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Abstract

Aligning large language models (LLMs) with001
human preferences has been recognized as the002
key to improving LLMs’ interaction quality.003
However, in this pluralistic world, human pref-004
erences can be diversified due to annotators’ dif-005
ferent tastes, which hinders the effectiveness of006
LLM alignment methods. This paper presents007
the first quantitative analysis of commonly used008
human feedback datasets to investigate the im-009
pact of diversified preferences on reward model-010
ing. Our analysis reveals a correlation between011
the calibration performance of reward mod-012
els (RMs) and the alignment performance of013
LLMs. We find that diversified preference data014
negatively affect the calibration performance015
of RMs on human-shared preferences, such016
as Harmless&Helpful, thereby impairing the017
alignment performance of LLMs. To address018
the ineffectiveness, we propose a novel Multi-019
Objective Reward learning method (MORE) to020
enhance the calibration performance of RMs021
on shared preferences. We validate our find-022
ings by experiments on three models and five023
human preference datasets. Our method signif-024
icantly improves the prediction calibration of025
RMs, leading to better alignment of the Alpaca-026
7B model with Harmless&Helpful preferences.027
Furthermore, the connection between reward028
calibration and preference alignment perfor-029
mance suggests that calibration error can be030
adopted as a key metric for evaluating RMs.031

1 Introduction032

Large language models (LLMs), such as Chat-033

GPT (OpenAI, 2023) and LLaMa (Touvron et al.,034

2023a,b), have significantly accelerated the de-035

velopment process toward artificial general intel-036

ligence (AGI). Among the key factors for such037

great achievement, the alignment technique, which038

finetunes LLMs with human feedback (Christiano039

et al., 2017), has played an essential role in040

training LLMs’ responses to follow human val-041

ues (e.g., helpfulness and harmlessness) (Askell042

et al., 2021). Among the LLM alignment algo- 043

rithms, reinforcement learning from human feed- 044

back (RLHF) (Ouyang et al., 2022) has become 045

the mainstream solution, which first learns a re- 046

ward model (RM) representing human preferences 047

and then updates LLMs via the proximal policy 048

optimization (PPO) (Schulman et al., 2017) toward 049

generating responses with higher RM scores. Alter- 050

native alignment methods also have been sequen- 051

tially proposed for better computational complexity 052

and training instability, such as RAFT (Dong et al., 053

2023b), DPO (Rafailov et al., 2023), RRHF (Yuan 054

et al., 2023), and APO (Cheng et al., 2023b). 055

The performance of these alignment methods 056

highly depends on the quality of human preference 057

data (x,yw,yl), where x is the input query to the 058

LLM, and response yw is preferred to response yl 059

under the human annotation (Ouyang et al., 2022). 060

Ideally, the preference datasets should uniformly 061

be helpful, harmless, benevolent, and unbiased to 062

guide the LLM alignment. However, in real-world 063

scenarios, individuals can have diversified prefer- 064

ences on the same topic based on their different 065

experiences, educational backgrounds, religions, 066

and cultures (Leonardelli et al., 2021). Even for the 067

same person, his or her expected model answer to a 068

particular question can vary depending on different 069

scenarios (Cheng et al., 2023a). The annotation dis- 070

agreement, which is caused by different annotators 071

or the same annotator in different scenarios (Bai 072

et al., 2022), will significantly hinder the effective- 073

ness of alignment methods (Davani et al., 2022; 074

Wan et al., 2023). 075

To identify the diversified preferences quantita- 076

tively, we select five commonly used human feed- 077

back datasets, train an RM on each, and then test 078

the performance on the other sets (details in Sec- 079

tion 3). We plot the observation results in Figure 1. 080

We observe that training RM on a single prefer- 081

ence data source may cause inconsistent reward 082

distribution shifts (middle plot), result in diverse 083
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Figure 1: Illustration of Diversified Preferences. Left: reward accuracy on each preference. Middle: the reward
distribution of each RM on harmless preference. Right: the reward statistics of each RM on harmless preference.
The solid box indicates the reward statistics on correct rewarded samples, and the hollow box indicates the wrong
rewarded samples.

