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ABSTRACT

Speech synthesis plays an important role in human-computer interaction. Exist-
ing methods mainly employ traditional two-stage pipeline, e.g. text-to-speech and
vocoder. In this paper, we propose a system called Schrön, which can generate
speech waves in an end-to-end mamaner by solving Schrödinger bridge problems
(SBP). In order to make SBP suitable for speech synthesis, we generalize SBP
from two aspects. The first generalization makes it possible to accept condition
variables, which are used to control the generated speech, and the second gen-
eralization allows it to handle variable-size input. Besides these two generaliza-
tions, we propose two techniques to fill the large information gap between text
and speech waveforms for generating high-quality voice. The first technique is
to use a text-mel joint representation as the conditional input of the conditional
SBP. The second one is to use a branch network for the generation of mel scores
as a regularization, so that the text features will not be degenerated. Experimental
results show that Schrön achieves state-of-the-art MOS of 4.52 on public data set
LJSpeech. Audio samples are available at https://schron.github.io/.

1 INTRODUCTION

Speech synthesis usually consists of two parts, text-to-speech (TTS) and vocoder. TTS converts
text to intermediate feature representations, such as mel-spectrogram, while vocoder converts mel-
spectrogram to final waveform. Most of the research focuses on just one part, TTS or vocoder, and
then connects these two subsystems to get a complete speech synthesis system. However, such a
connected system can lead to the accumulation of errors, e.g. if the mel-spectrogram generated by
the TTS is defective, which is difficult for subsequent vocoders to correct. An end-to-end speech
generation system can avoid this cumulative error.

At present, there are not many end-to-end speech synthesis systems, and the representative ones are
FastSpeech 2s (Ren et al., 2020), EATS (Jeff et al., 2021), and VITS (Kim et al., 2021). In order to
overcome the large information gap between text and speech wave, FastSpeech 2s (Ren et al., 2020)
uses the implicit representation of the mel-spectrogram as an intermediate variable, which is first
generated from text, and then becomes wave. In the process of wave generation, FastSpeech 2s (Ren
et al., 2020) uses a network structure similar to WaveNet (Kim et al., 2018) and uses adversarial
training to overcome the lack of phase information. Compared to FastSpeech 2s, EATS (Jeff et al.,
2021) adopts a different way of method, which uses two equally important technologies, one is
the adversarial training loss to force the generation of high-fidelity speech audio, the other is to
use the prediction loss on mel-spectrogram and duration as a regularizer. Current state-of-the-art
(SOTA) end-to-end system is VITS (Kim et al., 2021), it adopts variational inference augmented
with normalizing flows and an adversarial training process.

In this paper, we propose a novel end-to-end speech synthesis called Schrön by solving the
Schrödinger bridge problem (Schrödinger, 1932), which can achieve exact diffusion between differ-
ent distributions in finite time duration, without the need of time going to infinity. The Schrödinger
bridge problem was proposed and solved by Schrödinger (1932), and it has profound applications
in quantum mechanics (Cruzeiro & Zambrini, 1991) and optimal control (Mikami, 2008). Recently,
some researchers have used the Schrödinger bridge for image generation and have achieved good
results (Wang et al., 2021; Vargas et al., 2021). Most of these methods based on Schrödinger bridge
require the input image to be of the same size, but the natural voice wave is basically of different
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lengths. In this paper, we generalize the Schrödinger bridge generative model from two aspects to
do speech synthesis. The first is that it can handle input waves of different size. The second is that
it can accept conditional inputs as control variables, such as raw text in voice wave generation.

The advantage of Schrön over VITS (Kim et al., 2021), FastSpeech 2s (Ren et al., 2020) and
EATS (Jeff et al., 2021) is that it is easy to train, while all of VITS, FastSpeech 2s and EATS use
adversarial training, which is more difficult to converge. At the same time, Schrön has no special
requirements for the network structure and has more design flexibility.

The main contributions of this paper are as follows

• To the best of our knowledge Schrön is the first end-to-end speech synthesis system based
on the Schrödinger bridges.

