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Figure 1. We introduce GaussianAvatar-Editor, a method for text-driven editing of animatable Gaussian head avatars with fully controllable
expression, pose, and viewpoint. We show qualitative results of our GaussianAvatar-Editor at the inference time above. Our edited avatars
can achieve photorealistic editing results with strong spatial and temporal consistency.

Abstract

We introduce GaussianAvatar-Editor, an innovative
framework for text-driven editing of animatable Gaussian
head avatars that can be fully controlled in expression,
pose, and viewpoint. Unlike static 3D Gaussian editing,
editing animatable 4D Gaussian avatars presents chal-
lenges related to motion occlusion and spatial-temporal
inconsistency. To address these issues, we propose the
Weighted Alpha Blending Equation (WABE). This function
enhances the blending weight of visible Gaussians while
suppressing the influence on non-visible Gaussians, effec-
tively handling motion occlusion during editing. Further-
more, to improve editing quality and ensure 4D consistency,
we incorporate conditional adversarial learning into the
editing process. This strategy helps to refine the edited re-
sults and maintain consistency throughout the animation.
By integrating these methods, our GaussianAvatar-Editor

achieves photorealistic and consistent results in animatable
4D Gaussian editing. We conduct comprehensive experi-
ments across various subjects to validate the effectiveness
of our proposed techniques, which demonstrates the superi-
ority of our approach over existing methods. More results
and code are available at: https://xiangyueliu.
github.io/GaussianAvatar-Editor/.

1. Introduction
The 3D reconstruction of head avatars using the radiance
field-based representation [19] has shown unparalleled pho-
torealistic rendering quality and impressive animatable re-
sults. This is critical for visual communications, immersive
telepresence, movie production, and augmented or virtual
reality. Recently, 3D Gaussian Splatting (3DGS) [14] pro-
poses a GPU-friendly differentiable rasterization pipeline
that employs an explicit point-based representation, achiev-
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ing superior rendering quality compared to NeRF for novel
view synthesis while maintaining real-time performance.
3DGS has been utilized in various downstream applications,
particularly head avatar reconstruction [5, 25, 30, 37, 39]
with real-time rendering for novel poses and expressions.

Although 3DGS-based avatar reconstruction exhibits re-
markable animations, it is essential to incorporate advanced
customization options, such as texture editing, shape ma-
nipulation, and accessory generation, to accommodate the
diverse needs of users. With the rapid advancement of 2D
diffusion-like text-to-image (T2I) techniques [27, 28], gen-
erative text-driven 3D editing [9, 43, 44] has emerged as a
novel approach, complementing previous 3D style transfor-
mation and shape manipulation methods [4, 23, 38]. Specif-
ically, Instruct-NeRF2NeRF [9] employs an image-based
diffusion model to modify the rendered image by the text
prompt, and subsequently updates the 3D radiance field
with the edited image. Text-driven 3D editing framework
produces promising results on view consistency, enabling
more flexible and enhanced editing through text control.

To enable the editing of head avatars, a straightfor-
ward solution is to introduce such text-driven editing strat-
egy in Gaussian head avatars. However, challenges re-
main in editing animatable 3D head avatars using text
instructions, particularly regarding anti-occlusion editing
in motion-occlusion regions (e.g., teeth occluded by the
mouth, eyeballs occluded by eyelids, nosehole occluded by
the nose tip) and maintaining spatial-temporal consistency
in the editing region throughout the animation process as
shown in Fig. 3 and Fig. 10. Specifically, motion occlu-
sions occur when certain parts of the avatar are temporarily
obscured by other parts, such as when the lips obscure the
teeth as shown in Fig. 10. The occluders can easily affect
the Gaussians of the occluded part, leading to artifacts and
inconsistencies when animating edited avatars. Meanwhile,
the edited images at different timesteps and viewpoints may
not be consistent with each other, which also greatly degen-
erates the generation quality.

To address the above challenges, we introduce our
method, GaussianAvatar-Editor, to edit animatable head
avatars. Specifically, to overcome the incorrect editing
caused by occlusions, we propose a novel activation func-
tion applied in Gaussian alpha blending for anti-occlusion.
To improve the 4D consistency, we apply adversarial learn-
ing in the editing framework to reduce the impact of in-
consistent supervision signals from diffusion-based editors,
greatly improving editing quality. Some results from our
GaussianAvatar-Editor in several challenging scenarios are
shown in Fig.1. In both qualitative and quantitative compar-
isons, our method consistently outperforms existing meth-
ods in novel views, poses, and expressions.

