
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFOk-CQA: TOWARDS KNOWLEDGE GRAPH
COMPLEX QUERY ANSWERING BEYOND SET OPERA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

To answer complex queries on knowledge graphs, logical reasoning over incomplete
knowledge needs learning-based methods because they are capable of generalizing
over unobserved knowledge. Therefore, an appropriate dataset is fundamental to
both obtaining and evaluating such methods under this paradigm. In this paper,
we propose a comprehensive framework for data generation, model training, and
method evaluation that covers the combinatorial space of Existential First-order
Queries with multiple variables (EFOk). The combinatorial query space in our
framework significantly extends those defined by set operations in the existing
literature. Additionally, we construct a dataset, EFOk-CQA, with 741 query types
for empirical evaluation, and our benchmark results provide new insights into how
query hardness affects the results. Furthermore, we demonstrate that the existing
dataset construction process is systematically biased and hinders the appropriate
development of query-answering methods, highlighting the importance of our work.
Our code and data are provided in https://anonymous.4open.science/
r/EFOK-CQA/README.md.

1 INTRODUCTION

The Knowledge Graph (KG) is a powerful database that encodes relational knowledge into a graph rep-
resentation (Vrandečić & Krötzsch, 2014; Suchanek et al., 2007), supporting downstream tasks (Zhou
et al., 2007; Ehrlinger & Wöß, 2016) with essential factual knowledge. However, KGs suffer from
incompleteness during their construction (Vrandečić & Krötzsch, 2014; Carlson et al., 2010; Libkin
& Sirangelo, 2009). The task of Complex Query Answering (CQA) proposed recently has attracted
much research interest (Hamilton et al., 2018; Ren & Leskovec, 2020). This task ambitiously aims
to answer database-level complex queries described by logical complex connectives (conjunction
^, disjunction _, and negation ␣) and quantifiers1 (existential D) (Wang et al., 2022; Ren et al.,
2023; Leskovec, 2023). Currently, learning-based methods dominate the CQA task because they can
empirically generalize to unseen knowledge as well as prevent the resource-demanding symbolic
search.

The thriving of learning-based methods also puts an urgent request on high-quality benchmarks,
including datasets with comprehensive coverage of queries and sound answers, and fair evaluation
protocol for learning-based approaches. In the previous study, datasets are developed by progressively
expanding the syntactical expressiveness, where conjunction (Hamilton et al., 2018), union (Ren
et al., 2020), negation (Ren & Leskovec, 2020), and other operators (Liu et al., 2021) are taken
into account sequentially. In particular, BetaE dataset (Ren & Leskovec, 2020) contains all logical
connectives and becomes the standard training set for model development. A larger evaluation
benchmark EFO-1-QA (Wang et al., 2021) was proposed to systematically evaluate the combinatorial
generalizability of CQA models on such queries.

However, the queries in previous datasets (Ren & Leskovec, 2020; Wang et al., 2021) are recently
justified as “Tree-Form” queries (Yin et al., 2024) as they rely on the tree combinations of set

1The universal quantifier is usually not considered in query answering tasks, as a common practice from both
CQA on KG (Wang et al., 2022; Ren et al., 2023) and database query answering (Poess & Floyd, 2000).

1

https://anonymous.4open.science/r/EFOK-CQA/README.md
https://anonymous.4open.science/r/EFOK-CQA/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

operations. Compared to the well-established TPC-H decision support benchmark (Poess & Floyd,
2000) for database query processing, queries in existing CQA benchmarks (Ren & Leskovec, 2020;
Wang et al., 2021) have two common shortcomings: (1) lack of combinatorial answers: only
one variable is queried, and (2) lack of structural hardness: all existing queries subject to the
structure-based tractability (Rossi et al., 2006; Yin et al., 2024). It is rather questionable whether
existing CQA data under such limited scope can support the future development of methodologies
for general decision support with incomplete knowledge.

The goal of this paper is to establish a new framework that addresses the aforementioned shortcomings
to support further research in complex query answering on knowledge graphs. Our framework is
formally motivated by the well-established investigation of constraint satisfaction problems (Rossi
et al., 2006), in which all queries can be formulated. In general, the contribution of our work is four
folds.

Complete coverage We capture the complete Existential First Order (EFO) queries from their
rigorous definitions, underscoring both combinatorial hardness and structural hardness
and extending the existing coverage (Wang et al., 2021) which covers only a subset of EFO1

query. The captured query family is denoted as EFOk where k stands for multiple variables.
Curated datasets We derive EFOk-CQA dataset, a enormous extension of the previous EFO-1-QA

benchmark (Wang et al., 2021) and contains 741 types of query. We design several systematic
rules to guarantee that our dataset includes high-quality nontrivial queries, particularly those
that contain multiple query variables and are not structure-based tractable.

Convenient implementation We implement the entire pipeline for query generation, answer sam-
pling, model training and inference, and evaluation for the undiscussed scenarios of combi-
natorial answers. Our pipeline is backward compatible, which supports both set operation-
based methods and more recent ones.

Results and findings We evaluate six representative CQA methods on our benchmark. Our results
refresh the previous empirical findings and further reveal the structural bias of previous data.

2 RELATED WORKS

Answering complex queries on knowledge graphs differs from database query answering by being a
data-driven task (Wang et al., 2022), where the incompleteness of the knowledge graph is addressed by
methods that learn from data. Meanwhile, learning-based methods enable faster neural approximate
solutions of symbolic query answering problems (Ren et al., 2023).

The prevailing way is query embedding, where the computational results are embedded and computed
in the low-dimensional embedding space. Specifically, the query embedding over the set operator
trees is the earliest proposed (Hamilton et al., 2018). The supported set operators include projec-
tion(Hamilton et al., 2018), intersection (Ren et al., 2020), union and negation (Ren & Leskovec,
2020), and later on be improved by various designs (Zhang et al., 2021; Bai et al., 2022). Such
methods assume queries can be converted into the recursive execution of set operations, which im-
poses additional assumptions on the solvable class of queries (Wang et al., 2021). These assumptions
introduce additional limitations of such query embeddings

Recent advancements in query embedding methods adapt query graph representation and graph neural
networks, supporting atomics (Liu et al., 2022) and negated atomics (Wang et al., 2023). Query
embedding on graphs bypasses the assumptions for queries (Wang et al., 2021). Meanwhile, other
search-based inference methods (Arakelyan et al., 2020; Yin et al., 2024) are rooted in fuzzy calculus
and not subject to the query assumptions (Wang et al., 2021).

Though many efforts have been made, the datasets of complex query answering are usually subject
to the assumptions by set operator query embeddings (Wang et al., 2021). Many other datasets are
proposed to enable queries with additional features, see Ren et al. (2023) for a comprehensive survey
of datasets. However, only one small dataset proposed by (Yin et al., 2024) introduced queries and
answers beyond such assumptions (Wang et al., 2021). It is questionable that this small dataset is
fair enough to justify the advantages claimed in advancement methods (Wang et al., 2023; Yin et al.,
2024) that aim at complex query answering. The dataset (Yin et al., 2024) is still far away from the
systematical evaluation as proposed in Wang et al. (2021) and EFOk-CQA proposed in this paper
fills this gap.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PROBLEM DEFINITION

3.1 EXISTENTIAL FIRST ORDER (EFO) QUERIES ON KNOWLEDGE GRAPHS

Given a set E of entities and a set R of relations, a knowledge graph KG encodes knowledge as a set
of factual triple KG “ tph, r, tqu Ă E ˆRˆ E . We always assume the KG that we have observed
KGo is only part of the real KG, meaning that KGo Ă KG.

The existing research only focuses on the logical formulas without universal quantifiers (Ren et al.,
2023; Wang et al., 2023). We then offer the definition of it based on strict first order logic.

Definition 1 (Term). A term is either a variable x or an entity a P E .

Definition 2 (Atomic formula). ϕ is an atomic formula if ϕ “ rph, tq, where r P R is a relation, h
and t are two terms.

Definition 3 (Existential first order formula). The set of the existential formulas is the smallest set Φ
that satisfies the following2:

(i) For atomic formula rph, tq, itself and its negation rph, tq,␣rph, tq P Φ
(ii) If ϕ, ψ P Φ, then pϕ^ ψq, pϕ_ ψq P Φ

(iii) If ϕ P Φ and xi is any variable, then Dxiϕ P Φ.

Definition 4 (Free variable). If a variable y is not associated with an existential quantifier, it is
called a free variable, otherwise, it is called a bounded variable. We write ϕpy1, ¨ ¨ ¨ , ykq to indicate
y1, ¨ ¨ ¨ , yk are the free variables of ϕ.

Definition 5 (Sentence and query). A formula ϕ is a sentence if it contains no free variables, otherwise,
it is called a query. In this paper, we always consider formula with free variables, thus, we use
formula and query interchangeably.

Definition 6 (Substitution). For a1, ¨ ¨ ¨ , ak, where ai P E , we write ϕpa1{y1, ¨ ¨ ¨ , ak{ykq or simply
ϕpa1, ¨ ¨ ¨ , akq for the result of simultaneously replacing all the occurrence of yi in ϕ by ai, i “
1, ¨ ¨ ¨ , k.

Definition 7 (Answer of an EFO query). For a given existential query ϕpy1, ¨ ¨ ¨ , ykq and a knowledge
graph KG, its answer is a set that defined by

Arϕpy1, ¨ ¨ ¨ , ykqs “ tpa1, ¨ ¨ ¨ , akqq|ai P E , i “ 1, ¨ ¨ ¨ , k, ϕpa1, ¨ ¨ ¨ , akq is True in KGu.

Definition 8 (Disjunctive Normal Form (DNF)). For any existential formula ϕpy1, ¨ ¨ ¨ , ykq, it can
be converted to the Disjunctive normal form as shown below:

ϕpy1, ¨ ¨ ¨ , ykq “ γ1py1, ¨ ¨ ¨ , ykq _ ¨ ¨ ¨ _ γmpy1, ¨ ¨ ¨ , ykq, (1)
γipy1, ¨ ¨ ¨ , ykq “ Dx1, ¨ ¨ ¨ , xn.ρi1 ^ ¨ ¨ ¨ ^ ρit, (2)

where ρij is either an atomic formula or its negation, xi is called an existential variable.

DNF form has a strong property that Arϕpy1, ¨ ¨ ¨ , ykqs “ Ym
i“1Arγipy1, ¨ ¨ ¨ , ykqs, which allows

us to only consider conjunctive formulas γi and then aggregate those answers to retrieve the final
answers. This practical technique has been used in many previous research (Long et al., 2022; Ren
et al., 2023). Therefore, we only discuss conjunctive formulas in the rest of this paper.

3.2 CONSTRAINT SATISFACTION PROBLEM FOR EFO QUERIES

Formally, a Constraint Satisfaction Problem (CSP) P can be represented by a triple P “ pX,D,Cq
where X “ pv1, ¨ ¨ ¨ , vnq is an n-tuple of variables, D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple
of domains, C “ pC1, ¨ ¨ ¨ , Ctq is t-tuple constraint, each constraint Ci is a pair of pSi, RSi

q where
Si is a set of variables Si “ tviju and RSi

is the constraint over those variables (Rossi et al., 2006).