• Schrön generalized SBP so that it has two new features, the first is that it can accept condi-
tional control variables, and the second is that it can handle data of indefinite length. At the
same time, it can achieve exact generation of target distributions in a limited time duration.

• An effective two-stage training algorithm for Schrön is proposed. The text encoder, mel
density ratio estimator, and mel score predictor are trained in the first stage; the text de-
coder, mel-encoder, the wave density ratio estimator, and wave score predictor are trained
in the second stage.

• Several insights in the end-to-end speech synthesis based on solving the Schrödinger bridge
problems are given, especially the design of the network structure.

2 TRINITY OF CONDITIONAL SCHRODINGER BRIDGES

In this section, we first generalize the standard Schrödinger bridge problem (SBP) to accept condi-
tional input as explicit variables for controllable probability measure transferring. Then we introduce
two equivalent forms to the conditional SBP, one is the conditional Schrödinger system, the other
is a conditional stochastic control problem. These two equivalent systems are more computable to
realize the continuous transformation among the probability measures of wave data in Schrön.

2.1 NOTATIONS AND CONCEPTS

Let Ω = C([0, 1],Rn) be the set of all continuous functions (also called paths) ω from [0, 1] to Rn.
Here Rn is the space where the wave data is located. Let D be the space of all probability measure
on Ω. D(ρ0, ρ1) be the set of all probability measures on Ω with marginal density ρ0 at t = 0 and
ρ1 at t = 1. Π(ρ0, ρ1) denotes the set of all probability distributions on Rn ×Rn with marginals ρ0
and ρ1. δx and δy are Dirac’s deltas on Rn concentrated at x and y.

Wε,x ∈ D denotes the Wiener measure with variance ε starting at x ∈ Rn at t = 0. Wiener measure
is induced by the Riesz representation theorem (Riesz, 1907) from a certain integral functional on
C(Ω) based on the heat kernel with variance ε

pε(x, y; s, t) =
1

[2πε(t− s)]n/2
e−‖x−y‖

2/2ε(t−s), (1)

where s < t. The intuitive idea behind Wε,x is that it assigns

Wε,x(E) :=

∫
E1

· · ·
∫
Em

pε(x, x1; 0, t1)pε(x1, x2; t1, t2) · · · pε(xm−1, xm; tm−1, tm)dx1 · · · dxm

(2)

to the set of all functions ω ∈ E ⊂ Ω which start at x and pass through the set E1 at time t1, the
set E2 at time t2 etc.. Let Wε(·) :=

∫
Wε,x(·)dx, then it is an unbounded measure on Ω and has

marginals at each time in [0, 1] that coincidence with the Lebesgue measure on Rn. The relative
entropy between two probability measures on Ω is defined as Leonard (2013)

D(P ‖ Q) =

{
EP
[
log dP

dQ

]
, if P << Q

+∞ otherwise.
(3)
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2.2 CONDITIONAL SCHRÖDINGER BRIDGE PROBLEM

The SBP is to find a probability measure that has the minimum relative entropy with a reference
reversible Brownian motion under the condition of fixed initial and ending marginals (Schrödinger,
1932; Leonard, 2013; Chen et al., 2021). If we set the initial and ending marginals to the prior Dirac’s
delta distribution and the target wave data distribution corresponding to the text, then the probability
measure solution obtained by solving the SBP corresponds to a continuous transformation between
the two distributions. Thus the problem is about how to find the continuous transformation between
two distributions so that transformation is most similar to a preset reversible Brownian motion. It
should be noted that wave generation always needs raw text as conditional input, but there is no
conditional variable in standard SBPs. Thus we need to generalize the standard SBPs to accept
conditional variables.

The SBP (Schrödinger, 1932) is to find a P ∈ D(ρ0, ρ1) that minimizes D(P ‖ Wε), which is the
relative entropy with the prior Wε. We generalized it to the following conditional SBP (cSBP)

arg min
P

{D(P (·|j) ‖Wε)|P (·|j) ∈ D(ρ0, ρ1)} , (4)

where j is certain middle representations of the raw text as conditional input, and ρ0 is a simple
prior distribution that is easy to sample, such as Dirac’s delta distribution, and ρ1 is the distribution
of wave data we need to generate. If P ∗(·|j) is the solution of the problem (4), we can start sampling
from the Dirac’s delta distribution of ρ0, use P ∗(·|j) as the transition distribution between time [0, 1],
and finally realize the sampling of the target voice wave data in ρ1 based on conditional input j. The
optimal solution P ∗(·|j) is called the conditional Schrödinger bridge between ρ0 and ρ1 over Wε.

