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ABSTRACT

The “Reason-Then-Respond” paradigm, enhanced by Reinforcement Learning,
has shown great promise in advancing Multimodal Large Language Models. How-
ever, its application to the video domain has led to specialized models that ex-
cel at either question answering (QA) or captioning tasks, but struggle to mas-
ter both. Naively combining reward signals from these tasks results in mutual
performance degradation, which we attribute to a conflict between their oppos-
ing task natures. To address this challenge, we propose a novel training frame-
work built upon two intermediate proxy tasks: DarkEventlnfer, which presents
videos with masked event segments, requiring models to infer the obscured con-
tent based on contextual video cues; and MixVidQA, which presents interleaved
video sequences composed of two distinct clips, challenging models to isolate
and reason about one while disregarding the other. These proxy tasks com-
pel the model to simultaneously develop both holistic, divergent understanding
and precise, convergent reasoning capabilities. Embodying this framework, we
present VidBridge-R1, the first versatile video reasoning model that effectively
bridges the paradigm conflict. Extensive experiments show that VidBridge-R1
achieves significant performance gains on both QA and captioning within one
model, demonstrating the efficacy of our approach in fostering more generaliz-
able and powerful video understanding models. Code is available at https:
//github.com/VidBridge—R1/VidBridge—R1.

1 INTRODUCTION

The release of OpenAl 01/03 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025) has introduced
a novel Reason-Then-Respond paradigm to the development of large language models (LLMs),
which significantly enhances model performance through test-time scaling. Inspired by this ap-
proach, a growing body of research (Team et al., 2025; Chen et al., 2025a; Shen et al., 2025; Deng
et al., 2025; Xia et al., 2025; Yao et al., 2025) has extended this paradigm to multimodal large
language models (MLLMs). By leveraging reinforcement learning (RL), particularly the Group
Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024), these studies have achieved
promising results in image-based reasoning tasks.

Recently, several studies (Feng et al., 2025; Zhang et al., 2025¢; Chen et al., 2025g;h) have begun to
explore the application of the Reason-Then-Respond paradigm in the video modality. Some efforts
focus on enhancing question answering (QA) capabilities in general or reasoning scenarios (Li et al.,
2025c; Dang et al., 2025), while some other works concentrate solely on improving video captioning
performance (Li et al., 2025b; Meng et al., 2025a). However, these approaches remain narrowly
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tailored to specific tasks and fail to achieve an effective integration of both QA and captioning
within a unified model framework.

A key advantage of MLLMs lies in their versatility, enabling strong performance across diverse
tasks simultaneously. It is therefore undesirable to enhance reasoning capabilities at the expense of
generalizability by over-specializing the model in a single task. To preserve generality in both QA
and captioning tasks, an intuitive approach is to combine the reward signals from them during train-
ing. However, as shown in Figure 1, simply mixing the datasets and rewards leads to performance
degradation on both tasks. We attribute this phenomenon to a conflict in the learning paradigms
between QA and captioning tasks when training with RL, an indirect optimization method guided
by global reward signals. Specifically, QA is inherently a convergent reasoning task that requires
the model to locate and output a unique, low-entropy correct answer from abundant information. In
contrast, captioning is a divergent generation task that demands the model to produce diverse and
comprehensive high-entropy descriptions. These opposition task objectives may lead to an inherent
conflict during RL optimization.

To solve this problem, we resort to two proxy
tasks that focuses more on comprehensive un-
derstanding of the videos, rather than focusing
on the downstream task form. Inspired by the

LongVideoBench

“fill-in-the-middle” (Guo et al., 2024) in code MVBenc) VideoMME

generation and “style mixing (Karras et al., w/ Caption
2019)” in image generation, we design Dark- :ij\cllffﬁl VideoOA
EventInfer and MixVidQA, aiming to bridge add Proxy Tasks
the paradigm gap between QA and captioning. MMVU DREAM-IK

Specifically, in DarkEventInfer, certain event

segments within the original videos are masked entOA

out with black screens, and the model is re-
quired to deduce and predict the masked events .
based on contextual video cues. In MixVidQA, Figure 1: Performance comparison on QA and
two distinct videos are interleaved, with ques- captlpnlng tasks und.er d1ff§:rent training setups.
tions targeting only one of them, and the model ~Details can be found in Section 6.3

must identify and reason about the most rele-

vant video content to provide accurate answers. These tasks compel the model to perform both
divergent holistic understanding of the video context (as required in captioning) and convergent
pinpointing of key information (as needed in QA), thereby enhancing structured video representa-
tion and contextual reasoning abilities. Incorporating these proxy tasks during training, we present
VidBridge-R1, a versatile video reasoning model that excels at answering questions in general or
reasoning scenes, as well as video captioning. As illustrated in Figure 1, VidBridge-R1 effectively
alleviates the paradigm conflict between QA and captioning, leading to significant performance
gains in corresponding tasks. Our contributions can be summarized as follows:

* We develop VidBridge-R1, the first versatile video understanding model capable of simultane-
ously handling QA and captioning tasks under the Reason-Then-Respond paradigm.

* We propose two novel intermediate proxy tasks, DarkEventInfer and MixVidQA, designed to
bridge the paradigm gap between the divergent nature of video captioning and convergent reason-
ing demands of question answering in general or reasoning scenarios.

» Extensive experiments demonstrate that VidBridge-R1 achieves significant performance improve-
ments on various video general understanding, cognitive reasoning, and video captioning tasks.

2 RELATED WORK

2.1 MULTIMODAL UNDERSTANDING MODELS

Multimodal understanding models are widely recognized as a crucial step toward achieving artificial
general intelligence (AGI) and have seen remarkable progress in recent years (Zhang et al., 2025a;
2026; Shi et al., 2025a;c; Chen et al., 2025d; 2026; Hua et al., 2025). The LLaVA series (Liu et al.,
2023) aligns visual and language representations through fully connected layers, equipping LLMs
with the ability to interpret visual inputs. The Intern-VL series (Chen et al., 2024b) achieves more
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sophisticated visual understanding by employing a large-scale visual encoder to capture fine-grained
details. Beyond architectural innovations, various methodological approaches have been proposed
to improve the model’s multimodal understanding abilities. To process longer video sequences,
some studies (Li et al., 2024b; Shu et al., 2024) compress visual information, while others (Wang
et al., 2024d; Chen et al., 2024a) extend the context window of LLLMs, enabling the modeling of
longer temporal sequences of video frames. Additionally, specialized models like Tarsier2 (Yuan
et al., 2025), Mavors (Shi et al., 2025b) and CogVLM2-Caption (Hong et al., 2024) have shown
impressive results in video captioning through carefully designed training pipelines and diverse
datasets. However, these models remain limited to conventional video understanding paradigms.
In this work, we aim to move beyond traditional frameworks and explore the performance gains
achieved through the Reason-Then-Respond paradigm.

2.2 MULTIMODAL REASONING MODELS

Following the success of DeepSeek-R1 (Guo et al., 2025), research on multimodal reasoning mod-
els has experienced rapid advancement. In the realm of image-based reasoning, numerous stud-
ies (Huang et al., 2025; Peng et al., 2025b; Tan et al., 2025; Chen et al., 2025b;c) achieve reason-
ing and reflection capabilities by training models on geometry-related datasets. MM-Eureka (Meng
etal., 2025b), on the other hand, compiles a wide range of problems from education curricula to sim-
ulate human learning processes, thus improving the model’s cross-disciplinary reasoning abilities.
Additionally, other efforts (Liu et al., 2025c;b; Shen et al., 2025) focus on improving object detec-
tion and grounding capabilities by designing Intersection-over-Union (IoU) related reward functions.
In the realm of video-based reasoning, Video-R1 (Feng et al., 2025) and VideoRFT (Wang et al.,
2025) adopt a two-stage training strategy that combines SFT with RL, enhancing the model’s QA
capabilities in general or reasoning scenarios after training on extensive image and video datasets.
VideoChat-R1 (Li et al., 2025b), in contrast, applies RL directly to develop task-specific reasoning
models. Meanwhile, VideoCap-R1 (Meng et al., 2025a) focuses exclusively on advancing video
captioning performance. Despite these efforts, existing methods remain narrowly tailored to partic-
ular tasks and lack an effective integration of QA and captioning within a unified model framework.
Our work aims to bridge this gap by leveraging intermediate proxy tasks.

3 PROBLEM FORMULATION

The powerful versatility of MLLMs is one of the key reasons for their popularity and widespread
adoption. For video understanding models, important application scenarios include perceptual un-
derstanding of general scenes, cognitive reasoning in complex scenarios, and the generation of fine-
grained captions for video content. However, recent studies adopting the Reason-Then-Respond
paradigm have often improved model performance in specific application scenarios at the expense
of the model’s overall versatility. In this study, we aim to enhance the model’s generalist capabilities
across the aforementioned application scenarios by introducing intermediate proxy tasks to bridge
the diverse capability requirements imposed by different applications. The complete implementation
details, including the data curation pipeline and the reward function specifications, are presented in
subsequent sections of this work.

4 DATA CURATION

In this section, we present the curation process of the training data, including the two intermediate
proxy tasks designed to bridge the gap between QA capabilities in general or reasoning scenarios
and video captioning tasks. By jointly training on conventional VideoQA and captioning tasks along
with our proposed proxy tasks, the model not only learns the basic output format but is also encour-
aged to integrate divergent holistic understanding of the video content (as required in captioning)
with convergent pinpointing of key information (essential for QA). This training approach promotes
structured video representation and enhances contextual reasoning abilities, thereby mitigating the
divergence between QA and captioning while improving performance on both. Illustrative examples
of from each task can be found in the right part of Figure 2 or in Appendix B.3.
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Figure 2: The training framework of VidBridge-R1. By incorporating intermediate proxy tasks,
VidBridge-R1 effectively bridges the gap between QA capabilities in general or reasoning scenarios
and video captioning tasks.

