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Abstract
We study sudden transitions in a key component of the cli-
mate system, the Atlantic Meridional Overturning Circulation
(AMOC). Exploiting simulation results from a fully coupled
climate model, we train a convolutional neural network to
predict the AMOC as a result of ocean subsurface density and
freshwater forcing. We find that the model can forecast tran-
sition dynamics it has never seen. Furthermore, we show how
saliency maps can be used to interpret black-box neural net-
work models in climate dynamics and enhance their perfor-
mance, and we demonstrate that high saliency on excitable re-
gions enables out-of-sample prediction of large-scale transi-
tions. This approach opens new perspectives for interpretable,
long-term AMOC forecasting.

I Introduction
The Atlantic Meridional Overturning Circulation (AMOC)
is the zonally integrated mean flow in the Atlantic Ocean
that plays a key role in Earth’s climate in the past and
present, due to its control of heat transport, freshwater
distribution, deepwater formation, and ocean stratification
(Kuhlbrodt et al. 2007). Paleoclimate records provide evi-
dence that during the last 100,000 years, parts of the North
Atlantic ocean circulation have frequently collapsed and re-
covered, and these sudden phase transitions are recorded as
Dansgaard–Oeschger (D–O) events characterized by abrupt
warming into interstadial periods followed by gradual cool-
ing into stadial periods (Dansgaard et al. 1993). Recently
there has been progress in reproducing D-O events with nu-
merical simulations of Earth system models, and these sim-
ulations suggest that such dramatic climate change events
were linked to sudden transitions in AMOC (Jochum et al.
2022).

AMOC variability is a nonlinear problem, and although
there are various hypotheses about the mechanisms that
drive its changes, a unifying analytical theory has so far been
lacking (Wunsch and Heimbach 2013). The collapse of the
AMOC is a rapid and large-scale weakening of the overturn-
ing circulation amplified by internal ocean–climate feed-
backs, and some recent studies suggest that this may cur-
rently be happening (Dijkstra and van Westen 2025). Recon-
structing past variations of the AMOC is critical for assess-
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ing its variability beyond the few decades covered by mod-
ern observations, yet data availability for Holocene AMOC
changes remains poorly constrained (Gerber et al. 2025),
making it difficult to forecast potential AMOC collapse in
the 21st century.

The recent blossoming of data-driven machine learning
methods that distill dynamics from data and make non-
linear systems amenable to linear analysis (Brunton and
Kutz 2019), can be considered one of the promising ap-
proaches for predicting the possible dynamics of AMOC.
Very recently, neural networks have been used to identify
key drivers of AMOC variability from Community Earth
System Model (CESM) simulations with glacial boundary
conditions that reproduce the observed structure of D–O
events, showing that surface freshwater flux (SFWF) and
potential density at 200 meters depth (PD 200m) are the
main controls (Wu et al. 2025). In the present work, we use
only CESM data without transitions to train a convolutional
neural network (CNN) model to predict future AMOC col-
lapses in the test set. Moreover, we apply a series saliency
approach to jointly improve forecasting accuracy and inter-
pretability by identifying the most influential temporal and
feature components contributing to the CNN predictions.

This paper is organized as follows: In Sec. II we explain
the data preprocessing method, construct the model for fore-
casting AMOC strength, and use a saliency map to interpret
the prediction results. In Sec. III we evaluate the model’s
performance and combine it with the underlying dynamics
to explain the saliency map. In Sec. IV we discuss potential
applications and future research directions, and we summa-
rize the main results.

II Method
7,000 years of CESM simulations (Vettoretti 2022) are used
to construct the forecasting model for AMOC collapse. The
time series of SFWF and PD 200m are the input features,
and the AMOC strength is the target (Appendix A.1). The
first 3000 years without sudden transition are used for train-
ing, the last 20 percent of data in the training set are used
as validation set. The remaining time series that include one
D–O event are used as the testing set to evaluate whether
the model can predict the AMOC collapse without it being
included in the training set.

