuni and buni are our final unified trained weight and bias in GLoRA. They are re-
parameterized according to Eq 10:

Wuni = W0 +W0A+B (13)

buni = CW0 +Db0 +E+ b0 (14)

As a result, the re-parameterization strategy we employ, which integrates learnable parameters into
the existing weight matrix offers a distinct advantage as it imposes no additional computational
burden during the inference phase. This is further discussed in Section 4 where we provide thorough
inference efficiency analysis of GLoRA compared to exisitng works.

2.4 EVOLUTIONARY SEARCH FOR OPTIMAL LAYER-WISE CONFIGURATIONS

Our design for a unified adaptor is implemented on a per-layer basis, thus allowing for heterogeneity
across different layers. To identify the optimal configuration for each layer, we employ the evolu-
tionary search method (Zhang et al., 2022; Shen et al., 2021), which offers a balance of efficiency
and effectiveness. Although the training time may increase due to this search process, it is important
to note that existing work (Zhang et al., 2022) necessitate an extensive hyperparameter search (such
as low-rank in LoRA and FacT, as well as position and size of adapter modules in Adapter (Houlsby
et al., 2019), dimension and structure configuration in RepAdapter (Luo et al., 2023), among oth-
ers), as presented in the appendix. Our unified support tensor design conducts an implicit search
that eliminates the need for manual hyperparameter tuning. Therefore, any augmentation in training
time is reasonable and well-justified. More details regarding evolutionary search are in appendix. In
the next section, we will discuss and explain the better capacity of our proposed GLoRA approach
comparing to other counterparts for parameter-efficient fine-tuning task.

2.5 GLORA WITH HIGHER CAPACITY

Model capacity refers to the capability of a model to approximate a diverse range of functions. A
method for regulating the capacity of a learning algorithm involves selecting an appropriate hy-
pothesis space, essentially a set of functions that the learning algorithm is permitted to consider
as potential solutions. The Vapnik-Chervonenkis Dimension (VC Dimension) (Vapnik & Chervo-
nenkis, 2015) is a measure of the capacity (complexity, expressiveness) of a set of functions that can
be learned by a statistical classification algorithm. It is defined as the cardinality of the largest set of
points that the algorithm can shatter. By estimating the VC Dimension of a deep model, we can get
an idea of how capable the model is of fitting complex datasets. A very high VC Dimension could
indicate that the model has enough capacity to learn the training data perfectly but might overfit and
generalize poorly on new data.

Definition of VC Dimension. The VC Dimension of a hypothesis class H (a set of functions) is the
largest number of points that can be shattered by H. A set of points is said to be shattered by H if,
for every possible labeling (binary classification) of these points, there exists a hypothesis in H that
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perfectly classifies the points according to that labeling. Mathematically, if we have a set of points
S = {x1, x2, . . . , xd}, the hypothesis class H shatters S if:

∀y ∈ {0, 1}d,∃h ∈ H : ∀i ∈ {1, 2, . . . , d}, h (xi) = yi (15)

The VC Dimension, denoted as dvc(H), is the maximum size of any set S that can be shattered by
H. If H can shatter a set of size d but cannot shatter any set of size d+ 1, then dvc(H) = d.

Theorem 1 Suppose dvc(H) is the VC dimension of any finite hypothesis H. If Hi ⊆ Huni,

dvc(Huni)− dvc(Hi) ≥ ϵ s.t. ϵ ≥ 0

In the context of GLoRA, Hi denotes the hypothesis space of a randomly sampled subnet and Huni

denotes the hypothesis space of the complete supernet. The validity of this theorem stems from the
inherent property of our problem context, where the hypothesis space Hi is a subset of Huni in our
context. Huni encompasses all possible shattered scenarios of Hi. For the extreme case where the
VC dimension dvc(Ho) (Ho is the difference set of Huni and Hi) is 0, the error ϵ will be zero. As
per learning theory, a higher VC dimension implies greater model flexibility and capability of our
approach. Clearly, Theorem 1 holds for GLoRA and thus it experiences a greater model capacity.