4.1 CURATION OF DARKEVENTINFER

Inspired by the “fill-in-the-middle” (Guo et al., 2024) approach in code generation, we design the
first proxy task, DarkEventlInfer, to encourage holistic video context understanding. Specifically, in
this task, the model is presented with a video containing black-screen segments and is required to
infer the events that occur during the masked periods based on contextual video cues.

Using event captions and their corresponding timestamp annotations from COIN (Tang et al., 2019),
we randomly select one event per video and replace it with a black screen. The model is then asked
to reason about and predict the masked event based on the contextual information provided by the
surrounding visible segments.

To ensure the quality and learnability of the dataset, we conduct a human evaluation on the masked
videos. Instances where human annotators are unable to infer the masked event are removed, and any
inaccurate or ambiguous captions are revised. These steps ensure the final dataset offers meaningful
contextual signals, enabling models to effectively learn how to reason about the “dark events”.

4.2 CURATION OF MIXVIDQA

Drawing inspiration from the “style mixing” (Karras et al., 2019) technique in image generation, we
design the second proxy task, MixVidQA, to enhance the model’s ability to attend to and extract key
information from videos. In this task, the model is presented with interleaved video sequences from
two distinct video clips, and is required to answer questions based on the most relevant video while
ignoring the other.

We source video clips from Kinetics (Kay et al., 2017), each lasting around 10 seconds. To construct
the mixed video sequences, we randomly select two video clips and interleave them with a random
interval ranging from 1.5 to 2 seconds. For each mixed video, we generate a set of QA pairs using
Qwen2-VL-72B (Wang et al., 2024b), explicitly referring to one of the original clips. The model to
be trained is expected to identify the relevant video segment to provide the correct answer based on
the mixed video sequences.

All generated QA pairs undergo manual review to ensure quality. Any pairs with ambiguous refer-
ences or unclear ground truths are removed, guaranteeing the reliability of the dataset.
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4.3 CURATION OF VIDEOQA AND CAPTIONING DATA

In addition to the two proxy tasks described above, we incorporate additional data for conventional
VideoQA and video captioning to explicitly familiarize the model with the target output formats
of these downstream tasks. For the conventional VideoQA task, we sample instances from the
training set of NEXT-QA (Xiao et al., 2021), ensuring broad coverage of question types. For the
captioning task, which demands richer linguistic generation, we curate high-quality videos from
Koala-36M (Wang et al., 2024c) and KVQ (Lu et al., 2024), prioritizing video diversity in aspect
ratios, motion intensity, visual scenes, and thematic content. This enables the model to gain a deeper
understanding of dynamic video content. For Koala-36M, we adopt the original captions. For KVQ
that lacks video captions, we employ Gemini-2.5-Pro (Gemini Team, 2025) to generate high-quality
textual descriptions.

4.4 DATA FILTERING FOR GRPO TRAINING

Considering that the GRPO algorithm may become ineffective when all candidate answers receive
identical rewards, resulting in zero advantage functions, we adopt a pre-filtering strategy. Specif-
ically, we utilize Qwen2.5-VL-7B (Bai et al., 2025), forcing it to engage in reasoning by specific
prompt and sampling five responses with a temperature of 1.0. For the captioning task, we com-
pute the F1 score of each response using AutoDQ (Wang et al., 2024a), and discard samples where
the variance of the F1 scores across the five responses is less than 0.2. For other tasks, we filter
out questions for which all generated answers are uniformly correct. The above methods ensure
effective policy updates during GRPO training. The final training set comprises 1,841 samples from
DarkEventlnfer, 2,332 from MixVidQA, 2,003 from VideoQA, and 4,624 from the Captioning task,
totaling 10,800 high-quality training instances.

5 TRAINING STRATEGY

Many existing works (Feng et al., 2025; Zhang et al., 2025b) adopt a two-stage training approach,
where the model is first trained via SFT and then refined by RL. However, we find that when using
high-quality reasoning data with carefully designed intermediate proxy tasks, the SFT stage is not
only unnecessary but can also impair the model’s inherent reasoning potential by forcing it to learn
a specific reasoning pattern (as illustrated in Appendix E). In contrast, applying RL directly to the
model can effectively stimulate its reasoning abilities. For the RL algorithm, we employ GRPO
without KL divergence regularization (i.e., setting A = 0 in Equation 2, analysis can be found in
Appendix C.3), and design diverse reward functions for different tasks, as shown in Figure 2 and
detailed in the following.

5.1 GROUP RELATIVE PoLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) significantly reduces both training time and GPU mem-
ory usage by eliminating the need for a separate critic model in Proximal Policy Optimization (PPO).
Specifically, GRPO works by sampling a group of G responses {01, 0g, ..., 0} for each question
g from the old policy model 7y, ,, then computing their corresponding rewards {r1, 72, ...,rg} to
derive the advantage function A; for response o;:

A = r; —mean({ry,r2,...,7c}) 0
std({rl, T2, ... ,Tg})
The current policy model 7y is then optimized using the following objective function:
G
1 . ( m(0ilq)
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5.2 REWARD FUNCTION DESIGN

5.2.1 DARKEVENTINFER

For the DarkEventInfer task, we use Qwen2.5-72B (Yang et al., 2024) as the judge to assess the qual-
ity of model responses. Given the inherent difficulty in accurately describing black-screen events, the
judge model is prompted to make three-tier evaluations: fully correct, partially correct but error-free
(i.e. incomplete but without introducing incorrect claims), or containing any errors, with rewards of
2, 1, and 0, respectively, as formalized in Equation 3.

2, if the answer is fully correct
RparkEventnfer = § 1, if partially correct and error-free 3)
0, if the answer contains any errors

5.2.2 MIXVIDQA

For the MixVidQA task, we also employ Qwen2.5-72B as the judge. Empirical observations re-
veal that QA tasks are generally less challenging than accurately describing black-screen events.
Therefore, a two-tier evaluation scheme is implemented for MixVidQA: a correct answer receives a
reward of 1, while an incorrect one receives 0.

5.2.3 VIDEOQA

For the conventional VideoQA tasks, particularly multiple-choice questions, the selected options are
extracted from the model’s output using regular expressions and compared with the ground truth. A
reward of 1 is assigned for correct answers, and O for incorrect ones.

1, if the answer is correct
0, if the answer is incorrect

Rumixvidoa = RvideoQa = { “4)

5.2.4 CAPTIONING

In the captioning task, GPT-3.5-Turbo' is utilized as the judge model (analysis can be found in
Appendix C.1) and the AutoDQ (Wang et al., 2024a) methodology is employed to calculate the
event-level recall and precision of model-generated captions relative to ground-truth captions. The
weighted sum of the two metrics constitutes the AutoDQ reward R auwobg:

Rauopg = Recall 4 « - Precision (5)

Here, « is a weighting factor set to 0.5, which balances the contributions of recall and precision.
Given that precision can be enhanced by generating more concise captions, while recall necessitates
more comprehensive descriptions of video content, this setting helps equalize their improvement
difficulty and mitigates the risk of reward hacking.

Moreover, we design a keywords reward Ryeywords based on two predefined keyword sets: a tempo-
rally relevant set 7" and a speculation-related set .S, which aims to promote the inclusion of temporal
keywords in the generated captions C' while discouraging speculative or irrelevant content. Exam-
ples of these keywords are provided in Appendix B.4.

- Y (we?s), fIweCrwes
weC

7?/keywords = . .
min ( Y I(weT),~v), otherwise
weC

(6)

Here, v serves as the upper bound for temporal keyword rewards, empirically set to 2, to prevent
excessive meaningless temporal keywords. The final caption reward R caption cOmbines both compo-
nents through a weighted summation:

RCaption = RAutoDQ + ﬂ . Rkeywords @)

The weighting coefficient 3 is set to 0.2 here, reflecting the secondary role of the keywords reward
compared to event recall and precision. Further discussion of hyperparameter choices is provided in
Appendix C.2.

1https ://platform.openai.com/docs/models/gpt-3.5-turbo


https://platform.openai.com/docs/models/gpt-3.5-turbo

Published as a conference paper at ICLR 2026

5.2.5 FORMAT REWARD

Additionally, we introduce a format reward to encourage structured outputs that follow the Reason-
Then-Respond paradigm. The reward is formally defined as:

1, valid format
0, invalid format

7?/format = { (8)

Unlike existing approaches that often treat format compliance as a separate reward component, we
implement it implicitly. Specifically, only responses that conform to the required format are eligible
to receive any of the task-specific rewards, as formalized in Equation 9. This design serves as a crit-
ical mechanism to prevent two common forms of reward hacking observed in prior work: (a) correct
formats but incorrect answers; and (b) correct answers but incorrect formats. By enforcing format
compliance as a prerequisite of task-specific rewards, our training framework could accelerate the
convergence toward outputs that are both structurally correct and semantically accurate.