We employ a sliding window approach that uses an input



Figure 1: Schematic of the basic workflow. The CESM model reproduces the observed D–O event structure from ice core
records and provides multivariate time series that capture the co-evolution of sudden transitions. We use only the interstadial
data of two key variables before the last D–O event to predict the sudden AMOC collapse in the test set using a CNN with
a sliding window approach. The gradient-based saliency map and the learned mask saliency map are used to enhance model
performance and aggregate saliency globally to identify informative temporal–feature regions and investigate potential AMOC
dynamics.

window of length T , starting at time t, with a forecast hori-
zon H , to predict the target value y(i) at time t+ T +H . In
this study, we use 50 years of past SFWF and PD 200m data
to predict the AMOC strength 20 years later, the same as the
choices in Wu et al. (2025). The 1D CNN is used with three
convolutional blocks and residual connections, followed by
batch normalization, a flatten layer, and two dense layers for
AMOC collapse forecasting. Limited by computational re-
sources, we do not fine-tune hyperparameters or model ar-
chitecture, as the goal is to successfully forecast the collapse
rather than optimize the model. We design a custom loss
function that combines mean squared error with sign-flip, in-
tegral consistency, and smoothness penalties to enhance the
model’s ability to capture both short-term fluctuations and
long-term trends. The details are presented in Appendix A.2.

Due to their black-box nature, CNNs are still regarded
as difficult to interpret in terms of their underlying mech-
anisms, making it hard to trust that they provide the opti-
mal solution (Azam et al. 2023; Wang et al. 2020). Series
saliency is a fascinating model-agnostic method that mixes
original and perturbed time series with a learnable mask,
achieving two birds with one stone by improving forecast-
ing accuracy and providing temporal–feature interpretations
(Pan, Hu, and Chen 2021). Gradient-based saliency and se-
ries saliency with a learnable mask are both methods that
identify informative temporal-feature regions for forecast-
ing (Pan, Hu, and Chen 2021; Pantiskas, Verstoep, and Bal

2020). Gradient-based saliency relies on gradient informa-
tion after training, whereas series saliency adopts a learnable
mixup strategy between original and perturbed inputs, inte-
grating interpretability and adaptive augmentation (Mitrea,
Lee, and Wu 2009; Guidotti et al. 2018; Rudin 2019; Pan,
Hu, and Chen 2021; Serrano and Smith 2019; Dabkowski
and Gal 2017). We investigate both methods for interpreting
our CNN model. For each sliding window

X(i) ∈ RT×F , i = 1, . . . , k, (1)

where F is the number of features and k is the total number
of windows. The model output for each window is y(i) at
time t + T + H . The gradient-based saliency map is com-
puted as

S(i) =

∣∣∣∣ ∂y(i)∂X(i)

∣∣∣∣ , S(i) ∈ RT×F . (2)

Averaging over all k sliding windows gives

S̄ =
1

k

k∑
i=1

S(i). (3)

Each element S̄t,f measures the sensitivity of the predic-
tion to the input at time step t and feature f . We introduce a
learnable mask

M ∈ RT×F , 0 ≤Mt,f ≤ 1, (4)



which is optimized to minimize forecast loss when applied
to perturbed inputs. The masked input is constructed as

X
(i)
masked = M ⊙X

(i)
perturbed, (5)

where ⊙ denotes element-wise multiplication (i.e., feature-
time specific weighting) and X

(i)
perturbed is the noise-injected

input sequence. S̄ captures gradient-based sensitivity, while
M encodes robustness-based importance under perturba-
tion. Both methods capture key temporal–feature contribu-
tions to the forecast y(i). These global saliency patterns
S̄∗t, f and M ∗t, f can be used to identify critical time steps
t ∈ [0, T ] and dominant features f ∈ SFWF,PD200m that
most strongly influence the CNN’s forecast y(i) at t+T+H ,
providing insight into the timing and mechanisms relevant to
possible AMOC dynamics.

To make forecasts of AMOC strength more accurate and
to evaluate the learned saliency map for interpretation, we
separately apply the learned mask M and the gradient-based
saliency map S to weight the input time-feature sequence
before prediction.