Historically, there are strong parallels between CSP and conjunctive queries in knowledge bases (Got-
tlob et al., 1999; Kolaitis & Vardi, 1998). The terms correspond to the variable set X . The domain
Di of a constant entity contains only itself, while it is the whole entity set E for other variables. Each
constraint Ci is binary that is induced by an atomic formula or its negation, for example, for an

2We always assume all variables are named differently as common practice in logic.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

∃𝑥1. Award(Fields,𝑦1)∧ ¬Award(Fields,𝑦2)∧
Colleague(𝑦1, 𝑦2) ∧Born(𝑦1, 𝑥1) ∧Born(𝑦2, 𝑥1)

∃𝑥1. Located(Europe,𝑥1) ∧
¬Held(Olympics,𝑥1)∧President(𝑥1, 𝑦1)

Not Award

Award

Colleague
Born

Born

Fields

Fields

𝒙𝟏

𝒚𝟏

𝒚𝟐

Europe

Olympics

Located

Held

Existential VariableConstant Variable (Entity) Free VariableIntermediate Set Answer Set

Figure 1: Operator Tree versus Query Graph. Left: An operator tree representing a given query “List
the presidents of European countries that have never held the Olympics” (Ren & Leskovec, 2020);
Right: A query graph representing a given query “Find a pair of persons who are both colleagues
and co-authors and were born in the same country, with one having awarded the fields medal while
the another not”, which is both a multigraph and a cyclic graph, containing two free variables.

atomic formula rph, tq, we have Si “ th, tu, RSi “ tph, tq|h, t P E , ph, r, tq P KGu. Finally, by the
definition of existential quantifier, we only consider the answer of free variables, rather than tracking
all terms within the existential formulas.
Definition 9 (CSP answer of conjunctive formula). For a conjunctive formula γ in Equation 2 with k
free variables and n existential variables, the answer set, A, of it formulated as CSP instance is:

Arγpy1, ¨ ¨ ¨ , ykqs “ Arγ‹py1, ¨ ¨ ¨ , yn`kqs, where γ‹ “ ρi1 ^ ¨ ¨ ¨ ^ ρit.

This shows that the inference of existential formulas is easier than solving CSP instances since the
existential variables do not need to be kept track of.

3.3 THE REPRESENTATION OF QUERY

To give an explicit representation of existential formula, operator tree (Hamilton et al., 2018) was
proposed to represent a formula, where each node represents the answer set for a sub-query, and
the logic operators in it naturally represent set operations. This method allows for the recursive
computation from constant entity to the final answer set in a bottom-up manner (Ren & Leskovec,
2020). We also provide full details of the operator tree and tree-form query in Appendix B. However,
this representation method is inherently directed, acyclic, and simple, therefore more recent research
breaks these constraints by being bidirectional (Liu et al., 2022; Wang et al., 2022) or being cyclic
or multi graph (Yin et al., 2024). To meet these new requirements, they propose to represent the
formula by the query graph (Yin et al., 2024), which inherits the convention of constraint network in
representing CSP instance. We utilize this design and further extend it to represent EFOk formula
that contains multiple free variables. We provide the illustration and comparison of the operator tree
and the query graph in Figure 1, where we show the strong expressiveness of the query graph. We
also provide the formal definition of query graph as follows:
Definition 10 (Query graph). Let γ be a conjunctive formula in equation 2, its query graph is defined
by Gpγq “ tph, r, t, tT/Fuqu, where an atomic formula rph, tq in γ corresponds to ph, r, t, Tq and
␣rph, tq corresponds to ph, r, t,Fq.

Therefore, any conjunctive formulas can be represented by a query graph, in the rest of the paper, we
use query graphs and conjunctive formulas interchangeably.

4 THE COMBINATORIAL SPACE OF EFOk QUERIES

Although previous research has given a systematic investigation in the combinatorial space of operator
trees (Wang et al., 2021), the combinatorial space of the query graph is much more challenging due
to the extremely large search space and the lack of explicit recursive formulation. To tackle this issue
on a strong theoretical background, we put forward additional assumptions to exclude trivial query
graphs. Such assumptions or restrictions also exist in the previous dataset and benchmark (Ren &
Leskovec, 2020; Wang et al., 2021). Specifically, we propose to split the task of generating data into
two levels, the abstract level, and the grounded level. At the abstract level, we create abstract query

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Not Held
IsCapital

LocatedEurope

Olympics

𝒙𝟏

𝒚𝟏 𝒙𝟏𝒄𝟏

𝒚𝟏 𝒚𝟐𝒄𝟏

𝒚𝟏

Figure 2: Left: Example of trivial abstract query graph, in the upper left graph, the x1 is redundant
violating Assumption 13, in the bottom left graph, answers for the whole query can be decomposed
to answer two free variables y1 and y2 alone, violating Assumption 14. Right: Example of new
query graph that is not included in previous benchmark (Wang et al., 2021) even though it can be
represented by operator-tree. The representation of query graph follows Figure 1.

graph, at the grounded level, we provide the abstract query graph with the relation and constant and
instantiate it as a query graph. In this section, we elaborate on how we investigate the scope of the
nontrivial EFOk query of interest step by step.

4.1 NONTRIVIAL ABSTRACT QUERY GRAPH OF EFOk

The abstract query graph is the ungrounded query graph without information of certain knowledge
graphs, and we give an example in Figure 3.
Definition 11 (Abstract query graph). The abstract query graph G “ pV,E, f, gq is a directed
graph with three node types,tConstant Entity, Existential Variable, Free Variableu, and two edge
types,tpositive, negativeu. The V is the set of nodes, E is the set of directed edges, f is the function
maps node to node type, g is the function maps edge to edge type.
Definition 12 (Grounding). For an abstract query graph G, a grounding is a function I that maps it
into a query graph G “ IpGq.

We propose two assumptions of the abstract query graph as follows:
Assumption 13 (No redundancy). For an abstract query graph G, there is not a subgraph Gs Ĺ G
such that for every grounding I , ArIpGqs “ ArIpGsqs.
Assumption 14 (No decomposition). For an abstract query graph G, there are no such two
subgraphs G1, G2, satisfying that G1,G2 Ĺ G, such that for every instantiation I , ArIpGqs “
ArIpG1qs

Ś

ArIpG2qs, where the
Ś

represents the cartesian product.

The assumption 14 inherits the idea of the structural decomposition technique in CSP (Gottlob et al.,
2000), which allows for solving a CSP instance by solving several sub-problems and combining the
answer together based on topology property. Additionally, meeting these two assumptions in the
grounded query graph is extremely computationally costly thus we avoid it in practice.

We provide some easy examples to be excluded for violating the assumptions above in Figure 2.

4.2 NONTRIVIAL QUERY GRAPH OF EFOk

Similarly, we propose two assumptions on the query graph.
Assumption 15 (Meaningful negation). For any negative edge e in query graph G, we require
removing it results in different CSP answers: ArG´ es ‰ ArGs.3

Assumption 15 treats negation separately because of the fact that for any KG, any relation r P R,
there is |tph, tq|h, t P E , ph, r, tq P KGu| ! |E |2, which means that the constraint induced by the
negation of an atomic formula is much less “strict” than the one induced by a positive atomic formula.
Assumption 16 (Appropriate answer size). There is a constant M ! |E | to bound the candidate set
for each free variable yi in G, such that for any i, |tai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P ArGsu| ďM .

We note the Assumption 16 extends the “bounded negation” assumption in the previous dataset (Ren
& Leskovec, 2020; Wang et al., 2021). We give an example “Find a city that is located in Europe and
is the capital of a country that has not held the Olympics” in Figure 2, where the candidate set of x1

3Ideally, we should expect them to have different answers as the existential formulas, however, this is
computation costly and difficult to sample in practice, which is further discussed in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Train answers:
{(Figalli,Camillio)}

Real-world KG

Won

Not Won

Colleague

Fields

Fields

Answer lookup
(Section 4.3)

Test answers:
{(Villani, Clément)}

Evaluation Metrics
(Section 4.5)

• Marginal
• Multiply
• Joint

Preprocessor
• Transductive
• Inductive
• Numerical
• …Train KG

Test KG

Abstract Query
Graph Sampler

(Section 4.1)

Query Grounding
(Section 4.2) Inference

(Section 4.4)

Score

tensor

(2 vars)

Loss 𝑙(𝑦, ො𝑦)

𝒚𝟏

𝒚𝟐

Neural CQA Model

Backprop

Figure 3: Illustration of the all functionalities of our framework. Real-world KG is preprocessed and
fed into our pipeline, which contains the whole process of data generation and supports end-to-end
machine learning as well as evaluation. The origin of the KG picture is in Appendix G.

is in fact bounded by its relation with the y1 variable but not from the bottom “Olympics” constant,
hence, this query is excluded in their dataset due to the directionality of operator tree.

Overall, the scope of the formula investigated in this paper surpasses the previous EFO-1-QA
benchmark because of: (1). We include the EFOk formula with multiple free variables for the first
time; (2). We include the whole family of EFO1 query, many of them can not be represented by
operator tree; (3) Our assumption is more systematic than previous ones as shown by the example in
Figure 2. More details are offered in Appendix C.3.

5 FRAMEWORK

We develop a versatile framework that supports five key functionalities fundamental to the whole
CQA task: (1) Enumeration of nontrivial abstract query graphs as discussed in Section 4; (2) Sample
grounding for the abstract query graph; (3) Compute answer for any query graph efficiently; (4)
Support implementation of existing CQA models; (5) Conduct evaluation including newly introduced
EFOk queries with multiple free variables. We explain each functionality in the following. An
illustration of the first three functionalities is given in Figure 3, where we show how each functionality
cooperates to help CQA tasks. We note that preprocessing allows us to extend our framework to more
avant-garde settings, like inductive settings or graphs with numerics, more discussions in Appendix F.

5.1 ENUMERATE ABSTRACT QUERY GRAPH

As discussed in Section 4, we are able to abide by those assumptions as well as enumerate all
possible query graphs within a given search space where certain parameters, including the number
of constants, free variables, existential variables, and the number of edges are all given, shown in
Figure 3. Additionally, we apply the graph isomorphism algorithm to avoid duplicated query graphs
being generated. More details for our generation method are provided in Appendix C.1.

5.2 GROUND ABSTRACT QUERY GRAPH

To ground an abstract query graph G and comply with the assumption 15, we split the abstract query
graph into two parts, the positive part and the negative part, G “ Gp Y Gn. Then the grounding
process is also split into two steps: 1. Sample grounding for the positive subgraph Gp and compute
its answer, 2. Ground the Gn to decrease the answer got in the first step. Details in Appendix C.2.

Finally, to fulfill the assumption 16, we follow the previous practice of manually filtering out queries
that have more than 100 ˆ k answers (Ren & Leskovec, 2020; Wang et al., 2021), as we have
introduced the EFOk queries.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.3 ANSWER FOR EXISTENTIAL FORMULA

As illustrated in Section 3.2, the answer to an existential formula can be solved by a CSP solver,
however, we also show in Definition 9 that solve it as CSP leads to huge computation costs. Thus,
we develop our own algorithm following the standard solving technique of CSP, which ensures
consistency conditions in the first step, and do the backtracking to get the final answers in the
second step. Finally, we select part of our sampled queries and double-check it with the CSP
solver https://github.com/python-constraint/python-constraint.

5.4 LEARNING-BASED METHODS

As the query graph is an extension to the operator tree regarding the express ability to existential
formulas, we are able to reproduce CQA models that are initially implemented by the operator tree
in our new framework. Specifically, since the operator tree is directed and acyclic, we compute its
topology ordering that allows for step-by-step computation in the query graph. This algorithm is
illustrated in detail in the Appendix E. Therefore, our pipeline is backward compatible.

Conversely, for the newly proposed models that are based on query graphs, the original operator
tree framework is not able to implement them, while our framework is powerful enough. We have
therefore clearly shown that the query graph representation is more powerful than the previous
operator tree and is able to support arbitrary existential formulas as explained in Section 3.3.

5.5 EVALUATION PROTOCOL

As we have mentioned in Section 3.1, there is an observed knowledge graph KGo and a full knowledge
graph KG. Thus, there is a set of observed answers Ao and a set of full answers A correspondingly.
Since the goal of CQA is to tackle the challenge of incompleteness, it has been a common practice
to evaluate CQA models by the “hard” answers Ah “ A´Ao (Ren et al., 2020; 2023). However,
to the best of our knowledge, there has not been a systematic evaluation protocol for EFOk queries,
thus we leverage this idea and propose three types of different metrics to fill the research gap in the
area of evaluation of queries with multiple free variables, and thus have combinatorial answers.