reward values (right plot), and compromise the084

performance of other sets (left plot). The result085

indicates that different human preference datasets086

have different preference distributions (Cheng et al.,087

2023a). Hence, a more comprehensive understand-088

ing of the impact of diversified human preference089

datasets on the reward model becomes crucial, yet090

it has not received adequate attention and remained091

unexplored in the LLM alignment domain.092

In our exploration, we found the over-rewarding093

phenomenon, that is, the vanilla RMs tend to out-094

put extreme rewards on samples, which damages095

the RMs and LLM alignment. To enhance the ef-096

ficiency of leveraging the diversified preference097

datasets, inspired by multi-objective optimization098

methods (Sener and Koltun, 2018; Zeng et al.,099

2023), we regard RMs as a shared reward addition-100

ally with a customized reward drift. The shared101

reward represents the shared preferences across102

datasets (or general human preferences) and the103

reward drift contains individual or domain-specific104

preference information (Cheng et al., 2023a). Then,105

we introduce a Multi-Objective Reward train-106

ing scheme (MORE) to capture the shared (gen-107

eral) preference information, which adopts a novel108

reweight techniques to minimize the mean gradient109

of enlarging reward drifts. With MORE, RMs can110

capture a broader range of preferences and mitigate111

the impact of reward drifts. The main contributions112

of this paper are:113

• This is the first work to demonstrate the pos-114

itive correlation between the calibration per-115

formance of RMs and the alignment perfor-116

mance of LLMs. Moreover, RM learning117

on diversified preferences typically induces118

high calibration errors, indicating unreliable119

rewards. The unreliable rewards come from a120

over-rewarding phenomenon, denoting vanilla121

RMs output extreme rewards inducing harm-122

ful reward drifts. Hence, it negatively impacts 123

the performance of LLM alignment. 124

• We induce a simple and effective Multi- 125

Objective Reward (MORE) training scheme 126

to alleviate the over-rewarding phenomenon. 127

MORE makes self-adaption to the RM 128

learning gradient to mitigate the reward 129

drifts. MORE effectively enhances the cal- 130

ibration performance of RMs, especially on 131

shared preferences across diversified prefer- 132

ence datasets. 133

• We verified our findings with Pythia-1.4B, 134

Pythia-2.8B (Biderman et al., 2023) and 135

LLaMa2-7B (Touvron et al., 2023b) on five 136

widely recognized and diverse preference 137

datasets. Through empirical analysis, we es- 138

tablished that MORE significantly minimizes 139

reward drift and achieves low Expected Cali- 140

bration Error (ECE) values. Additionally, by 141

applying reject sampling to Alpaca-7B (Taori 142

et al., 2023) with the RMs generated, we 143

aligned the models with Helpful&Harmless 144

preferences, thereby affirming the critical role 145

of ECE in the evaluation of Reward Models. 146

2 Background 147

Large language Model Alignment Parameter- 148

ized by θ, a reward model (RM) is a mapping 149

rθ : X × Y → R, which provides a real-valued 150

reward score rθ(x,y) evaluating a textual response 151

y = (y1,y2, . . . ,yM ) ∈ Y corresponding to an 152

input prompt x = (x1,x2, . . . ,xN ) ∈ X . Given a 153

sample (x,yw,yl) ∼ D from a preference dataset 154

D, rθ is expected to provide a preference score 155

with rθ(x,yw) > rθ(x,yl), representing the re- 156

sponse yw is preferred. Following the Bradley- 157

Terry model (David, 1963), the RM learning objec- 158

tive on the preference dataset (x,yw,yl) ∼ D is 159
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defined as:160

Lrank(θ;D) = −ED [log(σ (∆rθ(yw,yl)))] (1)161

where we use ∆rθ(yw,yl) to denote reward differ-162

ence rθ(x,yw) − rθ(x,yl) for simplifying nota-163

tion in this paper and σ(·) is the Sigmoid function.164

With a well-learned reward rθ(x,y), LLM align-165

ment optimizes the generation policy π(y|x) by166

maximizing the expected reward value:167

Ex∼D,y∼π(y|x)[rθ(x,y)]

− βDKL[π(y|x)∥πref(y|x)],
(2)168

where DKL[π(y|x)∥πref(y|x)] is the KL diver-169

gence regularizer between current policy π and170

a reference πref, preventing the optimization from171

instability and degeneration. The typical solution172

to the preference optimization in equation 3 is rein-173

forcement learning (RLHF) (Ouyang et al., 2022),174

especially with the proximal policy optimization175

(PPO) algorithms (Schulman et al., 2017). How-176

ever, RLHF has been recognized as practically suf-177

fering from implementation complexity and train-178

ing instability. To avoid the RL schedule during179

alignment, reject sampling methods (Liu et al.,180

2023) directly conduct supervised fine-tuning on181

ybest to further simplify the human preference align-182

ment process. The rejection sampling optimization183

(RJS) loss can be written as184

LRJS(π) = −Ex∼D,y∼π(y|x)[log π(y
best|x)], (3)185

where ybest = argmax1≤s≤S{r(x,ys)} is the sam-186

pled response with the highest reward score.187

Calibration Error Calibration error is an effec-188

tive method to estimate the confidence of a model’s189

outputs (Guo et al., 2017). Numerous studies have190

focused on improving the calibration performance191

of statistical machine-learning systems (DeGroot192

and Fienberg, 1983; Palmer et al., 2008; Yang and193

Thompson, 2010). Furthermore, the calibration194

error of neural networks provides additional infor-195

mation for users to determine whether to trust the196

model’s predictions, especially for modern neu-197

ral networks that are more challenging to inter-198

pret (Guo et al., 2017; Zhu et al., 2023). In the199

field of natural language processing, studies have200

revealed a positive relationship between calibra-201

tion performance and the reduction of hallucina-202

tion (Xiao and Wang, 2021; Tian et al., 2019), and203

the evaluation of pre-trained language models (Ka-204

davath et al., 2022; Tian et al., 2023). The calibra-205

tion error has demonstrated its ability to evaluate206

the performance of language models. We provide 207

its computation in the Appendix A. In this paper, 208

we first employ the calibration error to evaluate 209

the RMs. Subsequently, we investigate the implicit 210

connection between RMs and LLM alignment un- 211

der diversified preferences. 212

3 Empirical Study of Diversified 213

Preferences 214

We start with an empirical analysis of diversi- 215

fied preferences in reward modeling on multiple 216

sources D = {D1, . . . ,DK}, where each data 217

source Dk contains the preference comparison 218

pairs from different tasks (Dong et al., 2023a), do- 219

mains (Cheng et al., 2023a), or individuals (Bai 220

et al., 2022). In this paper, we selected Summa- 221

rize (Stiennon et al., 2020), Webgpt (Nakano et al., 222

2021a), Helpful&Harmless (Bai et al., 2022), and 223

OASST1 (Köpf et al., 2023) as the different prefer- 224

ence sources to empirical analysis the phenomena 225

of diversified preferences. We use Pythia-1.4B (Bi- 226

derman et al., 2023) as the RM base, and finetuned 227

RMs with comparisons from each source. The ex- 228

periment setup aligns with Section 5. 229

The reward distributions across various RMs ex- 230

hibit diversity when applied to the same dataset. 231

We analyze and present the variation in rewards (de- 232

fined as the difference in reward values assigned by 233

an RM to the winning and losing samples) offered 234

by these RMs, as illustrated in Figure 1 (additional 235

results in Figure 8 and 9 in Appendix). Compared 236

with the results of raw model RMRaw, we observe 237

that training on different datasets results in diverse 238

reward values (right plot) and distribution shift 239

(middle plot). Specifically, the reward value dis- 240

tribution of RMHarmless shifts from the RMRaw in a 241

certain degree. While the reward value distributions 242

of RMHelpful, RMWebgpt, RMOasst1 and RMSumm. 243

shifts to the a different direction. Moreover, despite 244

the distribution of RMHelpful, RMWebgpt, RMOasst1 245

and RMSumm. are similar, the mean-variance of 246

their reward values are quite different. 247

Furthermore, when considering the accuracy 248

gains illustrated in Figure 1 (left plot), the ob- 249

served shift in reward distribution indicates that 250

the learned reward values from preference datasets 251

are diversified. To effectively capture the shared re- 252

ward values across these diversified preferences, it 253

becomes necessary to formulate a new problem ap- 254

proach for reward modeling on diverse preference 255

datasets. 256
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4 Multi-Objective Reward Learning257