Although SBP is not easy to solve, it has two equivalent forms that are more suitable for com-
putation Chen et al. (2021); Leonard (2013). Correspondingly, conditional SBP (4) also has two
equivalent forms, which will be introduced in the following two sub-sections.

2.3 CONDITIONAL SCHRÖDINGER SYSTEM

Following the work of Föllmer (1988), we can obtained the following simple equivalent form of
cSBP (4) through the disintegrations of P (·|j) and Wε with respect to the initial and final posi-
tions, and the further decomposition of relative entropy to show that if ρ∗01(·|j) is the solution of
minimizing the static cSBP

D(ρP01(·|j) ‖ ρWε
01 ) =

∫ ∫ [
log

ρP01(x, y|j)
ρWε
01 (x, y)

]
ρP01(x, y|j)dxdy, (5)

where ρP01 satisfies ∫
ρP01(x, y|j)dy = ρ0(x),

∫
ρP01(x, y|j)dx = ρ1(y).

Then

P ∗(·|j) =

∫
Wε,xy(·)ρ∗01(x, y|j)dxdy (6)

is the solution of cSBP (4).

Apply the standard 2-step constrained optimization optimality condition derivation on the static
cSBP (5), that is to say first forming Lagrangian function, second setting the first variation equal to
zero. It is found that the optimal ρ∗01(x, y) has the form

ρ∗01(x, y|j) = φ̂(0, x)pε(x, y; 0, 1)φ(1, y), (7)

where φ̂(0, x) and φ(1, y) satisfy the conditional Schrödinger system{
φ̂(1, y) =

∫
φ̂(0, x)pε(x, y; 0, 1)dx,

φ(0, x) =
∫
pε(x, y; 0, 1)φ(1, y)dy,

(8)

with the condition
φ̂(0, x)φ(0, x) = ρ0(x), φ(1, y)φ̂(1, y) = ρ1(y). (9)

Define

φ(t, x) =

∫
pε(x, y; t, 1)φ(1, y)dy, φ̂(t, y) =

∫
φ̂(0, x)pε(x, y; 0, t)dx, (10)

then at each time t, the marginal ρ(t, x) is φ̂(t, x)φ(t, x).
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Figure 1: The overall structure of Schrön.

2.4 CONDITIONAL STOCHASTIC CONTROL PROBLEM

From another perspective, the process X under P ∈ D can also be viewed as a diffusion governed
by a stochastic differential equation(SDE) (Föllmer, 1988)

dX = β(X, t|j)dt+
√
εdW. (11)

Then by Girsanov’s theorem (Karatzas & Shreve, 1987), (Jamison, 1975) showed that the original
cSBP (4) is equivalent to

arg min
β

E
[∫ 1

0

1

ε
‖ β(X, t|j) ‖

]
, (12)

where β(X, t|j) satisfies {
dX = β(X, t|j)dt+

√
εdW,

X(0) ∼ ρ0(x), X(1) ∼ ρ1(x),
(13)

and β(X, t|j) is called the drift coefficient.

Indeed if φ̂(t, x) and φ(t, x) are the solutions of Schrödinger system (8) then

β∗(x, t) = ε∇ log φ(t, x) (14)

is the solution of (13) (Leonard, 2013; Chen et al., 2021).

At this point, we obtain the equivalent relationship between the cSBP (4), the conditional
Schrödinger system (8) and the conditional stochastic control problem (12). If we pre-set the so-
lution φ and φ̂ of the Schrödinger system (8), then with the help of (14), we acquired the explicit
conditional SDE (12), which can realize the continuous transformation between any two distribu-
tions in a limited time duration. Below we apply this idea to end-to-end speech synthesis, and
propose a two-stage wave generation method with conditional variables.