3 EXPERIMENTS

Datasets. We thoroughly evaluate GLoRA on VTAB-1K (Zhai et al., 2020) benchmark for various
parameter budgets. VTAB-1K comprises 19 image classification tasks clustered into three domains:
i) Natural images ii) Specialized tasks consisting of remote sensing and medical datasets; and iii)
Structured tasks focusing on scene structure understanding. To test the ability on few-shot learning,
we evaluate GLoRA on five fine-grained visual recognition few-shot datasets: Food101 (Bossard
et al., 2014), OxfordFlowers102 (Nilsback & Zisserman, 2006), StandfordCars (Krause et al., 2013),
OxfordPets (Parkhi et al., 2012), and FGVCAircraft (Maji et al., 2013). Following previous work
(Jie & Deng, 2022), we evaluate 1, 2, 4, 8, and 16 shot settings. Next, to show the domain generaliza-
tion capabilities of GLoRA, we train it on ImageNet (Deng et al., 2009b) for a 16-shot setting and
test on four out-of-domain datasets including ImageNetV2 (Recht et al., 2019), ImageNet-Sketch
(Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks et al.,
2021a). Finally, we show the performance of GLoRA on the Open LLM Leaderboard which con-
sists of four datasets with varying prompt shots, namely AI2 Reasoning Challenge (25-shot) (Clark
et al., 2018), TruthfulQA (0-shot) (Lin et al., 2022), HellaSwag (10-shot) (Zellers et al., 2019) and
MMLU (5-shot) (Hendrycks et al., 2020).

Network Architecture and Implementation Details. For all the vision experiments, we utilize
ViT-B (Dosovitskiy et al., 2021), a model pre-trained on ImageNet-21K, as our foundational model.
For the language experiments, we consider two foundational base models: LLaMA-1-7B (Touvron
et al., 2023a) and LLaMA-2-7B (Touvron et al., 2023b).

Our supernets undergo a training process spanning 500 epochs and 15 epochs for vision and lan-
guage datasets respectively, operating with a constant batch size of 64 and a cosine learning rate
scheduler. It is crucial to highlight that this precise policy demonstrates robust efficacy across all
settings, regardless of the dataset in use. Post the training of supernet, we randomly sample 50
subnets from the supernet and then perform an evolutionary search for 20 and 5 epochs on vision
and language tasks, respectively. Each step of random pick / crossover / mutation produces 50 new
subnets. The probability for crossover and mutation is set to 0.2. Note that we did not perform
any hyperparameter search over the evolution hyperparameters, and hence the performance might
even improve after tuning the evolution hyperparameters. Finally, we report the performance of the
searched subnet on the test set. The appendix provides further insights into dataset-specific learning
rates and specific settings for different datasets.

3.1 RESULTS ON VTAB-1K

We train three different GLoRA supernet configurations to vary the number of trainable parameters.
The difference in these is only the LoRA dimensions in the search space which varies from 8 and
4 in the largest model, 4 and 2 in the intermediate model, and 2 in the smallest model. This added
parameter flexibility in our method allows for user-defined trainable parameter count in the final
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models. Results on the VTAB-1k benchmark are shown in Table 2. We push the state-of-the-art
in parameter-efficient transfer learning by up to 2.9%, Even our smallest model outperforms all
existing methods by a substantial margin. It is worth noting that GLoRA performs competitively
across datasets in contrast to all existing works which fail on at least one dataset, proving GLoRA’s
high generalization capabilities. GLoRA pushes the state of the art in as many as 14 out of 19
datasets in the VTAB-1k benchmark while performing competitively on the remaining datasets too.

Table 2: Full results on VTAB-1K benchmark. “# params” specifies the number of trainable pa-
rameters in backbones. Average accuracy and # params are averaged over group-wise mean values.
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Traditional Finetuning
Full 85.8 - 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 0 - 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
PEFT methods
BitFit 0.10 - 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.2
VPT-Shallow 0.06 ↑ 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 67.8
VPT-Deep 0.53 ↑ 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
Adapter 0.16 ↑ 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.9
AdaptFormer 0.16 ↑ 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
LoRA 0.29 - 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
NOAH 0.36 ↑ 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5
FacT 0.07 - 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 75.6
SSF 0.24 - 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.7
RepAdapter 0.22 - 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0 76.1
GLoRA 0.86 - 76.4 92.9 74.6 99.6 92.5 91.5 57.8 87.3 96.8 88.0 76.0 83.1 67.3 54.5 86.2 83.8 52.9 37.0 41.4 78.0
GLoRA 0.44 - 76.5 92.3 75.2 99.6 92.3 91.2 57.5 87.3 96.7 88.1 76.1 80.6 67.2 53.4 84.5 83.5 52.8 35.2 40.8 77.6
GLoRA 0.29 - 76.1 92.7 75.3 99.6 92.4 90.5 57.2 87.5 96.7 88.1 76.1 81.0 66.2 52.4 84.9 81.8 53.3 33.3 39.8 77.3