Marginal. For any free variable yi, its full answer is Ayi “ tai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P Au,
the observed answer of it Ayi

o is defined similarly. This is termed “solution projection” in CSP
theory (Greco & Scarcello, 2013) to evaluate whether the locally retrieved answer can be extended to
an answer for the whole problem. Then, we rank the hard answer Ayi

h “ Ayi ´Ayi
o

4, against those
non-answers E ´Ayi ´Ayi

o and use the ranking to compute standard metrics like MRR, HIT@K for
every free variable. Finally, the metric on the whole query graph is taken as the average of the metric
on all free variables. We note that this metric is an extension of the previous design (Liu et al., 2021).
However, this metric has the inherent drawback that it fails to evaluate the combinatorial answer by
the k-length tuple and thus fails to find the correspondence among free variables.

Multiply. Because of the limitation of the marginal metric discussed above, we propose to evaluate
the combinatorial answer by each k-length tuple pa1, ¨ ¨ ¨ , akq in the hard answer set Ah. Specifically,
we rank each ai in the corresponding node yi the same as the marginal metric. Then, we propose the
HIT@nk metric, it is 1 if all ai is ranked in the top n in the corresponding node yi, and 0 otherwise.

Joint. Finally, we note these metrics above are not the standard way of evaluation, which is based on
a joint ranking for all the Ek combinations of the entire search space. We propose to estimate the
joint ranking in a closed form given certain assumptions, see Appendix D for the proof and details.

6 THE EFOk-CQA DATASET AND BENCHMARK RESULTS

6.1 THE EFOk-CQA DATASET

With the help of our framework developed in Section 5, we develop a new dataset called EFOk-CQA,
whose combinatorial space is parameterized by the number of constants, existential and free variables,
and the number of edges. EFOk-CQA dataset includes 741 different abstract query graphs in total.

4We note Ayi
h can be empty, making these marginal metrics not reliable, details in Appendix D.

7

https://github.com/python-constraint/python-constraint

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: HIT@10 scores(%) for inferring queries with one free variable on FB15k-237. We denote e,
c as the number of existential variables, constant entities correspondingly. SDAG represents Simple
Directed Acyclic Graph, Multi for multigraph, and Cyclic for cyclic graph. AVG.(c) and AVG.(e) is
the average score of queries with the number of constant entities / existential variables fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 31.4 33.0 22.3 21.1 17.7 30.7 22.1

36.42 57.2 36.2 35.5 29.3 29.4 45.3 32.5
3 80.0 53.1 53.6 38.2 37.8 58.2 42.1

AVG.(e) 59.3 43.8 40.6 33.8 32.7 49.3

LogicE

1 34.4 34.9 23.0 21.4 17.4 30.3 22.4

36.72 60.0 38.4 36.8 29.8 29.3 45.3 33.0
3 83.0 55.5 55.5 38.5 37.8 57.8 42.4

AVG.(e) 62.2 46.0 42.0 34.2 32.6 49.1

ConE

1 34.9 35.4 23.6 21.8 18.4 34.2 23.5

39.02 61.0 39.1 38.4 32.0 31.5 50.2 35.2
3 84.8 56.7 57.1 41.1 40.0 63.4 44.9

AVG.(e) 63.4 47.0 43.5 36.5 34.7 54.1

CQD

1 39.0 34.2 17.6 17.4 12.7 28.7 18.7

35.92 50.7 33.8 33.6 28.4 28.4 45.7 31.4
3 58.4 49.6 52.4 39.3 39.1 60.4 42.6

AVG.(e) 50.7 41.4 38.4 33.8 32.4 50.2

LMPNN

1 38.6 37.8 21.8 22.9 17.8 31.7 23.2

35.82 62.2 40.2 35.0 30.8 28.1 44.4 32.5
3 86.6 56.9 51.9 38.3 35.3 55.8 40.8

AVG.(e) 65.4 47.8 39.6 34.5 30.8 48.0

FIT

1 38.7 42.7 32.5 26.1 22.5 41.5 28.8

47.02 65.5 47.7 48.2 39.7 40.1 56.5 43.4
3 84.2 63.9 63.5 50.5 50.4 63.5 53.6

AVG.(e) 65.8 54.7 51.5 44.9 43.7 57.5

Then, we conduct experiments on our new EFOk-CQA dataset with six representative CQA models
including BetaE (Ren & Leskovec, 2020), LogicE (Luus et al., 2021), and ConE (Zhang et al., 2021),
which are built on the operator tree, CQD (Arakelyan et al., 2020), LMPNN (Wang et al., 2023), and
FIT (Yin et al., 2024) which are built on query graph. The experiments are conducted in two parts,
(1). the queries with one free variable, specifically, including those that can not be represented by an
operator tree; (2). the queries that contain multiple free variables.

The parameters and the generation process, as well as its statistics, are detailed in Appendix C.4,
where we also provide a dataset constructed in inductive settings. However, we mainly focus on
transductive settings in the main paper since there are very few inductive models to benchmark.

We have made some adaptations to the implementation of CQA models, allowing them to infer
EFOk queries, full detail in Appendix E. The experiment is conducted on a standard KG FB15k-
237 (Toutanova & Chen, 2015), additional experiments on other standard KGs FB15k and NELL are
presented in Appendix H.

6.2 BENCHMARK RESULTS FOR k “ 1

Because of the great number of abstract query graphs, we follow previous work (Wang et al., 2021)
to group query graphs by three factors: (1). the number of constant entities; (2). the number of
existential variables, and (3). the topology of the query graph5. The result is shown in Table 1 and
Figure 4.

Structure analysis. Firstly, we find a clear monotonic trend that adding constant entities makes a
query easier while adding existing variables makes a query harder, which the previous research (Wang
et al., 2021) fails to uncover. Besides, we are the first to consider the topology of query graphs: when
the number of constants and existential variables is fixed, we have found the originally investigated

5To facilitate our discussion, we make a further constraint in our EFOk-CQA dataset that the total edge is at
most as many as the number of nodes, thus, a graph can not be both a multigraph and a cyclic graph.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Ranking of query types

0

20

40

60

80

HI
T@

10
(%

)

BetaE
LogicE
ConE
CQD
LMPNN
FIT
AVG.

Figure 4: Relative performance of the six representative CQA models in queries with one free
variable, where the ranking of query types is determined by the average HIT@10 score. A Gaussian
filter with sigma=1 is added to smooth the curve.

queries that correspond to Simple Directed Acyclic Graphs (SDAG) are generally easier than the
multigraphs ones but harder than the cyclic graph ones. This intriguing result greatly deviates from
traditional CSP theory, which finds that the cyclic graph is NP-complete, while the acyclic graph is
tractable (Carbonnel & Cooper, 2016). This finding also refreshes the previous finding (Yin et al.,
2024) that only cherry-picks two cyclic queries, showing the benefit of our unbiased, complete
coverage of the combinatorial space. We conjecture that the cyclic graph contains one more constraint
than SDAG that serves as a source of information for CQA models, while the multigraph tightens an
existing constraint and thus makes the query harder.

Model analysis. For models that are built on operator tree, including BetaE, LogicE, and ConE, their
relative performance is steady among all breakdowns and is consistent with their reported score in
the original dataset (Ren & Leskovec, 2020). However, for models that are built on query graphs,
including CQD, LMPNN, and FIT, we found that LMPNN performs generally better than CQD in
SDAG, but falls behind CQD in multigraphs and cyclic graphs. We assume the reason is that LMPNN
requires training while CQD does not, however, the original dataset are biased which only considers
SDAG, leading to the result that LMPNN doesn’t generalize well to the unseen tasks with different
topology property. We expect future CQA models may use our framework to address this issue and
gain better generalization.

Moreover, by the detailed observation in Figure 4, we plot two boxes. In the red box, we find that
even the worst model and the best model have pretty similar performance in these easiest queries
despite that they may differ greatly in other queries. In the black box, we note that CQD (Arakelyan
et al., 2020), though designed in a rather general form, is pretty unstable when comes to empirical
evaluation, as it has a clear downward curve and deviates from other model’s performance enormously
in most difficult query types. Therefore, though its performance is better than LMPNN on average
as reported in Table 1, its unsteady performance suggests its inherent weakness, especially when
the users are risk-sensitive and desire a trustworthy machine-learning model that does not crash in
extreme cases (Varshney, 2019).

We note FIT is designed to infer all EFO1 queries and is indeed able to outperform other models in
almost all breakdowns, however, its performance comes with the price of computational cost, and face
challenges in cyclic graph where it degenerates to enumeration: we further explain in Appendix E.

6.3 BENCHMARK RESULTS FOR k “ 2

As we have explained in Section 5.5, we propose three kinds of metrics, marginal ones, multiply
ones, and joint ones, from easy to hard, to evaluate the performance of a model in the scenario of
multiple variables. The evaluation result is shown in Table 2. As the effect of the number of constant
variables is quite clear, we remove it and add the metrics based on HIT@10 as the new factor.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k-237. The constant number is fixed to be two. e is the number of existential variables. The
SDAG, Multi, and Cyclic are the same as Table 1.

Model
HIT@10

Type
e “ 0 e “ 1 e “ 2 AVG.

SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 54.5 50.2 49.5 46.0 58.8 37.2 35.5 58.3 43.8
Multiply 27.3 22.4 22.3 16.9 26.2 16.9 13.9 25.7 18.3

Joint 6.3 5.4 5.2 4.2 10.8 2.2 2.3 9.5 4.5

LogicE
Marginal 58.2 50.9 52.2 47.4 60.4 37.7 35.8 59.2 44.6
Multiply 32.1 23.1 24.9 18.1 28.3 18.1 14.8 26.6 19.5

Joint 6.8 6.0 6.1 4.5 12.3 2.5 2.7 10.3 5.1

ConE
Marginal 60.3 53.8 54.2 50.3 66.2 40.1 38.5 63.7 47.7
Multiply 33.7 25.2 26.1 19.8 32.1 19.5 16.3 30.3 21.5

Joint 6.7 6.4 6.2 4.8 12.6 2.6 2.7 10.9 5.3

CQD
Marginal 50.4 46.5 49.1 45.6 59.7 33.5 33.1 61.5 42.8
Multiply 28.9 23.4 25.4 19.5 31.3 17.8 16.0 30.5 21.0

Joint 8.0 8.0 7.4 6.0 13.9 3.6 3.9 12.0 6.4

LMPNN
Marginal 58.4 51.1 54.9 49.2 64.7 39.6 36.1 58.7 45.4
Multiply 35.0 26.7 29.2 21.7 33.4 21.4 17.0 28.4 22.2

Joint 7.6 7.5 7.1 5.3 12.9 2.8 2.9 9.5 5.2

FIT
Marginal 64.3 61.0 63.1 60.7 58.5 49.0 49.1 60.2 54.3
Multiply 39.7 32.2 35.9 27.8 27.4 29.5 26.8 32.4 29.2

Joint 7.4 9.0 7.8 6.5 10.1 3.7 4.6 10.6 6.4

For the impact regarding the number of existential variables and the topology property of the query
graph, we find the result is similar to Table 1, which may be explained by the fact that those models
are all initially designed to infer queries with one free variable.

Metric analysis. For the three metrics we have proposed, we have identified a clear difficulty
difference among them though they generally show similar trends. The joint HIT@10 scores are
pretty low, indicating the great difficulty of answering queries with multiple variables.

Model Analysis. Compared with the result in Table 1, CQD shows relatively worse performance in
SDAG queries in Marginal metrics but not in joint metrics, this perhaps can be explained by the large
performance variance of CQD across different query types, and the fact that joint metric is much
lower thus a few outliers can increase the mean performance by a lot. Moreover, we have found that
FIT falls behind other models in some breakdowns which are mostly cyclic graphs, corroborating our
discussion in Section 6.2. We offer more experiment results and further discussion in Appendix H.

7 CONCLUSION

In this paper, we make a thorough investigation of the family of EFOk formulas based on a strong
theoretical background. We then present a new powerful framework that supports several function-
alities essential to CQA task, and build the EFOk-CQA dataset that greatly extends the previous
datasets. Our evaluation result brings new empirical findings and reflects the biased selection in the
previous dataset, which impairs the performance of CQA models, emphasizing the contribution of
our work.

