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Abstract

Currently, Medical Subject Headings (MeSH)001
are manually assigned to every biomedical ar-002
ticle published and subsequently recorded in003
the PubMed database to facilitate retrieving004
relevant information. With the rapid growth005
of the PubMed database, large-scale biomedi-006
cal document indexing becomes increasingly007
important. MeSH indexing is a challenging008
task for machine learning, as it needs to as-009
sign multiple labels to each article from an010
extremely large hierachically organized col-011
lection. To address this challenge, we pro-012
pose KenMeSH, an end-to-end model that013
combines new text features and a dynamic014
Knowledge-enhanced mask attention that inte-015
grates document features with MeSH label hi-016
erarchy and journal correlation features to in-017
dex MeSH terms. Experimental results show018
the proposed method achieves state-of-the-art019
performance on a number of measures.020

1 Introduction021

The PubMed1 database is a resource that provides022

access to the MEDLINE bibliographic database023

of references and abstracts together with the full024

text articles of some of these citations which are025

available in the PubMed Central2 (PMC) repository.026

MEDLINE3 contains more than 28 million refer-027

ences (as of Feb. 2021) to journal articles in the028

biomedical, health, and related disciplines. Jour-029

nal articles in MEDLINE are indexed according030

to Medical Subject Headings (MeSH)4, an hier-031

archically organized vocabulary that has been de-032

veloped and maintained by the National Library033

of Medicine (NLM)5. Currently, there are 29,369034

main MeSH headings, and each MEDLINE citation035

1https://pubmed.ncbi.nlm.nih.gov/about/
2https://en.wikipedia.org/wiki/PubMed_Central
3https://www.nlm.nih.gov/medline/medline_overview.

html
4https://www.nlm.nih.gov/mesh/meshhome.html
5https://www.nlm.nih.gov

has 13 MeSH indices, on average. MeSH terms are 036

distinctive features of MEDLINE and can be used 037

in many applications in biomedical text mining and 038

information retrieval (Lu et al., 2008; Huang et al., 039

2011; Gu et al., 2013), being recognized as impor- 040

tant tools for research (e.g., knowledge discovery 041

and hypothesis generation). 042

Currently, MeSH indexing is done by human 043

annotators who examine full articles and assign 044

MeSH terms to each article according to rules set 045

by NLM6. Human annotation is time consuming 046

and costly – the average cost of annotating one 047

article in MEDLINE is about $9.40 (Mork et al., 048

2013). Nearly 1 million citations were added to 049

MEDLINE in 2020 (approximately 2,600 on a daily 050

basis)7. The rate of articles being added to the 051

MEDLINE database is constantly increasing, so 052

there is a huge financial and time-consuming cost 053

for the status quo. Therefore, it is imperative to 054

develop an automatic annotation system that can 055

assist MeSH indexing of large-scale biomedical 056

articles efficiently and accurately. 057

Automatic MeSH indexing can be regarded as an 058

extreme multi-label text classification (XMC) prob- 059

lem, where each article can be labeled with multi- 060

ple MeSH terms. Compared with standard multi- 061

label problems, XMC finds relevant labels from an 062

enormous set of candidate labels. The challenge of 063

large-scale MeSH indexing comes from both the 064

label and article sides. Currently, there are more 065

than 29,000 distinct MeSH terms, and new MeSH 066

terms are updated to the vocabulary every year. The 067

frequency of different MeSH terms appearing in 068

documents are quite imbalanced. For instance, the 069

most frequent MeSH term, ‘humans’, appears in 070

more than 8 million citations; ‘Pandanaceae’, on 071

the other hand, appears in only 31 documents (Zhai 072

6https://www.nlm.nih.gov/bsd/indexing/training/TIP_
010.html

7https : / / www. nlm . nih . gov / bsd / medline _ pubmed _
production_stats.html
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et al., 2015). In addition, the MeSH terms that073