3 SCHRÖN

The overall structure of Schrön is shown in Figure 1, which shows the position and function of each
module in the framework. Figure 2 shows the pipeline when Schrön is used for inference sampling.
The principle and implementation details of Schrön will be introduced in the following sections.
Please keep these two diagrams in mind, and then the following sections will be easy to follow.
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3.1 TWO-STAGE WAVE GENERATION

Diffusion-based methods need to calculate the score function, which is the gradient of the log prob-
ability distribution. Since voice is a kind of structured data, which is often in a low-dimensional
manifold of zero Lebesgue measure in the ambient space like images (Song et al., 2020). Thus the
probability distribution is zero in most of the ambient Euclidean space and there will be singular
values in score computation. Therefore we propose a two-stage voice generation algorithm to over-
come this problem. Figure 3 (in Appendix) shows an example. In the first stage, zero-position Dirac
distribution data are diffused into noisy wave, and the second stage diffuses noisy waves into clean
waves.

Figure 2: The inference pipeline of Schrön.

In the first stage, based on the conditional input of the text representations, we diffuse the Dirac’s
delta distribution with support at zero to a noisy wave distribution corresponding to the conditional
text representation. Let pwave(X|j) be the distribution of wave data corresponding to certain con-
ditional text representation input j. After adding a small noise z ∼ N (·|0, σ2I) to smooth the wave
data, the new smooth noisy wave distribution is

q(·|j) =

∫
N (·|X, σ2I)pwave(X|j)dX. (15)

Set r(X|j) = q(X|j)
N (X|0,εI) be the density ratio between the smooth noisy wave data q(X|j) and the

Gaussian noise N (·|0, εI). And let

φ̂(0, x) = δ0(x), (16)

φ̂(1, y)

∫
φ̂(0, x)pε(x, y; 0, 1)dx = N (y|0, εI), (17)

φ(1, y) = r(y), (18)

φ(0, 0) =

∫
pε(0, y; 0, 1)φ(1, y)dy = 1, (19)

in the Schrödinger system (8). Then φ and φ̂ solves the Schrödinger system with ρ0(x) = δ0(x) and
ρ1(y) = q(·|j). Thus

φ(t, x) =

∫
pε(x, y; t, 1)φ(1, y)dy = Ey∼N (·|0,(1−t)εI)r(x+ y) =

√
1− tEz∼N (·|0,εI)r(x+

√
1− tz).

Then if we put ε∇x log φ(t, x) in the problem (12), result in{
dX = ε∇x logEz∼N (0,εI)r(X +

√
1− tz|j)dt +

√
εdW

X(0) = 0,
(20)

and we have X(1) ∼ wave + σz, where wave ∼ pwave(X|j) and z ∼ N (0, I). That is to say
SDE (20) realizes the the transformation from Dirac’s delta distribution with support at 0 to noisy
wave corresponding to the conditional text representation j.
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In the second stage, the output “wave + σz” of the first stage will be diffused into the clean wave
that corresponding to the conditional text representation. Set

φ̂(0, x) = 1, (21)

φ̂(1, y)

∫
φ̂(0, x)pε(x, y; 0, 1)dx = 1, (22)

φ(1, y) = pwave(y), (23)

φ(0, 0) =

∫
pε(0, y; 0, 1)φ(1, y)dy = q(·|j), (24)

in the Schrödinger system (8). Then φ and φ̂ solves the Schrödinger system with ρ0(x) = q(·|j) and
ρ1(y) = pwave(y). Thus

φ(t, x) =

∫
pσ2(x, y; t, 1)φ(1, y)dy = q√1−tσ(·|j) (25)

Then put σ2∇x log φ(t, x) into the problem (12), we have{
dX = σ2∇x log q√1−tσ(X|j)dt+ σdW
X(0) ∼ wave + σz, X(1) ∼ wave

(26)

where wave ∼ pwave(X|j), which is what we want to generate.