ŷ
(i)
learned = fθ

(
M ⊙X

(i)
perturbed ⊙X(i)

)
, (6)

ŷ
(i)
grad = fθ

(
S ⊙X

(i)
perturbed ⊙X(i)

)
. (7)

fθ is the trained CNN forecasting model, where θ repre-
sents the set of learned parameters of the model after train-
ing. The mask acts as an adaptive data augmentation and
interpretation module, guiding the CNN to focus on infor-
mative temporal-feature regions when generating forecasts.
We will discuss its role in machine-guided discovery of pos-
sible AMOC dynamics and the evaluation of the forecasting
performance later.

III Results
Interestingly, the CNN prediction successfully captures the
sudden transition in the testing set using only interstadial
time series, with no D–O events present in the training set
(Figure. 2(a)). This result is unexpected, given that CNNs
are data-driven and not physically informed, usually inter-
polate within the learned data distribution, and our CNN re-
lies on a purely supervised learning setup and is better at
capturing local temporal correlations than rare or singular
events (Raissi, Perdikaris, and Karniadakis 2019; Yang et al.
2024; Brunton and Kutz 2019; Hendrycks et al. 2020; Wang
et al. 2020; Zhou et al. 2016; Cong, Yuan, and Liu 2013). We
then compute the learned saliency mask M and the gradient-
based saliency map S for the trained CNN model fθ, and
apply them to weight the input sequences X(i) and X

(i)
perturbed

to generate ŷ(i)learned and ŷ
(i)
grad for interpretable and more accu-

rate AMOC forecasts (Figure. 2(b), Figure. 2(c), Equation
(6), Equation (7)).

What is more interesting is that all three models success-
fully forecast the AMOC collapse, but with notable ampli-
tude differences in their predicted transitions (Figure.2(c)).
The results show that both masking strategies substantially
reduce the prediction error compared to the no-mask base-
line, with the gradient-based saliency map achieving the

lowest Mean Squared Error (MSE) and custom loss overall
(Table 1). However, because the onset time of D–O events
is inherently difficult to define, these error metrics alone are
insufficient for a complete assessment (Slattery et al. 2024).
Therefore, evaluating the accuracy of the predicted onset
timing is also crucial for a more comprehensive evaluation
of the model.

Method MSE Custom Loss
No Mask Prediction 5.88× 10−2 2.33× 105

Learned Saliency
Mask Prediction 2.19× 10−3 8.92× 103

Gradient-based
Saliency Map Prediction 1.74× 10−3 7.22× 103

Table 1: MSE and Custom Loss error for different model
predictions.

The ramp fitting method is a widely used tool for quanti-
fying climate transitions in time series (Mudelsee 2000; Er-
hardt et al. 2019; Slattery et al. 2024; Capron et al. 2021).
For a (climate) system at equilibrium disturbed by external
forcing transitions to a new equilibrium state, the ramp fit-
ting determines when a transition starts and ends, as well
as the mean levels before and after the change (Mudelsee
2000). Consider a system with candidate ramp start and end
points (t0, t1) and corresponding values (a0, a1), and we
compute a piecewise-linear ramp r(t; t0, t1, a0, a1) via non-
linear least squares and then select the pair that maximizes
the absolute height change |∆h| = |a1 − a0|. The results
show that the learned saliency mask prediction most closely
matches the true transition timing for both downward and
upward transitions, while the other models exhibit lagged
transition timing regardless of the magnitude error in the
height change (Table 2, Figure. 2(c)).

Method t0 t1 ∆height
On→ Off Transition (Down)

True 29764 29963 −11.60
No Mask Prediction 29852 30051 −52.45
Learned Saliency
Mask Prediction 29754 29949 −2.91
Gradient-based
Saliency Map Prediction 29851 30050 −12.54

Off→ On Transition (Up)
True 30504 30648 +16.54
No Mask Prediction 30558 30653 +46.93
Learned Saliency
Mask Prediction 30505 30698 +3.51
Gradient-based
Saliency Map Prediction 30574 30586 +12.73

Table 2: The table compares the estimated transition times
(t0 and t1) and height changes (∆height) obtained from dif-
ferent predictive models for both downward (On→Off) and
upward (Off→ On) transitions.