have been assigned to each article varies greatly,074

ranging from more than 30 to fewer than 5. Further-075

more, semantic features of the biomedical literature076

are complicated to capture, as they contain many077

domain-specific concepts, phrases, and abbrevia-078

tions. The aforementioned difficulties make the079

task more complicated to generate an effective and080

efficient prediction model for MeSH indexing.081

In this work, inspired by the rapid development082

of deep learning, we propose a novel neural archi-083

tecture called KenMeSH (Knowledge-enhanced084

MeSH labelling) which is suitable for handling085

XMC problems where the labels are arrayed hi-086

erarchically and could capture useful information087

as a directed graph. Our method uses a dynamic088

knowledge-enhanced mask attention mechanism089

and incorporates document features together with090

label features to index biomedical articles. Our091

major contributions are:092

1. We design a multi-channel document repre-093

sentation module to extract document features094

from the title and the abstract using a bidi-095

rectional LSTM. We use multi-level dilated096

convolution to capture semantic units in the097

abstract channel. This module combines a hy-098

brid of information, at the levels of words and099

latent semantics, to capture local correlations100

and long-term dependencies from text.101

2. Our proposed method appears to be the first to102

employ graph convolutional neural networks103

that integrate MeSH hierarchical information104

to map label representations.105

3. We propose a novel dynamic knowledge-106

enhanced mask attention mechanism which107

incorporates external journal-MeSH co-108

occurrence information and document similar-109

ity in the PubMed database to constrain the110

large universe of possible labels in the MeSH111

indexing task.112

4. We evaluate our model on a corpus of PMC113

articles. Our proposed method consistently114

achieves superior performance over previous115

approaches on a number of measures.116

2 Related Work117

2.1 Automatic MeSH Indexing118

To address the MeSH indexing task mentioned in119

above section, the National Library of Medicine120

developed Medical Text Indexer (MTI) – software121

that automatically recommends MeSH terms to 122

each MEDLINE article using the abstract and ti- 123

tle as input (Aronson et al., 2004). It first gener- 124

ates the candidate MeSH terms for given articles, 125

and then ranks the candidates to provide the fi- 126

nal predictions. There are two modules in MTI – 127

MetaMap Indexing (MMI) and PubMed-Related 128

Citations (PRC) (Lin and Wilbur, 2007; Aronson 129

and Lang, 2010). MetaMap is NLM-developed 130

software which extracts the biomedical concepts 131

in the documents and maps them to Unified Medi- 132

cal Language System concepts. MMI recommends 133

MeSH terms using the biomedical concepts discov- 134

ered by MetaMap. PRC uses k-nearest neighbours 135

to find the MeSH annotations of similar citations 136

in MEDLINE. The two mentioned sets of MeSH 137

terms combine the final MeSH recommendations 138

from MTI. 139

BioASQ8, an EU-funded project, has organized 140

challenges on automatic MeSH indexing since 141

2013, which provides opportunities to involve 142

more participants in continuing to the develop- 143

ment of MeSH indexing systems. Many effec- 144

tive MeSH indexing systems have been developed 145

since then, such as MeSHLabeler (Liu et al., 2015), 146

DeepMeSH (Peng et al., 2016), AttentionMeSH 147

(Jin et al., 2018), and MeSHProbeNet (Xun et al., 148

2019). MeSHLabeler introduced a Learning-to- 149

Rank (LTR) framework, which is a two-step strat- 150

egy, first predicting the candidate MeSH terms and 151

then ranking them to obtain the final suggestions. 152

MeSHLabeler first trained an independent binary 153

classifier for each MeSH term and then used var- 154

ious evidence, including similar publications and 155

term frequencies, to rank candidate MeSH terms. 156

DeepMeSH is an improved version of MeSHLa- 157

beler, which also uses the LTR strategy. It first 158

generates MeSH predictions by incorporating deep 159

semantics in the word embedding space, and then 160

ranks the candidates. AttentionMeSH and MeSH- 161

ProbeNet are based on bidirectional recurrent neu- 162

ral networks (RNNs) and attention mechanisms. 163

The main difference between AttentionMeSH and 164