3.2 MODEL LEARNING AND WAVE SAMPLING

Algorithm 1 Wave sampling in Schrön.
Input and initialization: The conditional mel-spectrograms m, the trained density ratio network
Dθ and score prediction network Sϑ, the number of diffusion steps T .
//First, generate the noisy wave from 0.
1: Let X = 0 be the initialization of the wave corresponding to m. Segment X into a fixed length,
and do padding at the end if it is less than the fixed length.
2: for each segment x in X, conditional segment m′ in m.
3: for t = 0, 1, · · · , T
4: Sample z1, z2, z3 ∼ N (·|0, I), where z1, z2, and z3 as random tensors share the same size
of x.
5: Let x1 = x +

√
ε(1− t

T )z1 and x2 = x +
√
ε(1− t

T )z2.
6: Compute the density ratios r1 = exp(Dθ(x1)) and r2 = exp(Dθ(x2)).
7: Update x:

b←r1
r2

(
−Sϑ(x1, t,m

′) +

√
1

ε
(1− t

T
)z1

)
+

x

ε
,

x← x +
ε

T
b +

√
ε

T
z3.

8: Concatenate all the generated noisy wave segment x to result in the full noisy wave X corre-
sponding to the conditional m. The full noisy wave X will be the input to the next stage.
//Second, generate clean wave from noisy wave
9: for t = 0, 1, · · · , T
10: Let e = Sϑ(X, t,m) and z ∼ N (·|0, I)
11: Update X: X← X− σ e

T +
√

σ
T z

Output: X.

It can be seen from the previous sections that once we have the values of the conditional wave
density ratio function r(X|j) = q(X|j)

N (X|0,εI) and the wave score function ∇x log q√1−tσ(X|j), we
can acquire the SDEs (20) and (26), thus achieve the two-stage wave generation. In this paper, we
use neural networks to learn the rules from the data, and then to predict the values of density ratio
function and the score function in the unknown environment.
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For the conditional density ratio function, let Dθ be the neural network to predict the value of
log r(X|j). Then we will have exp(Dθ(X)) ≈ r(X|j). The loss function and training algorithm
for Dθ is shown in Algorithm 2. Gaussian noise is added to each wave data in the batch, and then
use Dθ to predict the probability of noisy wave data and Gaussian noise respectively. Compute the
loss according to Eq. (28) and backward propagated to update the weights of Dθ, so that the score
of noisy wave becomes higher, and the probability of Gaussian noise becomes lower.

For the score function value, we refer to the method in Wu & Shi (2021). Let Sϑ be the neural
network to predict the wave score value∇ log q√1−tσ(X|j), the loss function and training algorithm
for Sϑ is also shown in Algorithm 2. First, Gaussian noise is added to each wave data in the batch,
and then the noisy wave, condition text representation input and step information are fed into the
score prediction network Sϑ. The distance between the output wave score and the noise will be
calculated as loss in Eq. (29). Finally the backward propagation algorithm is used to update the
weights of Sϑ to make the prediction score better.

After we get the optimal wave density ratio estimator Dθ∗ and wave score predictor Sθ∗ through
Algorithm 2, we can get the full numerical form of the two SDEs (20) and (26). Based on these two
SDEs, then we can use the Euler-Maruyama procedure twice to generate high-quality clean speech
from nothing (0). For the detail of the sampling algorithm, please refer Algorithm 1.

In the following subsections, we will take Dθ and Sθ from theory to implementations.

3.3 WAVE DENSITY RATIO r(X|j) PREDICTOR

The ratio is used as guidance to add Gaussian noise step-by-step to the diffusion process to accurately
change the distribution. The insight we get in designing the structure of the network Dθ is that we
should not add conditional variables in the input. The conditional variables will make the network
Dθ converge to a trivial saddle point. The reason should be that text information leaks into the
diffusion process, causing it to quickly converge to a trivial solution. In fact, the noisy wave data
is enough to calculate the density ratio. The network structure is shown in Figure 8 (in Appendix),
where PhaseShuffle pDonahue et al. (2018) is used to make the estimation independent of the phase
of the input wave or noise, that is to say, it is more robust to the regular blemish noise that sometimes
appears in the frequency domain of the input waveform.

