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Abstract

Currently, Medical Subject Headings (MeSH)
are manually assigned to every biomedical ar-
ticle published and subsequently recorded in
the PubMed database to facilitate retrieving
relevant information. With the rapid growth
of the PubMed database, large-scale biomedi-
cal document indexing becomes increasingly
important. MeSH indexing is a challenging
task for machine learning, as it needs to as-
sign multiple labels to each article from an
extremely large hierachically organized col-
lection. To address this challenge, we pro-
pose KenMeSH, an end-to-end model that
combines new text features and a dynamic
Knowledge-enhanced mask attention that inte-
grates document features with MeSH label hi-
erarchy and journal correlation features to in-
dex MeSH terms. Experimental results show
the proposed method achieves state-of-the-art
performance on a number of measures.

1 Introduction

The PubMed! database is a resource that provides
access to the MEDLINE bibliographic database
of references and abstracts together with the full
text articles of some of these citations which are
available in the PubMed Central? (PMC) repository.
MEDLINE? contains more than 28 million refer-
ences (as of Feb. 2021) to journal articles in the
biomedical, health, and related disciplines. Jour-
nal articles in MEDLINE are indexed according
to Medical Subject Headings (MeSH)*, an hier-
archically organized vocabulary that has been de-
veloped and maintained by the National Library
of Medicine (NLM)°. Currently, there are 29,369
main MeSH headings, and each MEDLINE citation
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has 13 MeSH indices, on average. MeSH terms are
distinctive features of MEDLINE and can be used
in many applications in biomedical text mining and
information retrieval (Lu et al., 2008; Huang et al.,
2011; Gu et al., 2013), being recognized as impor-
tant tools for research (e.g., knowledge discovery
and hypothesis generation).

Currently, MeSH indexing is done by human
annotators who examine full articles and assign
MeSH terms to each article according to rules set
by NLMS. Human annotation is time consuming
and costly — the average cost of annotating one
article in MEDLINE is about $9.40 (Mork et al.,
2013). Nearly 1 million citations were added to
MEDLINE in 2020 (approximately 2,600 on a daily
basis)’. The rate of articles being added to the
MEDLINE database is constantly increasing, so
there is a huge financial and time-consuming cost
for the status quo. Therefore, it is imperative to
develop an automatic annotation system that can
assist MeSH indexing of large-scale biomedical
articles efficiently and accurately.

Automatic MeSH indexing can be regarded as an
extreme multi-label text classification (XMC) prob-
lem, where each article can be labeled with multi-
ple MeSH terms. Compared with standard multi-
label problems, XMC finds relevant labels from an
enormous set of candidate labels. The challenge of
large-scale MeSH indexing comes from both the
label and article sides. Currently, there are more
than 29,000 distinct MeSH terms, and new MeSH
terms are updated to the vocabulary every year. The
frequency of different MeSH terms appearing in
documents are quite imbalanced. For instance, the
most frequent MeSH term, ‘humans’, appears in
more than 8 million citations; ‘Pandanaceae’, on
the other hand, appears in only 31 documents (Zhai
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et al., 2015). In addition, the MeSH terms that
have been assigned to each article varies greatly,
ranging from more than 30 to fewer than 5. Further-
more, semantic features of the biomedical literature
are complicated to capture, as they contain many
domain-specific concepts, phrases, and abbrevia-
tions. The aforementioned difficulties make the
task more complicated to generate an effective and
efficient prediction model for MeSH indexing.

In this work, inspired by the rapid development
of deep learning, we propose a novel neural archi-
tecture called KenMeSH (Knowledge-enhanced
MeSH labelling) which is suitable for handling
XMC problems where the labels are arrayed hi-
erarchically and could capture useful information
as a directed graph. Our method uses a dynamic
knowledge-enhanced mask attention mechanism
and incorporates document features together with
label features to index biomedical articles. Our
major contributions are:

1. We design a multi-channel document repre-
sentation module to extract document features
from the title and the abstract using a bidi-
rectional LSTM. We use multi-level dilated
convolution to capture semantic units in the
abstract channel. This module combines a hy-
brid of information, at the levels of words and
latent semantics, to capture local correlations
and long-term dependencies from text.

2. Our proposed method appears to be the first to
employ graph convolutional neural networks
that integrate MeSH hierarchical information
to map label representations.