Riotal = Reormat * (RDarkEventInfer + RMixVidQA + RVideoQA + RCaplion) 9

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS
6.1.1 BENCHMARKS

For QA tasks in general video understanding, we conduct experiments on Video-MME (Fu et al.,
2024), LongVideoBench (Wu et al., 2024) and MVBench (Li et al., 2024a). For video reasoning
tasks, we extend experiments on MMVU (Zhao et al., 2025), NExT-QA (Xiao et al., 2021), Inten-
tQA (Li et al., 2023), Causal-VidQA (Zang et al., 2023), Video-Holmes (Cheng et al., 2025), as well
as our held-out test sets: DarkEventInfer-Test and MixVidQA-Test. Each of the latter two contains
100 test samples. For video captioning tasks, we evaluate models on DREAM-1K (Wang et al.,
2024a) and VidCapBench (Chen et al., 2025f).

6.1.2 BASELINES

First, we evaluate both the direct outputs and the reasoning-elicited responses of Qwen2.5-VL-
7B-Instruct (Bai et al., 2025) as fundamental baselines. For contemporaneous works, we conduct
comparative analyses with three prominent models: Video-R1 (Feng et al., 2025), VideoChat-R1 (Li
et al., 2025b), and VideoRFT (Wang et al., 2025). Additionally, we perform SFT on Qwen2.5-VL-
7B using our constructed 10k training samples for 3 epochs and include it in the comparison.

6.1.3 IMPLEMENTATION DETAILS

We employ Qwen2.5-VL-7B-Instruct as the backbone model for training. To ensure training effi-
ciency and stability, we uniformly sample 16 frames from each video at the maximum resolution
of 196x28x28. For GRPO training, we sample 8 responses per question with a temperature of 1.0
to ensure diversity. The learning rate is set to le-6, and the batch size is 32. During inference, for
QA tasks, video frames are sampled at 1 fps with a maximum of 128 frames per video, while main-
taining the same resolution as in training. For captioning tasks requiring more details, we uniformly
sample 16 frames from each video, which in most cases corresponds to a sampling rate exceeding 2
fps. Greedy decoding is employed during inference to ensure deterministic outputs, and the output
length is limited to 2,048. All experiments are conducted on 8 NVIDIA A800 GPUs.

6.2 EXPERIMENTAL RESULTS

We present the performance comparison of VidBridge-R1 with baseline models on general video
understanding and captioning tasks in Table 1, and on video reasoning tasks in Table 2.

In QA tasks for general video understanding, we observe that explicitly forcing the model to rea-
son before answering leads to a degradation in performance. This is likely attributable to the
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R \ General Understanding Tasks \ Captioning Tasks
Model ning Video-MME LongVideo MV- | DREAM-IK VidCapBench
Overall S/M/L Bench Bench F1/Rec/Pre Acc /Pre/Cov /Con

Qwen2.5-VL-7B X 59.4 69.0/58.8/51.0 50.6 58.7 30.9/28.3/34.0 12.1/48.5/81.8/ 4.5
Qwen2.5-VL-7B 4 53.4 65.4/51.7/43.5 38.8 56.3 344/30.5/394 10.6/46.2/73.8/15.2
Qwen2.5-VL-7B-SFT X 54.3 64.8/50.9/47.7 43.9 55.6 29.3/29.0/29.6 11.9/48.2/81.2/ 6.1
Video-R1 v 58.4 69.0/58.1/48.4 53.3 58.3 31.6/294/34.1 11.7/483/81.2/ 7.3
VideoChat-R1 v 61.1 71.0/62.4/50.2 52.6 58.3 32.2/282/379 10.8/473/74.6/17.2
VideoRFT v 62.2 71.8/62.7/52.1 574 60.3 31.5/304/328 12.1/47.4/81.5/ 3.6
VidBridge-R1 (Ours) v ‘ 64.3 73.0/64.4/55.8 59.3 61.9 ‘ 352/32.8/379 12.5/49.8/80.6/15.9

Table 1: Performance comparison on video general understanding and captioning tasks. S, M,
L denote short, medium, and long, respectively. Rec, Pre, Acc, Cov, and Con abbreviate recall,
precision, accuracy, coverage, and conciseness.

Reasoning Tasks

Model Reaso- | Causal-  Vid DarkEvent- MixVidQA

. ausal- 1aeo- ar) vent- 1IX V1 -
nng ‘ MMVU NExT-QA IntentQA VidQA Holmes Infer-Test Test
Qwen2.5-VL-7B X 41.9 71.0 91.3 63.7 38.0 73.0 29.0
Qwen2.5-VL-7B v 49.0 71.3 89.9 68.3 353 70.0 20.0
Qwen2.5-VL-7B-SFT X 52.3 71.4 84.2 67.1 36.6 80.0 33.0
Video-R1 v 50.9 79.8 90.9 60.9 36.5 61.0 27.0
VideoChat-R1 v 51.1 79.6 93.6 68.8 33.0 70.0 15.0
VideoRFT v 524 80.5 94.9 69.1 38.0 77.0 23.0
VidBridge-R1 (Ours) v | 547 81.6 97.1 70.7 40.0 117.0 49.0

Table 2: Performance comparison on video reasoning tasks.

relative simplicity of these tasks, where imposing deliberate reasoning on a vanilla model may
distort its initial correct understanding. However, after training with meticulously curated tasks,
VidBridge-R1 demonstrates remarkable capabilities, achieving an overall score of 64.3 on Video-
MME, with optimal performance across different video lengths. Furthermore, VidBridge-R1 out-
performs the strongest baselines on both LongVideoBench and MVBench by 2.1% and 1.6%, re-
spectively, demonstrating its strong general video understanding capabilities.

Regarding video captioning tasks, we find that forcing the model to reason before responding im-
proves performance on DREAM-1K but degrades it on VidCapBench. This discrepancy arises be-
cause when compelled to reason, the model prioritizes output accuracy, leading to shorter captions
that align more closely with the ground-truth captions in DREAM-1K, and achieving a very high
precision score. In contrast, VidCapBench evaluates caption quality by using a judge model to
answer questions based on model-generated textual captions, where longer captions tend to yield
better results. Nevertheless, VidBridge-R1 strikes a favorable balance between the two benchmarks,
ensuring both accuracy and comprehensiveness in its generated video captions.

In video reasoning tasks, VidBridge-R1 also demonstrates outstanding performance, surpassing the
strongest baseline by an average of 1.9% across five conventional QA tasks. Furthermore, on our
held-out testset, which follows the same task format as our designed proxy tasks but employs entirely
distinct and unseen data, with evaluation metrics consistent with Equations 3 and 4, VidBridge-R1
achieves significant improvements. This indicates that the model has already developed a dual capa-
bility for both the divergent holistic comprehension of video content and the convergent pinpointing
of key information, thereby supporting effective performance in both captioning and QA tasks within
general and reasoning scenarios.

6.3 ABLATION STUDY ON THE TRAINING TASKS

In Table 3, we perform an in-depth analysis of how different training tasks influence model per-
formance. When trained exclusively on the captioning task, the model achieves substantial gains
on the DREAM-1K benchmark, but performs poorly on other tasks. Conversely, training solely
on the VideoQA task leads to improvements on conventional QA benchmarks, yet the model still
underperforms on the captioning task.
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Task Composition \ General Understanding Tasks \ Reasoning Tasks \ Caption Tasks

Video DarkEvent- MixVid- Capti Video- LongVideo- MV- MMVU Intent- DarkEvent- MixVid- DREAM-1K

-QA Infer QA 4PUON | MME ~ Bench  Bench QA Infer-Test QA-Test | FI1/Rec/Pre
- - - v 58.0 41.9 53.5 50.6 92.5 64.0 16.0 34.8/30.6/40.4
v - - - 63.2 56.4 58.7 53.8 96.4 60.0 24.0 31.7/29.5/34.3
v - v 54.8 54.7 57.2 525 96.4 69.0 13.0 30.6/28.1/33.7
vt - - vt 61.5 56.4 59.6 532 96.5 46.0 16.0 33.0/28.9/38.5
4 v - - 63.4 574 59.6 533 97.0 113.0 41.0 34.7/31.1/39.3
4 - v - 63.5 57.9 60.2 53.1 97.0 107.0 51.0 32.3/28.2/379
v v v - 63.8 58.6 60.4 54.1 97.2 121.0 54.0 32.2/283/374
- v v v 60.7 514 56.1 51.7 81.6 117.0 52.0 349/324/37.8
v v v v 64.3 59.3 61.9 54.7 97.1 117.0 49.0 35.2/32.8/379

Table 3: Ablation study on the training task composition. ¢/ indicates that we expanded the volume
of VideoQA and Caption task in their original proportions to match the total data volume used in the
final training setup with four tasks, thereby ablating the effect of data volume.

However, naively mixing these two tasks, while seemingly reasonable, results in performance degra-
dation across both tasks, even with increased data volume (line 4). We attribute this phenomenon
to a conflict in the learning paradigms between QA and captioning under RL, an indirect optimiza-
tion method guided by global reward signals. Specifically, QA is a convergent reasoning task that
requires the model to output a unique, low-entropy correct answer from abundant contextual infor-
mation. In contrast, captioning is a divergent generation task that demands the production of diverse
and comprehensive high-entropy descriptions. The opposing task objectives may lead to inherent
conflicts during RL optimization.

By progressively incorporating our proposed intermediate proxy tasks, DarkEventinfer and
MixVidQA, which are designed to mitigate these issues, the model exhibits substantial performance
improvements across all evaluated tasks. Upon further incorporating the captioning task, although
slight performance degradation is observed on some reasoning tasks, a remarkable improvement
is achieved in captioning. Collectively, these findings demonstrate that VidBridge-R1, through the
strategic integration of intermediate proxy tasks, effectively bridges various video understanding
tasks, demonstrating exceptional comprehensive capabilities and broad adaptability.