Dθ adopts fixed-length wave as input, which means that it can not accept wave input of different
lengths. In order to solve this problem, when we have a long wave, we will cut it into several
segments with a fixed length. Then we process each segment separately, and splice them together
for subsequent processing. For the details please refer to Algorithm 2 and 1.

3.4 WAVE SCORE ∇x log q√1−tσ(X|j) ESTIMATOR

The structure of the wave score prediction network Sϑ is shown in Figure 9 (refer in Appendix).
The main input of Sϑ is the wave or noise, and it also requires condition input, including time
information and the text representations. The expected output is the∇x log q√1−tσ(X|j).

3.5 FILL THE GAP

Many studies have shown that it is difficult to generate waves directly from text, such as FastSpeech
2s (Ren et al., 2020), EATS (Jeff et al., 2021), and VITS (Kim et al., 2021). Generally, the mel
spectrogram or other middle feature representation of the speech wave is used as a regularizer. In
the experiment, we also found such similar phenomenon.

We propose two approaches to fill this information gap between text and wave. The first way is a
joint text-mel representation, which is an intermediate express between text and mel-spectrogram, as
shown in Figure 1. Both text and mel-spectrogram can be transformed into this joint representation,
which thus has both text and spectrogram information. We use this joint text-mel representation as
the conditional input data j in the wave conditional Schrödinger bridge.

The second approach is a twin-bridges structure, that is, there are two sets of almost identical con-
ditional Schrödinger bridges in Schrön (to be precise, totally four bridges). One set is used for
end-to-end wave generation, and the other set is used for mel-spectrogram generation. The set of
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mel Schrödinger bridges are used as regularizations to prevent the prosodic text embeddings p from
degeneration.

The density ratio estimation and score estimation networks in the mel conditional Schrödinger bridge
are similar to those in the wave conditional Schrödinger bridge, with only two differences. The first
difference is that the dimensions of the input are different. The input to the wave Schrödinger bridge
is a one-dimensional waveform, so the corresponding convolution operator is also 1D. The input to
the mel Schrödinger bridge is a two-dimensional spectrum, so the corresponding convolution oper-
ator is 2D. The second difference is that the text conditional input used in the mel score estimation
network is different from that used in the wave score predictor. It uses the direct output p of the text
encoder, while the wave score network uses the text-mel joint representation feature j. The network
structures of mel density ratio estimator and mel score predictor are shown in Appendix A.3

The training algorithm of mel density ratio estimator is exactly the same as the training of wave
density ratio estimator, so does score predictors. Thus we won’t go into details here.

3.6 TRAINING OF SCHRÖN

Combining the modules introduced in the previous subsections, a two-stage approach is proposed to
train Schrön. In the first stage, we train the prosodic text encoder M and mel density ratio estimator
dθ and mel score predictor sθ; in the second stage, mel decoder M, text decoder T, wave density
ratio estimator Dθ and wave score predictor Sθ are trained. For the second stage, in addition to the
loss mentioned in Algorithm 2, we also need an additional consistency loss, which is

lossc =‖ j − T(p) ‖22=‖M(mel)− T(p) ‖22, (27)

to make the joint text-mel representation partially filling the information gap between text expression
and raw mel-spectrogram.

4 EXPERIMENTS

Table 1: MOS with 95% confidence in a comparative study between different state-of-the-art system
and Schrön.

Models Model size MOS
Ground truth - 4.59± 0.028

Tacotron 2+HiFi-GAN 28.1M+13.9M 3.90± 0.038
Fastspeech 2+HiFi-GAN 35.1M+13.9M 4.26±0.025

ItôTTS+ItôWave 34.1M+2.6M 4.31±0.049
VITS 36.3M 4.4±0.029

Schrön Base 56M 4.47±0.026
Schrön Large 80.2M 4.52±0.029

4.1 DATASET AND SETUP

The data set we use is LJSpeech (Ito & Johnson, 2017), a single female speech database, with a total
of 24 hours, 13100 sentences, randomly divided into 13000/50/50 for training/verification/testing.
The sampling rate is 22050. For the experiments, in all the places that involve mel-spectrogram, the
window length is 1024, the hop length is 256, the number of mel channels is 80.