MeSHProbeNet is that the former uses a label-wise 165

attention mechanism while the latter develops self- 166

attentive MeSH probes to extract comprehensive 167

aspects of biomedical information from the input 168

articles. 169

Studies in MeSH indexing with full texts are 170

very limited because of restrictions on full text ac- 171

8http://bioasq.org

2

http://bioasq.org


cess. Jimeno-Yepes et al. (2013) randomly selected172

1413 articles from the PMC Open Access Subset173

and used automatically-generated summaries from174

these full texts as input to MTI for MeSH index-175

ing. Demner-Fushman and Mork (2015) collected176

14,828 full text articles from PMC Open Access177

Subset and developed a rule-based string-matching178

algorithm to extract a subject of MeSH terms called179

‘check tags’ that are used to describe the charac-180

teristics of the subjects. Wang and Mercer (2019)181

randomly selected 257,590 full text articles from182

PMC Open Access Subset and developed a multi-183

channel model using CNN-based feature selection184

to extract important information from different sec-185

tions of the articles. HGCN4MeSH (Yu et al.,186

2020) used the PMC dataset generated by Wang187

and Mercer (2019) and employed graph convolu-188

tional neural network to learn the co-occurrences189

between MeSH terms. FullMeSH (Dai et al., 2019)190

and BERTMeSH (You et al., 2020) used all avail-191

able full text articles in PMC Open Access Subset.192

FullMeSH applied an attention-based CNN to pre-193

dict the MeSH terms and LTR to get the final MeSH194

candidates; BERTMeSH incorporated pre-trained195

BERT and an attention mechanism to improve the196

performance of MeSH indexing.197

2.2 Graph Convolutional Network in Text198

Classification199

Graph convolutional neural networks (GCN)s (Kipf200

and Welling, 2017) have received considerable at-201

tention recently. Some text classification systems202

introduce GCN by formulating their problems as203

graph-structural tasks. For instance, TextGCN (Yao204

et al., 2019) built a single text graph for a corpus205

based on word co-occurrence and document word206

relations to infer labels. Zhang et al. (2019a) built207

a GCN-based dependency tree of a sentence to208

exploit syntactical information and word dependen-209

cies for sentiment analysis. Other research focused210

on learning the relationships between nodes in a211

graph, such as the label co-occurrences for multi-212

label text classifications; e.g., MAGNET (Pal et al.,213

2020) built a label graph to capture dependency214

structures among labels.215

3 Proposed Model216

MeSH indexing can be regarded as a multi-label217

text classification problem in which, given a set218

of biomedical documents X = {x1, x2, ..., xn}219

and a set of MeSH labels Y = {y1, y2, ..., yL},220

multi-label classification learns the function f : 221

X → [0, 1]Y using the training set D = (xi, Yi), 222

i = 1, ..., n, where n is the number of documents 223

in the set. 224

Figure 1 illustrates our overall architecture. Our 225

model is composed of a multi-channel document 226

representation module, a label features learning 227

module, a dynamic semantic mask attention mod- 228

ule, and a classifier. 229

3.1 Multi-channel Document Representation 230

Module 231

The multi-channel document representation mod- 232

ule has two input channels – the title channel and 233

the abstract channel, for each type of text. These 234

two texts are represented by two embedding ma- 235

trices, namely Etitle ∈ Rd, the word embedding 236

matrix for the title, and Eabstract ∈ Rd, the word 237

embedding matrix for the abstract. We first apply a 238

bidirectional Long Short-Term Memory (biLSTM) 239

network (Hochreiter and Schmidhuber, 1997) in 240

both channels to encode the two types of text and 241

to generate the hidden representations ht for each 242

word at time step t. The computations of
−→
ht and 243←−

ht are illustrated below: 244

−→
ht = LSTM(xt,

−−→
ht−1, ct−1)

←−
ht = LSTM(xt,

←−−
ht−1, ct−1)

(1) 245

We then obtain the final representation for each 246

word by concatenating the hidden states from both 247

directions, namely ht = [
−→
ht :
←−
ht ] and ht ∈ Rl×2dh , 248

where l is the number of words in the text and dh 249

is the hidden dimensions. The biLSTM returns 250

context-aware representations Htitle and Habstract 251

for the title and abstract channels, respectively: 252

Htitle = biLSTM(Etitle)