To summarize, our main contributions are threefold.
- We propose an innovative activation function applied in

the Gaussian alpha blending, making our framework ro-
bust to multi-layer surfaces.

- We introduce an adversarial learning framework to learn
from the 2D diffusion-based editor, which reduces the
impact of inconsistent supervision signals and improves
the quality of animatable head editing.

- Building on the proposed activation function and ad-
versarial learning, we introduce GaussianAvatar-Editor,
which achieves high-quality editing and ensures spatio-
temporal consistency in challenging scenarios.

2. Related Works
Text-driven Editing. Diffusion models for text-to-image
generations [27, 28] have impressive capability in gener-
ating diverse, high-quality images from textual prompts.
This innovation has led to a variety of applications, such
as image-to-image translation [2, 3, 10, 13, 18, 21] and
controllable generation [34, 40]. The advancements have
also brought significant progress to numerous 3D tasks,
such as text-driven editing, benefiting from the abundant
prior knowledge of pre-trained text-to-image models. Some
works [1, 33, 35, 36] leverage a CLIP model to edit refer-
ence images and lift to 3D space through NeRF optimiza-
tion. Instruct-NeRF2NeRF [9] and Instruct 3D-to-3D [12]
distill 3D scenes from a pretrained text-driven image editing
model[3]. TextDeformer [8] and Texture [26] achieve ge-
ometry and texture modification according to text prompts,
respectively. Vox-E [31] and DreamEditor [43] leverage the
SDS loss [24] to perform local editing in 3D space. TIP-
Editor [44] introduces a novel approach for accurately con-
trolling the appearance of specified 3D regions with both
text and image prompts. The editing ability is further en-
hanced by upscaling to 4D with dynamic scene represen-
tations like 4D NeRF. Control4D [32] combines 4D repre-
sentation with GAN to achieve better spatial-temporal con-
sistency in dynamic scene editing. Our method capitalizes
on 3DGS, which achieves real-time renderings with high-
quality and text-driven editing ability of InstructPix2Pix [3],
and achieves spatial-temporal consistent editing with given
textual instructions.
Head Avatar Reconstruction and Editing. A main line
of head avatar reconstruction integrates human priors with
neural representations. For instance, NerFACE [7] condi-
tions a dynamic NeRF on extra facial expression param-
eters from the 3DMM model, to reconstruct the 4D fa-
cial avatar from monocular video. IMAvatar [42] repre-
sents the expression- and pose-related deformations from
the canonical space via learned blendshapes and skinning
fields, allowing generalization to unseen poses and expres-
sions. INSTA [45] reconstructs a deformable radiance field
based on neural graphics primitives and greatly accelerates
the training and inference. Recently, many 3DGS-based
methods [6, 25, 29, 41] have shown superior performance
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Figure 2. The overview of our method. We follow a render-edit-aggregate optimization pipeline as in Instruct-NeRF2NeRF [9]. We
introduce a Weighted Alpha Blending Equation (WABE) to overcome the motion occlusion problem and our novel loss functions to
enhance the spatial-temporal consistency. Our edited avatars can generate high-quality and consistent 4D renderings and can be controlled
by other actors.

in speed and texture. AvatarStudio [22] reconstructs dy-
namic digital avatars from multi-view videos and achieves
editing by applying a text-driven diffusion model individ-
ually on multiple keyframes and optimizing to a unified
appearance volume. Thus, its editing cannot be general-
ized to new expressions and may result in artifacts while
handling expressions with significant changes. We address
these challenges by considering the differences arising from
expressions and poses and achieving high-quality editing
that maintains spatial-temporal and spatial-animatable con-
sistency.

3D Gaussian Head Avatar. Various methods [5, 25, 30,
37, 39] attempt to bring Gaussian Splatting to dynamic 3D
human head avatar reconstruction. GaussianAvatars [25]
proposes binding 3D Gaussian to the FLAME [16] model
mesh. Specifically, GaussianAvatars [25] initializes a 3D
Gaussian at the center of each FLAME [16] model triangle
and uses a binding strategy to support Gaussian splats that
densify and prune while maintaining the binding relations.
Then, it optimizes the 3D Gaussian and the FLAME [16]
model in an end-to-end fashion. In this work, we pioneer
the adaptation of 3D Gaussian splatting to Animatable Head
Avatar Editing tasks, aiming to achieve photorealistic edit-
ing and reenactment to different actors, executing the ad-
vantages of Gaussian Splitting representation for the first
time in this context. Considering gradients from visible
pixels (non-occluded regions) may erroneously propagate
to non-visible Gaussians (occluded parts), we specifically
designed an activation function for Gaussian alpha blend-
ing to handle the motion-occluded regions.