Figure 2: (a) AMOC forecast using CNN with train–test split and prediction performance. (b) Learned saliency mask and
gradient-based saliency map indicating informative temporal–feature regions. (c) AMOC forecast comparison with and without
saliency masks. The two lower subplots show ramp-fit detection of On→ Off and Off→ On transition timing for D–O events.
Dashed lines indicate detected transition start t0 and end t1.



As the CNN model with a learned saliency map performs
well in predicting the collapse, we further aim to interpret
the model by analyzing saliency values in the dynamical
phase space to link saliency structure with system dynam-
ics and model performance.

Figure 3: (a) Phase-plane structure showing excitable pre-
cursors near the separatrix and the saddle proxy. (b)
Saliency–oscillation structure for SFWF and PD, showing
the distribution of excitable states. The overlap indicates
that excitable states are concentrated within regions of high
saliency–oscillation density, suggesting that they align with
the dominant dynamical regime of the system as captured by
the model, where critical transitions are likely to emerge.

We compute time-resolved saliency using input gradients
from the trained CNN model, and oscillation intensity using
the sliding standard deviation and Hilbert envelope meth-
ods (Ouergli 2002; Feldman 2011; Oppenheim and Schafer
1989). The excitable region is computed by estimating the
distance to the saddle proxy in the SFWF–PD phase plane,
identified via KMeans clustering (Ikotun et al. 2023; Jin and
Han 2010). The distance to the separatrix is computed as the
Euclidean distance between each system state in phase space
and the saddle proxy, estimated from the mean of the cluster

Figure 4: Saliency versus distance to the separatrix, showing
increasing sensitivity near the saddle region (median ± 16–
84% quantiles).



Figure 5: AMOC forecast using a CNN model applied to all remaining CESM runs as test data.

centers. This provides a quantitative measure of how close
each state is to the separatrix, indicating excitable potential
and guiding where the model assigns high saliency.

Both gradient and learned mask saliency for SFWF de-
crease as the distance to the separatrix increases, indicating
that the model assigns higher saliency to states closer to the
separatrix (i.e., more excitable states) (Figure. 4). It should
be mentioned that for PD 200m, the overall saliency magni-
tude in the learned mask is lower, suggesting weaker model
sensitivity to PD compared to SFWF (Figure. 2(b), Fig-
ure. 4). The process of analyzing AMOC dynamics through
the model saliency described above in this study is given by
Equation (A.9) to Equation (A.18) in Appendix A.4.

To conclude, the overlap between excitable states and
the joint saliency–oscillation density indicates that excitable
states predominantly cluster in regions of mid saliency and
low oscillation intensity, suggesting that the system ap-
proaches critical transitions through subtle, early-stage pre-
cursors rather than strong oscillatory signals (Figure. 3).
In addition, the distance-to-separatrix analysis reveals that
the model assigns higher saliency to dynamically sensitive
states near the separatrix (Figure. 4). These results suggest
that the model not only forecasts the collapse in a dynam-
ically consistent manner but also provides interpretable in-
sights into how excitable states emerge as early-warning in-
dicators of critical transitions.

IV Summary and Outlook
To summarize, our CNN model successfully predicts the
AMOC collapse even though it is trained solely on intersta-
dial time series without any D–O events. By incorporating
both gradient-based and learned mask saliency maps, we not
only enhance the forecasting performance but also provide a

physically interpretable view of the black-box model. In par-
ticular, the learned saliency mask enables the model to pre-
dict the collapse onset with high temporal accuracy. Further-
more, the dynamical analysis reveals that states with high
saliency are concentrated near the separatrix, corresponding
to excitable regions in the phase space where the system is
most sensitive to perturbations. This suggests that the model
leverages these excitable precursors as early-warning indi-
cators of critical transitions.