3.2 RESULTS ON LARGE LANGUAGE MODELS

Table 3: Performance of GLoRA on few-shot generative language tasks with LLM as backbones.
Model Dataset Param (M) ARC (25-s) HellaSwag (10-s) MMLU (5-s) TruthfulQA (0-s) Average

LLaMA-1-7B - - 51.0 77.8 35.7 34.3 49.7
LoRA Alpaca 3.1 53.5 77.3 33.8 34.8 49.8
GLoRA Alpaca 1.9 52.9 78.1 34.5 37.8 50.8
LoRA ShareGPT 3.1 51.7 77.9 36.1 39.2 51.2
GLoRA ShareGPT 2.2 53.2 77.4 36.2 43.9 52.7
LLaMA-2-7B - - 53.1 78.5 46.9 38.8 54.3
LoRA ShareGPT 3.1 53.3 78.4 45.8 41.2 54.7
GLoRA ShareGPT 1.8 53.7 78.5 46.5 45.1 56.1

We apply GLoRA for LLMs by solely tuning the attention layers. This contrasts with vision tasks
where all linear layers are adapted, to maintain a fair comparison with vanilla LoRA. We start
from the publicly available LLaMA-1-7B (Touvron et al., 2023a) and LLaMA-2-7B (Touvron et al.,
2023b) models and finetune it on the Alpaca (Taori et al., 2023) and ShareGPT dataset with only
GLoRA support tensors trainable. For the evolutionary search, we use 5% random data sampled
from the 4 given datasets for model validation during the evolutions. We finally report the searched
model’s performance on the standard Open LLM Leaderboard2. GLoRA consistently outperforms
the pre-trained LLM and the corresponding LoRA fine-tuned variants. We keep the hyperparameters
consistent between LoRA and GLoRA for a fair comparison, more details are in the appendix.

3.3 FEW-SHOT LEARNING

To extend the evaluation of GLoRA under conditions of limited data availability, we present the per-
formance of GLoRA on fine-grained visual recognition datasets as the few-show learning, compar-
ing it with LoRA, Adapter, VPT, and NOAH. The results at 1, 2, 4, 8, and 16 shots are illustrated in
Figure 2 and Figure 6 of appendix. GLoRA demonstrates superior performance across the majority

2https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Figure 2: Results on few-shot learning datasets. The baseline methods include Adapter, LoRA,
VPT, NOAH. GLoRA consistently performs better across five datasets and a varying number of
training examples per class.

of the few-shot learning datasets, consistently outperforming the performance of existing methods
by a large margin with similar parameter counts. Interestingly, on the Flowers102 dataset, all meth-
ods yield similar accuracy levels, attributable to the already exceptional overall performance. On
the Food101 dataset, the average accuracy of GLoRA is on par with NOAH. From the first plot,
we can observe, the average performance boost becomes more pronounced at higher shot scenarios,
nevertheless, even at lower shot settings, the gains remain significant.

3.4 DOMAIN GENERALIZATION

Table 4: Results on domain generalization. GLoRA is significantly better than the existing works.
Source Target

ImageNet -Sketch -V2 -A -R

Adapter Houlsby et al. (2019) 70.5 16.4 59.1 5.5 22.1
VPT Jia et al. (2022) 70.5 18.3 58.0 4.6 23.2
LoRA Hu et al. (2021) 70.8 20.0 59.3 6.9 23.3
NOAH Zhang et al. (2022) 71.5 24.8 66.1 11.9 28.5
GLoRA (0.29M) 78.3 30.6 67.5 13.3 31.0

The capacity of out-of-domain generalization holds significant value for large-scale neural networks
(Zhou et al., 2021). Models fine-tuned via PETL methods should exhibit enhanced domain gener-
alization aptitude, thereby making them more applicable in real-world scenarios. We demonstrate
the out-of-domain generalization capabilities of GLoRA in Table 4, where a single ImageNet-1K
(Deng et al., 2009b) fine-tuned GLoRA model is subjected to testing on out-of-domain datasets.
Aligning with preceding research, we limit the number of training examples per class to 16 for
this experiment. It is noteworthy that the performance for the fully-scaled ImageNet-1K fine-tuned
model stands at 83.97% (Dosovitskiy et al., 2021), and our approach manages to narrow this perfor-
mance gap, even within a 16-shot setting (78.3%), thereby exhibiting superior few-shot learning on
ImageNet-level datasets. Furthermore, the out-of-domain performance also witnesses a substantial
boost in comparison to existing methods. When compared with LoRA, GLoRA enhances out-of-
domain performance by as much as 100% (ImageNet-A) and 50% (ImageNet-Sketch).