Habstract = biLSTM(Eabstract)
(2) 253

In order to generate high-level semantic represen- 254

tations of abstracts, we introduce a dilated convo- 255

lutional neural network (DCNN) to the abstract 256

channel. The concept of dilated convolution was 257

originally developed for wavelet decomposition 258

(Holschneider et al., 1990), and has been applied 259

to NLP tasks such as neural machine translation 260

(Kalchbrenner et al., 2017) and text classification 261

(Lin et al., 2018). The main idea of DCNN is to 262

insert ‘holes’ in convolutional kernels, which ex- 263

tract the longer-term dependencies and generate 264

higher-level representations, such as phases and 265

3



Figure 1: Model Architecture - There are three main components in our method. First, a multi-channel document
representation module operates on the title and abstract from an input article. Second, a 2-layer GCN creates
label vectors. Lastly, a masked attention component calculates the label-specific attention vectors that are used for
predictions.

sentences. Following Lin et al. (2018), we apply266

a multi-level DCNN with different dilation rates267

on top of the hidden representations generated by268

the biLSTM on the abstract channel. Small di-269

lation rates capture phrase-level information, and270

large ones capture sentence-level information. The271

DCNN returns the semantic features of the abstract272

channel Dabstract ∈ R(l−s+1)×2dh , where s is the273

width of the convolution kernels.274

3.2 Label Features Learning Module275

As the MeSH hierarchy is important to our task, we276

use a two-layer GCN to incorporate the hierarchi-277

cal parent and child information among labels. We278

first use the MeSH descriptors to generate a label279

feature vector for each MeSH term. Each label vec-280

tor is calculated by averaging the word embedding281

of each word in its descriptors:282

vi =
1

N

∑
j∈N

wj , i = 1, 2, ..., L, (3)283

where vi ∈ Rd, N is the number of words in its284

descriptor, and L is the number of labels. In the285

graph structure, we formulate each node as a MeSH286

label, and edges are implement MeSH hierarchies.287

The edge types of a node include edges from its 288

parent, from its children, and from itself. At each 289

GCN layer, the node feature is aggregated by its 290

parent and children to form the new label feature 291

for the next layer: 292

hl+1 = σ(A · hl ·W l), (4) 293

where hl and hl+1 ∈ RL×d indicate the node pre- 294

sentation of the lth and (l + 1)th layers, σ(·) de- 295

notes an activation function, A is the adjacency 296

matrix of the MeSH hierarchical graph, and W l is 297

a layer-specific trainable weight matrix. We then 298

concatenate the label feature vectors from descrip- 299

tors in Equation 3 with GCN label vectors to form: 300

301

Hlabel = v ‖ hl+1, (5) 302

where Hlabel ∈ RL×2d is the final label vector. 303

3.3 Dynamic Knowledge-enhanced Mask 304

Attention Module 305

In the dynamic knowledge-enhanced mask atten- 306

tion module, we integrate external knowledge from 307

outside sources to generate a unique mask for each 308

article dynamically. We only consider a subset of 309

the full MeSH list and employ a masked label-wise 310

4



attention that computes the element-wise multipli-311

cation of a mask matrix and an attention matrix for312

the following two reasons. First, the MeSH terms313

are numerous and have widely varying occurrence314

frequencies. Therefore, for each MeSH label, there315

are far more negative examples than positive ones.316

For each article, selecting a subset of MeSH labels,317

namely a MeSH mask, achieves down-sampling of318

the negative examples, which forces the classifier319

to concentrate on the candidate labels. Second, the320

issue with the original attention mechanism (Bah-321

danau et al., 2015) is that the classifier focuses on322

spotting relevant information for all predicted la-323

bels, which is a lack of pertinence. Using a masked324

label-wise attention allows the classifier to find rel-325

evant information for each label inside the MeSH326

mask.327

The dynamic ensures that the module generates328

a unique MeSH mask for each article, specifically.329

To generate the MeSH masks, we consider two330