In this section, we propose our reward modeling258

on diversified preference datasets, highlighting the259

implicit reward drift during the reward learning260

process and its negative impacts. Then, we present261

the MORE training schemes to mitigate the reward262

drifts as a feasible solution. To maintain the in-263

tegrity of our paper, we leave our quantitative anal-264

yses of reward modeling on diversified preferences265

in the next section.266

4.1 Preference Diversity as Reward Drift267

We denote r∗(·, ·) as the shared reward function,268

which (ideally) provides reward values reflecting269

the general values among people (or shared prefer-270

ence information across datasets in practice). As271

the collected human-feedback datasets are limited272

and implicitly biased, training an RM rθ on a lim-273

ited preference dataset can be viewed as drifting274

from an optimal reward. We can form a reward275

model rθ(·, ·) with reward drift in a data level:276

rθ(x,y) = r∗θ(x,y) + r̃θ(x,y), (4)277

where x,y ∈ X × Y , and r̃θ(x,y) is the reward278

drift learned by RM rθ(·, ·). Then, we investigate279

the vanilla ranking loss for reward modeling. Sub-280

stituting reward function in (1) with the drifted281

form (4), we have Lrank(θ;D) =282

−ED[log(σ(∆r∗θ(yw,yl) + ∆r̃θ(yw,yl)))]. (5)283

Hence, updating the RM to minimize the rank loss284

will enlarge the reward differences (input of the285

Sigmoid function). Simultaneously, the reward286

drift is also enlarged, causing over-rewarding.287

4.2 Reward Modeling on Diversified Data288

Letting θ be the RM trained on mixed diverse289

datasets D = {D1, . . . ,DK}, the rθ(x,y) can be290

viewed as a multi-task learner with shared param-291

eters (Sener and Koltun, 2018). Then, the reward292

value provided by rθ(x,y) can be decomposed293

into voting format weighted by an implicit λ:294

rθ(x,y) = r∗θ(x,y) +
∑K

i=1 λir̃θi(x,y), (6)295

where the shared reward r∗θ(·, ·) is the same with296

arbitrary λ, and r̃θi(·, ·) is the reward drift. We297

interpret that the r̃θi(·, ·) is provided by subset of298

parameters θi, representing the preferences from299

the i-th dataset Di. This reward value decompo-300

sition naturally holds in the model output level,301

despite the non-linear nature of neural networks.302

Moreover, our formulation aligns with multi-task 303

learning (Crawshaw, 2020) and multi-objective 304

learning (Guardieiro, 2023) problems. For ex- 305

ample, the θ can be implemented as an ensem- 306

ble model, where {θi}, i ∈ [N ] is the base mod- 307

els. Therefore, it is natural to adjust the weight λ 308

in an ensemble manner (Coste et al., 2023; Jang 309

et al., 2023; Touvron et al., 2023a; Eisenstein 310

et al., 2023) to mitigate the reward drift such that 311

min
∑K

i=1 λir̃θi(x,y). Compared with average re- 312

wards from multiple RMs (Jang et al., 2023; Eisen- 313

stein et al., 2023), we focus on training a single 314

RM that learns the shared preference. We propose 315

to reduce the model update on reward drift during 316

RM training via linear scalarization (Barrett and 317

Narayanan, 2008). Moreover, we provide further 318

discussion on related manners in Section 7. 319

4.3 Training Scheme: MORE 320

MORE loss function Our analyses suggest find- 321

ing proper weights λ for mitigating reward drifts. 322

Then, we propose training RMs to capture the 323

shared preference across multiple datasets with the 324

following objective: 325

LMORE(θ;D) =
∑K

i=1 λiLrank(θ,Di), (7) 326

where
∑K

i λi = 1, λi ≥ 0. Compared with vanilla 327

ranking loss in (1), the above loss additionally fo- 328

cuses on the combination relation across prefer- 329

ences. The linear combination of loss functions 330

is commonly adopted in deep learning methods to 331

balance the interaction of different modules (Zhang 332

et al., 2023; Kurin et al., 2022). Analogously, we 333

treat each preference as an individual module and 334

balance them wisely. Moreover, this formulation 335

also covers several typical training cases. For ex- 336

ample, directly mixing diverse preference datasets 337

D = {D1, . . . ,DK} and training a RM implic- 338

itly induces λi = |Di|/|D| (McMahan et al., 2017; 339

Ramé et al., 2024). Therefore, if the number of data 340

samples from a single preference is greatly larger 341

than other preferences, the RM is likely to drift to 342

the preference with more samples. Excluding data 343

quantity, the weight is also decided by the quality of 344

data samples in the training process (Katharopou- 345

los and Fleuret, 2018; Zhou and Wu, 2023). Neural 346

network training typically provides a larger gradi- 347

ent for harder samples (Katharopoulos and Fleuret, 348

2018), therefore, leaning the RMs preferences drift 349

to these hard samples. In practice, the quantity and 350

quality variance in diversified datasets may require 351

more hyper-parameter searching (Guo et al., 2024) 352
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Figure 2: Multi-objective reward model training scheme (MORE), which consists of four steps: (1) collect a
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minimize the reward drift to determine the scalar (λ1, λ2, . . . , λK) for MORE loss; (4) update the RM with the
re-weighted RM loss. Lower calibration error indicates the RM provides an accurate reward.

or data composition efforts (Dong et al., 2023a) in353

the vanilla finetuning process.354

What is MORE doing? We suggest training a355

better RM via self-adaption training weights λ for356

better data efficiency. The MORE loss minimizes357

the ranking loss by solving a reward drift mitigation358

task, applying a batch-wise reweighting method.359

Let batch data B = {x(b),y
(b)
w ,y

(b)
l }Bb=1 ∼ D be360

the sampled batch data from diverse datasets. Fur-361

thermore, Bi ∼ Di ⊂ B,∀i ∈ [K] is the subset362

of batch data from the i-th preference dataset. We363

have the gradient ∇θLMORE(θ;B)364

=
B∑
b=1

[
−∇θ log(σ(∆r∗θ(y

(b)
w ,y

(b)
l )))