4 ANALYSIS AND DISCUSSION

Computational Cost. We show the final inference throughput of various PEFT methods in Table
5, computed on an NVIDIA 3090 GPU. It is in this context that GLoRA significantly outperforms
other methods, as GLoRA benefits from zero parameter or FLOPs overhead during the inference
process. An ancillary advantage is the expedited adaptability in real-world scenarios where previous
models are already deployed. The weights of GLoRA can be directly loaded without necessitating
any manual system modifications. As previously mentioned, GLoRA supports VPT-Deep level
prompts via the support tensor C, however, it does not impose any computational overhead due to
its complete structural re-parameterization design.

Visualizations of searched fine-tuning strategy for each layer. Figure 4 visually shows the distri-
bution of trainable parameters across the four types of linear layers embodied in ViT-B. Notably, the
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Table 5: Inference efficiency comparison of GLoRA with existing methods.

Method ↑ #Param(M) ↑ FLOPs(G) Throughput (imgs/sec)

bs = 1 bs = 4 bs = 16

Full tuning 0 0 91.5 375.7 539.5

VPT Jia et al. (2022) 0.55 5.60 86.1 283.5 381.5
Adapter Houlsby et al. (2019) 0.16 0.03 70.9 306.6 504.7

AdaptFormer Chen et al. (2022) 0.16 0.03 71.4 309.9 508.1
NOAH Zhang et al. (2022) 0.12 0.02 72.1 312.7 492.9

LoRA Hu et al. (2021) 0 0 91.5 375.7 539.6GLoRA
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Figure 3: Layerwise configuration of support tensors of GLoRA (0.86M) on VTAB-1K dataset.

projection layer possesses the minimum quantity of trainable parameters spanning across VTAB-1K
categories. More details of the searched fine-tuning strategy are discussed in Appendix.

5 RELATED WORK

Given the rapid expansion in model size, numerous methods for parameter-efficient fine-tuning
(PEFT) have been introduced in the field of Natural Language Processing (NLP) to streamline the
optimization of large language models (LLMs). (Liu et al., 2021a; Zhang et al.; Hu et al.; Liu et al.,
2021b; Li & Liang, 2021; Lester et al., 2021; Zaken et al., 2022; Houlsby et al., 2019). The ef-
fectiveness of parameter-efficient fine-tuning has been proven in a wide range of natural language
processing tasks (Fu et al., 2022). With the advent growth in the size of vision models (Dehghani
et al., 2023; Kolesnikov et al., 2020), methods specifically focused on image models have also been
put forward (Jie & Deng, 2022; Lian et al., 2022; Chen et al., 2022; Luo et al., 2023; Zhang et al.,
2022; Jia et al., 2022; He et al., 2023). LoRA (Hu et al.) has proven to be effective across modalities.

6 CONCLUSION

We have presented GLoRA, a generalized parameter-efficient fine-tuning approach that has suc-
cessfully demonstrated the effectiveness in enhancing the fine-tuning and transfer learning abil-
ity for the large-scale pre-trained models. By adopting a generalized low-rank adaptation and re-
parameterization framework, GLoRA significantly reduces the number of parameters and computa-
tion required for fine-tuning, making it a more resource-efficient and practical method for real-world
applications. The experiments conducted on a diverse range of tasks and datasets have substantiated
the superiority of GLoRA over existing PEFT techniques, showcasing its scalability and adaptabil-
ity. Moreover, the ablation studies have provided valuable insights into the inner workings and the
relative importance of different GLoRA components. This work not only contributes to the improve-
ment of the fine-tuning process for large-scale pre-trained models but also opens up new avenues
for future work, including further exploration of generalized low-rank adaptation techniques, the de-
velopment of hybrid approaches, and the refinement of search and optimization algorithms. These
areas of research may continue to expand the accessibility and efficiency of transfer learning across
a broader range of applications.
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Reproducibility. We provide detailed training recipes in Section 3 and Appendix A. Code is also
provided for reproducibility.
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APPENDIX

A HYPERPARAMETERS

Table 6: Learning rate of dataset-specific supernet training on VTAB-1K datastet.
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Our approach necessitate minimal adjustments to hyperparameters, with optimizer hyperparame-
ters being the sole exception, thanks to the inherent search mechanism. Following prior studies
(Dehghani et al., 2023; Chen et al., 2022; Zhang et al., 2022), we employ the AdamW optimizer
(Loshchilov & Hutter) for all our experiments.