3. We propose a novel dynamic knowledge-
enhanced mask attention mechanism which
incorporates external journal-MeSH co-
occurrence information and document similar-
ity in the PubMed database to constrain the
large universe of possible labels in the MeSH
indexing task.

4. We evaluate our model on a corpus of PMC
articles. Our proposed method consistently
achieves superior performance over previous
approaches on a number of measures.

2 Related Work

2.1 Automatic MeSH Indexing

To address the MeSH indexing task mentioned in
above section, the National Library of Medicine
developed Medical Text Indexer (MTI) — software

that automatically recommends MeSH terms to
each MEDLINE article using the abstract and ti-
tle as input (Aronson et al., 2004). It first gener-
ates the candidate MeSH terms for given articles,
and then ranks the candidates to provide the fi-
nal predictions. There are two modules in MTI —
MetaMap Indexing (MMI) and PubMed-Related
Citations (PRC) (Lin and Wilbur, 2007; Aronson
and Lang, 2010). MetaMap is NLM-developed
software which extracts the biomedical concepts
in the documents and maps them to Unified Medi-
cal Language System concepts. MMI recommends
MeSH terms using the biomedical concepts discov-
ered by MetaMap. PRC uses k-nearest neighbours
to find the MeSH annotations of similar citations
in MEDLINE. The two mentioned sets of MeSH
terms combine the final MeSH recommendations
from MTL

BioASQ?, an EU-funded project, has organized
challenges on automatic MeSH indexing since
2013, which provides opportunities to involve
more participants in continuing to the develop-
ment of MeSH indexing systems. Many effec-
tive MeSH indexing systems have been developed
since then, such as MeSHLabeler (Liu et al., 2015),
DeepMeSH (Peng et al., 2016), AttentionMeSH
(Jin et al., 2018), and MeSHProbeNet (Xun et al.,
2019). MeSHLabeler introduced a Learning-to-
Rank (LTR) framework, which is a two-step strat-
egy, first predicting the candidate MeSH terms and
then ranking them to obtain the final suggestions.
MeSHLabeler first trained an independent binary
classifier for each MeSH term and then used var-
ious evidence, including similar publications and
term frequencies, to rank candidate MeSH terms.
DeepMeSH is an improved version of MeSHLa-
beler, which also uses the LTR strategy. It first
generates MeSH predictions by incorporating deep
semantics in the word embedding space, and then
ranks the candidates. AttentionMeSH and MeSH-
ProbeNet are based on bidirectional recurrent neu-
ral networks (RNNs) and attention mechanisms.
The main difference between AttentionMeSH and
MeSHProbeNet is that the former uses a label-wise
attention mechanism while the latter develops self-
attentive MeSH probes to extract comprehensive
aspects of biomedical information from the input
articles.

Studies in MeSH indexing with full texts are
very limited because of restrictions on full text ac-
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cess. Jimeno-Yepes et al. (2013) randomly selected
1413 articles from the PMC Open Access Subset
and used automatically-generated summaries from
these full texts as input to MTI for MeSH index-
ing. Demner-Fushman and Mork (2015) collected
14,828 full text articles from PMC Open Access
Subset and developed a rule-based string-matching
algorithm to extract a subject of MeSH terms called
‘check tags’ that are used to describe the charac-
teristics of the subjects. Wang and Mercer (2019)
randomly selected 257,590 full text articles from
PMC Open Access Subset and developed a multi-
channel model using CNN-based feature selection
to extract important information from different sec-
tions of the articles. HGCN4MeSH (Yu et al.,
2020) used the PMC dataset generated by Wang
and Mercer (2019) and employed graph convolu-
tional neural network to learn the co-occurrences
between MeSH terms. FullMeSH (Dai et al., 2019)
and BERTMeSH (You et al., 2020) used all avail-
able full text articles in PMC Open Access Subset.
FullMeSH applied an attention-based CNN to pre-
dict the MeSH terms and LTR to get the final MeSH
candidates; BERTMeSH incorporated pre-trained
BERT and an attention mechanism to improve the
performance of MeSH indexing.

2.2 Graph Convolutional Network in Text
Classification

Graph convolutional neural networks (GCN)s (Kipf
and Welling, 2017) have received considerable at-
tention recently. Some text classification systems
introduce GCN by formulating their problems as
graph-structural tasks. For instance, TextGCN (Yao
et al., 2019) built a single text graph for a corpus
based on word co-occurrence and document word
relations to infer labels. Zhang et al. (2019a) built
a GCN-based dependency tree of a sentence to
exploit syntactical information and word dependen-
cies for sentiment analysis. Other research focused
on learning the relationships between nodes in a
graph, such as the label co-occurrences for multi-
label text classifications; e.g., MAGNET (Pal et al.,
2020) built a label graph to capture dependency
structures among labels.