3. Preliminary
3.1. 3D Gaussian Splatting

Gaussian Splatting [14] represents 3D scenes using Gaus-
sian spheres {Gk | k = 1, . . . ,K}, where each Gaussian
Gk is defined by the point center µk, and a covariance ma-
trix Σk as,

Gk(x) = e−
1
2 (x−µk)

⊤Σk
−1(x−µk). (1)

The covariance matrix Σk is parameterized by a rotation
matrix Rk and a scaling matrix Sk as Σk = RkSkS

⊤
kR

⊤
k .

During rendering, 3DGS [14] employs spherical har-
monics ck to model view-dependent color and applies α-
blending of different Gaussians according to the depth order
1, ...,K as,

C(x) =

K∑
k=1

ckαk

k−1∏
j=1

(1− αj). (2)

3.2. Gaussian Avatar

The work of GaussianAvatars [25] binds 3D Gaussians G to
the underlying animatable FLAME [16] model to represent
a head avatar M by

M(β, θ, ψ,G) =W (T (β, θ, ψ), J(β), θ,G), (3)

where β is the shape, θ is the pose, ψ is the expression, W
means deformation with predefined skinning weights, T is
the pose-dependent shap, and J is the joint points. Gaus-
sians G are defined on the FLAME model and will be trans-
formed along with the motion of the head avatar. It achieves
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Figure 3. Illustration of the Weighted alpha blending equation
(WABE), which is adjusted to suppress non-visible parts while en-
hancing visible parts. Lower left: results when WABE is disabled.
Lower right: when WABE is enabled, motion-occluded regions
like teeth and tongue can be successfully optimized.

photorealistic rendering and controllable animation at the
same time. In this paper, we design a text-driven method to
edit Gaussian avatars.

4. Method

The overview of our proposed method is illustrated in
Fig. 2. Given an animatable Gaussian avatar built ac-
cording to the method in GaussianAvatars [25], we fol-
low the render-edit-aggregate method similar to Instruct-
NeRF2NeRF [9] to update the avatar gradually. Specifi-
cally, we first randomly sample a training view and render
an image using the Gaussian avatar. We then edit this ren-
dered image with 2D diffusion-based editors [3] according
to the text prompt provided by users. Finally, we compute
loss functions between the rendered and edited images and
back-propagate the gradients to refine the Gaussian avatar.

4.1. Challenges in Gaussian Avatar Editing

However, unlike reconstructing Gaussian avatars from
multi-view videos, text-driven editing of these Gaussian
avatars presents significant challenges.

Motion occlusion. A key challenge is brought by the
occlusions in the motion sequence, which complicates the
convergence of the optimization process. Specifically, when
optimizing 3D Gaussians using gradients derived from su-
pervision images, the α-blending rendering technique in
3DGS [14] updates all 3D Gaussians indiscriminately, de-
spite whether these Gaussians are visible from the current
viewpoint. In our scenario, gradients from visible pixels
(e.g., pixels on occluders) may erroneously be propagated
to invisible Gaussians (e.g., pixels on occluded parts). For
example, as shown in Fig. 10, the lip might occlude the

teeth, the eyelid might occlude the eyeball, the nose might
occlude the nostril, etc. When occlusion happens, the gra-
dient should be stopped at occluders without affecting the
occluded parts.

4D consistency. Another key challenge is maintaining
4D spatial and temporal consistency after editing, e.g., the
same facial point should be the same over time and across
views after editing. While some recent works, such as
Instruct-NeRF2NeRF [9], introduce a render-edit-aggregate
method to mitigate multi-view inconsistency in static 3D
scene editing, ensuring 4D consistency is significantly more
challenging.

4.2. Occlusion-aware Rendering and Editing

As discussed earlier, the α-blending in 3DGS [14] updates
all 3D Gaussians along the ray during the training process,
leading to poor editing results in regions with severe mo-
tion occlusions, as shown in Fig. 3 and Fig. 10. Ideally,
the correct approach would be to update only the visible 3D
Gaussians during the editing process while preserving the
3D Gaussians in the invisible regions. Motivated by this,
we propose a modified rendering equation, referred to as
the weighted alpha blending equation (WABE), specifically
tailored for Gaussian avatar editing.