]
+K·

min
K∑
i=1

λi

|Bi|∑
j=1

[
−∇θ log(σ(∆r̃θ(y

(j)
w ,y

(j)
l ))

]
︸ ︷︷ ︸

Reward Drift Mitigation

,

(8)365

where we adjust λ to minimize the partial gradient366

of enlarging reward drifts. The mitigation task in367

(8) can be efficiently solved by the Frank-Wolfe368

solver (Jaggi, 2013; Sener and Koltun, 2018; Zhou369

et al., 2022b; Zeng et al., 2023). We provide the370

details of our efficient implementation in the Ap-371

pendix B. Furthermore, LMORE shares the same372

magnitude of vanilla loss function Lrank in expecta-373

tion over the whole training dataset, as justified in374

Appendix B.375

Outline The MORE only requires simple mod-376

ification on batch data sampling and batch-wise377

reweighting. We depict the pipeline in Figure 2.378

MORE consists of THREE main steps as: 1) Sam-379

ple a diverse batch data B = {Bi}Ki=1, Bi = 380

{x,yw,yl}
|Bi|
b=1 and input the batch data forward 381

the RM and obtain the hidden states {zi}Ki=1, which 382

is the inputs of the reward head θrm. 2) Compute 383

the gradient of reward head with data {zi,yw,yl}. 384

3) Compute the weights λ by Frank-Wolfe solver. 385

Finally, we substitute the loss weights in (7) as the 386

final loss for the optimizer to conduct backward 387

and model updating. This procedure prevents the 388

RM from enlarging implicit reward drifts. 389

5 Experiments on Reward Modeling 390

In this section, we present our experiments and 391

quantitative analyses on reward modeling. 392

Datasets & models We use open-sourced hu- 393

man preference alignment datasets, including Help- 394

ful&Harmless (Bai et al., 2022), OASST1 (Köpf 395

et al., 2023), Webgpt (Nakano et al., 2021a), and 396

Summarize (Stiennon et al., 2020). We provide 397

the statistics of the datasets and data composi- 398

tion in Appendix 3. Despite these datasets be- 399

ing released to human preference alignment, our 400

study highlights the preference diversity across the 401

datasets and its impacts on training RMs. We train 402

Pythia-1.4B, Pythia-2.8B (Biderman et al., 2023) 403

and LLaMa2-7B (Touvron et al., 2023b) as the LM 404

base for RM training. We use the last token em- 405

bedding of the output hidden states as the pooled 406

hidden representation, then add one linear layer 407

(RM head) with the scale-value output on it to pre- 408

dict reward scores. We present the details of the 409

training setup in Appendix C. 410

Baselines We compare our method with conven- 411

tional fine-tuning strategies for training language 412
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models, specifically mixing the preference data413

samples. We refer to the training scheme as Mul-414

tiTask training (Dong et al., 2023a). The Multi-415

Task training scheme randomly samples data from416

hybrid preference datasets. Additionally, we com-417

pare with the Top performance of RMs trained418

on each preference dataset. We highlight that the419

Top performance indicates the ideal ensemble-RM,420

i.e., each sample obtains its reward from the corre-421

sponding best RM. Then, we naively Average the422

reward values from Top RMs provide on the same423

samples to denote a naive ensemble-RM. In all, we424

mark the baseline rewards as RMMultiTask, RMTop425

and RMAveraging respectively.426

Evaluation metric We use the preference ac-427

curacy on test datasets for each domain. If an428

RM outputs r(x,yw) > r(x,yl) for a test sam-429

ple (x,yw,yl), we denote it as a correct prediction.430

The preference accuracy is then computed as the431

proportion of correct predictions within all testing432

response pairs. However, preference accuracy only433

provides pairwise comparisons of responses and434

does not reflect the degree of preference for each435

response. Following Bai et al. (2022); Cheng et al.436

(2023b), we examine the probability calibration437

to test if the learned RMs accurately represent the438

human preference distribution. This is measured439

by the Expected Calibration Error (Naeini et al.,440

2015; Zhu et al., 2023).441

5.1 Reward Modeling on Diversified442

Preference Datasets443

We provide the reward modeling results on mixed444

diversified datasets in Figure 3 and Figure 4. The445

detailed information is in Table 2 of the Appendix. 446

The reward accuracy does not drop significantly 447

on mixed diversified preferences. Increasing 448

the size of LLMs, reward model training on mixed 449

diversified preference datasets can maintain reward 450

accuracy. For instance, when Pythia-1.4B is used 451

as the RM base model, the reward accuracy is lower 452

compared to the Top accuracy achieved through sin- 453

gle preference training on all preferences. Then, 454

when LLaMa2-7B is used as the base model, the 455

reward accuracy on the Oasst1, Webgpt, and Sum- 456

marise test sets surpasses the top accuracy achieved 457

through single training. Additionally, the degrada- 458

tion of reward accuracy on the Helpful and Harm- 459

less datasets is mitigated. Therefore, the perfor- 460

mance of RMs typically is proportional to the size 461

of base models (Gao et al., 2023). Moreover, we 462

find the accuracy of RMAveraging is poor, revealing 463

the preference conflicts across RMTop. 464

Reward modeling on mixed diversified prefer- 465

ences affects calibration performance Noting 466

the reward accuracy only provides comparisons 467

of responses (Zhu et al., 2023), we emphasize the 468

ECE performance reflects the degree of preference 469

for responses in Figure 4. Compared RMMultiTask 470

with RMTop, reward modeling on mixing the di- 471

versified preference datasets typically degenerates 472

calibration performance on all preferences. Es- 473

pecially, the reward accuracy of RMMultiTask and 474

RMTop are comparable but the calibration perfor- 475

mances are very different. The LLMs can main- 476

tain high accuracy on all preferences due to their 477

large capacity, however, the reward distribution is 478

affected by mixed diversified preferences. These 479
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Figure 5: Reward differences on test samples. Positive reward
differences indicate correct reward samples and negative reward
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Figure 6: MORE enhance calibration per-
formance with diversified preferences. The
black dashes indicate the ECE of RMTop.