In order to verify the performance of Schrön, we compared with two types of state-of-the-art sys-
tems. One is the end-to-end systems, and the other is connected systems. For end-to-end system,
we chose the VITS (Kim et al., 2021) to compare, since it has open-source implementations1. For
the connected system, we chose three for comparison, namely Tacotron 2 (Wang et al., 2017)2 with
HiFi-GAN (Su et al., 2020)3, Fastspeech 2 (Ren et al., 2020)4 with HiFi-GAN (Su et al., 2020),
and ItôTTS with ItôWave (Wu & Shi, 2021) (a re-implemented version is used). The parameters
and network structure of these comparison systems are the same as the corresponding settings in the
respective papers.
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For our Schrön, two network size variations were compared: Base and Large, contained 56M and
80.2M parameters respectively. The score prediction networks Sϑ in the Base and Large are differ-
ent, and the density ratio networks Dθ are the same. The Sϑ of Schrön Base and Large uses 30 and
50 residual layers respectively. Adam Kingma & Ba (2014) is used in the training for Schrön, and
all experiments were performed on GeForce RTX 3090 GPUs with 24G memory.

4.2 RESULTS AND DISCUSSION

In order to verify the naturalness and fidelity of the synthesized voice, we randomly select 40 from
50 test data for each subject, and then let the subject give the synthesized sound a MOS score of 0-5.

The results are shown in Table 1. MOS with 95% confidence is used in a comparative study of
different state-of-the-art systems on the test set of the LJSpeech dataset. It can be seen that the MOS
of Schrön is better than the previous state-of-the-art method, reaching 4.52, which is close to the
ground truth.

Figures 4 and 5 show how wave and mel-spectrogram diffuse overtime in the two stages, for exam-
ple, how to diffuse from 0 step by step to the noisy wave (mel-spectrogram) in the first stage, and
how to diffuse from noisy wave (mel-spectrogram) step by step to clean wave (mel-spectrogram) in
the second stage.

4.2.1 ABLATION STUDY

Table 2: MOS with 95% confidence in the
ablation study.

Model MOS
Ground truth 4.59± 0.028

Schrön 4.52±0.029
Schrön w/o text decoder 2.62±0.032
Schrön w/o mel denoiser 2.01±0.055

We conducted ablation studies to prove the effective-
ness of Schrön, including the text decoder for ex-
traction of text-mel joint hidden representation and
the mel-spectrogram Schrödinger bridges. All mod-
els in the ablation study were trained in the same
settings as Schrön. The results are shown in Ta-
ble 2. Removal of the text decoder results in 1.9
MOS lower than the baseline, which indicates that
the flexibility of the conditional text-mel joint input
significantly affects the synthesis quality. Replac-
ing the dual Schrödinger bridges with a single wave
Schrödinger bridge in a decrease in quality (-2.51 MOS), indicating that filling the gap with mel
regularization is effective for Schrön to improve the synthesis quality.

5 CONCLUSION

In this paper, we propose a speech voice generation system called Schrön, which is the first end-
to-end approach based on solving conditional Schrödinger bridge problems (SBP). The strength of
Schrön includes 1) the generalization of SBP so that it can accept conditional control variables and
also process data of indefinite length; 2) achieve exact generation of target distribution in a limited
time. At the same time, since there is no generation of intermediate mel features, thus no cumulative
effect of errors. Therefore, Schrön can generate high-quality voice. Our experimental results show
that Schrön is superior to both the two-stage TTS system and previous state-of-the-art end-to-end
system, achieving a MOS of 4.52 that is close to human’s.
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A APPENDIX

A.1 SCHEMATIC ILLUSTRATION OF TWO-STAGE WAVE AND MEL DIFFUSION IN SCHRÖN.

As shown in Figure 3, the first stage diffuses the zero-position Dirac distributed data into noise
waves, and the second stage diffuses the noise waves into clean waves. Figure 4 and 5 show several
steps in the two-stage diffusion of wave and mel, respectively.

Figure 3: Example of two-stage wave generation in Schrön.

