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ABSTRACT

To answer complex queries on knowledge graphs, logical reasoning over incomplete
knowledge needs learning-based methods because they are capable of generalizing
over unobserved knowledge. Therefore, an appropriate dataset is fundamental to
both obtaining and evaluating such methods under this paradigm. In this paper,
we propose a comprehensive framework for data generation, model training, and
method evaluation that covers the combinatorial space of Existential First-order
Queries with multiple variables (EFOk). The combinatorial query space in our
framework significantly extends those defined by set operations in the existing
literature. Additionally, we construct a dataset, EFOk-CQA, with 741 query types
for empirical evaluation, and our benchmark results provide new insights into how
query hardness affects the results. Furthermore, we demonstrate that the existing
dataset construction process is systematically biased and hinders the appropriate
development of query-answering methods, highlighting the importance of our work.
Our code and data are provided in https://anonymous.4open.science/
r/EFOK-CQA/README.md.

1 INTRODUCTION

The Knowledge Graph (KG) is a powerful database that encodes relational knowledge into a graph rep-
resentation (Vrandečić & Krötzsch, 2014; Suchanek et al., 2007), supporting downstream tasks (Zhou
et al., 2007; Ehrlinger & Wöß, 2016) with essential factual knowledge. However, KGs suffer from
incompleteness during their construction (Vrandečić & Krötzsch, 2014; Carlson et al., 2010; Libkin
& Sirangelo, 2009). The task of Complex Query Answering (CQA) proposed recently has attracted
much research interest (Hamilton et al., 2018; Ren & Leskovec, 2020). This task ambitiously aims
to answer database-level complex queries described by logical complex connectives (conjunction
^, disjunction _, and negation ␣) and quantifiers1 (existential D) (Wang et al., 2022; Ren et al.,
2023; Leskovec, 2023). Currently, learning-based methods dominate the CQA task because they can
empirically generalize to unseen knowledge as well as prevent the resource-demanding symbolic
search.

The thriving of learning-based methods also puts an urgent request on high-quality benchmarks,
including datasets with comprehensive coverage of queries and sound answers, and fair evaluation
protocol for learning-based approaches. In the previous study, datasets are developed by progressively
expanding the syntactical expressiveness, where conjunction (Hamilton et al., 2018), union (Ren
et al., 2020), negation (Ren & Leskovec, 2020), and other operators (Liu et al., 2021) are taken
into account sequentially. In particular, BetaE dataset (Ren & Leskovec, 2020) contains all logical
connectives and becomes the standard training set for model development. A larger evaluation
benchmark EFO-1-QA (Wang et al., 2021) was proposed to systematically evaluate the combinatorial
generalizability of CQA models on such queries.

However, the queries in previous datasets (Ren & Leskovec, 2020; Wang et al., 2021) are recently
justified as “Tree-Form” queries (Yin et al., 2024) as they rely on the tree combinations of set

1The universal quantifier is usually not considered in query answering tasks, as a common practice from both
CQA on KG (Wang et al., 2022; Ren et al., 2023) and database query answering (Poess & Floyd, 2000).
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operations. Compared to the well-established TPC-H decision support benchmark (Poess & Floyd,
2000) for database query processing, queries in existing CQA benchmarks (Ren & Leskovec, 2020;
Wang et al., 2021) have two common shortcomings: (1) lack of combinatorial answers: only
one variable is queried, and (2) lack of structural hardness: all existing queries subject to the
structure-based tractability (Rossi et al., 2006; Yin et al., 2024). It is rather questionable whether
existing CQA data under such limited scope can support the future development of methodologies
for general decision support with incomplete knowledge.

The goal of this paper is to establish a new framework that addresses the aforementioned shortcomings
to support further research in complex query answering on knowledge graphs. Our framework is
formally motivated by the well-established investigation of constraint satisfaction problems (Rossi
et al., 2006), in which all queries can be formulated. In general, the contribution of our work is four
folds.

Complete coverage We capture the complete Existential First Order (EFO) queries from their
rigorous definitions, underscoring both combinatorial hardness and structural hardness
and extending the existing coverage (Wang et al., 2021) which covers only a subset of EFO1

query. The captured query family is denoted as EFOk where k stands for multiple variables.
Curated datasets We derive EFOk-CQA dataset, a enormous extension of the previous EFO-1-QA

benchmark (Wang et al., 2021) and contains 741 types of query. We design several systematic
rules to guarantee that our dataset includes high-quality nontrivial queries, particularly those
that contain multiple query variables and are not structure-based tractable.

Convenient implementation We implement the entire pipeline for query generation, answer sam-
pling, model training and inference, and evaluation for the undiscussed scenarios of combi-
natorial answers. Our pipeline is backward compatible, which supports both set operation-
based methods and more recent ones.

Results and findings We evaluate six representative CQA methods on our benchmark. Our results
refresh the previous empirical findings and further reveal the structural bias of previous data.

2 RELATED WORKS

Answering complex queries on knowledge graphs differs from database query answering by being a
data-driven task (Wang et al., 2022), where the incompleteness of the knowledge graph is addressed by
methods that learn from data. Meanwhile, learning-based methods enable faster neural approximate
solutions of symbolic query answering problems (Ren et al., 2023).

The prevailing way is query embedding, where the computational results are embedded and computed
in the low-dimensional embedding space. Specifically, the query embedding over the set operator
trees is the earliest proposed (Hamilton et al., 2018). The supported set operators include projec-
tion(Hamilton et al., 2018), intersection (Ren et al., 2020), union and negation (Ren & Leskovec,
2020), and later on be improved by various designs (Zhang et al., 2021; Bai et al., 2022). Such
methods assume queries can be converted into the recursive execution of set operations, which im-
poses additional assumptions on the solvable class of queries (Wang et al., 2021). These assumptions
introduce additional limitations of such query embeddings

Recent advancements in query embedding methods adapt query graph representation and graph neural
networks, supporting atomics (Liu et al., 2022) and negated atomics (Wang et al., 2023). Query
embedding on graphs bypasses the assumptions for queries (Wang et al., 2021). Meanwhile, other
search-based inference methods (Arakelyan et al., 2020; Yin et al., 2024) are rooted in fuzzy calculus
and not subject to the query assumptions (Wang et al., 2021).

Though many efforts have been made, the datasets of complex query answering are usually subject
to the assumptions by set operator query embeddings (Wang et al., 2021). Many other datasets are
proposed to enable queries with additional features, see Ren et al. (2023) for a comprehensive survey
of datasets. However, only one small dataset proposed by (Yin et al., 2024) introduced queries and
answers beyond such assumptions (Wang et al., 2021). It is questionable that this small dataset is
fair enough to justify the advantages claimed in advancement methods (Wang et al., 2023; Yin et al.,
2024) that aim at complex query answering. The dataset (Yin et al., 2024) is still far away from the
systematical evaluation as proposed in Wang et al. (2021) and EFOk-CQA proposed in this paper
fills this gap.
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3 PROBLEM DEFINITION

3.1 EXISTENTIAL FIRST ORDER (EFO) QUERIES ON KNOWLEDGE GRAPHS

Given a set E of entities and a set R of relations, a knowledge graph KG encodes knowledge as a set
of factual triple KG “ tph, r, tqu Ă E ˆRˆ E . We always assume the KG that we have observed
KGo is only part of the real KG, meaning that KGo Ă KG.

The existing research only focuses on the logical formulas without universal quantifiers (Ren et al.,
2023; Wang et al., 2023). We then offer the definition of it based on strict first order logic.

Definition 1 (Term). A term is either a variable x or an entity a P E .

Definition 2 (Atomic formula). ϕ is an atomic formula if ϕ “ rph, tq, where r P R is a relation, h
and t are two terms.

Definition 3 (Existential first order formula). The set of the existential formulas is the smallest set Φ
that satisfies the following2:

(i) For atomic formula rph, tq, itself and its negation rph, tq,␣rph, tq P Φ
(ii) If ϕ, ψ P Φ, then pϕ^ ψq, pϕ_ ψq P Φ

(iii) If ϕ P Φ and xi is any variable, then Dxiϕ P Φ.

Definition 4 (Free variable). If a variable y is not associated with an existential quantifier, it is
called a free variable, otherwise, it is called a bounded variable. We write ϕpy1, ¨ ¨ ¨ , ykq to indicate
y1, ¨ ¨ ¨ , yk are the free variables of ϕ.

Definition 5 (Sentence and query). A formula ϕ is a sentence if it contains no free variables, otherwise,
it is called a query. In this paper, we always consider formula with free variables, thus, we use
formula and query interchangeably.

Definition 6 (Substitution). For a1, ¨ ¨ ¨ , ak, where ai P E , we write ϕpa1{y1, ¨ ¨ ¨ , ak{ykq or simply
ϕpa1, ¨ ¨ ¨ , akq for the result of simultaneously replacing all the occurrence of yi in ϕ by ai, i “
1, ¨ ¨ ¨ , k.

Definition 7 (Answer of an EFO query). For a given existential query ϕpy1, ¨ ¨ ¨ , ykq and a knowledge
graph KG, its answer is a set that defined by

Arϕpy1, ¨ ¨ ¨ , ykqs “ tpa1, ¨ ¨ ¨ , akqq|ai P E , i “ 1, ¨ ¨ ¨ , k, ϕpa1, ¨ ¨ ¨ , akq is True in KGu.

Definition 8 (Disjunctive Normal Form (DNF)). For any existential formula ϕpy1, ¨ ¨ ¨ , ykq, it can
be converted to the Disjunctive normal form as shown below:

ϕpy1, ¨ ¨ ¨ , ykq “ γ1py1, ¨ ¨ ¨ , ykq _ ¨ ¨ ¨ _ γmpy1, ¨ ¨ ¨ , ykq, (1)
γipy1, ¨ ¨ ¨ , ykq “ Dx1, ¨ ¨ ¨ , xn.ρi1 ^ ¨ ¨ ¨ ^ ρit, (2)

where ρij is either an atomic formula or its negation, xi is called an existential variable.