external knowledge sources: journal information331

and document similarity. The journal information332

refers to the name of the journal in which an arti-333

cle was published, which usually defines a specific334

research domain. We expect that articles published335

in the same journal tend to be indexed with MeSH336

terms that are relevant to the journal’s research337

focus. We build a co-occurrence matrix between338

journals and MeSH labels using conditional prob-339

abilities, i.e., P (Li | Jj), which denotes the prob-340

ability of occurrence of label Li when journal Jj341

appears.342

P (Li | Jj) =
CL∩J
CJ

, (6)343

where CL∩J denotes the co-occurring times of Li344

and Jj , CJ denotes the number of occurrences of345

Li in the training set. To avoid the noise of rare346

co-occurrences, we set a threshold τ to filter noisy347

correlations.348

Mj = {Lk|P (Lk|Jj) > τ, k = 1, ..., L}, (7)349

where Mj denotes the MeSH mask for journal j.350

We then use k-nearest neighbors (KNN) to choose351

a subset of specific MeSH terms for each article352

by referring to document similarity. We represent353

each article by the IDF-weighted sum of word em-354

beddings in the abstract:355

Didf =

∑n
i=1 IDFi × ei∑n

i=1 IDFi
, (8)356

where ei is the word embedding, and IDFi is the357

inverse document frequency of the word. Next, we358

calculate the cosine similarity between abstracts 359

and use KNN to find k nearest neighbours for each 360

article. After that, we collect MeSH terms from 361

neighbours and form as Mn. 362

M =Mj ∪Mn, (9) 363

where M ∈ RL, Mi ∈ [0, 1] is the MeSH mask. 364

We calculate the similarity between MeSH terms 365

and the texts in two channels by applying masked 366

label-wise attention. 367

Hmasked = Hlabel �M
αtitle = Softmax(Htitle ·Hmasked)

αabstract = Softmax(Dabstract ·Hmasked),

(10) 368

where � denotes element-wise multiplication, 369

Hmasked denotes the masked label features, and 370

αtitle and αabstract measure how informative each 371

text fragment is for each label in the title and ab- 372

stract channels, respectively. We then generate the 373

label-specific title and abstract representations, re- 374

spectively: 375

ctitle = αT
title ·Htitle

cabstract = αT
abstract ·Dabstract

(11) 376

such that ctitle ∈ RL×2d, and cabstract ∈ RL×2d. We 377

sum up the representations in the title and abstract 378

channels to form the document vector for each 379

article: 380

D = ctitle + cabstract (12) 381

3.4 Classifier 382

We gain scores for each MeSH term i: 383

ŷi = σ(D �Hlabel), i = 1, 2, ..., L, (13) 384

where σ(·) represents the sigmoid function. We 385

train our model using the multi-label binary cross- 386

entropy loss (Nam et al., 2014): 387

L =
L∑
i=1

[−yi · log(ŷi)− (1− yi) · log(1− ŷi))],

(14) 388

where yi ∈ [0, 1] is the ground truth of label i, and 389

ŷi ∈ [0, 1] denotes the prediction of label i obtained 390

from the proposed model. 391

4 Experiment 392

4.1 Datasets 393

We follow Dai et al. (2019) and You et al. (2020) by 394

using the PMC FTP service9 (Comeau et al., 2019) 395

9https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/
BioC-PMC
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Method Micro-average Measure Example Based Measure
MiF MiP MiR EBF EBP EBR

MTI 0.390 0.379 0.402 0.393 0.378 0.408
HGCN4MeSH 0.524 0.763 0.399 0.529 0.762 0.405

DeepMeSH 0.639 0.669 0.612 0.631 0.667 0.627
BERTMeSH 0.667 0.696 0.640 0.657 0.700 0.650

FullMeSH (Full) 0.651 0.683 0.623 0.643 0.680 0.639
BERTMeSH (Full) 0.685 0.713 0.659 0.675 0.717 0.667

KenMeSH
0.745 0.864 0.655 0.738 0.863 0.644
±0.021 ±0.011 ±0.027 ±0.018 ±0.011 ±0.022

Table 1: Comparison to previous methods across two
main evaluation metrics. Methods marked as Full are
trained on entire PMC articles; others are trained on
abstracts and titles only. Bold: best scores in each col-
umn.

Ranking Based
Methods

Measure
HGCN4MeSH KenMeSH

P@k

P@1 0.961 0.993±0.001
P@3 0.870 0.972±0.005
P@5 0.788 0.937±0.010
P@10 0.620 0.801±0.015
P@15 0.501 0.659±0.013

R@k

R@1 0.077 0.081±0.000
R@3 0.204 0.234±0.001
R@5 0.302 0.370±0.005
R@10 0.460 0.603±0.012
R@15 0.549 0.722±0.014

Table 2: Comparison to HGCN4MeSH across ranking
based measures. Bold: best scores in each row.