(a) (b)

Figure 4: Two stages of wave generation in Schrön. (a)The generation steps of the noisy wave from
Dirac’s delta distribution in the first stage. (b)The generation steps of the clean wave from the noisy
wave in the second stage.

(a) (b)

Figure 5: Two stages of mel-spectrogram generation in Schrön. (a) The generation steps of noisy
mel-spectrogram from Dirac distribution in the first stage. (b) The generation steps of clean mel-
spectrogram from noisy mel-spectrogram in the second stage.
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A.2 TRAINING ALGORITHM OF SCHRÖN.

Algorithm 2 shows the details of Schrön’s full training algorithm.

Algorithm 2 Training of the wave density ratio network Dθ and wave score prediction network Sϑ

in Schrön.
Input and initialization: The voice wave X and the corresponding text representation j, the number
of diffusion steps T . Here ε and σ are the same as in the SDEs (20) and (26).
//First do the training of Dθ.
1: for k = 0, 1, · · ·
2: Randomly sample batch of waves X and text representations j.
3: Sample e1, e2 ∼ N (·|0, I), where e1 and e2 as random tensors share the same size of X.
4: Let X1 = X +

√
σe1 and z =

√
εe2

5: Do the forward inference r = Dθ(X1) and f = Dθ(z).
6: Compute th following loss

lossd = log(1 + exp(−r)) + log(1 + exp(f)), (28)

and do the back-propagation for the updating of Dθ.
7: k ← k + 1.
8: Until stopping conditions are satisfied.
//Then do the training of Sϑ.
9: for k = 0, 1, · · ·
10: Randomly sample batch of waves X and text representations j, and uniformly sample t from
[0, T ].
11: Sample e ∼ N (·|0, I), where e as a random tensor shares the same size of X.
12: X1 = X + t

T σe.
13: ẽ = Sθ(X1, t, p)
14: Compute the following loss

lossr =
1

2
‖ e− t

T
ẽ ‖2, (29)

and do the back-propagation for the parameter updating of Sϑ.
15: k ← k + 1.
16: Until stopping conditions are satisfied.
Output: Dθ and Sϑ,

A.3 THE NETWORK STRUCTURE OF MEL DENSITY RATIO PREDICTOR AND MEL SCORE
ESTIMATOR

The network structures of mel density ratio estimator and mel score predictor are shown in Figure 6
and 7 respectively.

Figure 6: The mel density ratio prediction network in Schrön.

A.4 THE NETWORK STRUCTURE OF WAVE DENSITY RATIO PREDICTOR AND WAVE SCORE
ESTIMATOR

The network structures of wave density ratio estimator and wave score predictor are shown in Fig-
ure 8 and 9 respectively.
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Figure 7: The mel score prediction network in Schrön.

Figure 8: The wave density ratio prediction network in Schrön.

A.5 THE MODULES IN SCORE PREDICTION NETWORK.

In Sϑ, a Gaussian Fourier projection (GFP) of [sin(t · α), cos(t · α)] with following linear and SIg-
moid Linear Unit module (SILU) Ramachandran et al. (2017) are used to encode the time step t,
where α is scalar Gaussian random number and SILU := x · σ(x) = x · 1

1+exp{(−x)} . The time step
embedding module is shown in Figure 10(a). At the same time, the text representations need to be
up-sampled to the same size as the wave (noise) input. The up-sampling module is shown in Fig-
ure 10(c). The up-sampled text representations will be sent to the first residual block together with
the time step embedding and the wave (noise). The residual block is a critical module in the score
prediction network. The detail of the residual block is shown in Figure 10(b), where the CHUNK
layer is to divide the input tensor into two parts along a channel. We use several residual blocks, and
each residual block has three inputs, which are the current state, and the time embedding and up-
sampled text representations. Each residual block will output a temporary residual signal, and then
all the temporary residual signals will be summed and averaged. The final score will be obtained
through a fully connected layer.
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Figure 9: The wave score prediction network in Schrön.

Figure 10: Modules in score prediction network. (a) Time step embedding; (b) the residual block;
(c) up-sampling of text representations.
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