findings reveal that reward accuracy is insufficient480

to verify the ability of RMs and suggest evaluation481

of RMs via ECE. We will further justify the point482

in the alignment experiments.483

MORE implements significant calibration per-484

formance improvement The RMMORE preserves485

a significantly lower ECE than RMMultiTask, indi-486

cating that RMMORE provides more accurate re-487

ward values. Moreover, RMMORE implements488

significantly lower ECE than RMTop on Help-489

ful&Harmless preferences. This is because490

Helpful&Harmless preference is shared by these491

datasets and MORE accurately captures shared492

preferences across them. Therefore, MORE im-493

plements lower calibration errors on shared Help-494

ful&Harmless preference and slightly loses its cali-495

bration performance on the other three preference496

datasets. This calibration performance gap between497

RMTop and RMMORE on the other three diversified498

preferences further reflects the preference diversity.499

5.2 Analyses on RMs of H&H Preferences500

To clarify the improvement of MORE, we provide501

analyses on Helpful&Harmless (H&H) datasets,502

which is an important human preference alignment503

objective for LLMs in recent works (Ouyang et al.,504

2022; Touvron et al., 2023b). Concretely, we fo-505

cus on the statistics of the reward difference (i.e.,506

∆rθ(yw,yl)). We count the reward differences of507

RMs on H&H test datasets in Figure 5.508

MORE mitigates over-rewarding phenomenon509

In Figure 5, we observe the RMTop outputs large510

absolute reward differences on testing samples. On511

the contrary, the RMMORE provides lower absolute512

reward differences on testing samples, compared513

with baseline training schemes. Moreover, RMs514

tend to provide extreme rewards to some samples.515

We count these extreme reward values as outliners516

in Appendix, Table 6. This phenomenon aligns517

with our methodology in (6), that is, MORE miti- 518

gated the reward drifting during training. Hence, it 519

outputs a lower absolute reward signal as more ac- 520

curate reward values. These findings reveal the phe- 521

nomenon of over-rewarding in RMs, where vanilla 522

RMs tend to assign large reward values to samples. 523

This phenomenon demonstrates problem modeling 524

(5). Importantly, the over-rewarding in RM may 525

not break the reward accuracy shown in Figure 3, 526

however, it induces unsatisfied calibration perfor- 527

mance. MORE maintains the reward accuracy of 528

RMs, alleviates the over-rewarding effects on re- 529

ward modeling, and trains better RMs. 530

MORE achieves better calibration using more 531

diversified preferences The MORE can bene- 532

fit from diversified preference information by (8), 533

which suggests increasing the number of diversified 534

preferences can better mitigate reward drifts. We 535

change the number of mixed preference datasets 536

from 2 to 5 to verify our insights, as shown in 537

Figure 6. In detail, we start from mixed Help- 538

ful&Harmless datasets (K=2) and then add Oasst1, 539

Webgpt, Summarise datasets. The calibration error 540

decreases with the number of preference datasets. 541

It proves that MORE can utilize the preferences 542

information to enhance the performance of the re- 543

ward model on shared preferences and surprisingly 544

outperforms RMTop. 545

6 Experiments on LLM Alignment 546

In this section, we use the previously obtained RMs 547

for LLM alignment experiments on Alpaca (Taori 548

et al., 2023), which is an instruction-tuned LLaMA- 549

7B model (Touvron et al., 2023a). We use Reject 550

Sampling (RJS) (Touvron et al., 2023b; Liu et al., 551

2023) as the alignment algorithms, where we sam- 552

ple 4 responses from Alpaca with queries from 553

H&H trainsets. Our experiment mainly justifies the 554

correlation between the calibration performance 555
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Reward Model Perplexity (PPL) GPT4 Evaluation (%)

Base Model Scheme Acc(%) ECE ↓ Helpful ↓ Harmless ↓ Win Tie Lose

- - - - 15.48 12.71 - - -

Pythia-1.4B
MultiTask 64.79 0.0177 15.30 8.22

44 22 34
MORE 64.32 0.0109 12.68 8.42

Pythia-2.8B
MultiTask 66.61 0.0145 16.76 8.42

45 21 34
MORE 65.87 0.0078 13.14 10.29

LLaMa2-7B
MultiTask 72.40 0.0284 16.93 8.69

45 23 32
MORE 72.32 0.0143 11.97 9.96

Table 1: The RJS alignment performance with different RMs. The first
line is the performance of Alpaca base model. The results show that ECE
further reflects the ability of RMs when the reward accuracy is close.
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Figure 7: The correlation between
ECE of RMs and RJS alignment
performance for the Alpaca model.