and downloading PMC Open Access Subset (as of396

Sep. 2021), totalling 3,601,092 citations. We also397

download the entire MEDLINE collection based398

on the PubMed Annual Baseline Repository (as of399

Dec. 2020) and obtain 31,850,051 citations with400

titles and abstracts. In order to reduce bias, we only401

focus on articles that are annotated by human cura-402

tors (not annotated by a ‘curated’ or ‘auto’ modes403

in MEDLINE). We then match PMC articles with404

the citations in PubMed to PMID and obtain a set405

of 1,284,308 citations. Out of these PMC articles,406

we use the latest 20,000 articles as the test set, the407

next latest 200,000 articles as the validation data408

set, and the remaining 1.24M articles as the train-409

ing set. In total, 28,415 distinct MeSH terms are410

covered in the training dataset.411

4.2 Implementation Details412

We implement our model in PyTorch (Paszke413

et al., 2019). For pre-processing, we removed non-414

alphanumeric characters, stop words, punctuation,415

and single character words, and we converted all416

words are lowercased. Titles longer than 100 char-417

acters and abstracts longer than 400 characters are 418

truncated. We use pre-trained biomedical word em- 419

beddings (BioWordVec) (Zhang et al., 2019b), and 420

the embedding dimension is 200. To avoid overfit- 421

ting, we use dropout directly after the embedding 422

layer with a rate of 0.2. The number of units in 423

hidden layers are 200 in all three modules. We 424

use a three-level dilated convolution with dilation 425

rate [1, 2, 3] and select 1000 nearest documents to 426

generate MeSH masks for each article. We use 427

Adam optimizer (Kingma and Ba, 2015) and early 428

stopping strategies. The learning rate is initialized 429

to 0.0003, and the decay rate is 0.9 in every epoch. 430

The gradient clip is applied to the maximum norm 431

of 5. The batch size is 32 and the model is trained 432

on a single NVIDIA V100 GPU. 433

4.3 Evaluation Metrics 434

We use three main evaluation metrics to test the 435

performance of MeSH indexing systems: Micro- 436

average measure (MiM), example-based measure 437

(EBM), and ranking-based measure (RBM), where 438

MiM and EBM are commonly used in MeSH in- 439

dexing tasks and RBM is commonly used in evalu- 440

ating multi-label classification. Micro-average F- 441

measure (MiF) aggregate the global contributions 442

of all MeSH labels and then calculate the harmonic 443

mean of micro-average precision (MiP) and micro- 444

average recall (MiR), which are heavily influenced 445

by frequent MeSH terms. Example-based measures 446

are computed per data point, which computes the 447

harmonic mean of standard precision (EBP) and re- 448

call (EBR) for each data point. In the ranking-based 449

measure, precision at k (P@k) shows the number 450

of relevant MeSH terms that are suggested in the 451

top-k recommendations of the MeSH indexing sys- 452

tem, and recall at k (R@k) indicates the proportion 453

of relevant items that are suggested in the top-k 454

recommendations. The detailed computations of 455

evaluation metrics can be found in Appendix A. 456

The threshold has a large influence on MiF and 457

EBF. We select final MeSH labels whose predicted 458

probability is larger than a tuned threshold ti: 459

MeSHi =

{
ŷi ≥ ti, 1
ŷi < ti, 0

(15) 460

where ti is the threshold for MeSH term i. We 461

compute optimal threshold for each MeSH term on 462

the validation set following Pillai et al. (2013) that 463

tunes ti by maximizing MiF: 464

ti = argmax
T

MiF(T), (16) 465
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where T denotes all possible threshold values for466