6.4 TRAINING DYNAMICS

As illustrated in Figure 3, VidBridge-
R1 exhibits distinct training dynam-

. . . 3 Video-MME LongVideoBench NEXT-QA MMVU
ics across different task categories, &% 59 81 54
reflecting the varying cognitive de- &|% 51 79 52
mands of each task. For QA tasks in ~|s 5 77 50
general video understanding (Video- 0(:2-4k4-18k\;;318§k D IR TIOG T 2&54%8?& 02

. ausal- Vi ar| ventInfer IX V1 -
MME, LonngdepBench), the quel 71 ” 2 N
demonstrates rapid performance im- o N »

. e . 9 34

provement during the initial train- P
. . . 70 15
mng PhaSG, which can be attributed to 0 2.4k 4.8k 7.2k 9.6k 0 2.4k 4.8k 7.2k 9.6k 0TI IRORE 0 2 Ak BT3ROk
the relatively simpler nature of these Training samples

tasks, facilitating easier learning.

For video reasoning tasks (NExT- Figure 3: The training dynamics of VidBridge-R1 on video
QA, MMVU, Causal-VidQA, Dark- general understanding, reasoning, and captioning tasks.
Eventlnfer, MixVidQA), the model

shows steady and progressive performance enhancement, validating that our training framework can
consistently activate the model’s reasoning capabilities. In the video captioning task (DREAM-1K),
the model’s performance initially declines before exhibiting oscillatory improvement, suggesting
that the integration of reasoning capabilities into caption generation is more intricate compared to
QA tasks. Despite these varied training trajectories across tasks, VidBridge-R1 ultimately achieves
sustained and robust performance gains across all tasks, underscoring the effectiveness of our metic-
ulously constructed intermediate proxy tasks in facilitating comprehensive video understanding.
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Figure 4: Distribution of output token entropy across different models on captioning and QA tasks.
SubOpt denotes the suboptimal model trained exclusively on conventional QA and captioning tasks.
For finer detail, please zoom in.

6.5 ANALYSIS OF THE OUTPUT ENTROPY

To more intuitively illustrate the inherent conflict between the Caption and QA tasks during opti-
mization, we present the distribution of output token entropy for both tasks across different models
in Figure 4. To mitigate the confounding effects of varying video inputs, all experiments are con-
ducted on the Video-MME benchmark. For the QA task, we use the original QA pairs provided in
the benchmark; for the captioning task, we prompt each model to generate descriptive captions for
the same set of videos.

The results reveal that, for the original Qwen2.5-VL, a substantial gap exists between the output
entropies on the Caption and QA tasks, making simultaneous optimization of these two tasks chal-
lenging. As shown in Figure 4a, when trained solely with conventional VideoQA and Caption tasks,
the resulting suboptimal model still exhibits a significant entropy disparity between the two tasks
during the critical generation phase (tokens #60 to #120). Moreover, during the initial generation
stage, the entropy of the QA task is adversely influenced by the Caption task, rising to a abnormal
level comparable to that of the base model on the Caption task. In contrast, when our proposed proxy
tasks are introduced, as depicted in Figure 4b, the entropy gap between the Caption and QA tasks
is markedly narrowed, thereby enabling more effective joint optimization without compromising
task-specific performance.

7 CONCLUSION

In this work, we identify the challenge of the paradigm conflict between the convergent QA tasks
and the divergent captioning tasks during RL for video understanding models. We show that naively
combining their reward signals leads to performance degradation in both tasks. To mitigate this is-
sue, we introduce two novel intermediate proxy tasks, DarkEventInfer and MixVidQA, designed to
bridge the gap by encouraging the model to simultaneously develop holistic contextual understand-
ing and precise information localization capabilities. Building upon this approach, we introduce
VidBridge-R1, the first versatile video reasoning model that reconciles the divergence between QA
and captioning tasks during RL training. Extensive experiments demonstrate that VidBridge-R1
effectively alleviates the task conflict and achieves significant performance improvements across di-
verse general video understanding, reasoning, and captioning benchmarks, highlighting its strong
multi-task and generalization ability.
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A THE USE OF LLMS

Throughout the coding and debugging stages, we leveraged LLMs for technical guidance. Follow-
ing the collaborative drafting of the manuscript, we again engaged LLMs to polish and refine its
language and overall expression.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DETAILS OF BENCHMARKS

To comprehensively evaluate the model performance, we selected representative benchmarks to as-
sess the model’s capabilities in general video understanding, video reasoning, and video captioning,
respectively.

For general video understanding, we conduct experiments on Video-MME (Fu et al., 2024),
LongVideoBench (Wu et al., 2024) and MVBench (Li et al., 2024a).

* Video-MME is a comprehensive benchmark for evaluating MLLMs across diverse video types
and temporal lengths. It features 900 manually annotated videos spanning 254 hours and 2,700
QA pairs, offering a rigorous test of models’ general understanding ability. We evaluate Video-
MME without subtitles in our experiments.

* LongVideoBench is designed to evaluate the long-form multimodal perception and relation capa-
bility of MLLMs. It includes 3,763 web-collected videos spanning various lengths and themes and
6,678 human-annotated multiple-choice questions, distributed across 17 fine-grained categories,
which assess different aspects of video-language understanding.

* MVBench is designed to evaluate the temporal understanding capabilities of MLLMs through
20 challenging video tasks that go beyond static image reasoning. By systematically transforming
static tasks into dynamic ones, it covers a wide range of temporal skills and ensures fair evaluation
using ground-truth annotations converted into multiple-choice questions.

For video reasoning tasks, we conduct experiments on MMVU (Zhao et al., 2025), NExT-QA (Xiao
et al., 2021), IntentQA (Li et al., 2023), Causal-VidQA (Zang et al., 2023), Video-Holmes (Cheng
et al., 2025), and our held-out test set DarkEventInfer-Test and MixVidQA-Test.

* MMVU is designed to evaluate the expert-level video reasoning ability of MLLMs. It contains
3,000 expert-annotated questions over 1,529 videos, which span 27 subjects from four core disci-
plines: Science, Healthcare, Humanities & Social Sciences, and Engineering.

* NExT-QA tests the model’s reasoning ability over causal, temporal, and descriptive question
types. In our experiments, we used the validation split containing 4,996 video-question pairs
with five answer options.

* IntentQA contains 4,303 videos and 16k multiple-choice QA pairs focused on reasoning about
people’s intent in the video. We perform a zero-shot evaluation on the test set containing 2k
questions.

* Causal-VidQA requires the model to answer questions including scene description, evidence rea-
soning, and commonsense reasoning. Moreover, for the commonsense reasoning questions, the
model is required to not only provide a right answer but also offer a proper reason justifying why
that answer is true. We present the average results across all categories.

* Video-Holmes evaluates complex reasoning capabilities through 1,837 QA pairs requiring strong
reasoning skills, with a focus on suspenseful short films.

* DarkEventInfer-Test and MixVidQA-Test are test sets randomly sampled from our constructed
video reasoning dataset, each containing 100 samples. They are designed to evaluate the model’s
capability of performing contextual reasoning across video sequences and distinguishing between
different video sources when answering questions, respectively.

For video captioning tasks, we conduct experiments on DREAM-1K (Wang et al., 2024a) and Vid-
CapBench (Chen et al., 2025f).
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Prompts for eliciting model reasoning

{original prompts} + “Output the thinking process in <think> </think> and final an-
swer in <answer> </answer> tags, i.e., <think> reasoning process here </think>
<answer> answer here </answer>.’

Figure 5: Prompts for eliciting model reasoning

Prompts to generate QA pairs in Mix VidQA

Please create ten question-answer (QA) pairs that require reasoning across multiple
segments of the video content. Avoid using terms like “frames” in your QA generation.

Guidelines:
1. **Provide clear and specific references in each QA pair.** In your generated questions,

99 Gc CLINY3

AVOID ambiguous pronouns like “the video”, “the background”, “the scene”, “the person”,
“the environment”, “the man”, “the woman”, etc. Each QA pair should stand independently
with explicit references.

2. The questions must integrate information from multiple segments of the video.

3. Ensure the questions involve complex reasoning, such as deducing outcomes based on the
events or details presented in specific segments.

4. Avoid creating questions that can be answered without watching the video.

5. Ensure each question has a clear, unambiguous, and definitive answer. Do not generate
questions with uncertain or speculative answers.

6. Exclude subjective questions or those involving keywords such as emotional, spiritual,
contribution, importance, or implication.

7. Do not generate true/false or yes/no questions.

8. Format the QA pairs in the following JSON structure: [{“question”: “xxx”, “answer’:
“xxx”}, ...]

Figure 6: Prompts to generate QA pairs in MixVidQA.

* DREAM-IK is a challenging benchmark for detailed video description, featuring 1,000 clips
from diverse sources such as films, stock footage, and short-form videos. Each video is paired
with fine-grained human-annotated descriptions, and evaluated using AutoDQ, a metric better
suited for assessing rich, multi-event narratives than traditional captioning scores.

* VidCapBench comprises 643 videos designed to evaluate video captions from the perspective
of their utility for text-to-video generation. Unlike DREAM-1K, which provides ground truth
captions, VidCapBench assesses caption quality by inputting both the captions and carefully de-
signed evaluation questions into a judge model. The quality of the captions is then determined by
the accuracy of the judge model’s responses to these questions.

B.2 DETAILS OF PROMPTS
B.2.1 PROMPTS TO ELICIT REASONING

In Figure 5, we present the prompts that we used to elicit the model reasoning before response.

B.2.2 PROMPTS TO GENERATE QA PAIRS IN MIXVIDQA

In Figure 6, we present the prompts that we used to generate the initial QA pairs for MixVidQA.