For the hyperparameter search in vision tasks, we primarily concentrate on the exploration of the
learning rate for supernet training, limiting our search scope to two potential alternatives: 1e−4

and 5e−4. For a detailed account of dataset-specific learning rates, please refer to Table 6. All other
training particulars strictly adhere to the exact training policy delineated in the works of (Jie & Deng,
2022; Luo et al., 2023). In the case of few-shot learning datasets and ImageNet, we use learning
rates of 5e−4 and 1e−4 respectively, as the few-shot learning datasets are smaller as compared to
16-shot ImageNet.

For language modeling experiments we use a learning rate of 2e−5 with cosine annealing and an
equivalent batch size of 32 (using gradient accumulation) for both LoRA and GLoRA. Conse-
quently, LoRA is trained for 3 epochs, and due to the supernet structure of GLoRA, we train it
for 15 epochs. This is in line with vision experiments where LoRA is trained for 100 epochs and
GLoRA supernet for 500 epochs. We justify these extra training epochs due to the fact that LoRA
requires hyperparameter tuning (dropout rate, adaptation layer choice, alpha, etc.) while GLoRA
being a searched-based method requires no such tuning. We provide more such method-specific
hyperparameters in Appendix D which justifies GLoRA’s extra training time.

B EVOLUTIONARY SEARCH

Evolutionary search consists of reproduction, crossover, and mutation stages. In our scenario, first,
a population of support tensor strategies is embedded in vectors and initialized randomly. Each
individual strategy consists of a description of a single subnet. After supernet training, we start to
evaluate each individual subnet to obtain its accuracy on the validation set. Among these evaluated
subnets we select the top K as parents to produce posterity subnets. The next generation subnets
are made by mutation and crossover stages. By repeating this process in iterations, we can find the
best parameter-efficient fine-tuned subnet with the best validation performance. We first randomly
sample 50 subnets from the supernet and then perform an evolutionary search for 20 and 5 epochs on
vision and language tasks, respectively. Each step of random pick / crossover / mutation produces 50
new subnets. The probability for crossover and mutation is set to 0.2. Note that we did not perform
any hyperparameter search over the evolution hyperparameters, and hence the performance might
even improve after tuning the evolution hyperparameters.

C HIERARCHICAL TRANSFORMER

We show the performance of GLoRA on the Swin-B backbone in Table 7. We follow a dataset-
specific learning rate search similar to ViT-B and also add GLoRA to the reduction linear layer in
Swin architecture to maintain uniformity and avoid architecture-specific tuning. GLoRA can adapt
to any layer irrespective of architecture configuration and perform well across tasks and datasets
which can be clearly seen in Table 7 where GLoRA outperforms all existing works by a fair margin.
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Table 7: Performance on VTAB-1K benchmark with Swin-B pre-trained on ImageNet-21K as the
backbone.

Method Natural Specialized Structured Average

Full 79.2 86.2 59.7 75.0
Linear 73.5 80.8 33.5 62.6
BitFit 74.2 80.1 42.4 65.6
VPT 76.8 84.5 53.4 71.6
FacT 82.7 87.5 62.0 77.4

RepAdapter 83.1 86.9 62.1 77.4
GLoRA 83.7 88.7 61.9 78.1

Table 8: Manual design choices in existing works
Method Design Choices/Hyperparameters

VPT Prompt Length, Prompt Location, Prompt Depth
AdaptFormer Adapter Location, Scaling Factor, Hidden dimension, Insertion Form

NOAH VPT choices, Adapter choices, LoRA rank
RepAdapter Adapter Location, Number of groups, Hidden dimension, Adapter variants

FacT Decomposition method, Scaling factor, Decomposition Rank
GLoRA LoRA ranks in search space

D TRAINING TIME

GLoRA, being a search-based approach for PEFT, naturally incurs increased training time due to the
requirements of supernet training and evolutionary search. It is, however, critical to underscore that
all current methods necessitate a manual search for design choices, as evidenced in Table 8. This
necessity significantly inflates the total training time for a specific dataset, due to the broad search
within these design choices. GLoRA streamlines this process through an automated evolutionary
search mechanism, thus leveraging the benefit of an expansive search space.