DNF form has a strong property that Arϕpy1, ¨ ¨ ¨ , ykqs “ Ym
i“1Arγipy1, ¨ ¨ ¨ , ykqs, which allows

us to only consider conjunctive formulas γi and then aggregate those answers to retrieve the final
answers. This practical technique has been used in many previous research (Long et al., 2022; Ren
et al., 2023). Therefore, we only discuss conjunctive formulas in the rest of this paper.

3.2 CONSTRAINT SATISFACTION PROBLEM FOR EFO QUERIES

Formally, a Constraint Satisfaction Problem (CSP) P can be represented by a triple P “ pX,D,Cq
where X “ pv1, ¨ ¨ ¨ , vnq is an n-tuple of variables, D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple
of domains, C “ pC1, ¨ ¨ ¨ , Ctq is t-tuple constraint, each constraint Ci is a pair of pSi, RSi

q where
Si is a set of variables Si “ tviju and RSi

is the constraint over those variables (Rossi et al., 2006).

Historically, there are strong parallels between CSP and conjunctive queries in knowledge bases (Got-
tlob et al., 1999; Kolaitis & Vardi, 1998). The terms correspond to the variable set X . The domain
Di of a constant entity contains only itself, while it is the whole entity set E for other variables. Each
constraint Ci is binary that is induced by an atomic formula or its negation, for example, for an

2We always assume all variables are named differently as common practice in logic.
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∃𝑥1. Award(Fields,𝑦1)∧ ¬Award(Fields,𝑦2)∧
Colleague(𝑦1, 𝑦2) ∧Born(𝑦1, 𝑥1) ∧Born(𝑦2, 𝑥1)

∃𝑥1. Located(Europe,𝑥1) ∧
¬Held(Olympics,𝑥1)∧President(𝑥1, 𝑦1)

Not Award

Award

Colleague
Born

Born

Fields

Fields

𝒙𝟏

𝒚𝟏

𝒚𝟐

Europe

Olympics

Located

Held

Existential VariableConstant Variable (Entity) Free VariableIntermediate Set Answer Set

Figure 1: Operator Tree versus Query Graph. Left: An operator tree representing a given query “List
the presidents of European countries that have never held the Olympics” (Ren & Leskovec, 2020);
Right: A query graph representing a given query “Find a pair of persons who are both colleagues
and co-authors and were born in the same country, with one having awarded the fields medal while
the another not”, which is both a multigraph and a cyclic graph, containing two free variables.

atomic formula rph, tq, we have Si “ th, tu, RSi “ tph, tq|h, t P E , ph, r, tq P KGu. Finally, by the
definition of existential quantifier, we only consider the answer of free variables, rather than tracking
all terms within the existential formulas.
Definition 9 (CSP answer of conjunctive formula). For a conjunctive formula γ in Equation 2 with k
free variables and n existential variables, the answer set, A, of it formulated as CSP instance is:

Arγpy1, ¨ ¨ ¨ , ykqs “ Arγ‹py1, ¨ ¨ ¨ , yn`kqs, where γ‹ “ ρi1 ^ ¨ ¨ ¨ ^ ρit.

This shows that the inference of existential formulas is easier than solving CSP instances since the
existential variables do not need to be kept track of.

3.3 THE REPRESENTATION OF QUERY

To give an explicit representation of existential formula, operator tree (Hamilton et al., 2018) was
proposed to represent a formula, where each node represents the answer set for a sub-query, and
the logic operators in it naturally represent set operations. This method allows for the recursive
computation from constant entity to the final answer set in a bottom-up manner (Ren & Leskovec,
2020). We also provide full details of the operator tree and tree-form query in Appendix B. However,
this representation method is inherently directed, acyclic, and simple, therefore more recent research
breaks these constraints by being bidirectional (Liu et al., 2022; Wang et al., 2022) or being cyclic
or multi graph (Yin et al., 2024). To meet these new requirements, they propose to represent the
formula by the query graph (Yin et al., 2024), which inherits the convention of constraint network in
representing CSP instance. We utilize this design and further extend it to represent EFOk formula
that contains multiple free variables. We provide the illustration and comparison of the operator tree
and the query graph in Figure 1, where we show the strong expressiveness of the query graph. We
also provide the formal definition of query graph as follows:
Definition 10 (Query graph). Let γ be a conjunctive formula in equation 2, its query graph is defined
by Gpγq “ tph, r, t, tT/Fuqu, where an atomic formula rph, tq in γ corresponds to ph, r, t, Tq and
␣rph, tq corresponds to ph, r, t,Fq.

Therefore, any conjunctive formulas can be represented by a query graph, in the rest of the paper, we
use query graphs and conjunctive formulas interchangeably.

4 THE COMBINATORIAL SPACE OF EFOk QUERIES

Although previous research has given a systematic investigation in the combinatorial space of operator
trees (Wang et al., 2021), the combinatorial space of the query graph is much more challenging due
to the extremely large search space and the lack of explicit recursive formulation. To tackle this issue
on a strong theoretical background, we put forward additional assumptions to exclude trivial query
graphs. Such assumptions or restrictions also exist in the previous dataset and benchmark (Ren &
Leskovec, 2020; Wang et al., 2021). Specifically, we propose to split the task of generating data into
two levels, the abstract level, and the grounded level. At the abstract level, we create abstract query

4
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Not Held
IsCapital

LocatedEurope

Olympics

𝒙𝟏

𝒚𝟏 𝒙𝟏𝒄𝟏

𝒚𝟏 𝒚𝟐𝒄𝟏

𝒚𝟏

Figure 2: Left: Example of trivial abstract query graph, in the upper left graph, the x1 is redundant
violating Assumption 13, in the bottom left graph, answers for the whole query can be decomposed
to answer two free variables y1 and y2 alone, violating Assumption 14. Right: Example of new
query graph that is not included in previous benchmark (Wang et al., 2021) even though it can be
represented by operator-tree. The representation of query graph follows Figure 1.

graph, at the grounded level, we provide the abstract query graph with the relation and constant and
instantiate it as a query graph. In this section, we elaborate on how we investigate the scope of the
nontrivial EFOk query of interest step by step.

4.1 NONTRIVIAL ABSTRACT QUERY GRAPH OF EFOk

The abstract query graph is the ungrounded query graph without information of certain knowledge
graphs, and we give an example in Figure 3.
Definition 11 (Abstract query graph). The abstract query graph G “ pV,E, f, gq is a directed
graph with three node types,tConstant Entity, Existential Variable, Free Variableu, and two edge
types,tpositive, negativeu. The V is the set of nodes, E is the set of directed edges, f is the function
maps node to node type, g is the function maps edge to edge type.
Definition 12 (Grounding). For an abstract query graph G, a grounding is a function I that maps it
into a query graph G “ IpGq.

We propose two assumptions of the abstract query graph as follows:
Assumption 13 (No redundancy). For an abstract query graph G, there is not a subgraph Gs Ĺ G
such that for every grounding I , ArIpGqs “ ArIpGsqs.
Assumption 14 (No decomposition). For an abstract query graph G, there are no such two
subgraphs G1, G2, satisfying that G1,G2 Ĺ G, such that for every instantiation I , ArIpGqs “
ArIpG1qs

Ś

ArIpG2qs, where the
Ś

represents the cartesian product.

The assumption 14 inherits the idea of the structural decomposition technique in CSP (Gottlob et al.,
2000), which allows for solving a CSP instance by solving several sub-problems and combining the
answer together based on topology property. Additionally, meeting these two assumptions in the
grounded query graph is extremely computationally costly thus we avoid it in practice.

We provide some easy examples to be excluded for violating the assumptions above in Figure 2.

4.2 NONTRIVIAL QUERY GRAPH OF EFOk

Similarly, we propose two assumptions on the query graph.
Assumption 15 (Meaningful negation). For any negative edge e in query graph G, we require
removing it results in different CSP answers: ArG´ es ‰ ArGs.3

Assumption 15 treats negation separately because of the fact that for any KG, any relation r P R,
there is |tph, tq|h, t P E , ph, r, tq P KGu| ! |E |2, which means that the constraint induced by the
negation of an atomic formula is much less “strict” than the one induced by a positive atomic formula.
Assumption 16 (Appropriate answer size). There is a constant M ! |E | to bound the candidate set
for each free variable yi in G, such that for any i, |tai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P ArGsu| ďM .

We note the Assumption 16 extends the “bounded negation” assumption in the previous dataset (Ren
& Leskovec, 2020; Wang et al., 2021). We give an example “Find a city that is located in Europe and
is the capital of a country that has not held the Olympics” in Figure 2, where the candidate set of x1

3Ideally, we should expect them to have different answers as the existential formulas, however, this is
computation costly and difficult to sample in practice, which is further discussed in Appendix C.
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Train answers:
{(Figalli,Camillio)}

Real-world KG
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Colleague

Fields

Fields

Answer lookup
(Section 4.3)

Test answers:
{(Villani, Clément)}

Evaluation Metrics
(Section 4.5)

• Marginal
• Multiply
• Joint

Preprocessor
• Transductive
• Inductive
• Numerical
• …Train KG

Test KG

Abstract Query 
Graph Sampler

(Section 4.1)

Query Grounding
(Section 4.2) Inference

(Section 4.4)

Score 

tensor

(2 vars)

Loss 𝑙(𝑦, ො𝑦)

𝒚𝟏

𝒚𝟐

Neural CQA Model

Backprop

Figure 3: Illustration of the all functionalities of our framework. Real-world KG is preprocessed and
fed into our pipeline, which contains the whole process of data generation and supports end-to-end
machine learning as well as evaluation. The origin of the KG picture is in Appendix G.

is in fact bounded by its relation with the y1 variable but not from the bottom “Olympics” constant,
hence, this query is excluded in their dataset due to the directionality of operator tree.

Overall, the scope of the formula investigated in this paper surpasses the previous EFO-1-QA
benchmark because of: (1). We include the EFOk formula with multiple free variables for the first
time; (2). We include the whole family of EFO1 query, many of them can not be represented by
operator tree; (3) Our assumption is more systematic than previous ones as shown by the example in
Figure 2. More details are offered in Appendix C.3.