B.2.3 PROMPTS TO EVALUATE DARKEVENTINFER

In Figure 7, we present the prompts that we used to evaluate model response in DarkEventInfer.
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Prompts to evaluate model response in DarkEventInfer

You are an evaluator tasked with determining if a given response matches the Ground Truth
(GT) provided. Your job is to compare the response and GT carefully and return a value
based on their consistency.

Instructions:

1. Read the Response and GT carefully: Ensure you understand both the response and the
GT completely.

2. Evaluate the Consistency:

*Score 2: If the response semantically covers the GT entirely, even if the response is longer.
*Score 1: If the response partially covers the GT, but does not fully encompass it.

*Score 0: If the response is entirely different and irrelevant from the GT or the response is
None.

Response: {model response}
GT: {ground truth}

Your judgment:

Figure 7: Prompts to evaluate model response in DarkEventInfer.

Prompts to evaluate model response in MixVidQA

Given a question along with its ground truth and a generated answer, please judge whether
the generated answer is True or False. If the ground truth or the generated answer is
ambiguous, consider it as False.

Question: {question}
Groung truth: {ground truth}
Generated answer: {model response}

Your judgment:

Figure 8: Prompts to evaluate model response in Mix VidQA.

B.2.4 PROMPTS TO EVALUATE MIXVIDQA

In Figure 8, we present the prompts to evaluate model response in MixVidQA.

B.3 DETAILS OF THE DATA CURATION

This subsection delineates the construction pipelines for DarkEventInfer and MixVidQA, as illus-
trated in Figure 9.

DarkEventInfer presents the model with a video containing black-screen segments and requires it
to infer the events that occur during the masked periods based on contextual cues. Based on the
event captions and their corresponding timestamp annotations from COIN (Tang et al., 2019), we
randomly select one event per video (e.g., Event 4 in Figure 9) and add a black-screen mask to
it. The model is then asked to reason about and predict the masked event based on the contextual
information from the unmasked segments.

The MixVidQA task is designed to present the model with interleaved video clips from two distinct
sources and require it to answer questions based on the most relevant video source while ignoring
the other. Specifically, we source videos from Kinetics (Kay et al., 2017), each lasting around 10
seconds, which are rich in actions. To construct the mixed sequences, two videos are randomly
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DarkEventInfer
Original video .
- L —— Prompt:

i-' —= ) — A o Examine a video that includes a black
b oy A o 3 N »s_ | screen segment intended to cover up a

$ G : — specific event. Infer the event that is
I‘— Event 1

Masked video 1Add mask 9 Ground truth:
i;r The black screen was likely obscuring
& the process of seasoning the fish with
spices or herbs, which is a crucial step
in preparing the dish for cooking.

probably being hidden by the black
[*— Event5 —’l screen.

Event 3 Event4 —

Prompt:

You will receive a video clip with
alternating segments from two separate
sources, as well as a question tied to
one of these sources. Answer the que-
stion based solely on the relevant video
source.

Question: What is the boy’s focus dur-
ing the video?

Clip B-1
Mix video clips [CE’]

Ground truth:
The boy’s focus appears to be rearran-

Clip A-1 Clip B-1 Clip A-2 Clip B-2 Clip A-3 Clip B-3 ging and stacking the red solo cups.

Figure 9: Details of the data curation of DarkEventInfer and MixVidQA.

selected and divided into clips with durations ranging from 1.5 to 2 seconds, which are then inter-
leaved to form a new composite video. For each mixed video, we generate a set of QA pairs using
Qwen2-VL-72B (Wang et al., 2024b), where each question explicitly refers to one of the original
videos. The model is expected to identify the relevant video clips to provide the correct answer
based on the mixed video sequences.

For the above data, we have conducted manual verification of all annotations. During this process,
we corrected inaccuracies or ambiguities in the automatically generated annotations and removed
instances that were excessively challenging or ambiguous even for human annotators. This ensures
that the final datasets maintain high quality and are suitable for effective model training.

B.4 DETAILS OF THE KEYWORDS REWARD

In Equation 6, we define the keyword reward by introducing the time-series-related keyword set T’
and the speculation-related keyword set S, which guide the model to generate captions that are both
temporally coherent and free from subjective speculation. In Figure 10, we illustrate examples of
the keywords in these two sets specifically.

Examples of the keywords set in keywords reward

Temporally-relevant set 7":
{“start with”, “then”, “next”, “after”, “begin with”, “followed by”, “following”, “subse-

CEINT3 CEINT3 CE T3

quently”, “initially”, “first”, “second”, “finally”, “lastly”, ...}

Speculation-related set S
{“possibly”, “likely”, “appears to”, “seems to”, “might”, “may”, “potentially”, “probably”,

9 G EXIYs

“implying”, “perhaps”, “presumably”, ...}

Figure 10: Illustrative examples of the keyword sets utilized in the keywords reward.
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C ADDITIONAL EXPERIMENTAL ANALYSIS

C.1 ABLATION ON THE JUDGE MODEL FOR CAPTIONING TASK

In the main text, we employ GPT-3.5-Turbo
as the judge model for the captioning task. To
evaluate the impact of different judge models
on the training process, we present the exper-  GPT-3.5-Turbo
imental results obtained when using GPT-4.1>  GPT-4.1
as the judge model in Table 4.

DREAM-1K VidCapBench
F1/Rec/Pre Acc /Pre / Cov /Con

34.8/30.6/404 13.0/47.8/80.8/13.6
349/324/378 13.3/49.5/79.2/ 8.7

Judge Model ‘

Table 4: Ablation on the judge model for the cap-

The experimental results indicate that the per- tioning task.

formance of using GPT-3.5-Turbo and GPT-4.1

as judge models is quite close. This suggests

that the performance improvement achieved by our method primarily stems from the effectiveness
of our training strategy and the high-quality training data. As long as the judge model possesses
sufficient capability for evaluation, the experimental results are not critically sensitive to the specific
choice of the judge model.

We opt to use OpenAlI’s API service for judgement in the captioning task, rather than deploying
a local Qwen model as done in other tasks, because the AutoDQ (Wang et al., 2024a) evaluation
method involves frequent calls to the judge model. If implemented locally, this would significantly
reduce training efficiency and lead to an unacceptable increase in training time. In comparison,
utilizing OpenAlI’s API greatly enhances training efficiency. Therefore, considering both computa-
tional efficiency and economic cost, we ultimately select GPT-3.5-Turbo as the judge model for the
captioning task.

C.2 ANALYSIS OF THE CAPTION REWARD

In the design of the caption reward,

geveral crucial strategies h?.VC been Coefficient o and 3 of DREAM-1K VidCapBench
implemented to avert undesirable be- the Caption Reward Fl/Rec/Pre  Acc/Pre/Cov/Con
haviors and enhance the overall qual- a = 1.0, 8 = 0 (reward hacking) | 37.0/29.9/48.6 10.3/44.7/76.2/12.3
ity of generated captions. To pre- _@=053=0(Wokeywords) |329/30.6/356 122/47.1/804/12.2
vent the model from hacking the pre- o= 0.5.4 = 0.2 (Ours) | 34.8/30.6/40.4 13.0/47.8/80.8/13.6
cision reward by generating overly ) )

brief captions, we set the coefficient Table 5: Analysis on the caption reward.

o of the precision term in Equation 5

to 0.5. Additionally, to promote temporally coherent caption generation and suppress speculative or
irrelevant content unrelated to the video, we incorporate the keywords reward as defined in Equa-
tion 6. To comprehensively validate the effectiveness of our reward design, we conduct ablation
studies by training models solely on the captioning data, with their respective performances summa-
rized in Table 5.

When « is set to 1, equal to the weight of the recall term, the model achieves a notable increase in
precision by producing extremely concise captions. However, this improvement is largely superfi-
cial, as it comes at the cost of reduced descriptive richness and contextual coverage. Moreover, the
model performs significantly worse on the QA-based captioning benchmark VidCapBench, indicat-
ing a degradation in overall caption quality. Therefore, it is essential to reduce the weight of the
precision reward to avoid reward hacking.

In the absence of the keywords reward, the model’s performance deteriorates compared to when
the reward is included. This indicates that the keywords reward plays a pivotal role in guiding the
model to generate temporally structured and semantically grounded captions, thereby substantially
improving performance on the video captioning task.

https://openai.com/index/gpt-4-1
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Coefficient | General Understanding Tasks | Reasoning Tasks | Caption Tasks
~ of KL . LongVideo- DarkEvent-  MixVid- DREAM-1K
Divergence | Yideo-MME Bench MVBench ‘ NEXT-QA  IntentQA  "prop roct QA-Test ‘ F1/Rec/Pre
0 64.3 59.3 61.9 81.6 97.1 117.0 49.0 35.2/32.8/379
0.05 63508) 562031 57940 | 81303  96.0(1n 91.0(.26) 390010 | 34.9/30.7/40.5
0.10 62.6(17) 541053 550069) | 808¢0s  95.7(14) 85.0(32) 24.0025) | 34.7/30.6/40.1
Table 6: Ablation study on the coefficient of KL divergence.
. . | General Understanding Tasks | Reasoning Tasks | Caption Tasks
orma
LongVideo- DarkEvent- MixVid- DREAM-1K
Reward | Video- 2 ,
‘ Video-MME — gopen  MVBench ‘ NEXT-QA  IntentQA - “ppger.Test  QA-Test | F1/Rec/Pre
None 64.1 57.8 58.2 81.2 96.2 110.0 47.0 33.1/31.3/35.0
Explicit 63.5 582 59.4 80.3 96.7 112.0 49.0 33.8/31.2/36.8
Implicit | 64.3 59.3 61.9 | 81.6 97.1 117.0 490 | 352/32.8/379

Table 7: Ablation study on the format reward.