Weighted alpha blending equation (WABE). Ideally,
we only want to update the visible Gaussian during edit-
ing while keeping the invisible Gaussian unchanged. This
inspires us to seek a blending function that can make the
editing process aware of the visible and invisible parts. We
replace the original α-blending function, i.e. Eq. 2, of the
Gaussian splatting as follows,

C(x) =

K∑
k=1

wkckαk

k−1∏
j=1

(1− αj), (4)

where we add an additional term wk here to model the visi-
bility of the current Gaussian. Invisible Gaussians will have
zero weights. To achieve this goal, as illustrated in Fig. 3,
we design the weighted function wk as follows,

wk = e−β(1−
∏k−1

j=1 (1−αj))), (5)

where β controls the distribution of weights between lay-
ers.

∏k−1
j=1 (1− αj) is the probability of not being occluded

by Gaussians in front of the current one, i.e. the visibil-
ity of the current Gaussian. According to our definition,
wk will decrease to 0 with the reduction of visibility, and
wk equals 1 if the Gaussian is fully visible. A larger value
of β makes the weights wk change more fast, leading to
more pronounced transitions between layers. This produces
a stronger blending effect with sharper changes in trans-
parency. We set β to 6 in all of our experiments. As shown
in Fig. 3, when our WABE is enabled, the editing ‘Turn
him into the Tolkien Elf’ only affects the skin and does not
change the teeth.



Original avatar

Figure 4. Our results on novel view synthesis. We show our edited results using the text prompt “Turn her into the Tolkien Elf”.
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Figure 5. Comparison on novel view synthesis. Our method produces more high-quality and multi-view consistent results than baselines.

4.3. 4D Consistent Editing

Editing reconstruction loss. We apply the Instruct-
Pix2Pix [3] model to generate edited images Et

i. Then, to
edit the Gaussian avatar, we use the reconstruction loss as
the L1 norm and SSIM loss [11] between the rendered im-
age Ct

i and the edited image Et
i as follows,

Lrecon = LL1 + LSSIM

=
∥∥Ct

i −Et
i

∥∥
1
+ SSIM(Ct

i −Et
i),

(6)

where i is the viewpoint index, and t is the time index.
Due to the lack of temporal and spatial consistency in

the images edited by instructions, the supervision in Gaus-
sian splatting optimization might lead to conflicts. In-
spired by Instruct-NeRF2NeRF [9], we extend its render-
edit-aggregate pipeline to the 4D space to gradually opti-
mize the origin avatar towards the final convergent result.
Specifically, we first randomly sample a training view i and
a time t and render an image Ct

i using the Gaussian avatar.
We then edit this rendered image with 2D diffusion-based
editors [3] according to the text prompt provided by users.
Finally, we compute loss functions between the rendered
image Ct

i and the edited image Et
i and back-propagate the

gradients to refine the Gaussian avatar.
Temporal adversarial learning. Since the temporal

consistency of the instruction-edited images is not en-
sured, relying solely on reconstruction loss like Instruct-
NeRF2NeRF [9] often leads to blurry or distorted artifacts

in results, especially in animations. Thus, we introduce a
temporal adversarial learning scheme to improve consis-
tency in different time steps.

Previous work [17] has demonstrated the effectiveness
of conditional adversarial training in preventing blurry ren-
dered images by training a discriminator to determine true
or fake images of different viewpoints. This inspires us to
extend this conditional adversarial loss to enforce tempo-
ral consistency, which alleviates blurry artifacts in rendered
images. More specifically, we train a discriminator D to
distinguish real and fake image pairs. The real image pairs
Preal consists of Et

i and Et
i −Ek

i where Ei is the edited
image from the 2D image editor InstructPix2Pix [3], and
t, k means adjacent timestep. Similarly, a fake pair Pfake

consists of the rendered images Ct
i and Ct

i −Ek
i . The pairs

are concatenated in RGB channels and fed into the discrim-
inator D. We optimize the discriminator D and the edited
Gaussian avatar with the following objective functions,

LD = ER[−log(D(Preal))] + EF[−log(1−D(Pfake))],

LG = EF[−log(D(Pfake))].
(7)

In this adversarial loss, we compare not only the edited im-
ages with the rendered images but also the differences on
different timesteps, which forces the model to learn the tem-
poral consistency for better editing quality.
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Figure 6. Our results on self-reenactment. Self-reenactment renders held-out unseen head pose and expressions from 16 training camera
viewpoints. The bottom part shows the text prompts.
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Figure 7. Comparison of self-reenactment. Our edited avatar can correctly produce detailed facial features under unseen expressions and
head poses from the same subject.