5 FRAMEWORK

We develop a versatile framework that supports five key functionalities fundamental to the whole
CQA task: (1) Enumeration of nontrivial abstract query graphs as discussed in Section 4; (2) Sample
grounding for the abstract query graph; (3) Compute answer for any query graph efficiently; (4)
Support implementation of existing CQA models; (5) Conduct evaluation including newly introduced
EFOk queries with multiple free variables. We explain each functionality in the following. An
illustration of the first three functionalities is given in Figure 3, where we show how each functionality
cooperates to help CQA tasks. We note that preprocessing allows us to extend our framework to more
avant-garde settings, like inductive settings or graphs with numerics, more discussions in Appendix F.

5.1 ENUMERATE ABSTRACT QUERY GRAPH

As discussed in Section 4, we are able to abide by those assumptions as well as enumerate all
possible query graphs within a given search space where certain parameters, including the number
of constants, free variables, existential variables, and the number of edges are all given, shown in
Figure 3. Additionally, we apply the graph isomorphism algorithm to avoid duplicated query graphs
being generated. More details for our generation method are provided in Appendix C.1.

5.2 GROUND ABSTRACT QUERY GRAPH

To ground an abstract query graph G and comply with the assumption 15, we split the abstract query
graph into two parts, the positive part and the negative part, G “ Gp Y Gn. Then the grounding
process is also split into two steps: 1. Sample grounding for the positive subgraph Gp and compute
its answer, 2. Ground the Gn to decrease the answer got in the first step. Details in Appendix C.2.

Finally, to fulfill the assumption 16, we follow the previous practice of manually filtering out queries
that have more than 100 ˆ k answers (Ren & Leskovec, 2020; Wang et al., 2021), as we have
introduced the EFOk queries.

6
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5.3 ANSWER FOR EXISTENTIAL FORMULA

As illustrated in Section 3.2, the answer to an existential formula can be solved by a CSP solver,
however, we also show in Definition 9 that solve it as CSP leads to huge computation costs. Thus,
we develop our own algorithm following the standard solving technique of CSP, which ensures
consistency conditions in the first step, and do the backtracking to get the final answers in the
second step. Finally, we select part of our sampled queries and double-check it with the CSP
solver https://github.com/python-constraint/python-constraint.

5.4 LEARNING-BASED METHODS

As the query graph is an extension to the operator tree regarding the express ability to existential
formulas, we are able to reproduce CQA models that are initially implemented by the operator tree
in our new framework. Specifically, since the operator tree is directed and acyclic, we compute its
topology ordering that allows for step-by-step computation in the query graph. This algorithm is
illustrated in detail in the Appendix E. Therefore, our pipeline is backward compatible.

Conversely, for the newly proposed models that are based on query graphs, the original operator
tree framework is not able to implement them, while our framework is powerful enough. We have
therefore clearly shown that the query graph representation is more powerful than the previous
operator tree and is able to support arbitrary existential formulas as explained in Section 3.3.

5.5 EVALUATION PROTOCOL

As we have mentioned in Section 3.1, there is an observed knowledge graph KGo and a full knowledge
graph KG. Thus, there is a set of observed answers Ao and a set of full answers A correspondingly.
Since the goal of CQA is to tackle the challenge of incompleteness, it has been a common practice
to evaluate CQA models by the “hard” answers Ah “ A´Ao (Ren et al., 2020; 2023). However,
to the best of our knowledge, there has not been a systematic evaluation protocol for EFOk queries,
thus we leverage this idea and propose three types of different metrics to fill the research gap in the
area of evaluation of queries with multiple free variables, and thus have combinatorial answers.

Marginal. For any free variable yi, its full answer is Ayi “ tai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P Au,
the observed answer of it Ayi

o is defined similarly. This is termed “solution projection” in CSP
theory (Greco & Scarcello, 2013) to evaluate whether the locally retrieved answer can be extended to
an answer for the whole problem. Then, we rank the hard answer Ayi

h “ Ayi ´Ayi
o

4, against those
non-answers E ´Ayi ´Ayi

o and use the ranking to compute standard metrics like MRR, HIT@K for
every free variable. Finally, the metric on the whole query graph is taken as the average of the metric
on all free variables. We note that this metric is an extension of the previous design (Liu et al., 2021).
However, this metric has the inherent drawback that it fails to evaluate the combinatorial answer by
the k-length tuple and thus fails to find the correspondence among free variables.

Multiply. Because of the limitation of the marginal metric discussed above, we propose to evaluate
the combinatorial answer by each k-length tuple pa1, ¨ ¨ ¨ , akq in the hard answer set Ah. Specifically,
we rank each ai in the corresponding node yi the same as the marginal metric. Then, we propose the
HIT@nk metric, it is 1 if all ai is ranked in the top n in the corresponding node yi, and 0 otherwise.

Joint. Finally, we note these metrics above are not the standard way of evaluation, which is based on
a joint ranking for all the Ek combinations of the entire search space. We propose to estimate the
joint ranking in a closed form given certain assumptions, see Appendix D for the proof and details.

6 THE EFOk-CQA DATASET AND BENCHMARK RESULTS

6.1 THE EFOk-CQA DATASET

With the help of our framework developed in Section 5, we develop a new dataset called EFOk-CQA,
whose combinatorial space is parameterized by the number of constants, existential and free variables,
and the number of edges. EFOk-CQA dataset includes 741 different abstract query graphs in total.

4We note Ayi
h can be empty, making these marginal metrics not reliable, details in Appendix D.
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Table 1: HIT@10 scores(%) for inferring queries with one free variable on FB15k-237. We denote e,
c as the number of existential variables, constant entities correspondingly. SDAG represents Simple
Directed Acyclic Graph, Multi for multigraph, and Cyclic for cyclic graph. AVG.(c) and AVG.(e) is
the average score of queries with the number of constant entities / existential variables fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 31.4 33.0 22.3 21.1 17.7 30.7 22.1

36.42 57.2 36.2 35.5 29.3 29.4 45.3 32.5
3 80.0 53.1 53.6 38.2 37.8 58.2 42.1

AVG.(e) 59.3 43.8 40.6 33.8 32.7 49.3

LogicE

1 34.4 34.9 23.0 21.4 17.4 30.3 22.4

36.72 60.0 38.4 36.8 29.8 29.3 45.3 33.0
3 83.0 55.5 55.5 38.5 37.8 57.8 42.4

AVG.(e) 62.2 46.0 42.0 34.2 32.6 49.1

ConE

1 34.9 35.4 23.6 21.8 18.4 34.2 23.5

39.02 61.0 39.1 38.4 32.0 31.5 50.2 35.2
3 84.8 56.7 57.1 41.1 40.0 63.4 44.9

AVG.(e) 63.4 47.0 43.5 36.5 34.7 54.1

CQD

1 39.0 34.2 17.6 17.4 12.7 28.7 18.7

35.92 50.7 33.8 33.6 28.4 28.4 45.7 31.4
3 58.4 49.6 52.4 39.3 39.1 60.4 42.6

AVG.(e) 50.7 41.4 38.4 33.8 32.4 50.2

LMPNN

1 38.6 37.8 21.8 22.9 17.8 31.7 23.2

35.82 62.2 40.2 35.0 30.8 28.1 44.4 32.5
3 86.6 56.9 51.9 38.3 35.3 55.8 40.8

AVG.(e) 65.4 47.8 39.6 34.5 30.8 48.0

FIT

1 38.7 42.7 32.5 26.1 22.5 41.5 28.8

47.02 65.5 47.7 48.2 39.7 40.1 56.5 43.4
3 84.2 63.9 63.5 50.5 50.4 63.5 53.6

AVG.(e) 65.8 54.7 51.5 44.9 43.7 57.5

Then, we conduct experiments on our new EFOk-CQA dataset with six representative CQA models
including BetaE (Ren & Leskovec, 2020), LogicE (Luus et al., 2021), and ConE (Zhang et al., 2021),
which are built on the operator tree, CQD (Arakelyan et al., 2020), LMPNN (Wang et al., 2023), and
FIT (Yin et al., 2024) which are built on query graph. The experiments are conducted in two parts,
(1). the queries with one free variable, specifically, including those that can not be represented by an
operator tree; (2). the queries that contain multiple free variables.

The parameters and the generation process, as well as its statistics, are detailed in Appendix C.4,
where we also provide a dataset constructed in inductive settings. However, we mainly focus on
transductive settings in the main paper since there are very few inductive models to benchmark.

We have made some adaptations to the implementation of CQA models, allowing them to infer
EFOk queries, full detail in Appendix E. The experiment is conducted on a standard KG FB15k-
237 (Toutanova & Chen, 2015), additional experiments on other standard KGs FB15k and NELL are
presented in Appendix H.

6.2 BENCHMARK RESULTS FOR k “ 1

Because of the great number of abstract query graphs, we follow previous work (Wang et al., 2021)
to group query graphs by three factors: (1). the number of constant entities; (2). the number of
existential variables, and (3). the topology of the query graph5. The result is shown in Table 1 and
Figure 4.

Structure analysis. Firstly, we find a clear monotonic trend that adding constant entities makes a
query easier while adding existing variables makes a query harder, which the previous research (Wang
et al., 2021) fails to uncover. Besides, we are the first to consider the topology of query graphs: when
the number of constants and existential variables is fixed, we have found the originally investigated

5To facilitate our discussion, we make a further constraint in our EFOk-CQA dataset that the total edge is at
most as many as the number of nodes, thus, a graph can not be both a multigraph and a cyclic graph.
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Figure 4: Relative performance of the six representative CQA models in queries with one free
variable, where the ranking of query types is determined by the average HIT@10 score. A Gaussian
filter with sigma=1 is added to smooth the curve.

queries that correspond to Simple Directed Acyclic Graphs (SDAG) are generally easier than the
multigraphs ones but harder than the cyclic graph ones. This intriguing result greatly deviates from
traditional CSP theory, which finds that the cyclic graph is NP-complete, while the acyclic graph is
tractable (Carbonnel & Cooper, 2016). This finding also refreshes the previous finding (Yin et al.,
2024) that only cherry-picks two cyclic queries, showing the benefit of our unbiased, complete
coverage of the combinatorial space. We conjecture that the cyclic graph contains one more constraint
than SDAG that serves as a source of information for CQA models, while the multigraph tightens an
existing constraint and thus makes the query harder.