REFERENCES

Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, and Mikhail Galkin. Query Embedding
on Hyper-relational Knowledge Graphs, September 2022. URL http://arxiv.org/abs/
2106.08166. arXiv:2106.08166 [cs].

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex Query Answering
with Neural Link Predictors. In International Conference on Learning Representations, 2020.

Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. Query2Particles: Knowledge Graph
Reasoning with Particle Embeddings. In Findings of the Association for Computational Linguistics:
NAACL 2022, pp. 2703–2714, 2022.

Jiaxin Bai, Chen Luo, zheng li, Qingyu Yin, Bing Yin, and Yangqiu Song. Knowledge Graph
Reasoning over Entities and Numerical Values. In Proceedings of the 29th ACM SIGKDD

10

http://arxiv.org/abs/2106.08166
http://arxiv.org/abs/2106.08166

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 57–68, New York, NY, USA,
2023a. Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.
3599399. URL https://dl.acm.org/doi/10.1145/3580305.3599399.

Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering Complex Logical Queries on Knowl-
edge Graphs via Query Computation Tree Optimization. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, pp. 1472–1491. PMLR, July 2023b. URL https:
//proceedings.mlr.press/v202/bai23b.html. ISSN: 2640-3498.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://papers.nips.cc/paper_files/paper/2013/hash/
1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

Clément Carbonnel and Martin C Cooper. Tractability in constraint satisfaction problems: a survey.
Constraints, 21(2):115–144, 2016. Publisher: Springer.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom Mitchell.
Toward an architecture for never-ending language learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 24, pp. 1306–1313, 2010. Issue: 1.

Caglar Demir, Michel Wiebesiek, Renzhong Lu, Axel-Cyrille Ngonga Ngomo, and Stefan Heindorf.
LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals, April
2023. URL http://arxiv.org/abs/2304.14742. arXiv:2304.14742.

Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. SEMANTiCS (Posters,
Demos, SuCCESS), 48(1-4):2, 2016.

Michael Galkin, Zhaocheng Zhu, Hongyu Ren, and Jian Tang. Inductive logical query answering in
knowledge graphs. Advances in Neural Information Processing Systems, 35:15230–15243, 2022.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable
queries. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pp. 21–32, 1999.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural CSP decompo-
sition methods. Artificial Intelligence, 124(2):243–282, December 2000. ISSN 0004-3702. doi:
10.1016/S0004-3702(00)00078-3. URL https://www.sciencedirect.com/science/
article/pii/S0004370200000783.

Gianluigi Greco and Francesco Scarcello. On The Power of Tree Projections: Structural Tractability
of Enumerating CSP Solutions. Constraints, 18(1):38–74, January 2013. ISSN 1383-7133,
1572-9354. doi: 10.1007/s10601-012-9129-8. URL http://arxiv.org/abs/1005.1567.
arXiv:1005.1567 [cs].

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
queries on knowledge graphs. Advances in neural information processing systems, 31, 2018.

Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Xiaoli Li, and Jeff Pan. Type-aware Embed-
dings for Multi-Hop Reasoning over Knowledge Graphs. May 2022.

Qian Huang, Hongyu Ren, and Jure Leskovec. Few-shot relational reasoning via connection subgraph
pretraining. Advances in Neural Information Processing Systems, 35:6397–6409, 2022.

Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and Gerhard Weikum. Complex Temporal Question
Answering on Knowledge Graphs. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, CIKM ’21, pp. 792–802, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 978-1-4503-8446-9. doi: 10.1145/3459637.3482416.
URL https://dl.acm.org/doi/10.1145/3459637.3482416.

Phokion G Kolaitis and Moshe Y Vardi. Conjunctive-query containment and constraint satisfaction.
In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pp. 205–213, 1998.

11

https://dl.acm.org/doi/10.1145/3580305.3599399
https://proceedings.mlr.press/v202/bai23b.html
https://proceedings.mlr.press/v202/bai23b.html
https://papers.nips.cc/paper_files/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
http://arxiv.org/abs/2304.14742
https://www.sciencedirect.com/science/article/pii/S0004370200000783
https://www.sciencedirect.com/science/article/pii/S0004370200000783
http://arxiv.org/abs/1005.1567
https://dl.acm.org/doi/10.1145/3459637.3482416

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jure Leskovec. Databases as Graphs: Predictive Queries for Declarative Machine Learning. In
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS ’23, pp. 1, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701276. doi: 10.1145/3584372.3589939. URL https://doi.org/10.1145/
3584372.3589939. event-place: Seattle, WA, USA.

Leonid Libkin and Cristina Sirangelo. Open and Closed World Assumptions in Data Exchange.
Description Logics, 477, 2009.

Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. Neural-Answering Logi-
cal Queries on Knowledge Graphs. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 1087–1097, 2021.

Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong,
and Jie Tang. Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex
Logical Queries. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1120–1130, August 2022. doi: 10.1145/3534678.3539472. URL http:
//arxiv.org/abs/2208.07638. arXiv:2208.07638 [cs].

Xiao Long, Liansheng Zhuang, Li Aodi, Shafei Wang, and Houqiang Li. Neural-
based Mixture Probabilistic Query Embedding for Answering FOL queries on Knowl-
edge Graphs. 2022. URL https://www.semanticscholar.org/paper/
Neural-based-Mixture-Probabilistic-Query-Embedding-Long-Zhuang/
7b5d2be2abc0962f7feaa9fdb6ddaa6206b9e6a9.

Haoran Luo, Yuhao Yang, Gengxian Zhou, Yikai Guo, Tianyu Yao, Zichen Tang, Xueyuan Lin,
Kaiyang Wan, and others. NQE: N-ary Query Embedding for Complex Query Answering over
Hyper-relational Knowledge Graphs. arXiv preprint arXiv:2211.13469, 2022.

Francois Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang
Lebese, and Alexander Gray. Logic embeddings for complex query answering. arXiv preprint
arXiv:2103.00418, 2021.

Meikel Poess and Chris Floyd. New TPC benchmarks for decision support and web commerce. ACM
Sigmod Record, 29(4):64–71, 2000. Publisher: ACM New York, NY, USA.

H Ren, W Hu, and J Leskovec. Query2box: Reasoning Over Knowledge Graphs In Vector Space
Using Box Embeddings. In International Conference on Learning Representations (ICLR), 2020.

Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing Systems, 33:19716–19726, 2020.

Hongyu Ren, Ali Mousavi, Anil Pacaci, Shihabur R Chowdhury, Jason Mohoney, Ihab F Ilyas,
Yunyao Li, and Theodoros Rekatsinas. Fact Ranking over Large-Scale Knowledge Graphs with
Reasoning Embedding Models. Data Engineering, pp. 124.

Hongyu Ren, Mikhail Galkin, Michael Cochez, Zhaocheng Zhu, and Jure Leskovec. Neural Graph
Reasoning: Complex Logical Query Answering Meets Graph Databases, March 2023. URL
http://arxiv.org/abs/2303.14617. arXiv:2303.14617 [cs].

Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming. Elsevier
Science Inc., USA, 2006. ISBN 978-0-08-046380-3.

Apoorv Saxena, Soumen Chakrabarti, and Partha Talukdar. Question Answering Over Tem-
poral Knowledge Graphs, June 2021. URL http://arxiv.org/abs/2106.01515.
arXiv:2106.01515 [cs].

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In
Proceedings of the 16th international conference on World Wide Web, pp. 697–706, 2007.

Muzamil Hussain Syed, Tran Quoc Bao Huy, and Sun-Tae Chung. Context-Aware Explainable
Recommendation Based on Domain Knowledge Graph. Big Data and Cognitive Computing,
6(1):11, March 2022. ISSN 2504-2289. doi: 10.3390/bdcc6010011. URL https://www.
mdpi.com/2504-2289/6/1/11. Number: 1 Publisher: Multidisciplinary Digital Publishing
Institute.

12

https://doi.org/10.1145/3584372.3589939
https://doi.org/10.1145/3584372.3589939
http://arxiv.org/abs/2208.07638
http://arxiv.org/abs/2208.07638
https://www.semanticscholar.org/paper/Neural-based-Mixture-Probabilistic-Query-Embedding-Long-Zhuang/7b5d2be2abc0962f7feaa9fdb6ddaa6206b9e6a9
https://www.semanticscholar.org/paper/Neural-based-Mixture-Probabilistic-Query-Embedding-Long-Zhuang/7b5d2be2abc0962f7feaa9fdb6ddaa6206b9e6a9
https://www.semanticscholar.org/paper/Neural-based-Mixture-Probabilistic-Query-Embedding-Long-Zhuang/7b5d2be2abc0962f7feaa9fdb6ddaa6206b9e6a9
http://arxiv.org/abs/2303.14617
http://arxiv.org/abs/2106.01515
https://www.mdpi.com/2504-2289/6/1/11
https://www.mdpi.com/2504-2289/6/1/11

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on continuous vector space models and their
compositionality, pp. 57–66, 2015.

Kush R. Varshney. Trustworthy machine learning and artificial intelligence. XRDS: Crossroads, The
ACM Magazine for Students, 25(3):26–29, 2019. ISSN 1528-4972. doi: 10.1145/3313109. URL
https://dl.acm.org/doi/10.1145/3313109.

Priya Verma, Jithin Mathews, S. Rao, K. Kumar, and Ch Babu. A Graph Theoretical Approach for
Identifying Fraudulent Transactions in Circular Trading. November 2017.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communica-
tions of the ACM, 57(10):78–85, 2014. Publisher: ACM New York, NY, USA.

Zihao Wang, Hang Yin, and Yangqiu Song. Benchmarking the Combinatorial Generalizability
of Complex Query Answering on Knowledge Graphs. Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks, 1, December 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html.

Zihao Wang, Hang Yin, and Yangqiu Song. Logical Queries on Knowledge Graphs: Emerging
Interface of Incomplete Relational Data. Data Engineering, pp. 3, 2022.

Zihao Wang, Yangqiu Song, Ginny Wong, and Simon See. Logical Message Passing Networks with
One-hop Inference on Atomic Formulas. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SoyOsp7i_l.

Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, and Huajun Chen. Neural-Symbolic Entangled
Framework for Complex Query Answering, September 2022. URL http://arxiv.org/
abs/2209.08779. arXiv:2209.08779 [cs].

Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking existential first order queries and their infer-
ence on knowledge graphs. In The Twelfth International Conference on Learning Representations,
2024.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings for
multi-hop reasoning over knowledge graphs. Advances in Neural Information Processing Systems,
34:19172–19183, 2021.

Tao Zhou, Jie Ren, Matúš Medo, and Yi-Cheng Zhang. Bipartite network projection and personal
recommendation. Physical review E, 76(4):046115, 2007. Publisher: APS.

A DETAILS OF CONSTRAINT SATISFACTION PROBLEM

In this section, we introduce the constraint satisfaction problem (CSP) again. One instance of CSP P
can be represented by a triple P “ pX,D,Cq where X “ px1, ¨ ¨ ¨ , xnq is an n-tuple of variables,
D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple of domains, meaning for each i, xi P Di. Then,
C “ pC1, ¨ ¨ ¨ , Ctq is t-tuple constraint, each constraint Ci is a pair of pSi, RSiq where Si is called
the scope of the constraint, meaning it is a set of variables Si “ txiju and RSi is the constraint over
those variables (Rossi et al., 2006), meaning that RSi is a subset of the cartesian product of variables
in Si.

Then the formulation of existential conjunctive formulas as CSP has already been discussed in
Section 3.2. Additionally, for the negation of atomic formula ␣rph, tq, we note the constraint C is
also binary with Si “ th, tu, RSi

“ tph, tq|h, t P E , ph, r, tq R KGu, this means that RSi
is a very

large set, thus the constraint is less “strict” than the positive ones.