4.4. Optimization and Regularization

During the training process, we jointly optimize the loss
functions mentioned above: Lrecon and LG for the edited
Gaussian splattings, and LD for the discriminator. Inspired
by GaussianAvatars [25], we also regularize the Gaussian’s
position and scales to make Guassians close to the underly-
ing FLAME [16] model by Lconst. The total loss formula is
expressed as follows:

L = λ1Lrecon + λ2LD + λ3LG + λ4Lconst, (8)

where λ means the weights for the loss and we set λ1 = 10,
λ2 = 0.01, λ3 = 0.01, and λ4 = 10 in all of our exper-
iments. The weights can be adjusted to prioritize different
aspects of the training objective, such as reconstruction ac-
curacy, adversarial training, and the perceptual quality.

4.5. Inference

After the optimization of our method, the edited Gaussian
head avatar can render the target novel views conditioned
on the given expression and pose parameters.

5. Experiments
5.1. Setup

Implementation details. In our pipeline, we first use
GaussianAvatars [25] to reconstruct the original animat-
able Gaussian head avatar from input videos. Then, we

edit the original avatar using the input text prompt. Our
model is trained using the Adam optimizer with a learn-
ing rate of 1e − 2, running for 10, 00 iterations per edit-
ing. The total training phase takes about 15 minutes on one
42GB NVIDIA A100 GPU. Given a set of novel expres-
sions, poses, and viewpoints during the inference phase, we
can directly drive the edited avatar to the new pose render
images of the edited Gaussian avatar.

Dataset. We conducted experiments on the NeRSemble
dataset [15], which consists of multi-view videos capturing
the front and side views of 8 individuals from 16 camera
viewpoints. There are 11 video sequences for each sub-
ject, and each video sequence contains approximately 150
frames of different expressions and movements. The first
10 sequences include instructed facial expressions and emo-
tions, while the last sequence records free expressions. Dur-
ing our experiments, all video images are downscaled to a
resolution of 802 × 550. For quantitative evaluation, we
use 9 out of 10 video sequences and 15 out of 16 camera
views for training and use the last video sequence (free per-
formance) to evaluate the ability of visually cross-identity
reenactment.

Evaluation Settings. We evaluate the quality of the
edited head avatar from three aspects: (1) Novel-view ren-
dering that uses the edited avatars to render images with
training head pose and expressions from held-out camera
viewpoints; (2) Self-reenactment that renders held-out un-
seen head pose and expressions from 16 training camera
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Figure 9. Comparison of Cross-identity reenactment. Different edited avatars are controlled by the same source actor. Our method can
render high-quality results with novel expressions, while baseline methods suffer from artifacts.

viewpoints; (3) Cross-identity reenactment that uses the
avatar to render images with head poses and expressions
from sequences of a different subject.

Metrics. To quantitatively evaluate the performance,
we employed CLIP Text-Image Direction Similarity (CLIP-
S) [9], CLIP Direction Consistency (CLIP-C) [9] to evalu-
ate the edited results, which measure the consistency be-
tween renderings of edited avatars and input text prompts.

Baselines. Since no existing method is available to
achieve animatable Gaussian avatar editing, we compare
our method to the most relevant approaches. (1) I-
N2N+GaussianAvatar. One important baseline method
is to directly apply a static 3D editing approach to
4D Gaussian avatars. Specifically, we apply Instruct-
NeRF2NeRF [9] to perform text-drive editing on the recon-
structed animatable 4D Gaussians of GaussianAvatars [25].
Though animatable Gaussian avatar editing can be directly
achieved in this way, the edited results are far from ac-
ceptable, largely due to the motion-occlusion problem pre-
sented in Sec. 4.2. (2) I-N2N+INSTA. To compare with an-
imatable 4D Gaussian editing based on NeRF [20], we ap-
ply Instruct-NeRF2NeRF [9] to perform text-drive editing
on the reconstructed animatable 4D NeRF of INSTA [45].
(3) Control4D. Another baseline is Control4D [32], a 4D
Gaussian editing method designed for GaussianPlanes (spa-
tial triplanes and 3D Gaussian flow). Note that Control4D
represents head avatars as implicit parameters, which means

Control4D’s result cannot be re-animated. Since Con-
trol4D’s code for dynamic editing has not been released, we
reimplement it based on its static Gaussian editing version.

5.2. Head Avatar Editing and Animation

Quantitative results are summarized in Table 1. We refer
readers to the video in the supplementary for more qualita-
tive results.