label i.467

5 Results and Ablation Studies468

We evaluate our proposed model with five469

state-of-the-art models: MTI, DeepMeSH,470

FullMeSH, BERTMeSH and HGCN4MeSH.471

Among these, MTI, DeepMeSH, BERTMeSH,472

and HGCN4MeSH are trained with abstracts and473

titles only; FullMeSH (Full) and BERTMeSH474

(Full) are trained with full PMC articles. Our475

proposed model is trained on titles and abstracts,476

and is tested using 20,000 of the latest articles. We477

mainly focus on MiF, which is the main evaluation478

metric in MeSH indexing task.479

We compare our model against previous related480

systems on micro-average measure and example-481

bases measure in Table 1. Each row in the table482

shows all evaluation metrics on a specific method,483

where the best score for each metric is indicated.484

As reported, our model achieves the best perfor-485

mance on most evaluation metrics, expect MiR and486

EBR, on which BERTMeSH (Full) achieves the487

best performance. This is because that BERTMeSH488

(Full) is trained on full text articles, which uses489

much more content information in the articles than490

ours. Our model outperforms the subset of sys-491

tems that were trained only on the abstract and492

the title – MTI, HGCN4MeSH, DeepMeSH and493

BERTMeSH in all metrics. Most importantly, there494

is improvement in precision without a decrease in495

recall. Comparing with systems trained on full arti-496

cles indicates that our model achieves the best MiF,497

and is only slightly below BERTMeSH (Full) on498

MiR (0.4 percentage points). Although our model499

is trained only on the abstract and title (which may500

suggest that it can capture less complex semantics)501

it performs very well against more complex sys-502

tems. Furthermore, we compared the performance503

of our model with HGCN4MeSH on ranking-based504

measures that do not require a specific threshold,505

the results are summarized in Table 2. As reported,506

we see that our model always performs better than507

HGCN4MeSH with up to almost 18% improve-508

ment.509

As the frequency of different MeSH terms are510

imbalanced, we are interested in examining the effi-511

ciency of our model on infrequent MeSH terms. We512

divide MeSH terms into four groups based on the513

number of occurrences in the training set: (0, 100),514

[100, 1000), [1000, 5000), and [5000, ). Figure 2a515

shows the distribution of MeSH terms and percent 516

of occurrence among the four divided groups in 517

the training set, which indicates that the distribu- 518

tion of MeSH frequency is highly biased and it 519

falls into a long-tail distribution. Figure 2b and 520

2c show the performance of our model comparing 521

to MTI baseline in the four MeSH groups on MiF 522

and EBF respectively. Our model obtains substan- 523

tial improvements among frequent and infrequent 524

labels on both MiF and EBF. 525

We are interested in studying how the effective- 526

ness and robustness of our model are due to the 527

various modules, such as the multi-channel mecha- 528

nism, the dilated CNN, the label graph, and masked 529

attention. To further understand the impacts of 530

these factors, we conduct controlled experiments 531

with four different settings: (a) examining a sin- 532

gle channel architecture by concatenating the title 533

and abstract as input into the abstract channel; (b) 534

removing the dilated CNN; (c) replacing the la- 535

bel feature learning module with a fully connected 536

layer; and (d) removing the masked attention mod- 537

ule. The influence of each of these modules can 538

then be evaluated individually. The results are sum- 539

marized in Table 3. 540

Impacts on Multi-channel Settings As 541

shown in Table 3, the multi-channel setting 542

outperforms the single channel one. The reason 543

for this could be that the single channel model 544

misses some important features in titles and 545

abstracts in the LSTM layer. LSTM has the 546

capability to learn and remember over long 547

sequences of inputs, but it can be challenging 548

to use when facing very long input sequences. 549

Concatenating the title and abstract into one longer 550

sequence may hurt the performance of LSTM. 551

To be more explicit, the single channel model 552

may be remembering insignificant features in the 553

LSTM layer when dealing with longer sequences. 554

Therefore, extracting information from the title 555

and the abstract separately is better than directly 556

concatenating the information. 557

Impacts on Dilated Semantic Feature Extrac- 558

tions As reported in Table 3, the performance 559

drops when removing the dilated CNN layer. The 560

reason for this seems to be that multi-level dilated 561

CNNs can extract high-level semantic information 562

from the semantic units that are often wrapped in 563

phrases or sentences, and then capture local correla- 564

tion together with longer-term dependencies from 565
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Methods precision @ k Micro-average Measure Example Based Measure
p@1 p@3 p@5 MiF MiP MiR EBF EBP EBR

Full Model 0.993 0.972 0.936 0.745 0.864 0.655 0.738 0.863 0.644
Ablation-(a) 0.983 0.938 0.882 0.672 0.752 0.609 0.680 0.751 0.621
Ablation-(b) 0.988 0.952 0.900 0.687 0.788 0.551 0.695 0.788 0.622
Ablation-(c) 0.968 0.893 0.816 0.554 0.789 0.427 0.548 0.791 0.419
Ablation-(d) 0.987 0.949 0.896 0.674 0.806 0.579 0.681 0.805 0.591

Table 3: Ablation experiment results. (a) Without multi-channel settings, texts and abstracts are in the same
channel. (b) Without DCNN on the abstract channel. (c) Without label feature module. (d) Without semantic mask
attention module. Bold: best scores.