13

https://dl.acm.org/doi/10.1145/3313109
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/7eabe3a1649ffa2b3ff8c02ebfd5659f-Abstract-round2.html
https://openreview.net/forum?id=SoyOsp7i_l
http://arxiv.org/abs/2209.08779
http://arxiv.org/abs/2209.08779

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

𝑦2

𝑦1
𝑥1

𝑐1

𝑐2

(1) (2) (3) (4)

𝑟3

𝑟2

𝑟1

𝑟5 𝑟6

𝑦2

𝑦1
𝑥1

𝑐1

𝑐2

𝑟3

𝑟2

𝑟1

𝑟5 𝑟6

𝑦2

𝑦1

𝑥1
𝑟3

𝑟5 𝑟6

𝑦2

𝑦1

𝑥1
𝑟3

𝑟5

𝑟4
𝑟4 𝑟4 𝑟4

Figure 5: The four steps of enumerating the abstract query graphs. We note that the example and
representation follow Figure 3.

B PRELIMINARY OF TREE FORM QUERY

We explain the operator tree method, as well as the tree-form queries in this section, which is firstly
introduced in Yin et al. (2024). The tree-form queries are defined to be the syntax closure of the
operator tree method and are the prevailing query types in the existing datasets (Ren & Leskovec,
2020; Wang et al., 2021), see the definition below:

Definition 17 (Tree-Form Query). The set of the Tree-Form queries is the smallest set Φ such that:

(i) If ϕpyq “ rpa, yq, where a P E , then ϕpyq P Φ;
(ii) If ϕpyq P Φ,␣ϕpyq P Φ;

(iii) If ϕpyq, ψpyq P Φ, then pϕ^ ψqpyq P Φ and pϕ_ ψqpyq P Φ;
(iv) If ϕpyq P Φ and y1 is any variable, then ψpy1q “ Dy.rpy, y1q ^ ϕpyq P Φ.

We note that the family of tree-form queries deviates from the targeted EFO1 query family (Yin
et al., 2024). The rationale of the definition is that the previous model relied on the representation
of “operator tree” which addresses logical queries to simulate logical reasoning as the execution
of set operators (Ren & Leskovec, 2020; Zhang et al., 2021; Xu et al., 2022), where each node
represents a set of entities corresponding to the answer set of a sub-query (Yin et al., 2024). Then,
logical connectives are transformed into operator nodes for set projections (Definition 17 i,iv), com-
plement(Definition 17 ii), intersection, and union(Definition 17 iii) (Wang et al., 2021). Particularly,
the set projections are derived from the Skolemization of predicates (Luus et al., 2021). Therefore,
the operator tree method that has been adopted in lines of research (Ren & Leskovec, 2020; Zhang
et al., 2021; Xu et al., 2022) is just a model that neuralizes these set operations: projection, comple-
ment, intersection, and union. These different models basically only differ from each other by their
parameterization while having the same expressiveness as characterized by the tree form query.

Specifically, the left side of the Figure 1 shows an example of the operator tree, where “Held” and
“Located” are treated as two projections, “N” represents set complement, and “I” represents set
intersection. Therefore, the embedding of the root representing the answer set can be computed based
on these set operations in a bottom-up manner (Ren & Leskovec, 2020).

Finally, it has been noticed that tree-form query is subject to structural traceability and only has
polynomial time combined complexity for inference while the general EFOk, or even EFO1 queries,
is NP-complete, with detailed proof in Yin et al. (2024). Therefore, this result highlights the
importance of investigating the EFOk queries as it greatly extends the previous tree-form queries.

C CONSTRUCTION OF THE WHOLE EFOk-CQA DATSET

In this section, we provide details for the construction of the EFOk-CQA dataset.

C.1 ENUMERATION OF THE ABSTRACT QUERY GRAPHS

We first give a proposition of the property of abstract query graph:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proposition 18. For an abstract query graph G, if it conforms Assumption 13 and Assumption 14,
then removing all constant entities in G will lead to only one connected component and no edge is
connected between two constant entities.

Proof. We prove this by contradiction. If there is an edge (whether positive or negative) between
constant entities, then this edge is redundant, violating Assumption 13. Then, if there is more than one
connected component after removing all constant entities in G. Suppose one connected component
has no free variable, then this part is a sentence and thus has a certain truth value, whether 0 or 1,
which is redundant, violating Assumption 13. Then, we assume every connected component has at
least one free variable, we assume there is m connected component and we have:

NodepGq “ pYm
i“1NodepGiqq YNodepGcq

where m ą 1, the Gc is the set of constant entities and each Gi is the connected component, we use
NodepGq to denote the node set for a graph G. Then this equation describes the partition of the node
set of the original G.

Then, we construct Ga “ GrNodepG1qYGcs and Gb “ GrpYm
i“1NodepGiqqYNodepGcqs, where G

represents the induced graph. Then we naturally have that ArIpGqs “ ArIpGaqs
Ś

ArIpGbqs, where
the

Ś

represents the Cartesian product, violating Assumption 14.

Additionally, as mentioned in Appendix A, the negative constraint is less “strict”, we formally put an
additional assumption of the real knowledge graph as the following:

Assumption 19. For any knowledge graph KG, with its entity set E and relations set R, we assume
it is somewhat sparse with regard to each relation, meaning: for any r P R, |ta P E |Db.pa, r, bq P
KG or pb, r, aq P KGu| ! |E |.

Then we develop another proposition for the abstract query graph:

Proposition 20. With the knowledge graph conforming Assumption 19, for any node u in the abstract
query graph G, if u is an existential variable or free variable, then it cannot only connect with
negative edges.

Proof. Suppose u only connects to m negative edge e1, ¨ ¨ ¨ , em. For any grounding I , we assume
Ipeiq “ ri P R. For each ri, we construct its endpoint set

Endpointpriq “ ta P E |Db.pa, r, bq P KG or pb, r, aq P KGu

by the assumption 19, we have |Endpointpriq| ! E |, then we have:

| Ym
i“1 Endpointpriq| ď Σm

i“1|Endpointpriq| ! |E |

since m is small due to the size of the abstract query graph. Then we have two situations about the
type of node u:

1.If node u is an existential variable.

Then we construct a subgraph Gs be the induced subgraph of NodepGq ´ u, then for any possible
grounding I , we prove that ArIpGsqs=ArIpGqs, the right is clearly a subset of the left due to it
contains more constraints, then we show every answer of the left is also an answer on the right, we
merely need to give an appropriate candidate in the entity set for node v, and in fact, we choose any
entity in the set E ´Ym

i“1Endpointpriq since it suffices to satisfies all constraints of node u, and we
have proved that |E ´Ym

i“1Endpointpriq| ą 0.

This violates the Assumption 13.

2.If node u is a free variable.

Similarly, any entity in the set E ´Ym
i“1Endpointpriq will be an answer for the node u, thus violating

the Assumption 16.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We note the proposition 20 extends the previous requirement about negative queries, which is firstly
proposed in Ren & Leskovec (2020) and inherited and named as “bounded negation” in Wang et al.
(2021), the “bounded negation” requires the negation operator should be followed by the intersection
operator in the operator tree. Obviously, the abstract query graph that conforms to “bounded negation”
will also conform to the requirement in Proposition 20. A vivid example is offered in Figure 2.

Finally, we make the assumption of the distance to the free variable of the query graph:

Assumption 21. There is a constant d, such that for every node u in the abstract query graph G, it
can find a free variable in its d-hop neighbor.

We have this assumption to exclude the extremely long-path queries.

Equipped with the propositions and assumptions above, we explore the combinatorial space of the
abstract query graph given certain hyperparameters, including: the max number of free variables,
max number of existential variables, max number of constant entities, max number of all nodes, max
number of all edges, max number of edges surpassing the number of nodes, max number of negative
edge, max distance to the free variable. In practice, these numbers are set to be: 2, 2, 3, 6, 6, 0, 1, 3.
We note that the max number of edges surpassing the number of nodes is set to 0, which means that
the query graph can at most have one more edge than a simple tree, thus, we exclude those query
graphs that are both cyclic graphs and multigraphs, making our categorization and discussion in the
experiments in Section 6.2 and Section 6.3 much more straightforward and clear.

Then, we create the abstract query graph by the following steps, which is a graph with three types of
nodes and two kinds of edges:

1. First, create a simple connected graph G1 with two types of nodes, the existential variable
and the free variable, and one type of edge, the positive edge.

2. We add additional edges to the simple graph G1 and make it a multigraph G2.

3. Then, the constant variable is added to the graph G2, In this step, we make sure not too long
existential leaves. The result is graph G3.

4. Finally, random edges in G3 are replaced by the negation edge, and we get the final abstract
query graph G4.

In this way, all possible query graphs within a certain combinatorial space are enumerated, and finally,
we filter duplicated graphs with the help of the graph isomorphism algorithm. We give an example to
illustrate the four-step construction of an abstract query graph in Figure 5.

C.2 GROUND ABSTRACT QUERY GRAPH WITH MEANINGFUL NEGATION

To fulfill the Assumption 15 as discussed in Section 5.2, for an abstract query graphG “ pV,E, f, gq,
we have two steps: (1). Sample grounding for the positive subgraph Gp and compute its answer (2).
Ground the Gn to decrease the answer got in the first step. Then we define positive subgraph Gp to
be defined as such, its edge set E1 “ te P E|gpeq “ positiveu, its node set V 1 “ tu|u P V, De P
E1 and e connects to uu. Then Gp=pV 1, E1, f, gq. We note that because of Proposition 20, if a node
u P V ´ V 1, then we know node u must be a constant entity.

Then we sample the grounding for the positive subgraph Gp, we also compute the CSP answer Ap for
this subgraph.

Then we ground what is left in the positive subgraph, we split each negative edge in E ´ E1 into two
categories:

1. This edge e connects two nodes u, v, and u, v P V 1.

In this case, we sample the relation r to be the grounding of e such that it negates some of the answers
in Ap.

2. This edge e connects two nodes u, v, where u P V 1, while v R V 1.

In this case, we sample the relation r for e and entity a for v such that they negate some answer in
Ap, we note we only need to consider the possible candidates for node u and it is quite efficient.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Tree Form

EFOk-CQA

EFO-1-QA

FIT

EFO1

BetaE

Figure 6: Illustration of the comparison between the EFOk-CQA dataset (navy blue box) and the
previous dataset (three yellow boxes), where the BetaE and EFO-1-QA aim to investigate the tree
form query, explained in Appendix B, while the FIT dataset aims to investigate EFO1 query that
is not tree form. FIT is not a subset of EFOk-CQA because its “3pm” query is not included in
EFOk-CQA.

We note that there is no possibility that neither of the endpoints is in V 1 because as we have discussed
above, this means that both nodes are constant entities, but in Proposition 18 we have asserted that no
edge is connected between two entities.

C.3 THE COMPARISON TO PREVIOUS BENCHMARK

To give an intuitive comparison of our EFOk-CQA dataset against those previous datasets and
benchmark, including the BetaE dataset (Ren & Leskovec, 2020), the EFO-1-QA benchmark (Wang
et al., 2021) that extends BetaE dataset, and the FIT dataset (Yin et al., 2024) that explores 10 more
new query types, we offer a new figure in Figure 6.

It can be clearly observed that EFO-1-QA covers the BetaE dataset and has provided a quite systematic
investigation in tree form query, while FIT deviates from them and studies ten new query types that
are in EFO1 but not tree form.