C.3 ABLATION STUDY ON THE KL DIVERGENCE

In the objective function of the GRPO algorithm (Equation 2), the KL divergence constraint term

is introduced to limit the deviation between the current policy model and the previous policy model,
thereby ensuring the stability of the training process. However, during our training, we observed
that discarding the KL divergence constraint would be a preferable option when aiming to more
rapidly stimulate the model’s reasoning capabilities. Table 6 presents our ablation experiments
on the coefficient of the KL divergence constraint, demonstrating that stronger constraints lead to
slower model convergence, ultimately impairing final performance. Consequently, when using a
fixed number of training samples, omitting the KL divergence constraint better facilitates the model’s
reasoning abilities and yields optimal performance.

C.4 ABLATION STUDY ON THE FORMAT REWARD

During training, we adopt an implicit format reward, as defined in Equation 9. This mechanism
ensures that the models are eligible to receive any of the task-specific rewards only when its output
adheres to the required format. To evaluate the effectiveness of this approach, we compare two
alternatives in Table 7: one without format reward (denoted as “None”), and another with explicit
format reward, where the format reward is incorporated as a separate term into the overall reward
function alongside the task-specific reward.

Experimental results indicate that explicitly incorporating the format reward leads to a slight per-
formance improvement compared to the setting without format reward in most scenarios. However,
both approaches are outperformed by the implicit format reward mechanism. The underlying reason
is that the implicit format reward guides the model to gradually learn the correct output format while
generating accurate answers, thereby preventing the model from converging to suboptimal solutions
that either satisfy only the format constraints or focus solely on answer correctness, promoting more
balanced and effective training.

C.5 ANALYSIS OF VIDBRIDGE-R1’S REASONING PATTERNS

Figure 11 presents illustrative examples of VidBridge-R1’s reasoning patterns across both VideoQA
and captioning tasks. In the VideoQA task, VidBridge-R1 effectively integrates the analysis of
the video content with logical inference throughout its reasoning process, ultimately arriving at the
correct answer. In the captioning task, VidBridge-R1 initially provides fragmented observations of
the characters and events depicted in the video during the reasoning process. These partial insights
are then synthesized into a comprehensive and coherent video caption in the final answer. It is
noteworthy that these reasoning patterns emerge naturally from the model itself, rather than being
forcibly imitated through SFT, further demonstrating the effectiveness of our training framework.
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,——————————— VideoQA

Prompt: How does the energy in the circuit in the video change?
A. The electrical energy of the capacitor is converted into light
energy of the bulb.

B. The electrical energy stored in the battery is converted
into electrical energy in the capacitor and light energy and
heat loss in the bulb. V'

C. The electrical energy of the capacitor is converted into
electrical energy of the battery.

D. The electrical energy stored in the battery is converted into
electrical energy and heat loss in the capacitor.

E. The electrical energy of the capacitor is converted into

L7

Captioning N

Prompt: Provide a detailed yet concise description of the video.

VidBridge-R1: <think> The video begins with a wide shot of a nighttime urban scene, featuring
two animated characters lying on the ground in a crosswalk. The background includes buildings
with illuminated windows and a starry sky. The characters are initially motionless, then one
character starts to move, sitting up and looking around. Another vehicle, a green SUV, then enters
the frame from the left side, driving over the characters. The scene maintains a consistent nighttime
setting with the same background elements throughout. </think>

<answer> The video starts with a wide nighttime urban scene showing two animated characters
lying on the ground in a crosswalk, then transitions to one character sitting up and looking around,
followed by the entry of a green SUV from the left, driving over the two characters, all while

electrical energy and heat loss of the battery. maintaining the same background of illuminated buildings and a starry sky. </answer>

VidBridge-R1: <think>7e video shows a circuit with a battery, a capacitor, and a light bulb. /nitially, the battery provides electrical energy to charge the capacitor. Once
charged, the capacitor stores this electrical energy. When the switch is closed, the capacitor discharges through the light bulb, converting its stored electrical energy into
light energy and some heat energy due to resistance in the circuit. This process is a typical demonstration of energy conversion in an electrical circuit.</think>
<answer>B. The electrical energy stored in the battery is converted into electrical energy in the capacitor and light energy and heat loss in the bulb.</answer>

- J

Figure 11: Illustrative examples showcasing the reasoning patterns of VidBridge-R1. In VideoQA
tasks, the keywords indicating video content descriptions appear in italics, while reasoning steps
are underlined. In captioning tasks, corresponding elements in the reasoning process and the final
answer are marked with the same color.

D FUTURE WORK

Hallucination remains a critical challenge that substantially undermines the credibility of the
model (Liu et al., 2025a; Chen et al., 2025e; Li et al., 2025a). Future work will explore effective
strategies for detecting and mitigating hallucinations in both the chain-of-thought reasoning process
and the final outputs generated by VidBridge-R1, with the goal of further improving the model’s
reliability and trustworthiness.

E ATTEMPTS OF SFT COLD-START BEFORE RL

Some recent studies (Feng et al., 2025; Zhang et al., 2025b; Peng et al., 2025a; Yang et al., 2025)
suggest that employing SFT as a cold-start strategy to teach the model reasoning pattern before RL,
can effectively improve its reasoning capabilities. In this section, we aim to evaluate the effective-
ness of this approach within our proxy task framework by constructing reasoning chains for the tasks
presented in the main text and conducting experiments in which the model is first initialized through
SFT, followed by RL-based training.

E.1 CURATION OF THE REASONING CHAINS

To avoid data overlap between the SFT and RL phases, we utilize the data filtered out in the main text
due to high similarity among model responses for the SFT phase, while maintaining consistency with
the data used in the RL phase as per the main text. In the following, we will detail the construction
methods of the reasoning chains for SFT across all tasks, with the workflow illustrated in Figure 12.

E.1.1 CONSTRUCTION OF REASONING CHAINS FOR QA TASKS

For the QA tasks, including DarkEventInfer, MixVidQA, and conventional VideoQA, we employ
the following methodology to construct the reasoning chains used in the SFT phase.

First, we feed each video along with its corresponding query and ground truth into the Qwen2-VL-
72B. The model is instructed to generate a video caption tailored to the query and ground truth,
accompanied by a reasoning process and a final conclusion. The generated captions, reasoning
steps, and conclusions are then fed into Qwen2-72B, which filters out samples where the reasoning
or conclusion is logically inconsistent with the caption, ensuring that only those captions containing
sufficient and relevant information to support the reasoning and conclusion are retained.
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[

Caption:

The video shows a lamb and a sheep in a pen
filled with hay. The lamb is seen walking
around the pen, while the sheep stands nearby
with a yellow tag visible on its ear. At one
point, the lamb walks under the sheep, and the
sheep moves away from the lamb.

| % Qwen2vi

Instruction:

You will receive a video, a question, and its
ground truth. Your task is to create a detailed
caption that fully describes the video's content
and provides sufficient information to answer
the question accurately.

Thinking process:

Okay, let's see. The question is asking how one knows that the sheep are
domesticated. The options are A to E. The video description mentions a lamb and a
sheep ... Hmm, domesticated animals often have markers or tags for identification,

bx 3 “

right? Like ear tags for farm animals. So option A says "yellow tag on large sheep's
car." That seems relevant because ear tags are common in domesticated animals to
track them. Option B is "became defensive and protective." Wait, if they were
defensive, maybe that's more wild behavior? Or maybe not. Domesticated animals
might not be as defensive ... So I think the correct answer is A.

‘;QwenQ l

Revised thinking process:

<think> Okay, let's see. The question is asking how one knows that the sheep are domesticated.
The options are A to E. The video shows a lamb and a sheep... So I think the correct answer is A.
</think> <answer> A. yellow tag on large sheep s ear. </answer>

Question:
How does one know that the sheep are domesticated?
Options:

A. yellow tag on large sheep’s ear.

B. became defensive and protective.

C. by rubbing the sheep.

D. wears helmet.

E. food on table.

Ground Truth:

A. yellow tag on large sheep’s car.

4 . Caption with reflection:

| e— G e m | n| = Okay, let's break down the caption generation process sentence by sentence. Caption Sentence 1: The main
subject is a horse and rider. Reflection: The video prominently features a person riding a horse in an arena.

t setting. This sentence accurately identifies the primary focus ... Caption Sentence 7: The background

remains consistent, with minor changes in the position of the obstacles and the movement of other riders.
Reflection: The structural background (walls, roof, banners) is consistent. However, the obstacles are part of
a fixed course; their position doesn’t change during the rider’s round. Also, while another rider does appear
later in the sequence, describing “movement of other riders” as a general feature of the consistent background

Instruction:

Divide the original caption into
individual ~sentences. Output each
sentence one by one, and reflecting on

Whether it aceurately aligns with the | | Uroughout the primary action of the first rider is inaccurate. Correction: The background structure is
Original ti video content and remains consistent | consistent. Obstacles arc fixed. Other riders appear later, after the first rider's main action.
riginal caption: ‘ ! )
th 1 ted captions. —
The main subject is a horse and rider. The horse s brown, | ! ¢ PrEVIOUSly generated captions l ‘V\, Qwen2.5
agile, and well-trained, while the rider is dressed in formal

equesirian attire, including a helmet. They move together,
jumping over obstacles ... The background remains
consistent, with minor changes in the position of the
obstacles and the movement of other riders.