Overall, this work demonstrates a data-driven and inter-
pretable framework for predicting AMOC collapses, bridg-
ing machine learning saliency methods with dynamical sys-
tems analysis. So far, the trained CNN models can predict
all D-O events in our rest dataset (Figure. 5, Appendix A.3).
A systematic investigation of the statistical properties of the
forecasts, such as the maximum reliable forecast horizon,
the amount of training data required, and the uncertainty in
onset-time prediction, will be left for future work.

Moreover, as identified in Sec. III, the system’s sensi-
tivity near the separatrix, along with the clustering of ex-
citable states at mid saliency and low oscillation intensity
indicates inherent excitability and susceptibility to pertur-
bations. High saliency on excitable regions enables out-of-
sample extrapolation of large events. Incorporating noise
analysis into this framework could further enhance forecast
robustness, and thus improving the feasibility of long-term
prediction and practical applications.
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A Appendix
In this appendix, we present additional details and supple-
mentary discussions of the dataset and model.

A.1 Dataset
This work uses the annual time series of three key variables
(SFWF, PD 200m, and AMOC) from four 8000-year long
Community Earth System Model (CESM) simulations with
glacial boundary conditions that reproduce the observed
structure of D–O events (Vettoretti et al. 2022; Vettoretti
2022; Wu et al. 2025).

Figure A.1: The annual time series of three key variables
(SFWF, PD 200m, and AMOC) from four CESM simula-
tions reproduce the observed structure of D–O events, char-
acterized by abrupt upward transitions and relatively gradual
downward transitions.

In this work, only the time series from CESM Run 4 are
used. The time index from the start of CESM Run 4 to
27,999 is used as the training set, and from 28,000 to the
end as the test set.

A.2 Loss Function
In this section, we present our custom loss function that is
designed to enforce both local and global coherence in pre-
dictions by integrating multiple constraints on the output dy-
namics. It begins by computing the first derivative of the
predicted and true sequences, identifying abrupt transitions
through a 2-sigma threshold. A penalty is then introduced
for incorrect sign flips in these transitions, ensuring that pre-
dicted changes align with observed variations. To maintain
integral consistency, the cumulative sum of predictions is
compared to the true values, penalizing discrepancies that
accumulate over time. Additionally, a smoothness constraint
is imposed by minimizing the difference in second deriva-
tives, discouraging abrupt oscillations and promoting grad-
ual transitions. The final loss function Equation (A.8) bal-
ances these terms, combining squared error with structured

penalties to refine the model’s ability to capture both short-
term fluctuations and long-term trends.

L =E
[
∥ytrue − ypred∥2

]︸ ︷︷ ︸
MSE

+ 10E [|sign(∆ytrue)− sign(∆ypred)| · 1abrupt]︸ ︷︷ ︸
Sign Flip Penalty (Abrupt Transitions)

+ 5E

[∥∥∥∥∫ t

0

ytrue(s)ds−
∫ t

0

ypred(s)ds

∥∥∥∥2
]

︸ ︷︷ ︸
Integral Consistency Penalty

+ 2E
[∣∣∆2ytrue −∆2ypred

∣∣]︸ ︷︷ ︸
Smoothness Penalty (Second Derivative)

(A.8)

The primary objective is captured by the MSE, de-
fined as E

[
∥ytrue − ypred∥2

]
, which ensures that the

predicted values ypred closely follow the true values
ytrue. To regulate abrupt transitions, we introduce a
sign-flip penalty, E [|sign(∆ytrue)− sign(∆ypred)| · 1abrupt],
where ∆yt = yt − yt−1 represents the first deriva-
tive and 1abrupt is an indicator function that detects
rapid changes. To preserve integral consistency, the term

E
[∥∥∥∫ t

0
ytrue(s)ds−

∫ t

0
ypred(s)ds

∥∥∥2] penalizes discrepan-

cies in the cumulative sum of predictions over time.
Smoothness is enforced via the second derivative penalty,
E
[∣∣∆2ytrue −∆2ypred

∣∣], where ∆2yt = ∆yt −∆yt−1, mit-
igating sudden oscillations and promoting gradual transi-
tions.