As discussed in Section 4, the scope of the formula investigated in our EFOk-CQA dataset surpasses
the previous EFO-1-QA benchmark and FIT dataset because of three reasons: (1). We include
the EFOk formula with multiple free variables that has never been investigated(the bottom part of
navy blue box in Figure 6); (2). We systematically investigate those EFO1 queries that are not tree
form while the previous FIT dataset only discusses ten hand-crafted query types (the navy blue part
between two white lines in Figure 6); (3) Our assumption is more systematic than previous ones as
shown by the example in Figure 2(the top navy blue part above two white lines in Figure 6). Though
we only contain 741 query types while the EFO-1-QA benchmark contains 301 query types, we list
reasons for the number of query types is not significantly larger than the previous benchmark: (1).
EFO-1-QA benchmark relies on the operator tree that contains union, which represents the logic
conjunction(_), however, we only discuss the conjunctive queries because we always utilize the
DNF of a query. We notice that there are only 129 query types in EFO-1-QA without the union,
significantly smaller than the EFOk-CQA dataset. (2). In the construction of EFOk-CQA dataset,
we restrict the query graph to have at most one negative edge to avoid the total number of query types
growing quadratically, while in EFO-1-QA benchmark, their restrictions are different than ours and it
contains queries that have two negative atomic formulas as indicated by the right part of yellow box
is not contained in the navy blue box.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: The number of abstract query graphs with one free variable. We denote e as the number of
existential variables and c as the number of constant entities. SDAG represents the Simple Directed
Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. Sum.(c) and Sum.(e) is the
total number of queries with the number of constant entities / existential variables fixed.

c
e 0 1 2 Sum.(c) Sum.

SDAG SDAG Multi SDAG Multi Cyclic

1 1 2 4 4 16 4 31
2512 2 6 6 20 40 8 82

3 2 8 8 36 72 12 138

Sum.(e) 5 16 18 60 128 24

Table 4: The number of abstract query graphs with two free variables. The notation of e, c SDAG,
Multi, and Cyclic are the same as Table 3. And "-" means that this type of abstract query graph is not
included.

c
e e “ 0 e “ 1 e “ 2 AVG.

SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

c “ 1 1 2 7 18 4 6 32 26 96
c “ 2 4 4 20 36 8 38 108 64 282
c “ 3 4 4 32 60 12 - - - 112

C.4 EFOk-CQA STATISTICS

The statistics of our EFOk-CQA dataset are shown in Table 3 and Table 4, they show the statistics
of our abstract query graph by their topology property, the statistics are split into the situation that
the number of free variable k “ 1 and the number of free variable k “ 2, correspondingly. We
note abstract query graphs with seven nodes have been excluded as the setting of hyperparameters
discussed in Appendix C.1, we make these restrictions to control the quadratic growth in the number
of abstract query graphs.

Finally, in FB15k-237, we sample 1000 queries for an abstract query graph without negation, 500
queries for an abstract query graph with negation; in FB15k, we sample 800 queries for an abstract
query graph without negation, 400 queries for an abstract query graph with negation; in NELL,
we sample 400 queries for an abstract query graph without negation, 100 queries for an abstract
query graph with negation. As we have discussed in Appendix C.2, sample negative query is
computationally costly, thus we sample less of them.

Moreover, we provide our EFOk-CQA dataset an inductive version, with the same query types as the
transductive version, while the number of queries per query type is set to 400 for positive ones and
100 for negative ones. The inductive ratio is set to 175%, following the setting in Galkin et al. (2022).

D EVALUATION DETAILS

We explain the evaluation protocol in detail for Section 5.5.

Firstly, we explain the computation of common metrics, including Mean Reciprocal Rank(MRR) and
HIT@K, given the full answer A in the whole KG and the observed answer Ao in the observed KG,
we focus on the hard answer Ah as it requires more than memorizing the observed KG and serves as
the indicator of the capability of reasoning.

Specifically, we rank each hard answer a P Ah against all non-answers E ´A´Ao, the reason is
that we need to neglect other answers so that answers do not interfere with each other, finally, we get
the ranking for a as r. Then its MRR is 1{r, and its HIT@k is 1rďk, thus, the score of a query is the
mean of the scores of every its hard answer. We usually compute the score for a query type (which
corresponds to an abstract query graph) as the mean score of every query within this type.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 Embedding computation on the query graph.
Require: The query graph G.

Compute the ordering of the nodes as explained in Algorithm 2.
Create a dictionary E to store the embedding for each node in the query graph
for iÐ 1 to n do

if node ui is a constant entity then
The embedding of ui, Eris is gotten from the entity embedding

else
Then we know node ui is either free variable or existential variable
Compute the set of nodes tuiju

t
j“1 that are previous to i and adjacency to node ui.

Create a list to store projection embedding L.
for j Ð 1 to t do

Find the relation r between node ui and uij , get the embedding of node uij as Erijs.
if Erijs is not None then

if The edge between ui and uiJ is positive then
Compute the embedding of projection(Erijs, r), add it to the list L.

else
Compute the embedding of the negation of the projection(Erijs, r), add it to the list
L.

end if
end if

end for
if The list L has no element then
Eris is set to none.

else if The list L has one element then
Eris “ Lr0s

else
Compute the embedding as the intersection of the embedding in the list L, and set Eris as
the outcome.

end if
end if

end for
return The embedding dictionary E for each node in the query graph.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 Node ordering on the abstract query graph.
Require: The abstract query graph G “ pV,E, f, gq, V consists m nodes, u1, ¨ ¨ ¨ , um.

Creates an empty list L to store the ordering of the node.
Creates another two set S1 and S2 to store the nodes that are to be explored next.
for iÐ 1 to m do

if The type of node fpuiq is constant entity then
list L append the node ui
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for

end if
while Not all node is included in L do

if Set S1 is not empty then
We sort the set S1 by the sum of their distance to every free variable in G, choose the most
remote one, and if there is a tie, randomly choose one node, ui to be the next to explore.
We remove ui from set S1.

else
In this case, we know set S2 is not empty because of the connectivity of G.
We randomly choose a node ui P S2 to be the next node to explore.
We remove ui from set S2.

end if
for Node uj that connects to ui do

if fpujq is existential variable then
uj is added to set S1

else
uj is added to set S2

end if
end for
List L append the node ui

end while
end for
return The list L as the ordering of nodes in the whole abstract query graph G

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

As the marginal score and the multiply score have already been explained in Section 5.5, we only
mention one point that it is possible that every free variable does not have marginal hard answer.
Assume that for a query with two free variables, its answer set A “ tpa1, a2q, pa1, a3q, pa4, a2qu and
its observed answer set Ao “ tpa1, a3q, pa4, a2qu. In this case, a1 is not the marginal hard answer for
the first free variable and a2 is not the marginal hard answer for the second free variable, in general,
no free variable has its own marginal hard answer.

Then we only discuss the joint metric, specifically, we only explain how to estimate the joint ranking
by the individual ranking of each free variable. For each possible k-tuple pa1, ¨ ¨ ¨ , akq, if ai is ranked
as ri among the whole entity set E , we compute the score of this tuple as Σk

i“1ri, then we sort
the whole Ek k-tuple by their score, for the situation of a tie, we just use the lexicographical order.
After the whole joint ranking is got, we use the standard evaluation protocol that ranks each hard
answer against all non-answers. It can be confirmed that this estimation method admits a closed-form
solution for the sorting in Ek space, thus the computation cost is affordable.

We just give the closed-form solution when there are two free variables:

for the tuple pr1, r2q, the possible combinations that sum less than r1 ` r2 is
`

r1`r2´1
2

˘

, then, there
is r1 ´ 1 tuple that ranks before pr1, r2q because of lexicographical order, thus, the final ranking for
the tuple pr1, r2q is just

`

r1`r2´1
2

˘

` r1 that can be computed efficiently.

E IMPLEMENTATION DETAILS OF CQA MODELS

In this section, we provide implementation details of CQA models that have been evaluated in our
paper. For query embedding methods that rely on the operator tree, including BetaE (Ren & Leskovec,
2020), LogicE (Luus et al., 2021), and ConE (Zhang et al., 2021), we compute the ordering of nodes
in the query graph in Algorithm 2, then we compute the embedding for each node in the query
graph Algorithm 1, the final embedding of every free node are gotten to be the predicted answer.
Especially, the node ordering we got in Algorithm 2 coincides with the natural topology ordering
induced by the directed acyclic operator tree, so we can compute the embedding in the same order as
the original implementation. Then, in Algorithm 1, we implement each set operation in the operator
tree, including intersection, negation, and set projection. By the merit of the Disjunctive Normal
Form (DNF), the union is tackled in the final step. Thus, our implementation can coincide with the
original implementation in the original dataset (Ren & Leskovec, 2020).

For CQD (Arakelyan et al., 2020) and LMPNN (Wang et al., 2023), their original implementation
does not require the operator tree, so we just use their original implementation. Specifically, in a query
graph with multiple free variables, for CQD we predict the answer for each free variable individually
as taking others free variables as existential variables, for LMPNN, we just got all embedding of
nodes that represent free variables.

For FIT (Yin et al., 2024), though it is proposed to solve EFO1 queries, it is computationally costly:
it has a complexity of OpE2q in the acyclic graphs and is even not polynomial in the cyclic graphs,
the reason is that FIT degrades to enumeration to deal with cyclic graph. In our implementation, we
further restrict FIT to at most enumerate 10 possible candidates for each node in the query graph, this
practice has allowed FIT to be implemented in the dataset FB15k-237 (Toutanova & Chen, 2015).
However, it cost 20 hours to evaluate FIT on our EFOk-CQA dataset while other models only need no
more than two hours. Moreover, for larger knowledge graph, including NELL (Carlson et al., 2010)
and FB15k (Bordes et al., 2013), we have also encountered an out-of-memory error in a Tesla V100
GPU with 32G memory when implementing FIT, thus, we omit its result in these two knowledge
graphs.

F EXTENSION TO MORE COMPLEX QUERY ANSWERING

In this section, we discuss possible further development in the task of complex query answering and
how our work, especially our framework proposed in Section 5 can help with future development. We
list some new features that may be of interest and show the maximum versatility our framework can
reach. Our analysis and characterization of future queries inherit the outlook in Wang et al. (2022)
and also is based on the current development.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Inductive Reasoning Inductive reasoning is a new trend in the field of complex query answering.
Some entities (Galkin et al., 2022) or even relations (Huang et al., 2022) are not seen in the training
period, namely they can not be found by the observed knowledge graph Go therefore, the inductive
generalization is essential for the model to infer answers. We note that our framework is powerful
enough to sample inductive queries with the observed knowledge graph Go given. Therefore, the
functionality of sampling inductive query is easily contained and implemented in our framework,
see https://anonymous.4open.science/r/EFOK-CQA/README.md. We note there
we have already provided our EFOk-CQA dataset in this setting as discussed in Appendix C.4.

N-ary relation N-ary relation is a relation that has n ą 2 corresponding entities, therefore, the factual
information in the knowledge graph is not a triple but a pn` 1q-tuple. Moreover, the query graph is
also a hypergraph, making the corresponding CSP problem even harder. This is a newly introduced
topic (Luo et al., 2022; Alivanistos et al., 2022) in complex query answering, which our framework
has limitations in representing.

Knowledge graph with attribute Currently, there has been some research that has taken the
additional attribute of the knowledge graph into account. Typical attributes include entity types (Hu
et al., 2022), numerical literals (Bai et al., 2023a; Demir et al., 2023),triple timestamps (Jia et al.,
2021; Saxena et al., 2021), and triple probabilities (Carlson et al., 2010). We note that attributes
expand the entity set E from all entities to entities with attribute values, it is also possible that the
relation set R is also extended to contain corresponding relations, like “greater”, “less” when dealing
with numerical literals. Then, our framework can represent queries on such extended knowledge
graphs like in Bai et al. (2023b), where no function like “plus”, or “minus” is considered and the
predicates are also binary.

Overall, our framework can be applied to some avant-garde problem settings given certain properties,
thus those functionalities proposed in Section 5 can be useful. We hope our discussion helps with the
future development of complex query answering.

G SOCIETY IMPACT AND APPLICATIONS

This paper addresses the topic of complex query answering on knowledge graphs, a subject that has
garnered attention within the machine learning community for approximately four years. We mainly
focuses on extending the scope of the complex query given the same knowledge graph and also
presents systematic benchmarks and convenient implementation for the whole pipeline of complex
query answering, which holds the potential to significantly advance the development of complex
query answering models. Nowadays, CQA has several real-world applications, like fact ranking (Ren
et al.), and explainable recommendations (Syed et al., 2022). However, some important practical
applications can not be covered by existing datasets in CQA, because their construction is biased
and has not discussed queries with multiple free variables entirely. We would like to introduce one
example in fraud detection where we need to detect a group of people with cyclic money flow for
anti-money laundering applications (Verma et al., 2017), we also note that this finding is also shared
by open-source graph database 6. Therefore, our investigation on cyclic queries and queries with
more than one free variable can be justified to help develop more versatile CQA models that are
suitable for more real-world applications.