3 Proposed Model

MeSH indexing can be regarded as a multi-label
text classification problem in which, given a set
of biomedical documents X = {z1,z2,...,2,}
and a set of MeSH labels YV = {y1,y2,...,yr},

multi-label classification learns the function f :
X — [0,1]” using the training set D = (z;,Y;),
1 =1, ...,n, where n is the number of documents
in the set.

Figure 1 illustrates our overall architecture. Our
model is composed of a multi-channel document
representation module, a label features learning
module, a dynamic semantic mask attention mod-
ule, and a classifier.

3.1 Multi-channel Document Representation
Module

The multi-channel document representation mod-
ule has two input channels — the title channel and
the abstract channel, for each type of text. These
two texts are represented by two embedding ma-
trices, namely Ejy, € R?, the word embedding
matrix for the title, and Epgqer € R?, the word
embedding matrix for the abstract. We first apply a
bidirectional Long Short-Term Memory (biLSTM)
network (Hochreiter and Schmidhuber, 1997) in
both channels to encode the two types of text and
to generate the hidden representations h; for each
word at time step t. The computations of E) and
¢ are illustrated below:

— —
ht = LSTM(I}, htfl, thl)

(1)
he = LSTM (20, hy 1, c01)

We then obtain the final representation for each
word by concatenating the hidden states from both
directions, namely h; = [IZ : E] and hy € RI>2dn,
where [ is the number of words in the text and d,
is the hidden dimensions. The biLSTM returns
context-aware representations Hyy, and H g psiract
for the title and abstract channels, respectively:

Htitle = biLSTM(Etitle)

. ()
Hobstract = biLST M ( Eabstract)

In order to generate high-level semantic represen-
tations of abstracts, we introduce a dilated convo-
lutional neural network (DCNN) to the abstract
channel. The concept of dilated convolution was
originally developed for wavelet decomposition
(Holschneider et al., 1990), and has been applied
to NLP tasks such as neural machine translation
(Kalchbrenner et al., 2017) and text classification
(Lin et al., 2018). The main idea of DCNN is to
insert ‘holes’ in convolutional kernels, which ex-
tract the longer-term dependencies and generate
higher-level representations, such as phases and
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Figure 1: Model Architecture - There are three main components in our method. First, a multi-channel document
representation module operates on the title and abstract from an input article. Second, a 2-layer GCN creates
label vectors. Lastly, a masked attention component calculates the label-specific attention vectors that are used for

predictions.

sentences. Following Lin et al. (2018), we apply
a multi-level DCNN with different dilation rates
on top of the hidden representations generated by
the biLSTM on the abstract channel. Small di-
lation rates capture phrase-level information, and
large ones capture sentence-level information. The
DCNN returns the semantic features of the abstract
channel Dgpgraer € RETSTD*2d0 \where s is the
width of the convolution kernels.

3.2 Label Features Learning Module

As the MeSH hierarchy is important to our task, we
use a two-layer GCN to incorporate the hierarchi-
cal parent and child information among labels. We
first use the MeSH descriptors to generate a label
feature vector for each MeSH term. Each label vec-
tor is calculated by averaging the word embedding
of each word in its descriptors:

1
:Nij,izl,Z,...,L, (3)

JEN

where v; € R%, N is the number of words in its
descriptor, and L is the number of labels. In the
graph structure, we formulate each node as a MeSH
label, and edges are implement MeSH hierarchies.

The edge types of a node include edges from its
parent, from its children, and from itself. At each
GCN layer, the node feature is aggregated by its
parent and children to form the new label feature
for the next layer:
R =o(A- bW, 4)
where A! and h!*+! € RE*? indicate the node pre-
sentation of the I and (I + 1)!" layers, o(-) de-
notes an activation function, A is the adjacency
matrix of the MeSH hierarchical graph, and W' is
a layer-specific trainable weight matrix. We then
concatenate the label feature vectors from descrip-
tors in Equation 3 with GCN label vectors to form:

Higper = v || AL, 5

RLX?d

where Higper € is the final label vector.