Model analysis. For models that are built on operator tree, including BetaE, LogicE, and ConE, their
relative performance is steady among all breakdowns and is consistent with their reported score in
the original dataset (Ren & Leskovec, 2020). However, for models that are built on query graphs,
including CQD, LMPNN, and FIT, we found that LMPNN performs generally better than CQD in
SDAG, but falls behind CQD in multigraphs and cyclic graphs. We assume the reason is that LMPNN
requires training while CQD does not, however, the original dataset are biased which only considers
SDAG, leading to the result that LMPNN doesn’t generalize well to the unseen tasks with different
topology property. We expect future CQA models may use our framework to address this issue and
gain better generalization.

Moreover, by the detailed observation in Figure 4, we plot two boxes. In the red box, we find that
even the worst model and the best model have pretty similar performance in these easiest queries
despite that they may differ greatly in other queries. In the black box, we note that CQD (Arakelyan
et al., 2020), though designed in a rather general form, is pretty unstable when comes to empirical
evaluation, as it has a clear downward curve and deviates from other model’s performance enormously
in most difficult query types. Therefore, though its performance is better than LMPNN on average
as reported in Table 1, its unsteady performance suggests its inherent weakness, especially when
the users are risk-sensitive and desire a trustworthy machine-learning model that does not crash in
extreme cases (Varshney, 2019).

We note FIT is designed to infer all EFO1 queries and is indeed able to outperform other models in
almost all breakdowns, however, its performance comes with the price of computational cost, and face
challenges in cyclic graph where it degenerates to enumeration: we further explain in Appendix E.

6.3 BENCHMARK RESULTS FOR k “ 2

As we have explained in Section 5.5, we propose three kinds of metrics, marginal ones, multiply
ones, and joint ones, from easy to hard, to evaluate the performance of a model in the scenario of
multiple variables. The evaluation result is shown in Table 2. As the effect of the number of constant
variables is quite clear, we remove it and add the metrics based on HIT@10 as the new factor.
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Table 2: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k-237. The constant number is fixed to be two. e is the number of existential variables. The
SDAG, Multi, and Cyclic are the same as Table 1.

Model
HIT@10

Type
e “ 0 e “ 1 e “ 2 AVG.

SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 54.5 50.2 49.5 46.0 58.8 37.2 35.5 58.3 43.8
Multiply 27.3 22.4 22.3 16.9 26.2 16.9 13.9 25.7 18.3

Joint 6.3 5.4 5.2 4.2 10.8 2.2 2.3 9.5 4.5

LogicE
Marginal 58.2 50.9 52.2 47.4 60.4 37.7 35.8 59.2 44.6
Multiply 32.1 23.1 24.9 18.1 28.3 18.1 14.8 26.6 19.5

Joint 6.8 6.0 6.1 4.5 12.3 2.5 2.7 10.3 5.1

ConE
Marginal 60.3 53.8 54.2 50.3 66.2 40.1 38.5 63.7 47.7
Multiply 33.7 25.2 26.1 19.8 32.1 19.5 16.3 30.3 21.5

Joint 6.7 6.4 6.2 4.8 12.6 2.6 2.7 10.9 5.3

CQD
Marginal 50.4 46.5 49.1 45.6 59.7 33.5 33.1 61.5 42.8
Multiply 28.9 23.4 25.4 19.5 31.3 17.8 16.0 30.5 21.0

Joint 8.0 8.0 7.4 6.0 13.9 3.6 3.9 12.0 6.4

LMPNN
Marginal 58.4 51.1 54.9 49.2 64.7 39.6 36.1 58.7 45.4
Multiply 35.0 26.7 29.2 21.7 33.4 21.4 17.0 28.4 22.2

Joint 7.6 7.5 7.1 5.3 12.9 2.8 2.9 9.5 5.2

FIT
Marginal 64.3 61.0 63.1 60.7 58.5 49.0 49.1 60.2 54.3
Multiply 39.7 32.2 35.9 27.8 27.4 29.5 26.8 32.4 29.2

Joint 7.4 9.0 7.8 6.5 10.1 3.7 4.6 10.6 6.4

For the impact regarding the number of existential variables and the topology property of the query
graph, we find the result is similar to Table 1, which may be explained by the fact that those models
are all initially designed to infer queries with one free variable.

Metric analysis. For the three metrics we have proposed, we have identified a clear difficulty
difference among them though they generally show similar trends. The joint HIT@10 scores are
pretty low, indicating the great difficulty of answering queries with multiple variables.

Model Analysis. Compared with the result in Table 1, CQD shows relatively worse performance in
SDAG queries in Marginal metrics but not in joint metrics, this perhaps can be explained by the large
performance variance of CQD across different query types, and the fact that joint metric is much
lower thus a few outliers can increase the mean performance by a lot. Moreover, we have found that
FIT falls behind other models in some breakdowns which are mostly cyclic graphs, corroborating our
discussion in Section 6.2. We offer more experiment results and further discussion in Appendix H.

7 CONCLUSION

In this paper, we make a thorough investigation of the family of EFOk formulas based on a strong
theoretical background. We then present a new powerful framework that supports several function-
alities essential to CQA task, and build the EFOk-CQA dataset that greatly extends the previous
datasets. Our evaluation result brings new empirical findings and reflects the biased selection in the
previous dataset, which impairs the performance of CQA models, emphasizing the contribution of
our work.
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A DETAILS OF CONSTRAINT SATISFACTION PROBLEM

In this section, we introduce the constraint satisfaction problem (CSP) again. One instance of CSP P
can be represented by a triple P “ pX,D,Cq where X “ px1, ¨ ¨ ¨ , xnq is an n-tuple of variables,
D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple of domains, meaning for each i, xi P Di. Then,
C “ pC1, ¨ ¨ ¨ , Ctq is t-tuple constraint, each constraint Ci is a pair of pSi, RSiq where Si is called
the scope of the constraint, meaning it is a set of variables Si “ txiju and RSi is the constraint over
those variables (Rossi et al., 2006), meaning that RSi is a subset of the cartesian product of variables
in Si.

Then the formulation of existential conjunctive formulas as CSP has already been discussed in
Section 3.2. Additionally, for the negation of atomic formula ␣rph, tq, we note the constraint C is
also binary with Si “ th, tu, RSi

“ tph, tq|h, t P E , ph, r, tq R KGu, this means that RSi
is a very

large set, thus the constraint is less “strict” than the positive ones.
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Figure 5: The four steps of enumerating the abstract query graphs. We note that the example and
representation follow Figure 3.

B PRELIMINARY OF TREE FORM QUERY

We explain the operator tree method, as well as the tree-form queries in this section, which is firstly
introduced in Yin et al. (2024). The tree-form queries are defined to be the syntax closure of the
operator tree method and are the prevailing query types in the existing datasets (Ren & Leskovec,
2020; Wang et al., 2021), see the definition below:

Definition 17 (Tree-Form Query). The set of the Tree-Form queries is the smallest set Φ such that:

(i) If ϕpyq “ rpa, yq, where a P E , then ϕpyq P Φ;
(ii) If ϕpyq P Φ,␣ϕpyq P Φ;

(iii) If ϕpyq, ψpyq P Φ, then pϕ^ ψqpyq P Φ and pϕ_ ψqpyq P Φ;
(iv) If ϕpyq P Φ and y1 is any variable, then ψpy1q “ Dy.rpy, y1q ^ ϕpyq P Φ.

We note that the family of tree-form queries deviates from the targeted EFO1 query family (Yin
et al., 2024). The rationale of the definition is that the previous model relied on the representation
of “operator tree” which addresses logical queries to simulate logical reasoning as the execution
of set operators (Ren & Leskovec, 2020; Zhang et al., 2021; Xu et al., 2022), where each node
represents a set of entities corresponding to the answer set of a sub-query (Yin et al., 2024). Then,
logical connectives are transformed into operator nodes for set projections (Definition 17 i,iv), com-
plement(Definition 17 ii), intersection, and union(Definition 17 iii) (Wang et al., 2021). Particularly,
the set projections are derived from the Skolemization of predicates (Luus et al., 2021). Therefore,
the operator tree method that has been adopted in lines of research (Ren & Leskovec, 2020; Zhang
et al., 2021; Xu et al., 2022) is just a model that neuralizes these set operations: projection, comple-
ment, intersection, and union. These different models basically only differ from each other by their
parameterization while having the same expressiveness as characterized by the tree form query.

Specifically, the left side of the Figure 1 shows an example of the operator tree, where “Held” and
“Located” are treated as two projections, “N” represents set complement, and “I” represents set
intersection. Therefore, the embedding of the root representing the answer set can be computed based
on these set operations in a bottom-up manner (Ren & Leskovec, 2020).

Finally, it has been noticed that tree-form query is subject to structural traceability and only has
polynomial time combined complexity for inference while the general EFOk, or even EFO1 queries,
is NP-complete, with detailed proof in Yin et al. (2024). Therefore, this result highlights the
importance of investigating the EFOk queries as it greatly extends the previous tree-form queries.

C CONSTRUCTION OF THE WHOLE EFOk-CQA DATSET

In this section, we provide details for the construction of the EFOk-CQA dataset.

C.1 ENUMERATION OF THE ABSTRACT QUERY GRAPHS

We first give a proposition of the property of abstract query graph:
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Proposition 18. For an abstract query graph G, if it conforms Assumption 13 and Assumption 14,
then removing all constant entities in G will lead to only one connected component and no edge is
connected between two constant entities.

Proof. We prove this by contradiction. If there is an edge (whether positive or negative) between
constant entities, then this edge is redundant, violating Assumption 13. Then, if there is more than one
connected component after removing all constant entities in G. Suppose one connected component
has no free variable, then this part is a sentence and thus has a certain truth value, whether 0 or 1,
which is redundant, violating Assumption 13. Then, we assume every connected component has at
least one free variable, we assume there is m connected component and we have:

NodepGq “ pYm
i“1NodepGiqq YNodepGcq

where m ą 1, the Gc is the set of constant entities and each Gi is the connected component, we use
NodepGq to denote the node set for a graph G. Then this equation describes the partition of the node
set of the original G.