Additionally, the figure of the real-world KG in Figure 3is taken from https://medium.com/
@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77.

H ADDITIONAL EXPERIMENT RESULT AND ANALYSIS

In this section, we offer another experiment result not available to be shown in the main paper. For the
purpose of supplementation, we select some representative experiment result as the experiment result
is extremely complex to be categorized and be shown. we present the further benchmark result of the
following: the analysis of benchmark result in detail, more than just the averaged score in Table 1 and
Table 2, which is provided in Appendix H.1; result of different knowledge graphs, including NELL
and FB15k, which is provided in Appendix H.2 and H.3, the situation of more constant entities since

6People interested can find relevant resource in https://www.nebula-graph.io/posts/
fraud-detection-using-knowledge-and-graph-database

22

https://anonymous.4open.science/r/EFOK-CQA/README.md
https://medium.com/@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77
https://medium.com/@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77
https://www.nebula-graph.io/posts/fraud-detection-using-knowledge-and-graph-database
https://www.nebula-graph.io/posts/fraud-detection-using-knowledge-and-graph-database

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Ranking of query types

0

20

40

60

M
ul

tip
ly

 H
IT

@
10

(%
)

BetaE
LogicE
ConE
CQD
LMPNN
FIT
AVG.

Figure 7: Relative performance of the six representative CQA models in referring queries with two
free variables, the ranking of query types is determined by the average Multiply HIT@10 score. A
Gaussian filter with sigma=1 is added to smooth the curve.

we only discuss when there are two constant entities in Table 2, the result is provided in Appendix H.4,
and finally, all queries(including the queries without marginal hard answers), in Appendix H.5.

We note that we have explained in Section 5.5 and Appendix D that for a query with multiple free
variables, some or all of the free variables may not have their marginal hard answer and thus the
marginal metric can not be computed. Therefore, in the result shown in Table 2 in Section 6.3, we
only conduct evaluation on those queries that both of their free variables have marginal hard answers,
and we offer the benchmark result of all queries in Appendix H.5 where only two kinds of metrics
are available.

H.1 FURTHER RESULT AND ANALYSIS OF THE EXPERIMENT IN MAIN PAPER

To supplement the experiment result already shown in Section 6.2 and Section 6.3, we have included
more benchmark results in this section. Though the averaged score is a broadly-used statistic to
benchmark the model performance on our EFOk queries, this is not enough and we have offered
much more detail in this section.

Whole combinatorial space helps to develop trustworthy machine learning models. Firstly, we
show more detailed benchmark results of the relative performance between our selected six CQA
models, the result is shown in Table 4. Specifically, we plot two boxes, the black one, including the
most difficult query types, and the red box, including the easiest query types. In the easiest part,
we find that even the worst model and the best model have pretty similar performance despite that
they may differ greatly in other query types. The performance in the most difficult query types is
more important when the users are risk-sensitive and desire a trustworthy machine-learning model
that does not crash in extreme cases (Varshney, 2019) and we highlight it in the black box. In the
black box, we note that CQD (Arakelyan et al., 2020), though designed in a rather general form, is
pretty unstable when comes to empirical evaluation, as it has a clear downward curve and deviates
from other model’s performance enormously in the most difficult query types. Therefore, though its
performance is better than LMPNN and comparable to BetaE on average as reported in Table 1, its
unsteady performance suggests its inherent weakness. On the other hand, ConE (Zhang et al., 2021)
is much more steady and outperforms BetaE and LogicE consistently. We also show the result when

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Ranking of EFO1 query types

0

10

20

30

40

50

60

70

80

90

HI
T@

10
(%

)

Mean
Standard deviation

0 5 10 15 20 25 30
Dataset distribution(%)

BetaE query types
FIT query types
EFO1 query types

Figure 8: Query type distribution in three different datasets, BetaE one, FIT one, and the EFO1 part
in our EFOk-CQA dataset. The left part shows the histogram that represents the probability density
function of each dataset. The ranking of query types is also determined by the mean HIT@10 score
as in Figure 4, with the standard deviation of the performance of the six CQA models shown as the
light blue error bar.

there are two free variables in Figure 7, where the model performance is much less steady but the
trend is similar to the EFO1 case in general.

Empirical hardness of query types and incomplete discussion of the previous dataset. Moreover,
we also discuss the empirical hardness of query types themselves and compare different datasets
accordingly in Figure 8. We find the standard deviation of the six representative CQA models
increases in the most difficult part and decreases in the easiest part, corroborating our discussion
in the first paragraph. We also highlight those query types that have already been investigated
in BetaE dataset (Ren & Leskovec, 2020) and FIT dataset (Yin et al., 2024). We intuitively find
that the BetaE dataset does not include very challenging query types while the FIT dataset mainly
focuses on them. This can be explained by the fact that nine out of ten most challenging query types
correspond to multigraph, which the BetaE dataset totally ignores while the FIT dataset highlights
it as a key feature. To give a quantitative analysis of whether their hand-crafted query types are
sampled from the whole combinatorial space, we have adopted the Kolmogorov–Smirnov test to test
the distribution discrepancy between their distribution and the query type distribution in EFOk-CQA
since EFOk-CQA enumerates all possible query types in the given combinatorial space and is thus
unbiased. We find that the BetaE dataset is indeed generally easier and its p-value is 0.78, meaning
that it has a 78 percent possibility to be unbiased, while the FIT dataset is significantly harder and its
p-value is 0.27. Therefore, there is no significant statistical evidence to prove they are sampled from
the whole combinatorial space unbiasedly.

H.2 FURTHER BENCHMARK RESULT OF k=1

Firstly, we present the benchmark result when there is only one free variable, since the result in
FB15k-237 is provided in Table 1, we provide the result for other standard knowledge graphs, FB15k
and NELL, their result is shown in Table 6 and Table 7, correspondingly. We note that FIT is out
of memory with the two large graphs FB15k and NELL as explained in Appendix E and we do
not include its result. As FB15k and NELL are both reported to be easier than FB15k-237, the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 5: MRR scores(%) for inferring queries with one free variable on FB15k-237. We denote e as
the number of existential variables and c as the number of constant entities. SDAG represents the
Simple Directed Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. AVG.(c) and
AVG.(e) is the average score of queries with the number of constant entities / existential variables
fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 16.2 17.9 10.9 10.6 8.5 16.5 11.1
20.72 35.6 20.2 19.1 15.7 15.7 27.1 17.8

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 37.4 25.7 23.5 18.8 18.1 30.5

LogicE

1 17.4 19.0 11.5 11.0 8.5 16.8 11.5
21.32 36.7 21.2 19.8 16.5 16.1 27.3 18.4

3 55.5 34.6 34.5 22.3 22.0 37.5 25.4

AVG.(e) 38.9 27.3 24.5 19.4 18.5 30.6

ConE

1 18.6 19.9 11.8 11.4 9.3 18.7 12.3

23.12 39.1 22.4 20.8 18.1 17.6 30.7 20.1
3 58.8 36.4 37.0 24.6 23.8 41.7 27.6

AVG.(e) 41.4 28.7 26.0 21.3 20.1 34.2

CQD

1 22.2 19.5 9.0 9.2 6.4 15.6 10.0

21.92 35.3 20.1 19.1 16.4 16.2 27.6 18.4
3 40.3 32.9 34.3 24.4 24.0 40.2 26.8

AVG.(e) 33.9 26.2 23.7 20.5 19.4 31.9

LMPNN

1 20.5 21.4 11.2 11.6 8.7 17.0 11.9

20.52 42.0 22.6 18.5 16.5 14.9 26.5 17.9
3 62.3 35.9 31.6 22.1 19.8 35.5 24.0

AVG.(e) 44.2 28.8 22.7 19.4 16.9 29.4

FIT

1 22.2 25.0 17.4 13.9 11.7 23.3 15.6

30.32 45.3 29.6 28.5 23.8 24.3 35.5 26.5
3 64.5 44.8 45.4 33.3 33.5 44.4 36.2

AVG.(e) 46.7 36.2 33.6 28.6 27.9 37.9

models have better performance. The trend and analysis are generally similar to our discussion in
Section 6.2 with some minor, unimportant changes that LogicE (Luus et al., 2021) has outperformed
ConE (Zhang et al., 2021) in the knowledge graph NELL, indicating one model may not perform
identically well in all knowledge graphs.

H.3 FURTHER BENCHMARK RESULT FOR k=2 IN MORE KNOWLEDGE GRAPHS

Then, similar to Section 6.3, we provide the result for other standard knowledge graphs, FB15k and
NELL, when the number of constant entities is fixed to two, their result is shown in Table 8 and
Table 9, correspondingly.

We note that though in some breakdowns, the marginal score is over 90 percent, almost close to 100
percent, the joint score is pretty slow, which further corroborates our findings that joint metric is
significantly harder and more challenging in Section 6.3.

H.4 FURTHER BENCHMARK RESULT FOR k=2 WITH MORE CONSTANT NUMBERS.

As the experiment in Section 6.3 only contains the situation where the number of constant entity is
fixed as one, we offer the further experiment result in Table 10.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 6: MRR scores(%) for inferring queries with one free variable on FB15k. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 38.6 30.4 29.2 21.7 21.7 24.1 24.3
34.02 49.7 34.0 37.2 28.3 29.2 35.5 31.0

3 63.5 46.4 48.6 33.9 36.1 45.8 38.1

AVG.(e) 63.5 46.4 48.6 33.9 36.1 45.8 38.1

LogicE

1 46.0 33.8 32.1 23.3 22.8 25.6 26.2
35.62 51.2 35.9 39.0 30.6 30.5 36.9 32.7

3 64.5 48.6 49.8 35.4 37.5 47.7 39.6

AVG.(e) 54.9 41.7 42.3 32.8 33.4 40.4

ConE

1 52.5 35.8 34.9 25.9 25.9 29.5 29.3

39.52 57.0 40.0 43.4 33.2 34.2 40.8 36.3
3 70.6 53.1 55.3 39.3 41.8 52.5 43.9

AVG.(e) 61.0 45.6 46.8 36.1 37.4 44.8

CQD

1 74.6 36.1 32.7 17.6 16.7 25.4 23.7
37.22 52.2 35.2 40.9 29.2 31.5 39.2 33.2

3 53.3 32.4 33.1 21.7 21.6 37.4 24.8

AVG.(e) 59.4 41.5 44.6 33.3 35.3 43.3

LMPNN

1 63.7 39.9 35.3 28.7 26.4 28.7 30.7

37.72 65.0 41.9 38.8 34.4 31.7 38.4 35.1
3 79.8 54.0 49.5 38.9 37.1 48.0 40.8

AVG.(e) 70.2 47.4 42.8 36.6 34.1 41.6

The result shows that models perform worse with fewer constant variables when compares to the
result in Table 2, this observation is the same as the previous result with one free variable that has
been discussed in Section 6.2.

H.5 FURTHER BENCHMARK RESULT FOR k=2 INCLUDING ALL QUERIES

Finally, as we have explained in Section 5.5 and Appendix D, there are some valid EFOk queries
without marginal hard answers when k ą 1. Thus, there is no way to calculate the marginal scores,
all our previous experiments are therefore only conducted on those queries that all their free variables
have marginal hard answers. In this section, we only present the result of the Multiply and Joint score,
as they can be computed for any valid EFOk queries, and therefore this experiment is conducted on
the whole EFOk-CQA dataset.

We follow the practice in Section 6.3 that fixed the number of constant entities as two, as the impact
of constant entities is pretty clear, which has been further corroborated in Appendix H.4. The
experiments are conducted on all three knowledge graphs, FB15k-237, FB15k, and NELL, the result
is shown in Table 11, Table 12, and Table 13, correspondingly.