Quantitatively GLoRA requires an additional 5.6 folds of training time compared to a single run of
LoRA amounting to a total of 142 minutes for each VTAB-1k task. The GPU memory consumption
of GLoRA is 13 GB compared to 9 GB for LoRA. Most of it is primarily because GLoRA requires
roughly 5 times more epochs than LoRA for appropriate convergence and the additional time is
spent on the evolutionary search process. This extra time of GLoRA leads to an average increase of
4.5 % accuracy across 19 vision tasks as compared to LoRA.

E SEARCH SPACE

In this section, we undertake the computation of the possible number of subnets within our GLoRA-
adapted supernet. Each layer offers 4, 4, 3, 3, and 3 options for the support tensor A, B, C, D,
and E, respectively. This results in 432 possible configurations for a single linear layer. In our
implementation, we incorporate 48 such layers within ViT-B, yielding a total of 432× 48 = 20, 736
subnets being explored within GLoRA. This figure can escalate if multiple LoRA ranks coexist
within the same search space. For instance, we allow ranks 8 and 4 in our largest GLoRA models,
leading to 82, 944 distinct subnets. Furthermore, owing to the phenomenon of weight entanglement
as per (Chen et al., 2021), comparable performance is maintained across all subnets, even if they are
not all explored during the training of the supernet.

Visualizations of searched fine-tuning strategy for each layer. Figure 4 visually shows the distri-
bution of trainable parameters across the four types of linear layers embodied in ViT-B. Notably, the
projection layer possesses the minimum quantity of trainable parameters spanning across VTAB-1K
categories. Generally, the MLP module hosts a substantially higher number of parameters compared
to the MHSA. As anticipated, the structured group necessitates a greater number of parameters for
adaptation due to a pronounced domain drift relative to ImageNet-1K (Deng et al., 2009b). Figure 3
illustrates the layerwise configuration of the support tensors as searched by the GLoRA algorithm.
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Figure 4: Distribution of GLoRA (0.86M) parameters across layer types on VTAB-1K. Q-K-V and
Projection are linear layers in MHSA module and FC1 and FC2 are linear layers in MLP module.

Each support tensor at every layer can potentially undergo 72 distinct adaptations across datasets.
Support tensors D and E exhibit relatively low adaptation due to the prevalence of none adapta-
tions, whereas A and B demonstrate a higher number of adaptations, though without a discernible
pattern regarding the type of adaptation. It’s important to underscore that even a basic scalar can
function effectively as a support tensor, enabling GLoRA to maintain superior parameter efficiency
despite adapting every linear layer.

F SUPPORT TENSOR

In this section, we justify the choices of support tensors in our framework. Consider a linear layer
that facilitates the transformation of inputs from a d1 dimensional space to a d2 dimensional space,
with a corresponding weight matrix W0 ∈ Rd2×d1 . Given that A is tasked with scaling W0,
A could feasibly belong to Rd2×d1 , Rd2×1, or R1×1. These matrix dimensions are respectively
indicative of LoRA, vector, and scalar operations. It’s pertinent to note that in scenarios where
A ∈ Rd2×d1 , LoRA is realized via corresponding matrices Ad ∈ Rd2×r and Au ∈ Rr×d1 . A
parallel scrutiny of other support tensors would result in determining the appropriate support tensor
choice, as elaborated in Section 2.3 of the main paper.
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Figure 5: More results on few-shot learning datasets.
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G MORE RESULTS ON FEW-SHOT LEARNING DATASETS

As shown in 6, the baseline methods include Adapter, LoRA, VPT, NOAH. GLoRA consistently
performs better across five datasets and a varying number of training examples per class.

H FINE-TUNED EMBEDDING VISUALIZATION

Figure 6: Visualization of features from SVHN dataset by t-SNE (Van der Maaten & Hinton, 2008).

We present feature visualizations of the ViT-B model adapted via GLoRA and FacT (Jie & Deng,
2022) methods applied to the SVHN dataset. We selected FacT as opposed to LoRA (Hu et al.),
given that FacT constitutes a direct mathematical enhancement over LoRA and presently repre-
sents the state-of-the-art. A clear distinction can be discerned whereby GLoRA exhibits superiorly
segregated clusters in comparison to FacT. Further, the delineations are broader, and the clusters
demonstrate a higher degree of concentration, signaling the heightened discriminative capacity of
the GLoRA-adapted model features.
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