Then, we construct Ga “ GrNodepG1qYGcs and Gb “ GrpYm
i“1NodepGiqqYNodepGcqs, where G

represents the induced graph. Then we naturally have that ArIpGqs “ ArIpGaqs
Ś

ArIpGbqs, where
the

Ś

represents the Cartesian product, violating Assumption 14.

Additionally, as mentioned in Appendix A, the negative constraint is less “strict”, we formally put an
additional assumption of the real knowledge graph as the following:

Assumption 19. For any knowledge graph KG, with its entity set E and relations set R, we assume
it is somewhat sparse with regard to each relation, meaning: for any r P R, |ta P E |Db.pa, r, bq P
KG or pb, r, aq P KGu| ! |E |.

Then we develop another proposition for the abstract query graph:

Proposition 20. With the knowledge graph conforming Assumption 19, for any node u in the abstract
query graph G, if u is an existential variable or free variable, then it cannot only connect with
negative edges.

Proof. Suppose u only connects to m negative edge e1, ¨ ¨ ¨ , em. For any grounding I , we assume
Ipeiq “ ri P R. For each ri, we construct its endpoint set

Endpointpriq “ ta P E |Db.pa, r, bq P KG or pb, r, aq P KGu

by the assumption 19, we have |Endpointpriq| ! E |, then we have:

| Ym
i“1 Endpointpriq| ď Σm

i“1|Endpointpriq| ! |E |

since m is small due to the size of the abstract query graph. Then we have two situations about the
type of node u:

1.If node u is an existential variable.

Then we construct a subgraph Gs be the induced subgraph of NodepGq ´ u, then for any possible
grounding I , we prove that ArIpGsqs=ArIpGqs, the right is clearly a subset of the left due to it
contains more constraints, then we show every answer of the left is also an answer on the right, we
merely need to give an appropriate candidate in the entity set for node v, and in fact, we choose any
entity in the set E ´Ym

i“1Endpointpriq since it suffices to satisfies all constraints of node u, and we
have proved that |E ´Ym

i“1Endpointpriq| ą 0.

This violates the Assumption 13.

2.If node u is a free variable.

Similarly, any entity in the set E ´Ym
i“1Endpointpriq will be an answer for the node u, thus violating

the Assumption 16.
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We note the proposition 20 extends the previous requirement about negative queries, which is firstly
proposed in Ren & Leskovec (2020) and inherited and named as “bounded negation” in Wang et al.
(2021), the “bounded negation” requires the negation operator should be followed by the intersection
operator in the operator tree. Obviously, the abstract query graph that conforms to “bounded negation”
will also conform to the requirement in Proposition 20. A vivid example is offered in Figure 2.

Finally, we make the assumption of the distance to the free variable of the query graph:

Assumption 21. There is a constant d, such that for every node u in the abstract query graph G, it
can find a free variable in its d-hop neighbor.

We have this assumption to exclude the extremely long-path queries.

Equipped with the propositions and assumptions above, we explore the combinatorial space of the
abstract query graph given certain hyperparameters, including: the max number of free variables,
max number of existential variables, max number of constant entities, max number of all nodes, max
number of all edges, max number of edges surpassing the number of nodes, max number of negative
edge, max distance to the free variable. In practice, these numbers are set to be: 2, 2, 3, 6, 6, 0, 1, 3.
We note that the max number of edges surpassing the number of nodes is set to 0, which means that
the query graph can at most have one more edge than a simple tree, thus, we exclude those query
graphs that are both cyclic graphs and multigraphs, making our categorization and discussion in the
experiments in Section 6.2 and Section 6.3 much more straightforward and clear.

Then, we create the abstract query graph by the following steps, which is a graph with three types of
nodes and two kinds of edges:

1. First, create a simple connected graph G1 with two types of nodes, the existential variable
and the free variable, and one type of edge, the positive edge.

2. We add additional edges to the simple graph G1 and make it a multigraph G2.

3. Then, the constant variable is added to the graph G2, In this step, we make sure not too long
existential leaves. The result is graph G3.

4. Finally, random edges in G3 are replaced by the negation edge, and we get the final abstract
query graph G4.

In this way, all possible query graphs within a certain combinatorial space are enumerated, and finally,
we filter duplicated graphs with the help of the graph isomorphism algorithm. We give an example to
illustrate the four-step construction of an abstract query graph in Figure 5.

C.2 GROUND ABSTRACT QUERY GRAPH WITH MEANINGFUL NEGATION

To fulfill the Assumption 15 as discussed in Section 5.2, for an abstract query graphG “ pV,E, f, gq,
we have two steps: (1). Sample grounding for the positive subgraph Gp and compute its answer (2).
Ground the Gn to decrease the answer got in the first step. Then we define positive subgraph Gp to
be defined as such, its edge set E1 “ te P E|gpeq “ positiveu, its node set V 1 “ tu|u P V, De P
E1 and e connects to uu. Then Gp=pV 1, E1, f, gq. We note that because of Proposition 20, if a node
u P V ´ V 1, then we know node u must be a constant entity.

Then we sample the grounding for the positive subgraph Gp, we also compute the CSP answer Ap for
this subgraph.

Then we ground what is left in the positive subgraph, we split each negative edge in E ´ E1 into two
categories:

1. This edge e connects two nodes u, v, and u, v P V 1.

In this case, we sample the relation r to be the grounding of e such that it negates some of the answers
in Ap.

2. This edge e connects two nodes u, v, where u P V 1, while v R V 1.

In this case, we sample the relation r for e and entity a for v such that they negate some answer in
Ap, we note we only need to consider the possible candidates for node u and it is quite efficient.
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Tree Form

EFOk-CQA

EFO-1-QA

FIT

EFO1

BetaE

Figure 6: Illustration of the comparison between the EFOk-CQA dataset (navy blue box) and the
previous dataset (three yellow boxes), where the BetaE and EFO-1-QA aim to investigate the tree
form query, explained in Appendix B, while the FIT dataset aims to investigate EFO1 query that
is not tree form. FIT is not a subset of EFOk-CQA because its “3pm” query is not included in
EFOk-CQA.

We note that there is no possibility that neither of the endpoints is in V 1 because as we have discussed
above, this means that both nodes are constant entities, but in Proposition 18 we have asserted that no
edge is connected between two entities.

C.3 THE COMPARISON TO PREVIOUS BENCHMARK

To give an intuitive comparison of our EFOk-CQA dataset against those previous datasets and
benchmark, including the BetaE dataset (Ren & Leskovec, 2020), the EFO-1-QA benchmark (Wang
et al., 2021) that extends BetaE dataset, and the FIT dataset (Yin et al., 2024) that explores 10 more
new query types, we offer a new figure in Figure 6.

It can be clearly observed that EFO-1-QA covers the BetaE dataset and has provided a quite systematic
investigation in tree form query, while FIT deviates from them and studies ten new query types that
are in EFO1 but not tree form.

As discussed in Section 4, the scope of the formula investigated in our EFOk-CQA dataset surpasses
the previous EFO-1-QA benchmark and FIT dataset because of three reasons: (1). We include
the EFOk formula with multiple free variables that has never been investigated(the bottom part of
navy blue box in Figure 6); (2). We systematically investigate those EFO1 queries that are not tree
form while the previous FIT dataset only discusses ten hand-crafted query types (the navy blue part
between two white lines in Figure 6); (3) Our assumption is more systematic than previous ones as
shown by the example in Figure 2(the top navy blue part above two white lines in Figure 6). Though
we only contain 741 query types while the EFO-1-QA benchmark contains 301 query types, we list
reasons for the number of query types is not significantly larger than the previous benchmark: (1).
EFO-1-QA benchmark relies on the operator tree that contains union, which represents the logic
conjunction(_), however, we only discuss the conjunctive queries because we always utilize the
DNF of a query. We notice that there are only 129 query types in EFO-1-QA without the union,
significantly smaller than the EFOk-CQA dataset. (2). In the construction of EFOk-CQA dataset,
we restrict the query graph to have at most one negative edge to avoid the total number of query types
growing quadratically, while in EFO-1-QA benchmark, their restrictions are different than ours and it
contains queries that have two negative atomic formulas as indicated by the right part of yellow box
is not contained in the navy blue box.
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Table 3: The number of abstract query graphs with one free variable. We denote e as the number of
existential variables and c as the number of constant entities. SDAG represents the Simple Directed
Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. Sum.(c) and Sum.(e) is the
total number of queries with the number of constant entities / existential variables fixed.

c
e 0 1 2 Sum.(c) Sum.

SDAG SDAG Multi SDAG Multi Cyclic

1 1 2 4 4 16 4 31
2512 2 6 6 20 40 8 82

3 2 8 8 36 72 12 138

Sum.(e) 5 16 18 60 128 24

Table 4: The number of abstract query graphs with two free variables. The notation of e, c SDAG,
Multi, and Cyclic are the same as Table 3. And "-" means that this type of abstract query graph is not
included.

c
e e “ 0 e “ 1 e “ 2 AVG.

SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

c “ 1 1 2 7 18 4 6 32 26 96
c “ 2 4 4 20 36 8 38 108 64 282
c “ 3 4 4 32 60 12 - - - 112

C.4 EFOk-CQA STATISTICS

The statistics of our EFOk-CQA dataset are shown in Table 3 and Table 4, they show the statistics
of our abstract query graph by their topology property, the statistics are split into the situation that
the number of free variable k “ 1 and the number of free variable k “ 2, correspondingly. We
note abstract query graphs with seven nodes have been excluded as the setting of hyperparameters
discussed in Appendix C.1, we make these restrictions to control the quadratic growth in the number
of abstract query graphs.

Finally, in FB15k-237, we sample 1000 queries for an abstract query graph without negation, 500
queries for an abstract query graph with negation; in FB15k, we sample 800 queries for an abstract
query graph without negation, 400 queries for an abstract query graph with negation; in NELL,
we sample 400 queries for an abstract query graph without negation, 100 queries for an abstract
query graph with negation. As we have discussed in Appendix C.2, sample negative query is
computationally costly, thus we sample less of them.

Moreover, we provide our EFOk-CQA dataset an inductive version, with the same query types as the
transductive version, while the number of queries per query type is set to 400 for positive ones and
100 for negative ones. The inductive ratio is set to 175%, following the setting in Galkin et al. (2022).

D EVALUATION DETAILS

We explain the evaluation protocol in detail for Section 5.5.