3.3 Dynamic Knowledge-enhanced Mask
Attention Module

In the dynamic knowledge-enhanced mask atten-
tion module, we integrate external knowledge from
outside sources to generate a unique mask for each
article dynamically. We only consider a subset of
the full MeSH list and employ a masked label-wise



attention that computes the element-wise multipli-
cation of a mask matrix and an attention matrix for
the following two reasons. First, the MeSH terms
are numerous and have widely varying occurrence
frequencies. Therefore, for each MeSH label, there
are far more negative examples than positive ones.
For each article, selecting a subset of MeSH labels,
namely a MeSH mask, achieves down-sampling of
the negative examples, which forces the classifier
to concentrate on the candidate labels. Second, the
issue with the original attention mechanism (Bah-
danau et al., 2015) is that the classifier focuses on
spotting relevant information for all predicted la-
bels, which is a lack of pertinence. Using a masked
label-wise attention allows the classifier to find rel-
evant information for each label inside the MeSH
mask.

The dynamic ensures that the module generates
a unique MeSH mask for each article, specifically.
To generate the MeSH masks, we consider two
external knowledge sources: journal information
and document similarity. The journal information
refers to the name of the journal in which an arti-
cle was published, which usually defines a specific
research domain. We expect that articles published
in the same journal tend to be indexed with MeSH
terms that are relevant to the journal’s research
focus. We build a co-occurrence matrix between
journals and MeSH labels using conditional prob-
abilities, i.e., P(L; | J;), which denotes the prob-
ability of occurrence of label L; when journal J;

appears.
Crng

o, (6)
where Cn denotes the co-occurring times of L;
and J;, Cy denotes the number of occurrences of
L; in the training set. To avoid the noise of rare
co-occurrences, we set a threshold 7 to filter noisy
correlations.

Mj = {Lk’|P(Lk|JJ> >T1, k=1, '~-7L}7 (7)

P(Li|Jj) =

where M; denotes the MeSH mask for journal j.
We then use k-nearest neighbors (KNN) to choose
a subset of specific MeSH terms for each article
by referring to document similarity. We represent
each article by the IDF-weighted sum of word em-
beddings in the abstract:

S IDF; x ¢;
S IDF,

where e; is the word embedding, and I D F; is the
inverse document frequency of the word. Next, we

Digr = ®)

calculate the cosine similarity between abstracts
and use KNN to find k nearest neighbours for each
article. After that, we collect MeSH terms from
neighbours and form as M,,.

M = M, U M,, )

where M € RE, M; € [0,1] is the MeSH mask.

We calculate the similarity between MeSH terms
and the texts in two channels by applying masked
label-wise attention.

Hmasked = H, label © M

Olitle = SOftmaX(Hn’tle : Hmasked) (10)

Qapstract = Softmax ( D, abstract * H masked ) )

where © denotes element-wise multiplication,
H,,uskeq denotes the masked label features, and
Qgitte and ugpsiract measure how informative each
text fragment is for each label in the title and ab-
stract channels, respectively. We then generate the
label-specific title and abstract representations, re-
spectively:
T
Ctitle = Olgtle * Hige an

T

Cabstract = Xgpstract * Dapstract
such that cige € RE*24 and capsiraee € RE*24. We
sum up the representations in the title and abstract
channels to form the document vector for each
article:

D = ciisge + Capstract (12)
3.4 Classifier
We gain scores for each MeSH term :
Qi :U(DQHlabel)vi: ]-727"‘7-[/’ (13)

where o(-) represents the sigmoid function. We
train our model using the multi-label binary cross-
entropy loss (Nam et al., 2014):

L
L= Z[—yi “log(y;) — (1 — ;i) - log(1 — 4i))],
=1

(14)
where y; € [0, 1] is the ground truth of label ¢, and
;i € [0, 1] denotes the prediction of label 7 obtained
from the proposed model.