Revised caption with reflection:

<think> Let's generate the caption step by step. ... Caption Sentence 7: The background remains consistent, with minor changes in the position of the
obstacles and the movement of other riders. Reflection: ... </think> <answer> The main subject is a horse and rider. ... The background structure is
consistent. Obstacles are fixed. Other riders appear later, after the first rider’s main action. ... </answer>

Figure 12: Pipeline for constructing reasoning chains. The upper part illustrates the process for the
QA task, and the lower part shows the corresponding procedure for the caption task. For clarity, the
data filtering step for non-compliant entries is omitted.

Based on the filtered data, we prompt QwQ? to generate more natural, detailed, and structurally
clear reasoning processes using the captions and queries as input. Finally, the query, ground truth,
and the reasoning chains produced by QwQ are jointly fed into Qwen2-72B, which further refines
any erroneous reasoning steps that are not corrected in subsequent reasoning steps, while preserving
the original structure as much as possible. During this stage, any occurrences of the phrase such
as “video caption” are replaced with the term “video” to better support SFT for multimodal large
language models.

To ensure data quality, we manually review 20% of the curated samples, confirming both logical
consistency and linguistic accuracy to meet the training requirements.

E.1.2 CONSTRUCTION OF REASONING CHAINS FOR THE CAPTIONING TASK

For captioning tasks, the pipeline used to construct reasoning chains used in QA tasks is no longer
applicable. Instead, we leverage the strong capabilities of Gemini-2.5-Pro to construct high-quality
reasoning chains.

Specifically, we input both the video and its original caption into Gemini, which is prompted to
decompose the caption into individual sentences and generate them sequentially. After each gener-
ated sentence, Gemini is instructed to reflect on whether the current output conflicts with the video
content or with previously generated sentences. If a conflict is detected, the model is required to
immediately correct the inconsistency, disregarding the original caption, and continuing to generate
new captions along with corresponding reflections. If no conflict is identified, the model should
proceed to the next sentence from the original caption and perform another reflection step.

To further enhance the linguistic flu-

ency of the reasoning process, We “phase | DarkEventInfer MixVidQA VideoQA Captioning | Total
feed the generated caption and reflec- ST 1.576 1203 4639 10891 | 18309
tion sequences into Qwen2.5-72B. RL 1,841 2,332 2,003 4,624 10,800
This model is instructed to preserve
the logical structure of the original
reasoning while rephrasing and pol-
ishing the language, thereby aligning the overall process more closely with the natural cognitive
mechanism of “generating while reflecting” that characterizes human caption creation.

Table 8: Data distribution in our training set.

Shttps://qwenlm.github.io/blog/qwg-32b-preview
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R | General Understanding Tasks | Reasoning Tasks | Caption Tasks
easo-
Model f . LongVideo- DarkEvent- MixVid- | DREAM-1K
ning | Video-MME Bench MVBench | NExT-QA  IntentQA  “ppo pooe QA-Test | F1/Rec/Pre
Qwen2.5-VL-7B X 59.4 50.6 58.7 77.0 91.3 73.0 29.0 30.9/28.3/34.0
Qwen2.5-VL-Ans-SFT X 543 439 55.6 71.4 89.9 70.0 20.0 29.3/29.0/29.6
Qwen2.5-VL-CoT-SFT v 552 50.6 49.5 78.2 86.2 77.0 35.0 27.6/279/27.3
Qwen2.5-VL-CoT-SFT-RL v 57.0 522 50.5 77.8 88.1 80.0 39.0 28.4/29.5/27.3
VidBridge-R1 (Ours) v ‘ 64.3 59.3 61.9 ‘ 81.6 97.1 117.0 49.0 ‘ 35.2/32.8/379

Table 9: Performance comparison of different training methods. “Ans-SFT” refers to SFT using
direct answers without reasoning chains. “CoT-SFT” denotes SFT with reasoning chains. “CoT-
SFT-RL” stands for RL based on the CoT-SFT model.

As in the QA tasks, we manually review 20% of the generated samples to ensure both logical con-
sistency and linguistic accuracy, confirming that the data meet the quality standards required for
training. The final numbers of training samples used in the SFT and RL phases are summarized in
Table 8.

E.2 EXPERIMENTAL RESULTS

In Table 9, we present the experimental results related to the approach of SFT-then-RL. Specifi-
cally, we compare VidBridge-R1 with three additional settings: (1) SFT using only direct answers
without reasoning chains (Qwen2.5-VL-Ans-SFT), (2) SFT with the inclusion of reasoning pro-
cesses (Qwen2.5-VL-CoT-SFT), and (3) further applying RL after SFT with reasoning processes
(Qwen2.5-VL-CoT-SFT-RL).

The results demonstrate that, across general video understanding, video reasoning, and captioning
tasks, directly applying RL significantly outperforms the approach involving an initial phase of SFT.
This performance gap can be attributed to the fact that, during the cold-start phase, the model is com-
pelled to learn complex reasoning patterns that exceed its current cognitive capacity, consequently
exerting a negative impact on the subsequent RL phase. Moreover, the performance improvement
of RL on the base model is diminished in the scenario of CoT-SFT, further supporting our hypothe-
sis. These findings collectively suggest that compelling the model to imitate sophisticated reasoning
processes beyond its current capabilities may ultimately degrade its final performance.

E.3 QUALITATIVE RESULTS

Figure 13 presents a qualitative comparison between two training paradigms: direct RL (VidBridge-
R1) and SFT cold-start followed by RL (Qwen2.5-VL-CoT-SFT-RL). While the model initialized
with SFT demonstrates reasoning patterns that appear more aligned with human cognitive processes,
its outputs often contain significant hallucinations. In contrast, the model trained directly with RL
tends to produce more concise and accurate reasoning content.

Specifically, in the upper case, Qwen2.5-VL-CoT-SFT-RL erroneously claims that the black screen
segment lasts for an hour, despite the entire video being less than three minutes. Furthermore, it
misrepresents the temporal sequence of events. In comparison, VidBridge-R1 accurately identifies
the location of the black screen event and provides a correct inference. In the lower case, Qwen2.5-
VL-CoT-SFT-RL hallucinates the presence of various additional ingredients besides the chicken,
while VidBridge-R1 correctly recognizes that the pot contains only chicken and water.

These observations suggest that compelling the model to imitate complex reasoning processes be-
yond its current capability may lead to hallucinatory inferences inconsistent with the video content,
thereby ultimately undermining the model’s final performance.

F ADDITIONAL CASE STUDIES

As illustrated in Figures 14, 15, and 16, we present qualitative comparisons between VidBridge-R1
and the baseline models (Video-R1, VideoChat-R1 and VideoRFT) across a range of tasks, includ-
ing general video understanding, cognitive reasoning, and descriptive captioning. The results indi-
cate that all baseline models exhibit varying degrees of hallucination during their lengthy reasoning
chains, while VidBridge-R1 consistently delivers more accurate and reliable performance.
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- Cases on Reasoning Tasks

Prompt: You will be provided with a video featuring a black screen segment that deliberately conceals a
particular event. You should analyze the video and deduce the event most likely hidden by the black screen.
Ground Truth: The event hidden by the black screen segment is most likely the mixing and chemical reaction
between the liquid in the bottles and the materials on the ground.

Qwen2.5-VL-CoT-SFT-RL: <think> Okay, let‘s tackle this problem step by step... The key points from the
video are: 1. A man is kneeling next to a white powder bag labeled “Solutions.” 2. He pours the powder into a
pan and spreads it around. 3. Then he adds a liquid from a bottle, mixes them, and the mixture starts reacting.
4. After mixing, there's a black screen for one hour. 5. When the screen comes back, the reaction has stopped,
and the powder is gone. So the black screen is during the one-hour period after the reaction starts... So the
concealed event is the ongoing reaction that uses up the powder, resulting in its complete disappearance.
</think> <answer> The event hidden by the black screen segment is likely the continuation of the chemical
reaction between the powder and liquid, which leads to the complete consumption of the powder. </answer>

VidBridge-R1: <think> The black screen segment in the video likely conceals a particular event or series of
actions that occur between the visible frames. This could include the application of a solution, the reaction or
setting of materials, and the cleaning and preparation steps that the person is performing. The black screen
serves to hide the details of this specific process, creating a pause in the visual narrative to build anticipation
for the next visible action or result. </think> <answer> The black screen segment likely hides a specific event
or series of actions that occur between the visible frames, such as the mixing, application, reaction, and
cleaning processes involving the substances and tools laid out on the floor. </answer>

Prompt: You are given a video clip made up of alternating segments from two different sources, along with a
question related to one of them. Your should answer the question using only the information from the relevant
video source. Question: What is the primary ingredient used alongside the meat during the cooking process?
Ground Truth: Water is the main ingredient used alongside the meat for boiling.

Qwen2.5-VL-CoT-SFT-RL: <think> Okay, let's tackle this question. The user is asking about the primary
ingredient used alongside the meat during the cooking process... so I need to identify the cooking frames...
Looking at the cooking frames, it mentions that the main ingredient is chicken, along with various ingredients.
So, the primary ingredient used alongside the chicken during the cooking process is another unspecified food
item that complements it in the dish. Therefore, the answer to the question is that another unspecified food
item is used alongside the chicken while being cooked. </think> <answer> Another unspecified food item is
used alongside the chicken while being cooked. </answer>

VidBridge-R1: <think> The primary ingredient used alongside the meat during the cooking process is water.

</think> <answer>Water is the primary ingredient used alongside the meat. </answer>
(& J

Figure 13: Qualitative comparison of direct RL (VidBridge-R1) with SFT cold-start then RL
(Qwen2.5-VL-CoT-SFT-RL).