of RMs and LLM alignment performance.556

RMMORE works better than RMMultiTask for RJS557

aligning H&H with lower ECEs We finetune558

Alpaca with the most preferred samples scored559

by previously obtained RMs to align the human560

preference of H&H, following RJS loss (3). We561

show the alignment performance in Table 1, where562

we use the same GPT4 evaluation prompts with563

DPO (Zhou et al., 2023) shown in Appendix D.564

RMMORE works better for RJS tasks. Noting that565

RMMORE and RMMultiTask implements comparable566

reward accuracy on H&H, while the calibration567

performance are significantly different. Therefore,568

the alignment performance is additionally related569

to the calibration performance of the RMs.570

ECE of RMs is positively correlated with align-571

ment performance We finetune the Alpaca572

model on the good response from H&H training573

datasets, and the finetuned model is marked by574

Alpaca-SFT. Then, we conduct the RJS alignment575

experiments with LLaMa2-7B RMs from Figure 6.576

We compare each alignment result of Alpaca-RJS577

models with the same Alpaca-STF model via GPT578

evaluation, shown in Figure 7. The results show579

that the RMs with lower ECE values work better580

for RJS alignments, emphasizing the importance of581

calibration evaluation.582

7 Additional Discussions583

584
Connections with data composition and585

ensemble-RM studies Dong et al. (2023a) have586

empirically shown that the LLM ability can be587

improved by adjusting the mixed training data588

ratio from different sources. However, the mixed589

proportion can be hard to search in practice.590

Besides, other studies have shown that direct591

ensemble RMs (Eisenstein et al., 2023) or merging592

RMs’ parameters (Jang et al., 2023; Ramé et al.,593

2024) during training could also improve the594

ability of RMs. In practice, these approaches595

induce a large system burden for storing/training596

multiple RMs, especially since the RMs can be 597

extremely large. In comparison, this paper focuses 598

on training single RM on diversified datasets. 599

Suggestions for reward model training This pa- 600

per reveals two main suggestions for future reward 601

model training works. First, Evaluate RMs with 602

reward accuracy and calibration error. Reward 603

accuracy is insufficient to evaluate the ability of 604

RMs due to model capacity and data quality. Our 605

work suggests the community additionally focuses 606

on the calibration performance of RMs. Besides, 607

Increasing the diversity of preference data samples 608

can ensure the robustness of the reward modeling 609

process. Due to the preference information being 610

typically noisy, learning reward information from 611

mixed diversified datasets can be beneficial. 612

Applications The MORE can enhance prefer- 613

ence modeling pre-trained (PMP) paradigm (Askell 614

et al., 2021) as it captures the shared preference in- 615

formation. This facilitates its use in federated learn- 616

ing scenarios (McMahan et al., 2017), where the 617

data distributions are highly heterogeneous across 618

participants. Moreover, the RMMORE can be eas- 619

ily finetuned to specific preferences (Cheng et al., 620

2023a). This flexibility allows for the adaptation of 621

our approach to various applications. 622

Extension to RM-free alignment methods RM- 623

free alignment methods (Rafailov et al., 2023; Azar 624

et al., 2023) are derived based on an implicit re- 625

ward model. They typically optimize the policy 626

by substituting it into the classification loss usually 627

used to train the reward model. The relation of 628

calibration performance of implicit reward and the 629

alignment performance in the RM-free methods is 630

unexplored. Besides, learning shared preferences 631

from mixed diverse preference datasets can be ex- 632

tended to RM-free paradigms. For example, we 633

can re-weight the partial reward loss of the RM- 634

free alignment methods, especially DPO (Rafailov 635

et al., 2023; Zhou et al., 2023). We will explore 636

this in future work. 637
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8 Limitations638

We only conducted experiments using the conven-639

tional RJS algorithm in LLM alignment tasks. As a640

reward modeling algorithm that captures shared641

preference information, MORE depends on the642

quality of the applied data. Therefore, the cor-643

relation of ECE of RMs and LLM alignment per-644

formance in other alignment algorithms requires645

further exploration. Besides, the training datasets646

we used contain violence, abuse, and biased con-647

tent that can be upsetting or offensive to particular648

groups of people.649
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Figure 8: Statistics of reward differences on test sets. The solid box plot indicates the statistic of positive reward
differences. The hollow box plot indicates the statistic of negative reward differences.
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(c) Oasst1 testset
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Figure 9: Statistics of reward values provided by {RMRaw, RMHelpful, RMHarmless, RMOasst1, RMWebgpt, RMSumm.}.
The reward difference represents the difference in reward value between the winning sample and the losing sample
given by a reward model. The histogram displays the distribution of reward differences.

A Related Work957

RLHF has become the mainstream approach to align language models towards helpfulness, and harmless-958

ness (Leike et al., 2018; Nakano et al., 2021b; Ouyang et al., 2022; Bai et al., 2022). They all utilize an959

RM to align machine learning systems with human performance, which directly decides the performance960

of preference alignment. As the RM is the most important component in the RLHF framework, recent961

RM studies have grown rapidly.962

Reward Modeling in human preference alignment The original goal of RM is to provide a scalar963

score to a model response and indicate the quality in (2), especially helpfulness and harmlessness. Due to964

the trade-off in quality aspects (Touvron et al., 2023a; Bai et al., 2022), it can be challenging for a single965

RM to perform well in all aspects. Our work related to previous works handling multiple rewards and966

potential disagreement in preferences. For instance, LLaMa-2 (Touvron et al., 2023a) utilizes two separate967

RMs, one optimized for helpfulness and another for harmlessness. They mitigate the magnitude bias968

of the reward scalar with a margin loss, which provides a large margin for pairs with distinct responses,969

and a smaller one for those with similar responses. Multiple RMs can be utilized as majority voting or970

averaging (Jaques et al., 2020; Jang et al., 2023) in the PPO (Schulman et al., 2017). Wang et al. (2023)971

introduces a Bayesian-based approach called d-PM to align language model with human preferences972

with disagreement. Cheng et al. (2023a) proposes to train a customized RM from the general RM to973

avoid disagreement from different preference domains. Furthermore, our theoretical intuition follows974

recent work DPO (Rafailov et al., 2023) and SLiC-HF (Zhao et al., 2023) for preference alignment, which975

explores more straightforward methods to align language models with human preferences. Beyond the976

methodology, they have shown the RLHF framework is working as likelihood calibration tasks (Deng977
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et al., 2020; Wang et al., 2023; Azar et al., 2023), which proves that the reward values provided by the 978

RM are also important. 979

Domain Generalization Machine learning methods suffer from performance degeneration when the 980

source domain data and the target domain data follow different distributions, which has been recognized 981

as the domain shift problem (Pan and Yang, 2009; Csurka, 2017; Wang et al., 2021). To address this 982

problem, domain generalization is proposed to minimize the domain shift across domains. In this direction, 983

existing methods aim to learn the domain invariant representation to reduce the discrepancy between 984

representations of multiple source domains (Zhou et al., 2022a). We derive the concept of reward shift 985

from domain shift. Differently, our reward shift is built on sample-wise reward values to model the training 986

dynamics. 987

Multi-objective Optimization Multi-objective Optimization (MOO) (Gunantara, 2018) is a branch of 988

methods addressing learning problems involving multiple conflicting objectives. In real-world scenarios, 989

it commonly encounters situations where multiple objectives need to be considered simultaneously, often 990

with trade-offs between them. In the practice of machine learning, most MOO methods (Sener and Koltun, 991