4 Experiment

4.1 Datasets

We follow Dai et al. (2019) and You et al. (2020) by
using the PMC FTP service’ (Comeau et al., 2019)

*https://www.ncbi.nlm.nih.gov/research/bionlp/ APIs/
BioC-PMC
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Method Micro-average Measure Example Based Measure

MiF MiP MiR EBF EBP EBR

MTI 0.390 0.379 0.402 0.393 0.378 0.408
HGCN4MeSH 0.524 0.763 0.399 0.529 0.762 0.405
DeepMeSH 0.639 0.669 0.612 0.631 0.667 0.627

BERTMeSH 0.667 0.696 0.640 0.657 0.700 0.650
FullMeSH (Full) 0.651 0.683 0.623 0.643 0.680 0.639
BERTMeSH (Full) | 0.685 0.713 0.659 0.675 0.717 0.667
0.745 0.864 0.655 0.738 0.863 0.644
+£0.021 | +0.011 | £0.027 | £0.018 | £0.011 | £0.022

KenMeSH

Table 1: Comparison to previous methods across two
main evaluation metrics. Methods marked as Full are
trained on entire PMC articles; others are trained on
abstracts and titles only. Bold: best scores in each col-
umn.

Ranking Based Methods
Measure
HGCN4MeSH | KenMeSH

P@1 0.961 0.993+0.001
PQs3 0.870 0.972+0.005

P@k PQ5 0.788 0.937+0.010
PQ10 0.620 0.801+0.015
pPQis 0.501 0.659+0.013
RQ1 0.077 0.081+0.000
RQ3 0.204 0.234+0.001

R@k RQ5 0.302 0.370+0.005
RQ10 0.460 0.603+0.012
RQ15 0.549 0.722+0.014

Table 2: Comparison to HGCN4MeSH across ranking
based measures. Bold: best scores in each row.

and downloading PMC Open Access Subset (as of
Sep. 2021), totalling 3,601,092 citations. We also
download the entire MEDLINE collection based
on the PubMed Annual Baseline Repository (as of
Dec. 2020) and obtain 31,850,051 citations with
titles and abstracts. In order to reduce bias, we only
focus on articles that are annotated by human cura-
tors (not annotated by a ‘curated’ or ‘auto’ modes
in MEDLINE). We then match PMC articles with
the citations in PubMed to PMID and obtain a set
of 1,284,308 citations. Out of these PMC articles,
we use the latest 20,000 articles as the test set, the
next latest 200,000 articles as the validation data
set, and the remaining 1.24M articles as the train-
ing set. In total, 28,415 distinct MeSH terms are
covered in the training dataset.

4.2 Implementation Details

We implement our model in PyTorch (Paszke
et al., 2019). For pre-processing, we removed non-
alphanumeric characters, stop words, punctuation,
and single character words, and we converted all
words are lowercased. Titles longer than 100 char-

acters and abstracts longer than 400 characters are
truncated. We use pre-trained biomedical word em-
beddings (BioWordVec) (Zhang et al., 2019b), and
the embedding dimension is 200. To avoid overfit-
ting, we use dropout directly after the embedding
layer with a rate of 0.2. The number of units in
hidden layers are 200 in all three modules. We
use a three-level dilated convolution with dilation
rate [1, 2, 3] and select 1000 nearest documents to
generate MeSH masks for each article. We use
Adam optimizer (Kingma and Ba, 2015) and early
stopping strategies. The learning rate is initialized
to 0.0003, and the decay rate is 0.9 in every epoch.
The gradient clip is applied to the maximum norm
of 5. The batch size is 32 and the model is trained
on a single NVIDIA V100 GPU.

4.3 Evaluation Metrics

We use three main evaluation metrics to test the
performance of MeSH indexing systems: Micro-
average measure (MiM), example-based measure
(EBM), and ranking-based measure (RBM), where
MiM and EBM are commonly used in MeSH in-
dexing tasks and RBM is commonly used in evalu-
ating multi-label classification. Micro-average F-
measure (MiF) aggregate the global contributions
of all MeSH labels and then calculate the harmonic
mean of micro-average precision (MiP) and micro-
average recall (MiR), which are heavily influenced
by frequent MeSH terms. Example-based measures
are computed per data point, which computes the
harmonic mean of standard precision (EBP) and re-
call (EBR) for each data point. In the ranking-based
measure, precision at k (PQFk) shows the number
of relevant MeSH terms that are suggested in the
top-k recommendations of the MeSH indexing sys-
tem, and recall at k¥ (RQFk) indicates the proportion
of relevant items that are suggested in the top-k
recommendations. The detailed computations of
evaluation metrics can be found in Appendix A.
The threshold has a large influence on MiF and
EBF. We select final MeSH labels whose predicted
probability is larger than a tuned threshold ¢;:

vi > ti, 1

MeSH; = { - (15)

Zji < tia 0
where t; is the threshold for MeSH term . We
compute optimal threshold for each MeSH term on
the validation set following Pillai et al. (2013) that
tunes ¢; by maximizing MiF:

t; = argmax MiF(T),
T

(16)



where T denotes all possible threshold values for
label i.