Novel view rendering. As shown in Fig. 4, given a
Gaussian avatar and an editing prompt ”Turn the human
into the Tolkien Elf”, our method can produce multi-view
consistent and high-quality results. We compare our edited
avatars with existing methods for novel view synthesis.
Qualitative comparison results in Fig. 5, with two novel
view renderings for each method. Both our method and
baseline methods can produce multi-view consistent render-
ing results. However, the results from baseline methods are
poorer, especially visible in the added beard, which is also
blended on the teeth. In contrast, by addressing the mo-
tion occlusion problem during editing, our result can render
clear and detailed teeth. Quantitative results are presented
in Table 1, which also shows our editing results achieve bet-
ter consistency with the input text than baselines.

Self-reenactment. Our qualitative results are shown
in Fig. 6, and qualitative comparison with baselines are
shown in Fig. 7. As we can see, directly applying the
method Instruct-NeRF2NeRF [9] to INSTA [45] or Gaus-
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Figure 10. Ablation study of WABE.

Novel view rendering Self-reenactment Cross-identity reenactment

CLIP-S ↑ CLIP-C ↑ CLIP-S ↑ CLIP-C ↑ CLIP-S ↑ CLIP-C ↑
INSTA+I-N2N 0.181 0.955 0.042 0.923 0.043 0.936
GA+I-N2N 0.236 0.968 0.044 0.938 0.069 0.941
Control4D 0.222 0.980 0.058 0.938 / /
Ours w/o WABE 0.236 0.968 0.061 0.948 0.077 0.950
Ours w/o adv 0.266 0.976 0.077 0.950 0.070 0.946
Ours 0.275 0.978 0.081 0.951 0.081 0.951

Table 1. Quantitative comparisons and ablation studies with CLIP-S and CLIP-C. We compare our method with existing methods for novel
view rendering, self-reenactment, and cross-identity reenactment. Our method obtains superior results than other methods.

sianAvatars [25] results in serious artifacts at largely dif-
ferent head poses or facial expressions, since it is designed
for editing static scenes. Control4D [32] produces better re-
sults, but its rendered images are blurry at unseen expres-
sions. Unlike those approaches, our method obtains de-
tailed and realistic rendering results with clear facial fea-
tures even animated by unseen expressions. Quantity com-
parisons with baselines in Table 1 also demonstrate the ef-
fectiveness of our method.

Cross-identity reenactment. To evaluate the general-
ization ability of our method, we further drive those edited
avatars by expressions and head poses from other actors.
As shown in Table 1, our method achieves superior CLIP-S
scores and comparable CLIP-C scores as baseline methods.
We also show qualitative comparison results in Fig. 8 and
Fig. 9. As can be seen, our edited avatars can render better
results than baseline methods.

5.3. Ablation Study

WABE. To validate the effectiveness of the proposed
WABE for handling motion occlusion, we perform ablation
experiments by disabling the WABE in our pipeline. The
rendering results without WABE are also shown in Fig. 3
and Fig. 10. The results demonstrate that without WABE,
the occluded regions like teeth when open mouth, eyeballs
when closed eyes, the lips, the nosehole, etc., produce worse
editing results, which leads to worse quantitative results in
Table 1. This demonstrates the importance of WABE in
handling the occlusion problem.

Adversarial learning mechanism. We also validate the
proposed adversarial learning for spatial and temporal con-
sistency. As shown in Table 1, disabling the adversarial
learning loss in our pipeline decreases the test scores, es-
pecially the CLIP-C score, which demonstrates the impor-
tance of our adversarial learning mechanism.

6. Conclusion

In this paper, we have presented GaussianAvatar-Editor,
a text-driven framework for realistic animatable Gaussian
avatar editing. For the motion occlusion problem where
editing gradients would be back-propagated from non-
occlusion parts to erroneously update the occlusion parts,
we proposed a Weighted alpha blending equation (WABE)
to replace the original Gaussian rendering function so as to
suppress those erroneous updates. Moreover, to enhance the
4D supervision consistency of the editing supervision, we
proposed an adversarial learning framework. By incorporat-
ing all these designs together, our method can produce high-
quality, realistic editing results for 4D animatable Gaussian
avatars. We have conducted comprehensive experiments on
various subjects to validate the proposed methods. Both
qualitative and quantitative results demonstrated that our
method is superior to existing methods.

Limitations. GaussianAvatar-Editor utilizes FLAME
model to do animation, which could not animate unmodeled
parts like the tongue. We leave this for future exploration.
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