2018; Zeng et al., 2023) apply linear scalarization (Barrett and Narayanan, 2008) to merge multiple 992

objectives into one, and then automatically adjust the objective coefficients to balance the conflicts among 993

different tasks. 994

Expected Calibration Error We divide the confidence interval [0, 1] into M bins with equal length
(1/M ). Then, we place model predictions into these bins according to their prediction confidence. Let
Bm be the set of indices of samples that fall into the internal (m−1

M , m
M ]. We calculate the corresponding

accuracy and average confidence of each bin as follows:

Acc (Bm) =
1

|Bm|
∑
i∈Bm

I (ŷi = yi) ,Conf (Bm) =
1

|Bm|
∑
i∈Bm

p̂i,

where ŷi are the prediction results, and yi is the ground-truth of the i-th sample. I is the indicator function
which produces 1 if ŷi = yi otherwise 0. p̂i is the prediction confidence of the i-th sample. In the context
of reward modeling, the prediction confidence p̂i = σ(·) in (1). For a set of N samples, we can compute
the Expected Calibration Error as follows:

ECE =

M∑
m=1

|Bm|
N

|Acc (Bm)− Conf (Bm)| .

We set M = 10 for measuring calibration performance in this paper. 995

B Detailed Discussions about MORE 996

Batch-wise reweighting We use adaptive weighting methods to reduce the reward drift across prefer- 997

ences and adjust the reward modeling process in the data batch-wise. The mitigation task in (8) can be 998

efficiently solved by the Frank-Wolfe solver (Jaggi, 2013; Sener and Koltun, 2018; Zhou et al., 2022b; Zeng 999

et al., 2023). However, the computing cost of solving it is proportional to the size of parameters θ. Since 1000

the size of θ is in the billions, we only utilize gradients on the reward head θrm ∈ Rh from each preference 1001

to avoid expensive computation cost. In detail, we obtain the hidden states zi = rθlm(x
(b)),x(b) ∈ Bi 1002

before the reward head and compute the gradient of the reward head solely with data (zi,y
(b)
w ,y

(b)
l ). 1003

Collecting the reward head gradient from K diversified preferences, the λ is computed by: 1004

λ = argminλ

∥∥∥∑K
i=1 λi∇θrmLrank(θ;Bi)

∥∥∥2 . (9) 1005

In this paper, we only utilize the gradient information on the reward head (simple linear layer). This is 1006

the most computationally efficient, in comparison with the billions size of LLMs. Moreover, there is a 1007

trade-off between gradient information utility and computation efficiency depending on the size of the 1008

utilized gradient (Sener and Koltun, 2018). 1009

13



Decomposition of ranking loss Using the properties of the sigmoid function σ′(x) = σ(x)(1− σ(x))
and σ(−x) = 1− σ(x), we present the detailed decomposing of vanilla ranking loss gradients:

∇θLrank(θ;B) =
B∑
b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θrθ(x

(b),y(b)
w )−∇θrθ(x

(b),y
(b)
l )

]
=

B∑
b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θr

∗
θ(x

(b),y(b)
w )−∇θr

∗
θ(x

(b),y
(b)
l )

]
+

B∑
b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θ r̃θ(x

(b),y(b)
w )−∇θ r̃θ(x

(b),y
(b)
l )

]
,

where we use the definition of reward drift in (4). Next, we decompose the second term of reward drifts:

∇θLrank(θ;B) =
B∑
b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θr

∗
θ(x

(b),y(b)
w )−∇θr

∗
θ(x

(b),y
(b)
l )

]
+

B∑
b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·

[
K∑
i=1

1

K

(
∇θ r̃θ(x

(b),y(b)
w )−∇θ r̃θ(x

(b),y
(b)
l )

)]

=

B∑
b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θr

∗
θ(x

(b),y(b)
w )−∇θr

∗
θ(x

(b),y
(b)
l )

]

+K
K∑
i=1

1

K

|Bi|∑
j=1

−σ
(
∆rθ(y

(j)
l ,y(j)

w )
)
·
[
∇θ r̃θ(x

(j),y(j)
w ,y

(j)
l ))

]
,

where we induce the preference source of data samples in the last equation. Vanilla rank loss regards the
importance of data samples as equal. Then, let us observe the gradient of MORE loss:

∇θLMORE(θ;B)

=

B∑
b=1

[
−∇θ log(σ(∆r∗θ(y

(b)
w ,y

(b)
l )))

]
+Kmin

K∑
i=1

λi

|Bi|∑
j=1

[
−∇θ log(σ(∆r̃θ(y

(j)
w ,y

(j)
l ))

]
︸ ︷︷ ︸

Reward Drift Mitigation Task

.

In comparison, the gradient ∇θLMORE(θ;B) replaces the coefficients 1
K with adjustable variable λ.1010

Therefore, the vanilla ranking loss is a special case of MORE loss.1011

C Experiment Details1012

Training hyperparameters All RM training batch size is set to 5 (number of preferences)*16 (batch1013

size of each preference) = 80. For RJS experiments, we set the training batch size to 64. The max input1014

sequence length is 512. All RMs, Alpaca-SFT, and Alpaca-RJS are finetuned with one epoch. We use1015

optimizer AdamW (Loshchilov and Hutter, 2017) with learning rate 1e−6.1016

Experiment platform Our experiments are conducted on computation platform with NVIDIA A1001017

40G GPU * 8.1018

Data composition We present the statistics of datasets in Table 3. In our implementation, we con-1019

duct sampling&resampling to balance the samples from different preferences. Concretely, we sam-1020

ple&resampling 40,000 train samples from each preference to roughly align the number of data samples1021

with Anthropic HH datasets. This is because the Helpful&Harmless are the main preferred properties in re-1022

cent works (Ouyang et al., 2022; Touvron et al., 2023b). Besides, we will provide an implementation with-1023

out requiring data sampling&resampling in our code base. And, we emphasize the sampling&resampling1024

operation does not break the conclusion in the main paper and does not significantly affect the performance1025

of the corresponding preference in our preliminary experiments.1026
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Training Testing Dataset (Acc %) Metrics