5 Results and Ablation Studies

We evaluate our proposed model with five
state-of-the-art models: MTI, DeepMeSH,
FullMeSH, BERTMeSH and HGCN4MeSH.
Among these, MTI, DeepMeSH, BERTMeSH,
and HGCN4MeSH are trained with abstracts and
titles only; FullMeSH (Full) and BERTMeSH
(Full) are trained with full PMC articles. Our
proposed model is trained on titles and abstracts,
and is tested using 20,000 of the latest articles. We
mainly focus on MiF, which is the main evaluation
metric in MeSH indexing task.

We compare our model against previous related
systems on micro-average measure and example-
bases measure in Table 1. Each row in the table
shows all evaluation metrics on a specific method,
where the best score for each metric is indicated.
As reported, our model achieves the best perfor-
mance on most evaluation metrics, expect MiR and
EBR, on which BERTMeSH (Full) achieves the
best performance. This is because that BERTMeSH
(Full) is trained on full text articles, which uses
much more content information in the articles than
ours. Our model outperforms the subset of sys-
tems that were trained only on the abstract and
the title — MTI, HGCN4MeSH, DeepMeSH and
BERTMeSH in all metrics. Most importantly, there
is improvement in precision without a decrease in
recall. Comparing with systems trained on full arti-
cles indicates that our model achieves the best MiF,
and is only slightly below BERTMeSH (Full) on
MiR (0.4 percentage points). Although our model
is trained only on the abstract and title (which may
suggest that it can capture less complex semantics)
it performs very well against more complex sys-
tems. Furthermore, we compared the performance
of our model with HGCN4MeSH on ranking-based
measures that do not require a specific threshold,
the results are summarized in Table 2. As reported,
we see that our model always performs better than
HGCN4MeSH with up to almost 18% improve-
ment.

As the frequency of different MeSH terms are
imbalanced, we are interested in examining the effi-
ciency of our model on infrequent MeSH terms. We
divide MeSH terms into four groups based on the
number of occurrences in the training set: (0, 100),
[100, 1000), [1000, 5000), and [5000, ). Figure 2a

shows the distribution of MeSH terms and percent
of occurrence among the four divided groups in
the training set, which indicates that the distribu-
tion of MeSH frequency is highly biased and it
falls into a long-tail distribution. Figure 2b and
2c¢ show the performance of our model comparing
to MTI baseline in the four MeSH groups on MiF
and EBF respectively. Our model obtains substan-
tial improvements among frequent and infrequent
labels on both MiF and EBF.

We are interested in studying how the effective-
ness and robustness of our model are due to the
various modules, such as the multi-channel mecha-
nism, the dilated CNN, the label graph, and masked
attention. To further understand the impacts of
these factors, we conduct controlled experiments
with four different settings: (a) examining a sin-
gle channel architecture by concatenating the title
and abstract as input into the abstract channel; (b)
removing the dilated CNN; (c) replacing the la-
bel feature learning module with a fully connected
layer; and (d) removing the masked attention mod-
ule. The influence of each of these modules can
then be evaluated individually. The results are sum-
marized in Table 3.

Impacts on Multi-channel Settings As
shown in Table 3, the multi-channel setting
outperforms the single channel one. The reason
for this could be that the single channel model
misses some important features in titles and
abstracts in the LSTM layer. LSTM has the
capability to learn and remember over long
sequences of inputs, but it can be challenging
to use when facing very long input sequences.
Concatenating the title and abstract into one longer
sequence may hurt the performance of LSTM.
To be more explicit, the single channel model
may be remembering insignificant features in the
LSTM layer when dealing with longer sequences.
Therefore, extracting information from the title
and the abstract separately is better than directly
concatenating the information.