Notably, as shown in Figure 15, although Video-R1 generates a correct reasoning chain, it ultimately
produces an inconsistent and incorrect conclusion. This discrepancy suggests potential limitations
in the model’s ability to maintain coherence over long reasoning sequences. In contrast, VidBridge-
R1 achieves superior accuracy by adopting more concise reasoning chains derived from itself, rather
than relying on forced imitation through SFT, which better aligns with its inherent capabilities,
leading to more coherent and dependable outputs.
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Vs Cases on Video Understanding Tasks ~
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Prompt: What do the scenes shot on Indus River and Yangze River have in common?
A. They are all shot at dusk. v

B. The land is covered with snow in both scene.

C. There are bridges on both scene.

D. They both contain an island in the middle of the lake.

Qwen2.5-VL (reasoning): <think> The Indus River scene shows a bridge, and the Yangtze River scene also
shows a bridge. No other common features are shared between the two scenes. </think> <answer> C. There
are bridges on both scene. </answer>

Video-R1: <think> Let's break down the options... Option A: "They are all shot at dusk.” This option suggests
that both scenes were captured during the same time of day. However, there is no explicit mention or visual
evidence in the video description that indicates the time of day for either scene. Therefore, this option seems
unlikely... Option C: "There are bridges on both scene.” This option suggests that both scenes feature bridges.
The video description clearly mentions a bridge over the Indus River and a bridge over the Yangze River. Both
descriptions explicitly state the presence of a bridge, so this option appears to be correct... After evaluating all
the options, the most accurate description of the scenes for the Indus River and Yangze River is that there are
bridges on both scenes. Final answer: C <think> <answer> C </answer>

VideoChat-R1: <think> Let's analyze each option for the scenes shown: 1. Option A: They are all shot at
dusk. The Indus River scene appears to be during daylight with clear skies. The Yangtze River scene also
appears to be during daylight with clear skies. Neither scene shows signs of dusk... 3. Option C: There are
bridges on both scenes. The Indus River scene has a bridge visible across the river. The Yangtze River scene
also has a bridge visible across the river... Based on this analysis, the only commonality between the two
scenes is that they both contain bridges. </think> <answer> C. There are bridges on both scene. </answer>

VideoRFT: <think> ... The video begins with the Syr Darya River, followed by the Indus River, which is
shown as a wide river with a city in the background... until reaching the Yangtze River, which is described as
flowing into the East China Sea. For the Indus River, the video shows a wide river with a city in the
background, indicating a bustling urban area. For the Yangtze River, the video depicts a wide river with a city
in the background, also suggesting a significant urban presence. Now, let's evaluate the given options: Option
A: They are all shot at dusk. The video does not specify the time of day for either the Indus or Yangtze River
scenes, so this option cannot be confirmed... Option C: There are bridges on both scenes. The Indus River
scene includes a bridge over the river, while the Yangtze River scene also features a bridge. This option is
correct... Based on the visual evidence, the common element between the Indus and Yangtze River scenes is
the presence of bridges. </think> <answer> C </answer>

VidBridge-R1: <think> The scenes shot on the Indus River and Yangtze River are both shown in the video,
and upon analysis, both scenes are captured during dusk, as indicated by the lighting and sky conditions in
each respective frame. </think> <answer> A. They are all shot at dusk. </answer>

/

Figure 14: Qualitative comparison of VidBridge-R1 with baseline models on QA tasks in general
video understanding.
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Cases on Reasoning Tasks

Prompt: Which of the following interventions would be best suited to prevent future events such as those
shown in the video from occurring in the future?

A. Installing horizontal drainage systems to reduce groundwater pressure within the slope.

B. Regrading the slope to a gentler angle by removing material from the upper sections.

C. Securing the cliff face with rock bolts and covering it with wire mesh to stabilize loose rocks. v
D. Planting deep-rooted vegetation on the cliff face to reinforce the slope with root systems.

E. Diverting the road away from the cliff by constructing a tunnel through the mountain.

Qwen2.5-VL (reasoning): <think> The video depicts a landslide or a similar type of slope failure. To prevent
future occurrences, the most effective intervention should address the root cause of the instability. Option A:
Installing horizontal drainage systems can help manage groundwater pressure, which is often a contributing
factor to slope failures... Option C: Securing the cliff face with rock bolts and wire mesh can provide
immediate stability but may not address the underlying issues causing the instability... </think> <answer> A.
Installing horizontal drainage systems to reduce groundwater pressure within the slope. </answer>

Video-R1: <think> Let‘s break down the options one by one to determine which intervention would be most
effective for preventing future landslides or similar events... Considering the effectiveness and practicality,
the best intervention would be to secure the cliff face with rock bolts and covering it with wire mesh. This
provides immediate and effective stabilization. Final answer: C </think> <answer> A. Installing horizontal
drainage systems to reduce groundwater pressure within the slope. </answer>

VideoChat-R1: <think> The video shows a landslide or a similar type of slope failure. To prevent future
occurrences, the intervention should address the root cause of the instability, which could be related to water
pressure, slope angle, loose rocks, or soil composition. Option A addresses groundwater pressure, which can
be a significant factor in slope stability... Option C focuses on securing the slope with physical reinforcement,
which is effective but may not be the most cost-effective solution... Given the immediate need to address the
issue without major structural changes, installing horizontal drainage systems seems like the most direct and
effective way to manage groundwater pressure and prevent future landslides. </think> <answer> A </answer>

VideoRFT: <think> ... Option A involves installing horizontal drainage systems to reduce groundwater
pressure. This could help stabilize the slope by managing water flow, which is crucial for preventing
landslides caused by saturated soil. However, the video does not show any signs of water erosion, so this
option might not be directly applicable... Option C proposes securing the cliff face with rock bolts and wire
mesh. This method can stabilize loose rocks and prevent them from falling, but it might not address the
underlying issues causing the slope instability... Given the immediate need to prevent further landslides,
Option A (horizontal drainage) seems the most direct approach to manage groundwater pressure and stabilize
the slope. </think> <answer> A </answer>

VidBridge-R1: <think>The video depicts a landslide or similar slope failure event, which is likely caused by
factors such as unstable slope angles, loose rock, or lack of root reinforcement. Among the given options, the
most comprehensive and effective intervention to prevent future similar events would be one that addresses
multiple potential causes and provides long-term stability.</think> <answer>C. Securing the cliff face with
rock bolts and covering it with wire mesh to stabilize loose rocks.</answer>

_/

Figure 15: Qualitative comparison of VidBridge-R1 with baseline models on QA tasks in video
reasoning.
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Cases on Captioning Tasks

Prompt: Provide a detailed yet concise description of the video.

Qwen2.5-VL (reasoning): <think> The video depicts a scene set at night with a starry sky. Two characters,
one with blue hair and another with pink hair... The overall atmosphere seems calm but slightly mysterious
due to the characters' positions and the setting. </think> <answer> The video shows two animated characters
in a nighttime urban setting, with one character sitting up while the other lies down. A green car passes by,
partially covering the view of the characters. The scene has a calm yet mysterious ambiance. <answer>

Video-R1: <think> The video depicts an animated scene set at night... </think> <answer> The video begins
with two animated characters lying on the ground in a nighttime urban setting. One character has blue hair and
the other has pink hair... As the scene develops, the character with blue hair starts to move, sitting up and then
standing. The character with pink hair remains lying down. The character with blue hair then walks away,
leaving the character with pink hair still lying on the ground. A green car drives into the frame from the left
side, partially obscuring the view of the characters. The video concludes with the character with pink hair still
lying on the ground, while the green car continues to drive away. <answer>

VideoChat-R1: <think> The video depicts two animated characters lying on the ground... </think> <answer>
The video shows two animated characters lying on the ground in an urban setting at night. They appear to be
in distress or unconscious, as they are sprawled out on the pavement. A green car drives past them, indicating
that they might have been hit by the vehicle. The background features a typical cityscape with buildings and a
clear sky filled with stars, suggesting it's late at night. The overall mood of the video conveys a sense of
urgency and concern for the characters' well-being. </answer>

VideoRFT: <think> To describe the video, I‘ll break it down step-by-step... </think> <answer> The video
shows two animated characters lying on a a quiet, starlit urban street at night. One character has blue hair and
wears a light-colored outfit, while the other has pink hair and a white and yellow outfit. Initially, they are
motionless, resting near a streetlight with illuminated buildings in the background. As the video progresses,
the blue-haired character begins to sit up and look around, followed by the pink-haired character who also sits
up. A green vehicle with a red roof then enters the scene from behind, moving toward the characters.
Throughout, the characters interact, gesturing and facing each other, while the serene, starry night and urban
backdrop remain constant. </answer>

VidBridge-R1: <think> The video begins with a wide shot of a nighttime urban scene, featuring two
animated characters lying on the ground in a crosswalk. The background includes buildings with illuminated
windows and a starry sky. The characters are initially motionless, then one character starts to move, sitting up
and looking around. Another vehicle, a green SUV, then enters the frame from the left side, driving over the
characters who remain on the ground. The scene maintains a consistent nighttime setting with the same
background elements throughout. </think> <answer> The video starts with a wide nighttime urban scene
showing two animated characters lying on the ground in a crosswalk, then transitions to one character sitting
up and looking around, followed by the entry of a green SUV from the left, driving over the two characters, all
while maintaining the same background of illuminated buildings and a starry sky. </answer>

Figure 16: Qualitative comparison of VidBridge-R1 with baseline models on video captioning tasks.
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