Firstly, we explain the computation of common metrics, including Mean Reciprocal Rank(MRR) and
HIT@K, given the full answer A in the whole KG and the observed answer Ao in the observed KG,
we focus on the hard answer Ah as it requires more than memorizing the observed KG and serves as
the indicator of the capability of reasoning.

Specifically, we rank each hard answer a P Ah against all non-answers E ´A´Ao, the reason is
that we need to neglect other answers so that answers do not interfere with each other, finally, we get
the ranking for a as r. Then its MRR is 1{r, and its HIT@k is 1rďk, thus, the score of a query is the
mean of the scores of every its hard answer. We usually compute the score for a query type (which
corresponds to an abstract query graph) as the mean score of every query within this type.
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Algorithm 1 Embedding computation on the query graph.
Require: The query graph G.

Compute the ordering of the nodes as explained in Algorithm 2.
Create a dictionary E to store the embedding for each node in the query graph
for iÐ 1 to n do

if node ui is a constant entity then
The embedding of ui, Eris is gotten from the entity embedding

else
Then we know node ui is either free variable or existential variable
Compute the set of nodes tuiju

t
j“1 that are previous to i and adjacency to node ui.

Create a list to store projection embedding L.
for j Ð 1 to t do

Find the relation r between node ui and uij , get the embedding of node uij as Erijs.
if Erijs is not None then

if The edge between ui and uiJ is positive then
Compute the embedding of projection(Erijs, r), add it to the list L.

else
Compute the embedding of the negation of the projection(Erijs, r), add it to the list
L.

end if
end if

end for
if The list L has no element then
Eris is set to none.

else if The list L has one element then
Eris “ Lr0s

else
Compute the embedding as the intersection of the embedding in the list L, and set Eris as
the outcome.

end if
end if

end for
return The embedding dictionary E for each node in the query graph.
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Algorithm 2 Node ordering on the abstract query graph.
Require: The abstract query graph G “ pV,E, f, gq, V consists m nodes, u1, ¨ ¨ ¨ , um.

Creates an empty list L to store the ordering of the node.
Creates another two set S1 and S2 to store the nodes that are to be explored next.
for iÐ 1 to m do

if The type of node fpuiq is constant entity then
list L append the node ui
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for

end if
while Not all node is included in L do

if Set S1 is not empty then
We sort the set S1 by the sum of their distance to every free variable in G, choose the most
remote one, and if there is a tie, randomly choose one node, ui to be the next to explore.
We remove ui from set S1.

else
In this case, we know set S2 is not empty because of the connectivity of G.
We randomly choose a node ui P S2 to be the next node to explore.
We remove ui from set S2.

end if
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for
List L append the node ui

end while
end for
return The list L as the ordering of nodes in the whole abstract query graph G
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As the marginal score and the multiply score have already been explained in Section 5.5, we only
mention one point that it is possible that every free variable does not have marginal hard answer.
Assume that for a query with two free variables, its answer set A “ tpa1, a2q, pa1, a3q, pa4, a2qu and
its observed answer set Ao “ tpa1, a3q, pa4, a2qu. In this case, a1 is not the marginal hard answer for
the first free variable and a2 is not the marginal hard answer for the second free variable, in general,
no free variable has its own marginal hard answer.

Then we only discuss the joint metric, specifically, we only explain how to estimate the joint ranking
by the individual ranking of each free variable. For each possible k-tuple pa1, ¨ ¨ ¨ , akq, if ai is ranked
as ri among the whole entity set E , we compute the score of this tuple as Σk

i“1ri, then we sort
the whole Ek k-tuple by their score, for the situation of a tie, we just use the lexicographical order.
After the whole joint ranking is got, we use the standard evaluation protocol that ranks each hard
answer against all non-answers. It can be confirmed that this estimation method admits a closed-form
solution for the sorting in Ek space, thus the computation cost is affordable.

We just give the closed-form solution when there are two free variables:

for the tuple pr1, r2q, the possible combinations that sum less than r1 ` r2 is
`

r1`r2´1
2

˘

, then, there
is r1 ´ 1 tuple that ranks before pr1, r2q because of lexicographical order, thus, the final ranking for
the tuple pr1, r2q is just

`

r1`r2´1
2

˘

` r1 that can be computed efficiently.

E IMPLEMENTATION DETAILS OF CQA MODELS

In this section, we provide implementation details of CQA models that have been evaluated in our
paper. For query embedding methods that rely on the operator tree, including BetaE (Ren & Leskovec,
2020), LogicE (Luus et al., 2021), and ConE (Zhang et al., 2021), we compute the ordering of nodes
in the query graph in Algorithm 2, then we compute the embedding for each node in the query
graph Algorithm 1, the final embedding of every free node are gotten to be the predicted answer.
Especially, the node ordering we got in Algorithm 2 coincides with the natural topology ordering
induced by the directed acyclic operator tree, so we can compute the embedding in the same order as
the original implementation. Then, in Algorithm 1, we implement each set operation in the operator
tree, including intersection, negation, and set projection. By the merit of the Disjunctive Normal
Form (DNF), the union is tackled in the final step. Thus, our implementation can coincide with the
original implementation in the original dataset (Ren & Leskovec, 2020).

For CQD (Arakelyan et al., 2020) and LMPNN (Wang et al., 2023), their original implementation
does not require the operator tree, so we just use their original implementation. Specifically, in a query
graph with multiple free variables, for CQD we predict the answer for each free variable individually
as taking others free variables as existential variables, for LMPNN, we just got all embedding of
nodes that represent free variables.

For FIT (Yin et al., 2024), though it is proposed to solve EFO1 queries, it is computationally costly:
it has a complexity of OpE2q in the acyclic graphs and is even not polynomial in the cyclic graphs,
the reason is that FIT degrades to enumeration to deal with cyclic graph. In our implementation, we
further restrict FIT to at most enumerate 10 possible candidates for each node in the query graph, this
practice has allowed FIT to be implemented in the dataset FB15k-237 (Toutanova & Chen, 2015).
However, it cost 20 hours to evaluate FIT on our EFOk-CQA dataset while other models only need no
more than two hours. Moreover, for larger knowledge graph, including NELL (Carlson et al., 2010)
and FB15k (Bordes et al., 2013), we have also encountered an out-of-memory error in a Tesla V100
GPU with 32G memory when implementing FIT, thus, we omit its result in these two knowledge
graphs.

F EXTENSION TO MORE COMPLEX QUERY ANSWERING

In this section, we discuss possible further development in the task of complex query answering and
how our work, especially our framework proposed in Section 5 can help with future development. We
list some new features that may be of interest and show the maximum versatility our framework can
reach. Our analysis and characterization of future queries inherit the outlook in Wang et al. (2022)
and also is based on the current development.
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Inductive Reasoning Inductive reasoning is a new trend in the field of complex query answering.
Some entities (Galkin et al., 2022) or even relations (Huang et al., 2022) are not seen in the training
period, namely they can not be found by the observed knowledge graph Go therefore, the inductive
generalization is essential for the model to infer answers. We note that our framework is powerful
enough to sample inductive queries with the observed knowledge graph Go given. Therefore, the
functionality of sampling inductive query is easily contained and implemented in our framework,
see https://anonymous.4open.science/r/EFOK-CQA/README.md. We note there
we have already provided our EFOk-CQA dataset in this setting as discussed in Appendix C.4.

N-ary relation N-ary relation is a relation that has n ą 2 corresponding entities, therefore, the factual
information in the knowledge graph is not a triple but a pn` 1q-tuple. Moreover, the query graph is
also a hypergraph, making the corresponding CSP problem even harder. This is a newly introduced
topic (Luo et al., 2022; Alivanistos et al., 2022) in complex query answering, which our framework
has limitations in representing.

Knowledge graph with attribute Currently, there has been some research that has taken the
additional attribute of the knowledge graph into account. Typical attributes include entity types (Hu
et al., 2022), numerical literals (Bai et al., 2023a; Demir et al., 2023),triple timestamps (Jia et al.,
2021; Saxena et al., 2021), and triple probabilities (Carlson et al., 2010). We note that attributes
expand the entity set E from all entities to entities with attribute values, it is also possible that the
relation set R is also extended to contain corresponding relations, like “greater”, “less” when dealing
with numerical literals. Then, our framework can represent queries on such extended knowledge
graphs like in Bai et al. (2023b), where no function like “plus”, or “minus” is considered and the
predicates are also binary.

Overall, our framework can be applied to some avant-garde problem settings given certain properties,
thus those functionalities proposed in Section 5 can be useful. We hope our discussion helps with the
future development of complex query answering.

G SOCIETY IMPACT AND APPLICATIONS

This paper addresses the topic of complex query answering on knowledge graphs, a subject that has
garnered attention within the machine learning community for approximately four years. We mainly
focuses on extending the scope of the complex query given the same knowledge graph and also
presents systematic benchmarks and convenient implementation for the whole pipeline of complex
query answering, which holds the potential to significantly advance the development of complex
query answering models. Nowadays, CQA has several real-world applications, like fact ranking (Ren
et al.), and explainable recommendations (Syed et al., 2022). However, some important practical
applications can not be covered by existing datasets in CQA, because their construction is biased
and has not discussed queries with multiple free variables entirely. We would like to introduce one
example in fraud detection where we need to detect a group of people with cyclic money flow for
anti-money laundering applications (Verma et al., 2017), we also note that this finding is also shared
by open-source graph database 6. Therefore, our investigation on cyclic queries and queries with
more than one free variable can be justified to help develop more versatile CQA models that are
suitable for more real-world applications.

Additionally, the figure of the real-world KG in Figure 3is taken from https://medium.com/
@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77.

H ADDITIONAL EXPERIMENT RESULT AND ANALYSIS

In this section, we offer another experiment result not available to be shown in the main paper. For the
purpose of supplementation, we select some representative experiment result as the experiment result
is extremely complex to be categorized and be shown. we present the further benchmark result of the
following: the analysis of benchmark result in detail, more than just the averaged score in Table 1 and
Table 2, which is provided in Appendix H.1; result of different knowledge graphs, including NELL
and FB15k, which is provided in Appendix H.2 and H.3, the situation of more constant entities since

6People interested can find relevant resource in https://www.nebula-graph.io/posts/
fraud-detection-using-knowledge-and-graph-database
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Figure 7: Relative performance of the six representative CQA models in referring queries with two
free variables, the ranking of query types is determined by the average Multiply HIT@10 score. A
Gaussian filter with sigma=1 is added to smooth the curve.

we only discuss when there are two constant entities in Table 2, the result is provided in Appendix H.4,
and finally, all queries(including the queries without marginal hard answers), in Appendix H.5.