Impacts on Dilated Semantic Feature Extrac-
tions As reported in Table 3, the performance
drops when removing the dilated CNN layer. The
reason for this seems to be that multi-level dilated
CNNss can extract high-level semantic information
from the semantic units that are often wrapped in
phrases or sentences, and then capture local correla-
tion together with longer-term dependencies from



Methods precision @ k Micro-average Measure | Example Based Measure
pQl | p@Q3 | p@Q5 | MiF | MiP MiR EBF | EBP EBR
Full Model | 0.993 | 0.972 | 0.936 | 0.745 | 0.864 | 0.655 | 0.738 | 0.863 | 0.644
Ablation-(a) | 0.983 | 0.938 | 0.882 | 0.672 | 0.752 | 0.609 | 0.680 | 0.751 | 0.621
Ablation-(b) | 0.988 | 0.952 | 0.900 | 0.687 | 0.788 | 0.551 | 0.695 | 0.788 | 0.622
Ablation-(c) | 0.968 | 0.893 | 0.816 | 0.554 | 0.789 | 0.427 | 0.548 | 0.791 | 0.419
Ablation-(d) | 0.987 | 0.949 | 0.896 | 0.674 | 0.806 | 0.579 | 0.681 | 0.805 | 0.591

Table 3: Ablation experiment results. (a) Without multi-channel settings, texts and abstracts are in the same
channel. (b) Without DCNN on the abstract channel. (c) Without label feature module. (d) Without semantic mask

attention module. Bold: best scores.
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Figure 2: Performance comparison of our model and MTI on MeSH terms at different frequency

the text. Compared with word-level information
extracted from the biLSTM layer, high-level infor-
mation extracted from the semantic units seems to
provide better understanding of the text, at least for
the purposes of labelling.

Impacts on Learning Label Features As
shown in Table 3, not learning the label features has
the largest negative impacts on performance espe-
cially for recall (and subsequently F-measure). By
removing the label features, the model pays more
attention to the frequent MeSH terms and misclas-
sifies infrequent labels as negative. This indicates
that label features learned through GCN can cap-
ture the hierarchical information between MeSH
terms, and MeSH indexing for infrequent terms can
benefit from this hierarchical information.

Impacts on Dynamic Knowledge-enhanced
Mask Attention Table 3 shows a performance
drop when removing the masked attention layer,
suggesting that the attention mechanism has pos-
itive impacts on performance. This result further
suggest that the masked attention takes advantage
of incorporating external knowledge to alleviate the
extremely large pool of possible labels. To select
the proper mask for each article, two hyperparame-

ters are used: threshold 7 for journal-MeSH occur-
rence and the number of nearest articles K. With
7 = 0.5 and K = 1000, all of the gold-standard
MeSH labels are guaranteed to be in the mask.

6 Conclusion

We propose a novel end-to-end model integrating
document features and label hierarchical features
for MeSH indexing. We use a novel dynamic
knowledge-enhanced mask attention mechanism to
handle the large universe of candidate MeSH terms
and employ GCN in extracting label correlations.
Experimental results demonstrate that our proposed
model significantly outperforms the baseline mod-
els and provides especially large improvements on
infrequent MeSH labels.

In the future, we believe two important research
directions will lead to further improvements. First,
we plan to explore full text articles, which con-
tain more information, to see whether our model
takes advantage of the full text to improve the per-
formance of large-scale MeSH indexing. Second,
we are interested in integrating knowledge from
the Unified Medical Language System (UMLS)
(Bodenreider, 2004), a comprehensive ontology of
biomedical concepts, in our model.
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A Evaluation Metrics

Micro F-measure (MiF) computes the harmonic
mean of micro-average precision (MiF) and micro-
average recall (MiR):

2 X MiR x MiP

MiF=-"-""""2""

. - (17
MiR + MiP

10

where

. Z]LﬂTPj
MzP:ZL 1P + L FP, (18)
j=1117 j=111y
L
L TP,
MiR = 21 TP . (19)

L L
=1 TPy + 251 FN;
where TP;, FP; and FN; as true positives, false
positives, and false negatives respectively for each
label /; in the set of total labels L.

EBF can be computed as the harmonic mean of
standard precision (EBP) and recall (EBR):

2 x EBR x EBP
EBF — 2 X 22 X 2P0 (20)
EBR + EBP
where N
1 lys 0 7]
EBP = — Y 7 (2D
N ; ’yi’
N
1 lyi N i
EBR=—Y 221 (22)
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where y; is the true label set and y; is the predicted
label set for instance ¢, IV represents the total num-
ber of instance.

Ranking-based evaluation, including precision
at k (P@k), and recall at k (R@k).The metrics are
defined as follows:

1
P@k = Z I, (23)
lerk(9)
1
R@k=1 - >, (24)
Yilien )

where r, returns the top-k recommended items.
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