Interestingly, comparing the result in Table 2 and Table 11, the multiple scores actually increase
through the joint scores are similar. This may be explained by the fact that if one free variable has no
marginal hard answer, then it can be easily predicted, leading to a better performance for the whole
query.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 7: MRR scores(%) for inferring queries with one free variable on NELL. The notation of e, c,
SDAG, Multi, Cyclic, AVG.(c) and AVG.(e) are the same as Table 1.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 13.9 26.4 35.0 8.6 14.9 19.1 17.5
33.62 58.8 31.5 43.8 22.4 30.6 34.7 30.7

3 78.8 48.6 58.3 29.6 39.0 47.0 39.5

AVG.(e) 53.1 38.5 48.3 25.2 33.3 38.2

LogicE

1 18.3 29.2 39.6 12.1 19.0 20.4 21.1
36.92 63.5 34.4 47.3 26.4 34.0 37.6 34.2

3 79.6 51.2 59.3 33.1 42.2 50.1 42.6

AVG.(e) 56.3 41.3 50.9 28.8 36.7 41.0

ConE

1 16.7 26.9 36.6 11.1 16.9 22.3 19.6

36.62 60.5 33.6 46.6 25.3 33.1 40.1 33.6
3 79.9 50.6 59.2 33.2 42.2 52.6 42.8

AVG.(e) 54.9 40.3 50.0 28.4 36.2 43.4

CQD

1 22.3 30.6 37.3 13.3 17.9 20.7 20.9
38.22 59.8 34.0 45.2 28.8 35.4 38.9 35.3

3 62.7 48.8 59.9 36.4 44.1 52.6 44.3

AVG.(e) 50.1 40.2 49.9 31.6 38.1 42.7

LMPNN

1 20.7 29.8 33.3 13.4 16.5 21.8 19.8

35.12 63.5 35.4 43.3 27.0 30.2 37.6 32.3
3 80.8 50.7 56.0 33.6 39.2 47.6 40.7

AVG.(e) 57.4 41.5 46.7 29.4 33.6 40.0

Table 8: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 76.9 77.2 68.9 69.3 75.1 55.0 57.4 73.6 63.6
Multiply 41.7 41.6 31.7 31.0 38.7 25.2 25.9 36.1 29.7

Joint 11.6 13.7 8.7 8.6 17.8 4.9 5.4 14.3 8.4

LogicE
Marginal 82.9 80.9 73.6 72.9 76.6 58.9 60.7 75.7 66.9
Multiply 47.5 45.0 36.3 34.1 40.4 28.5 29.0 38.0 32.7

Joint 12.7 13.9 10.0 9.9 19.2 6.1 6.5 15.9 9.6

ConE
Marginal 84.1 84.8 76.5 76.3 81.4 61.8 63.8 79.7 70.2
Multiply 48.7 48.1 37.7 35.9 44.2 29.9 30.4 41.4 34.6

Joint 14.2 15.6 10.3 10.4 20.6 6.2 6.6 16.9 10.1

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 45.0 46.6 37.4 36.9 43.9 28.1 29.2 41.9 34.0

Joint 17.1 19.0 13.1 13.0 20.6 7.7 8.6 18.1 11.9

LMPNN
Marginal 89.2 80.1 80.3 78.2 84.2 65.6 63.7 80.2 71.3
Multiply 56.6 50.5 45.7 42.4 49.0 37.6 34.8 44.6 39.7

Joint 18.9 17.2 12.9 12.4 22.4 8.0 7.5 16.9 11.2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 9: HIT@10 scores(%) of three different types for answering queries with two free variables on
NELL. The constant number is fixed to be two. The notation of e, SDAG, Multi, and Cyclic is the
same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 81.3 95.9 72.8 85.5 79.9 57.2 66.7 77.0 71.2
Multiply 48.2 56.7 41.3 46.1 47.6 33.1 36.5 42.9 39.6

Joint 19.2 31.8 21.2 26.5 21.7 13.8 17.5 18.5 18.8

LogicE
Marginal 87.1 99.8 81.0 91.8 83.2 65.7 74.0 81.0 77.7
Multiply 52.5 60.3 47.6 51.7 50.2 39.4 42.6 46.0 44.8

Joint 21.1 32.8 25.4 30.5 23.3 18.0 21.5 20.5 22.3

ConE
Marginal 82.6 96.4 76.0 87.8 88.1 60.0 69.3 83.0 74.7
Multiply 48.7 56.9 41.9 46.3 52.2 34.5 38.1 47.7 41.7

Joint 17.0 30.9 19.3 25.0 24.9 12.9 17.2 20.3 18.8

CQD
Marginal 79.5 96.3 83.2 92.2 83.5 65.8 75.7 84.8 79.4
Multiply 49.2 57.8 51.1 53.1 51.4 40.6 45.1 50.6 47.4

Joint 23.0 38.0 29.7 34.2 26.4 21.4 25.4 24.0 26.0

LMPNN
Marginal 88.5 96.6 81.5 90.9 85.3 65.0 70.7 83.1 76.7
Multiply 55.7 62.4 50.3 53.3 54.0 40.8 42.6 50.3 46.5

Joint 23.4 36.4 25.5 29.4 24.0 16.6 19.7 21.5 21.5

Table 10: HIT@10 scores(%) of three different types for answering queries with two free variables
on FB15k-237. The constant number is fixed to be one. The notation of e, SDAG, Multi, and Cyclic
is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 37.5 29.7 33.4 28.1 35.6 30.0 25.9 41.2 31.2
Multiply 18.9 13.7 15.3 10.3 15.2 17.7 13.3 17.2 14.3

Joint 0.9 1.1 1.4 0.9 3.3 1.1 0.9 3.9 1.7

LogicE
Marginal 40.6 30.7 36.0 29.1 34.6 29.8 25.3 41.5 31.4
Multiply 21.1 14.3 17.2 10.9 16.3 17.8 13.3 17.5 14.7

Joint 1.4 1.4 1.6 0.9 3.7 1.4 1.0 4.3 1.9

ConE
Marginal 40.8 32.4 37.3 30.4 40.7 31.1 26.9 45.0 33.5
Multiply 22.1 15.2 18.4 11.7 19.3 18.5 14.8 20.9 16.5

Joint 1.4 1.0 1.7 1.0 4.3 1.4 1.0 4.4 2.0

CQD
Marginal 73.8 76.8 69.0 71.9 76.3 51.1 54.4 77.0 62.9
Multiply 23.3 9.1 18.5 9.2 16.2 14.6 9.2 19.1 12.9

Joint 1.5 0.6 2.0 1.1 3.4 1.5 0.9 4.4 1.9

LMPNN
Marginal 39.0 27.6 40.0 29.5 39.3 30.6 24.8 42.7 32.0
Multiply 25.1 13.9 24.3 13.3 21.6 20.0 14.0 21.1 17.1

Joint 1.6 1.3 2.5 1.3 3.9 1.5 1.0 4.0 2.0

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 11: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k-237(including queries without the marginal hard answer). The constant number is fixed to be
two. The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 29.1 29.1 18.3 37.5 10.4 28.0 93.6 74.6 24.1

Joint 2.1 2.2 1.7 3.0 2.4 1.8 5.8 14.2 4.6

LogicE
Multiply 31.6 32.9 19.8 39.6 10.9 28.7 96.3 73.8 25.4

Joint 2.6 2.5 2.1 3.1 2.5 2.2 6.4 15.6 5.0

ConE
Multiply 32.6 31.9 20.5 41.0 12.6 29.0 99.7 86.8 27.0

Joint 3.0 2.1 1.9 3.3 2.7 2.2 6.6 16.8 5.4

CQD
Multiply 34.5 23.4 22.3 36.8 10.6 26.4 75.3 77.3 25.6

Joint 2.9 1.4 2.1 3.3 2.3 2.0 5.0 15.0 5.6

LMPNN
Multiply 36.8 29.3 27.5 45.8 13.9 31.2 97.0 86.5 27.9

Joint 2.7 2.2 2.7 3.9 2.5 2.1 5.8 14.6 5.0

FIT
Multiply 41.5 44.4 28.9 56.8 10.2 39.4 139.7 100.3 35.0

Joint 2.4 2.3 2.1 3.4 1.6 2.2 7.4 15.4 5.9

Table 12: HIT@10 scores(%) of two different types for answering queries with two free variables on
FB15k(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 42.1 57.2 26.5 66.5 15.5 34.6 134.9 100.0 35.0

Joint 6.6 9.4 4.5 10.2 4.6 4.3 16.7 26.0 9.2

LogicE
Multiply 48.2 65.6 31.0 71.6 16.8 37.8 143.9 105.8 38.1

Joint 7.5 11.2 5.6 12.5 5.3 5.6 20.4 28.5 10.5

ConE
Multiply 50.2 72.2 32.8 74.6 18.3 38.3 149.3 114.3 40.4

Joint 6.8 10.0 5.2 12.5 5.5 5.2 19.4 30.4 11.0

CQD
Multiply 48.1 55.9 31.9 69.0 15.8 29.5 93.5 103.2 37.6

Joint 9.4 11.4 6.6 14.8 4.8 5.5 17.5 27.2 12.0

LMPNN
Multiply 58.4 79.5 43.1 94.6 21.3 40.9 146.2 135.9 45.0

Joint 8.6 12.9 6.8 15.6 6.2 5.4 19.3 31.7 11.6

Table 13: HIT@10 scores(%) of two different types for answering queries with two free variables on
NELL(including queries without the marginal hard answer). The constant number is fixed to be two.
The notation of e, SDAG, Multi, and Cyclic is the same as Table 2.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Multiply 21.2 47.3 22.0 51.9 14.7 24.1 80.5 79.7 33.4

Joint 4.2 19.6 6.8 19.1 5.1 6.8 26.7 24.0 14.1

LogicE
Multiply 26.6 52.8 28.8 63.4 16.0 32.8 103.1 88.5 38.9

Joint 3.8 21.5 9.7 26.0 5.9 11.5 36.9 27.3 16.5

ConE
Multiply 25.3 51.4 23.9 53.9 16.9 27.3 90.7 90.6 36.7

Joint 3.4 20.2 6.4 17.0 6.1 7.2 27.0 27.1 14.2

CQD
Multiply 30.3 48.9 30.6 64.3 15.9 33.1 88.9 91.2 40.9

Joint 4.4 21.9 9.8 27.5 5.6 12.0 37.6 28.1 18.0

LMPNN
Multiply 33.4 58.3 33.7 65.3 19.4 30.7 85.1 105.0 41.8

Joint 4.4 23.7 10.0 21.9 5.8 8.2 23.2 28.8 15.7

29

	Introduction
	Related works
	Problem definition
	Existential first order (EFO) queries on knowledge graphs
	Constraint satisfaction problem for EFO queries
	The representation of query

	The combinatorial space of EFOk queries
	Nontrivial abstract query graph of EFOk
	Nontrivial query graph of EFOk

	Framework
	Enumerate abstract query graph
	Ground abstract query graph
	Answer for existential formula
	Learning-based methods
	Evaluation protocol

	The EFOk-CQA dataset and benchmark results
	The EFOk-CQA dataset
	Benchmark results for k=1
	Benchmark results for k=2

	Conclusion
	Details of constraint satisfaction problem
	Preliminary of tree form query
	Construction of the whole EFOk-CQA datset
	Enumeration of the abstract query graphs
	Ground abstract query graph with meaningful negation
	The comparison to previous benchmark
	EFOk-CQA statistics

	Evaluation details
	Implementation details of CQA models
	Extension to more complex query answering
	blue Society impact and applications
	Additional experiment result and analysis
	Further result and analysis of the experiment in main paper
	Further benchmark result of k=1
	Further benchmark result for k=2 in more knowledge graphs
	Further benchmark result for k=2 with more constant numbers.
	Further benchmark result for k=2 including all queries