We note that we have explained in Section 5.5 and Appendix D that for a query with multiple free
variables, some or all of the free variables may not have their marginal hard answer and thus the
marginal metric can not be computed. Therefore, in the result shown in Table 2 in Section 6.3, we
only conduct evaluation on those queries that both of their free variables have marginal hard answers,
and we offer the benchmark result of all queries in Appendix H.5 where only two kinds of metrics
are available.

H.1 FURTHER RESULT AND ANALYSIS OF THE EXPERIMENT IN MAIN PAPER

To supplement the experiment result already shown in Section 6.2 and Section 6.3, we have included
more benchmark results in this section. Though the averaged score is a broadly-used statistic to
benchmark the model performance on our EFOk queries, this is not enough and we have offered
much more detail in this section.

Whole combinatorial space helps to develop trustworthy machine learning models. Firstly, we
show more detailed benchmark results of the relative performance between our selected six CQA
models, the result is shown in Table 4. Specifically, we plot two boxes, the black one, including the
most difficult query types, and the red box, including the easiest query types. In the easiest part,
we find that even the worst model and the best model have pretty similar performance despite that
they may differ greatly in other query types. The performance in the most difficult query types is
more important when the users are risk-sensitive and desire a trustworthy machine-learning model
that does not crash in extreme cases (Varshney, 2019) and we highlight it in the black box. In the
black box, we note that CQD (Arakelyan et al., 2020), though designed in a rather general form, is
pretty unstable when comes to empirical evaluation, as it has a clear downward curve and deviates
from other model’s performance enormously in the most difficult query types. Therefore, though its
performance is better than LMPNN and comparable to BetaE on average as reported in Table 1, its
unsteady performance suggests its inherent weakness. On the other hand, ConE (Zhang et al., 2021)
is much more steady and outperforms BetaE and LogicE consistently. We also show the result when
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Figure 8: Query type distribution in three different datasets, BetaE one, FIT one, and the EFO1 part
in our EFOk-CQA dataset. The left part shows the histogram that represents the probability density
function of each dataset. The ranking of query types is also determined by the mean HIT@10 score
as in Figure 4, with the standard deviation of the performance of the six CQA models shown as the
light blue error bar.

there are two free variables in Figure 7, where the model performance is much less steady but the
trend is similar to the EFO1 case in general.

Empirical hardness of query types and incomplete discussion of the previous dataset. Moreover,
we also discuss the empirical hardness of query types themselves and compare different datasets
accordingly in Figure 8. We find the standard deviation of the six representative CQA models
increases in the most difficult part and decreases in the easiest part, corroborating our discussion
in the first paragraph. We also highlight those query types that have already been investigated
in BetaE dataset (Ren & Leskovec, 2020) and FIT dataset (Yin et al., 2024). We intuitively find
that the BetaE dataset does not include very challenging query types while the FIT dataset mainly
focuses on them. This can be explained by the fact that nine out of ten most challenging query types
correspond to multigraph, which the BetaE dataset totally ignores while the FIT dataset highlights
it as a key feature. To give a quantitative analysis of whether their hand-crafted query types are
sampled from the whole combinatorial space, we have adopted the Kolmogorov–Smirnov test to test
the distribution discrepancy between their distribution and the query type distribution in EFOk-CQA
since EFOk-CQA enumerates all possible query types in the given combinatorial space and is thus
unbiased. We find that the BetaE dataset is indeed generally easier and its p-value is 0.78, meaning
that it has a 78 percent possibility to be unbiased, while the FIT dataset is significantly harder and its
p-value is 0.27. Therefore, there is no significant statistical evidence to prove they are sampled from
the whole combinatorial space unbiasedly.

H.2 FURTHER BENCHMARK RESULT OF k=1

Firstly, we present the benchmark result when there is only one free variable, since the result in
FB15k-237 is provided in Table 1, we provide the result for other standard knowledge graphs, FB15k
and NELL, their result is shown in Table 6 and Table 7, correspondingly. We note that FIT is out
of memory with the two large graphs FB15k and NELL as explained in Appendix E and we do
not include its result. As FB15k and NELL are both reported to be easier than FB15k-237, the
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Table 5: MRR scores(%) for inferring queries with one free variable on FB15k-237. We denote e as
the number of existential variables and c as the number of constant entities. SDAG represents the
Simple Directed Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. AVG.(c) and
AVG.(e) is the average score of queries with the number of constant entities / existential variables
fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 16.2 17.9 10.9 10.6 8.5 16.5 11.1
20.72 35.6 20.2 19.1 15.7 15.7 27.1 17.8

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 37.4 25.7 23.5 18.8 18.1 30.5

LogicE

1 17.4 19.0 11.5 11.0 8.5 16.8 11.5
21.32 36.7 21.2 19.8 16.5 16.1 27.3 18.4

3 55.5 34.6 34.5 22.3 22.0 37.5 25.4

AVG.(e) 38.9 27.3 24.5 19.4 18.5 30.6

ConE

1 18.6 19.9 11.8 11.4 9.3 18.7 12.3

23.12 39.1 22.4 20.8 18.1 17.6 30.7 20.1
3 58.8 36.4 37.0 24.6 23.8 41.7 27.6

AVG.(e) 41.4 28.7 26.0 21.3 20.1 34.2

CQD

1 22.2 19.5 9.0 9.2 6.4 15.6 10.0

21.92 35.3 20.1 19.1 16.4 16.2 27.6 18.4
3 40.3 32.9 34.3 24.4 24.0 40.2 26.8

AVG.(e) 33.9 26.2 23.7 20.5 19.4 31.9

LMPNN

1 20.5 21.4 11.2 11.6 8.7 17.0 11.9

20.52 42.0 22.6 18.5 16.5 14.9 26.5 17.9
3 62.3 35.9 31.6 22.1 19.8 35.5 24.0

AVG.(e) 44.2 28.8 22.7 19.4 16.9 29.4

FIT

1 22.2 25.0 17.4 13.9 11.7 23.3 15.6

30.32 45.3 29.6 28.5 23.8 24.3 35.5 26.5
3 64.5 44.8 45.4 33.3 33.5 44.4 36.2

AVG.(e) 46.7 36.2 33.6 28.6 27.9 37.9

models have better performance. The trend and analysis are generally similar to our discussion in
Section 6.2 with some minor, unimportant changes that LogicE (Luus et al., 2021) has outperformed
ConE (Zhang et al., 2021) in the knowledge graph NELL, indicating one model may not perform
identically well in all knowledge graphs.

H.3 FURTHER BENCHMARK RESULT FOR k=2 IN MORE KNOWLEDGE GRAPHS

Then, similar to Section 6.3, we provide the result for other standard knowledge graphs, FB15k and
NELL, when the number of constant entities is fixed to two, their result is shown in Table 8 and
Table 9, correspondingly.

We note that though in some breakdowns, the marginal score is over 90 percent, almost close to 100
percent, the joint score is pretty slow, which further corroborates our findings that joint metric is
significantly harder and more challenging in Section 6.3.

H.4 FURTHER BENCHMARK RESULT FOR k=2 WITH MORE CONSTANT NUMBERS.

As the experiment in Section 6.3 only contains the situation where the number of constant entity is
fixed as one, we offer the further experiment result in Table 10.
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Table 6: MRR scores(%) for inferring queries with one free variable on FB15k. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 38.6 30.4 29.2 21.7 21.7 24.1 24.3
34.02 49.7 34.0 37.2 28.3 29.2 35.5 31.0

3 63.5 46.4 48.6 33.9 36.1 45.8 38.1

AVG.(e) 63.5 46.4 48.6 33.9 36.1 45.8 38.1

LogicE

1 46.0 33.8 32.1 23.3 22.8 25.6 26.2
35.62 51.2 35.9 39.0 30.6 30.5 36.9 32.7

3 64.5 48.6 49.8 35.4 37.5 47.7 39.6

AVG.(e) 54.9 41.7 42.3 32.8 33.4 40.4

ConE

1 52.5 35.8 34.9 25.9 25.9 29.5 29.3

39.52 57.0 40.0 43.4 33.2 34.2 40.8 36.3
3 70.6 53.1 55.3 39.3 41.8 52.5 43.9

AVG.(e) 61.0 45.6 46.8 36.1 37.4 44.8

CQD

1 74.6 36.1 32.7 17.6 16.7 25.4 23.7
37.22 52.2 35.2 40.9 29.2 31.5 39.2 33.2

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 59.4 41.5 44.6 33.3 35.3 43.3

LMPNN

1 63.7 39.9 35.3 28.7 26.4 28.7 30.7

37.72 65.0 41.9 38.8 34.4 31.7 38.4 35.1
3 79.8 54.0 49.5 38.9 37.1 48.0 40.8

AVG.(e) 70.2 47.4 42.8 36.6 34.1 41.6

The result shows that models perform worse with fewer constant variables when compares to the
result in Table 2, this observation is the same as the previous result with one free variable that has
been discussed in Section 6.2.

H.5 FURTHER BENCHMARK RESULT FOR k=2 INCLUDING ALL QUERIES

Finally, as we have explained in Section 5.5 and Appendix D, there are some valid EFOk queries
without marginal hard answers when k ą 1. Thus, there is no way to calculate the marginal scores,
all our previous experiments are therefore only conducted on those queries that all their free variables
have marginal hard answers. In this section, we only present the result of the Multiply and Joint score,
as they can be computed for any valid EFOk queries, and therefore this experiment is conducted on
the whole EFOk-CQA dataset.

We follow the practice in Section 6.3 that fixed the number of constant entities as two, as the impact
of constant entities is pretty clear, which has been further corroborated in Appendix H.4. The
experiments are conducted on all three knowledge graphs, FB15k-237, FB15k, and NELL, the result
is shown in Table 11, Table 12, and Table 13, correspondingly.