Base Model Dataset Method Helpful Harmless Oasst1 Webgpt Summ. Avg. ECE

Pythia-1.4B

- Raw 52.38 50.69 51.25 48.47 51.06 50.77 0.1281
Single Top 67.81 69.07 62.43 65.70 62.56 65.51 0.0362
ALL Averaging 55.73 51.81 57.68 53.60 55.50 54.86 0.0543
ALL MultiTask 65.00 64.57 60.13 66.00 57.49 62.38 0.0541
ALL MORE 64.07 64.57 62.43 63.41 62.22 63.34 0.0364

Pythia-2.8B

- Raw 54.59 46.84 52.92 48.93 51.36 50.92 0.1184
Single Top 68.06 70.84 60.86 64.93 62.33 66.13 0.0342
ALL Averaging 58.80 52.55 59.03 51.83 51.70 54.78 0.0685
ALL MultiTask 66.49 66.73 63.37 64.48 58.95 64.00 0.0456
ALL MORE 65.39 66.34 63.58 65.39 59.39 64.01 0.0366

LLaMa2-7B

- Raw 49.78 47.18 51.15 49.84 49.88 49.56 0.1503
Single Top 73.08 74.84 63.58 67.07 68.65 69.27 0.0334
ALL Averaging 61.90 54.15 56.21 55.16 63.60 58.20 0.0391
ALL MultiTask 72.10 72.70 64.62 71.95 69.30 70.13 0.0570
ALL MORE 71.93 72.70 65.88 70.27 70.85 70.32 0.0458

Table 2: Reward model performance on diverse datasets. Each row represents distinct training configurations, while
the columns represent various evaluation aspects. The term “Avg.” denotes the arithmetic mean of accuracy across
all test domains. We train a reward model on a single dataset and report the top accuracy on its corresponding
preference to show the best reward accuracy.

Dataset Num. of train samples Num. of test samples

Anthropic Helpful 43,774 2,352
Anthropic Harmless 42,537 2,312
OpenAssistant Oasst1 18,165 957
OpenAI Webgpt 17,106 901
OpenAI Summarize 92858 2,000*

Table 3: Statistics of human preference data for reward modeling. *We sample 2000 test examples from the original
testset to align with other datasets.

Missing experiment results 1027

• We provide missing results in Figure 8 and Figure 9 as supplements of Figure 1. 1028

• We provide count of reward differences outlines in Table 4, 5 and 6 as supplements of Figure 5. 1029

• We provide concrete experiments data in Table 2 as supplements of Figure 4 and 3. 1030

Preference
RM Positive Outliers Negative Outliers

Scheme ECE Count Mean Count Mean

Helpful
Top 0.0160 224 0.866 70 -0.623
MultiTask 0.0171 201 0.628 81 -0.437
MORE 0.0053 201 0.596 76 -0.423

Harmless
Top 0.0213 152 0.852 76 -0.610
MultiTask 0.0183 146 0.526 82 -0.411
MORE 0.0166 152 0.523 72 -0.425

Table 4: Count of reward differences outlines from Pythia-1.4B base model on Helpful&Harmless test.
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Preference
RM Positive Outliers Negative Outliers

Scheme ECE Count Mean Count Mean

Helpful
Top 0.0191 193 0.852 67 -0.606
MultiTask 0.0147 198 0.624 78 -0.417
MORE 0.0109 195 0.640 81 -0.451

Harmless
Top 0.0057 132 0.833 71 -0.608
MultiTask 0.0143 147 0.602 94 -0.465
MORE 0.0047 152 0.595 85 -0.445

Table 5: Count of reward differences outlines from Pythia-2.8B base model on Helpful&Harmless test.

Preference
RM Positive Outliers Negative Outliers

Scheme ECE ↓ Count Mean Count Mean

Helpful
Top 0.0081 223 1.145 73 -0.784
MultiTask 0.0182 195 1.054 81 -0.734
MORE 0.0080 181 0.806 76 -0.552

Harmless
Top 0.0225 152 1.070 89 -0.891
MultiTask 0.0386 168 1.206 77 -0.901
MORE 0.0206 156 1.075 57 -0.821

Table 6: Count of reward differences outlines from LLaMa base model on Helpful&Harmless test.

D GPT4 Evaluation1031

1032

Our GPT4 evaluation aligns with the DPO (Rafailov et al., 2023). We use the same prompt template of1033

pairwise comparison evaluation for GPT4 as shown below. For each comparison evaluation, we will swap1034

the position of responses A and B and call GPT4-API twice. If both results are A is better, the final label1035

will be A is better. On the contrary, the final label will be B is better. If the results are not consistent, the1036

final label will be a tie.1037

Listing 1: GPT4 evaluation for Helpful comparison
1038

For the following prompt to a chatbot, which response is more helpful(The1039

↪→ information in the response needs to be direct, accurate, helpful, abundant1040

↪→ and should help the user solve their task)?1041

Query: {prompt}1042

Response A: {response_A}1043

Response B: {response_B}1044

FIRST provide a one-sentence comparison of the two responses and explain which you1045

↪→ feel is more helpful. SECOND, on a new line, state only "A" or "B" to1046

↪→ indicate which response is more helpful.1047

Your response should use the format:1048

Comparison: <one-sentence comparison and explanation>1049

More helpful: <"A" or "B">10501051

Listing 2: GPT4 evaluation for Harmless comparison
1052

For the following prompt to a chatbot, which response is more harmless(The response1053

↪→ should not fabricate information or mislead the user, cause physical,1054

↪→ psychological, or social harm to people or the environment)?1055

Query: {prompt}1056

Response A: {response_A}1057

Response B: {response_B}1058

FIRST provide a one-sentence comparison of the two responses and explain which you1059

↪→ feel is more harmless. SECOND, on a new line, state only "A" or "B" to1060

↪→ indicate which response is more harmless.1061
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Your response should use the format: 1062

Comparison: <one-sentence comparison and explanation> 1063

More harmless: <"A" or "B"> 10641065
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