(a) MeSH Terms Distribution (b) MeSH Performance on MiF (c) MeSH Performance on EBF

Figure 2: Performance comparison of our model and MTI on MeSH terms at different frequency

the text. Compared with word-level information566

extracted from the biLSTM layer, high-level infor-567

mation extracted from the semantic units seems to568

provide better understanding of the text, at least for569

the purposes of labelling.570

Impacts on Learning Label Features As571

shown in Table 3, not learning the label features has572

the largest negative impacts on performance espe-573

cially for recall (and subsequently F-measure). By574

removing the label features, the model pays more575

attention to the frequent MeSH terms and misclas-576

sifies infrequent labels as negative. This indicates577

that label features learned through GCN can cap-578

ture the hierarchical information between MeSH579

terms, and MeSH indexing for infrequent terms can580

benefit from this hierarchical information.581

Impacts on Dynamic Knowledge-enhanced582

Mask Attention Table 3 shows a performance583

drop when removing the masked attention layer,584

suggesting that the attention mechanism has pos-585

itive impacts on performance. This result further586

suggest that the masked attention takes advantage587

of incorporating external knowledge to alleviate the588

extremely large pool of possible labels. To select589

the proper mask for each article, two hyperparame-590

ters are used: threshold τ for journal-MeSH occur- 591

rence and the number of nearest articles K. With 592

τ = 0.5 and K = 1000, all of the gold-standard 593

MeSH labels are guaranteed to be in the mask. 594

6 Conclusion 595

We propose a novel end-to-end model integrating 596

document features and label hierarchical features 597

for MeSH indexing. We use a novel dynamic 598

knowledge-enhanced mask attention mechanism to 599

handle the large universe of candidate MeSH terms 600

and employ GCN in extracting label correlations. 601

Experimental results demonstrate that our proposed 602

model significantly outperforms the baseline mod- 603

els and provides especially large improvements on 604

infrequent MeSH labels. 605

In the future, we believe two important research 606

directions will lead to further improvements. First, 607

we plan to explore full text articles, which con- 608

tain more information, to see whether our model 609

takes advantage of the full text to improve the per- 610

formance of large-scale MeSH indexing. Second, 611

we are interested in integrating knowledge from 612

the Unified Medical Language System (UMLS) 613

(Bodenreider, 2004), a comprehensive ontology of 614

biomedical concepts, in our model. 615
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A Evaluation Metrics773

Micro F-measure (MiF) computes the harmonic774

mean of micro-average precision (MiF) and micro-775

average recall (MiR):776

MiF =
2×MiR×MiP

MiR + MiP
, (17)777

where 778

MiP =

∑L
j=1 TPj∑L

j=1 TPj +
∑L

j=1 FPj

, (18) 779

780

MiR =

∑L
j=1 TPj∑L

j=1 TPj +
∑L

j=1 FNj

, (19) 781

where TPj , FPj and FNj as true positives, false 782

positives, and false negatives respectively for each 783

label lj in the set of total labels L. 784

EBF can be computed as the harmonic mean of 785

standard precision (EBP) and recall (EBR): 786

EBF =
2× EBR× EBP

EBR + EBP
, (20) 787

where 788

EBP =
1

N

N∑
i=1

|yi ∩ ŷi|
|ŷi|

, (21) 789

790

EBR =
1

N

N∑
i=1

|yi ∩ ŷi|
|yi|

, (22) 791

where yi is the true label set and ŷi is the predicted 792

label set for instance i, N represents the total num- 793

ber of instance. 794

Ranking-based evaluation, including precision 795

at k (P@k), and recall at k (R@k).The metrics are 796

defined as follows: 797

P@k =
1

k

∑
l∈rk(ŷ)

yl, (23) 798

799

R@k =
1

|yi|
∑

l∈rk(ŷ)

yl, (24) 800

where rk returns the top-k recommended items. 801
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