Interestingly, comparing the result in Table 2 and Table 11, the multiple scores actually increase
through the joint scores are similar. This may be explained by the fact that if one free variable has no
marginal hard answer, then it can be easily predicted, leading to a better performance for the whole
query.
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Table 7: MRR scores(%) for inferring queries with one free variable on NELL. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 13.9 26.4 35.0 8.6 14.9 19.1 17.5
33.62 58.8 31.5 43.8 22.4 30.6 34.7 30.7

3 78.8 48.6 58.3 29.6 39.0 47.0 39.5

AVG.(e) 53.1 38.5 48.3 25.2 33.3 38.2

LogicE

1 18.3 29.2 39.6 12.1 19.0 20.4 21.1
36.92 63.5 34.4 47.3 26.4 34.0 37.6 34.2

3 79.6 51.2 59.3 33.1 42.2 50.1 42.6

AVG.(e) 56.3 41.3 50.9 28.8 36.7 41.0

ConE

1 16.7 26.9 36.6 11.1 16.9 22.3 19.6

36.62 60.5 33.6 46.6 25.3 33.1 40.1 33.6
3 79.9 50.6 59.2 33.2 42.2 52.6 42.8

AVG.(e) 54.9 40.3 50.0 28.4 36.2 43.4

CQD

1 22.3 30.6 37.3 13.3 17.9 20.7 20.9
38.22 59.8 34.0 45.2 28.8 35.4 38.9 35.3

3 62.7 48.8 59.9 36.4 44.1 52.6 44.3

AVG.(e) 50.1 40.2 49.9 31.6 38.1 42.7

LMPNN

1 20.7 29.8 33.3 13.4 16.5 21.8 19.8

35.12 63.5 35.4 43.3 27.0 30.2 37.6 32.3
3 80.8 50.7 56.0 33.6 39.2 47.6 40.7

AVG.(e) 57.4 41.5 46.7 29.4 33.6 40.0

Table 8: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 76.9 77.2 68.9 69.3 75.1 55.0 57.4 73.6 63.6
Multiply 41.7 41.6 31.7 31.0 38.7 25.2 25.9 36.1 29.7

Joint 11.6 13.7 8.7 8.6 17.8 4.9 5.4 14.3 8.4

LogicE
Marginal 82.9 80.9 73.6 72.9 76.6 58.9 60.7 75.7 66.9
Multiply 47.5 45.0 36.3 34.1 40.4 28.5 29.0 38.0 32.7

Joint 12.7 13.9 10.0 9.9 19.2 6.1 6.5 15.9 9.6

ConE
Marginal 84.1 84.8 76.5 76.3 81.4 61.8 63.8 79.7 70.2
Multiply 48.7 48.1 37.7 35.9 44.2 29.9 30.4 41.4 34.6

Joint 14.2 15.6 10.3 10.4 20.6 6.2 6.6 16.9 10.1

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 45.0 46.6 37.4 36.9 43.9 28.1 29.2 41.9 34.0

Joint 17.1 19.0 13.1 13.0 20.6 7.7 8.6 18.1 11.9

LMPNN
Marginal 89.2 80.1 80.3 78.2 84.2 65.6 63.7 80.2 71.3
Multiply 56.6 50.5 45.7 42.4 49.0 37.6 34.8 44.6 39.7

Joint 18.9 17.2 12.9 12.4 22.4 8.0 7.5 16.9 11.2
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Table 9: HIT@10 scores(%) of three different types for answering queries with two free variables on
NELL. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 81.3 95.9 72.8 85.5 79.9 57.2 66.7 77.0 71.2
Multiply 48.2 56.7 41.3 46.1 47.6 33.1 36.5 42.9 39.6

Joint 19.2 31.8 21.2 26.5 21.7 13.8 17.5 18.5 18.8

LogicE
Marginal 87.1 99.8 81.0 91.8 83.2 65.7 74.0 81.0 77.7
Multiply 52.5 60.3 47.6 51.7 50.2 39.4 42.6 46.0 44.8

Joint 21.1 32.8 25.4 30.5 23.3 18.0 21.5 20.5 22.3

ConE
Marginal 82.6 96.4 76.0 87.8 88.1 60.0 69.3 83.0 74.7
Multiply 48.7 56.9 41.9 46.3 52.2 34.5 38.1 47.7 41.7

Joint 17.0 30.9 19.3 25.0 24.9 12.9 17.2 20.3 18.8

CQD
Marginal 79.5 96.3 83.2 92.2 83.5 65.8 75.7 84.8 79.4
Multiply 49.2 57.8 51.1 53.1 51.4 40.6 45.1 50.6 47.4

Joint 23.0 38.0 29.7 34.2 26.4 21.4 25.4 24.0 26.0

LMPNN
Marginal 88.5 96.6 81.5 90.9 85.3 65.0 70.7 83.1 76.7
Multiply 55.7 62.4 50.3 53.3 54.0 40.8 42.6 50.3 46.5

Joint 23.4 36.4 25.5 29.4 24.0 16.6 19.7 21.5 21.5

Table 10: HIT@10 scores(%) of three different types for answering queries with two free variables
on FB15k-237. The constant number is fixed to be one. The notation of e, SDAG, Multi, and Cyclic
is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 37.5 29.7 33.4 28.1 35.6 30.0 25.9 41.2 31.2
Multiply 18.9 13.7 15.3 10.3 15.2 17.7 13.3 17.2 14.3

Joint 0.9 1.1 1.4 0.9 3.3 1.1 0.9 3.9 1.7

LogicE
Marginal 40.6 30.7 36.0 29.1 34.6 29.8 25.3 41.5 31.4
Multiply 21.1 14.3 17.2 10.9 16.3 17.8 13.3 17.5 14.7

Joint 1.4 1.4 1.6 0.9 3.7 1.4 1.0 4.3 1.9

ConE
Marginal 40.8 32.4 37.3 30.4 40.7 31.1 26.9 45.0 33.5
Multiply 22.1 15.2 18.4 11.7 19.3 18.5 14.8 20.9 16.5

Joint 1.4 1.0 1.7 1.0 4.3 1.4 1.0 4.4 2.0

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 23.3 9.1 18.5 9.2 16.2 14.6 9.2 19.1 12.9

Joint 1.5 0.6 2.0 1.1 3.4 1.5 0.9 4.4 1.9

LMPNN
Marginal 39.0 27.6 40.0 29.5 39.3 30.6 24.8 42.7 32.0
Multiply 25.1 13.9 24.3 13.3 21.6 20.0 14.0 21.1 17.1

Joint 1.6 1.3 2.5 1.3 3.9 1.5 1.0 4.0 2.0
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Table 11: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k-237(including queries without the marginal hard answer). The constant number is fixed to be
two. The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 29.1 29.1 18.3 37.5 10.4 28.0 93.6 74.6 24.1

Joint 2.1 2.2 1.7 3.0 2.4 1.8 5.8 14.2 4.6

LogicE
Multiply 31.6 32.9 19.8 39.6 10.9 28.7 96.3 73.8 25.4

Joint 2.6 2.5 2.1 3.1 2.5 2.2 6.4 15.6 5.0

ConE
Multiply 32.6 31.9 20.5 41.0 12.6 29.0 99.7 86.8 27.0

Joint 3.0 2.1 1.9 3.3 2.7 2.2 6.6 16.8 5.4

CQD
Multiply 34.5 23.4 22.3 36.8 10.6 26.4 75.3 77.3 25.6

Joint 2.9 1.4 2.1 3.3 2.3 2.0 5.0 15.0 5.6

LMPNN
Multiply 36.8 29.3 27.5 45.8 13.9 31.2 97.0 86.5 27.9

Joint 2.7 2.2 2.7 3.9 2.5 2.1 5.8 14.6 5.0

FIT
Multiply 41.5 44.4 28.9 56.8 10.2 39.4 139.7 100.3 35.0

Joint 2.4 2.3 2.1 3.4 1.6 2.2 7.4 15.4 5.9

Table 12: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 42.1 57.2 26.5 66.5 15.5 34.6 134.9 100.0 35.0

Joint 6.6 9.4 4.5 10.2 4.6 4.3 16.7 26.0 9.2

LogicE
Multiply 48.2 65.6 31.0 71.6 16.8 37.8 143.9 105.8 38.1

Joint 7.5 11.2 5.6 12.5 5.3 5.6 20.4 28.5 10.5

ConE
Multiply 50.2 72.2 32.8 74.6 18.3 38.3 149.3 114.3 40.4

Joint 6.8 10.0 5.2 12.5 5.5 5.2 19.4 30.4 11.0

CQD
Multiply 48.1 55.9 31.9 69.0 15.8 29.5 93.5 103.2 37.6

Joint 9.4 11.4 6.6 14.8 4.8 5.5 17.5 27.2 12.0

LMPNN
Multiply 58.4 79.5 43.1 94.6 21.3 40.9 146.2 135.9 45.0

Joint 8.6 12.9 6.8 15.6 6.2 5.4 19.3 31.7 11.6

Table 13: HIT@10 scores(%) of two different types for answering queries with two free variables on
NELL(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 21.2 47.3 22.0 51.9 14.7 24.1 80.5 79.7 33.4

Joint 4.2 19.6 6.8 19.1 5.1 6.8 26.7 24.0 14.1

LogicE
Multiply 26.6 52.8 28.8 63.4 16.0 32.8 103.1 88.5 38.9

Joint 3.8 21.5 9.7 26.0 5.9 11.5 36.9 27.3 16.5

ConE
Multiply 25.3 51.4 23.9 53.9 16.9 27.3 90.7 90.6 36.7

Joint 3.4 20.2 6.4 17.0 6.1 7.2 27.0 27.1 14.2

CQD
Multiply 30.3 48.9 30.6 64.3 15.9 33.1 88.9 91.2 40.9

Joint 4.4 21.9 9.8 27.5 5.6 12.0 37.6 28.1 18.0

LMPNN
Multiply 33.4 58.3 33.7 65.3 19.4 30.7 85.1 105.0 41.8

Joint 4.4 23.7 10.0 21.9 5.8 8.2 23.2 28.8 15.7
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