By using the custom loss function Equation (A.8) in the
training process, our CNN model can successfully predict
AMOC collapse with the correct sign when using only in-
terstadial SFWF or PD 200m as input. In contrast, using the
Mean Squared Error (MSE) loss leads to predictions that
also capture sudden transitions but with inverted signs (Fig-
ure A.2).



Figure A.2: Illustration of the proposed custom loss func-
tion structure and its effect on prediction sign correctness.
(a) Prediction using the custom loss function accurately cap-
tures the collapse sign. (b) Prediction using the MSE loss
captures transitions but with inverted signs.

A.3 Ramp Fitting Algorithms

In this study, we use the ramp fitting algorithms in the fol-
lowing Algorithm 1. We also applied this ramp-fitting algo-
rithm to three transitions from different CESM runs, shown
in Figure 5, as examples. Future research may extend this
approach to quantify model sensitivity and uncertainty, as
well as to determine the minimal data requirements.

Algorithm 1: Ramp Fitting Procedure for Transition Detec-
tion
Input: Time series t, signal y, ramp length range
[Lmin, Lmax], direction (up, down, or both)
Output: Best-fit ramp parameters
(t0, t1, a0, a1)

1: Initialize best score S∗ ← −∞
2: for i = 1 to |t| − Lmin do
3: for j = i+ Lmin to min(i+ Lmax, |t|) do
4: Set candidate interval (t0, t1)← (ti, tj)
5: Fit piecewise linear ramp R(t; t0, t1, a0, a1) to

y[i : j]
6: Compute ramp height H = |a1 − a0| and slope

s = (a1 − a0)/(t1 − t0)
7: if direction constraints satisfied and H > S∗ then
8: S∗ ← H
9: (t∗0, t

∗
1, a

∗
0, a

∗
1)← (t0, t1, a0, a1)

10: end if
11: end for
12: end for
13: return (t∗0, t

∗
1, a

∗
0, a

∗
1)

Figure A.3: Examples of ramp-fitting applied to three tran-
sitions from different CESM runs.



A.4 Hilbert Signal Envelope Method
For each input feature f ∈ {SFWF,PD 200m} and sliding
window X(i) ∈ RT×F , the oscillation intensity is quantified
using two complementary metrics. First, the local mean is
computed as

µ
(i)
t,f =

1

T

t+T
2∑

τ=t−T
2

X
(i)
τ,f , (A.9)

and the sliding standard deviation is then given by

σ
(i)
t,f =

√√√√√ 1

T

t+T
2∑

τ=t−T
2

(
X

(i)
τ,f − µ

(i)
t,f

)2
. (A.10)

Next, the Hilbert envelope amplitude is computed from the
analytic signal

z
(i)
t,f = X

(i)
t,f + i X̂

(i)
t,f , (A.11)

A
(i)
t,f = |z(i)t,f | =

√(
X

(i)
t,f

)2
+
(
X̂

(i)
t,f

)2
, (A.12)

where X̂
(i)
t,f is the Hilbert transform of X(i)

t,f

Finally, the oscillation intensity is expressed as

O
(i)
t,f ∈

{
σ
(i)
t,f , A

(i)
t,f

}
, (A.13)

providing a time-resolved measure of oscillatory strength
aligned with the saliency maps S̄t,f and Mt,f .

In this work, we further quantify the system’s dynami-
cal sensitivity by estimating the distance of each state to a
saddle proxy in the SFWF–PD phase plane using KMeans
clustering. To identify the saddle proxy in the SFWF–PD

phase plane, the state vectors xn =

[
SFWFn

PD200m,n

]
∈ R2 are

clustered into two groups using KMeans. The cluster centers
are

cj =
1

Nj

∑
xn∈Cj

xn, j = 1, 2, (A.14)

where Cj is the j-th cluster and Nj is the number of points
in it. The saddle proxy is then estimated as the mean of the
two cluster centers,

s =
1

2

(
c1 + c2

)
. (A.15)

The Euclidean distance of each state to the saddle proxy is
given by

dn =
∥∥xn − s

∥∥
2
, (A.16)

which is then normalized to

d̃n =
dn − dmin

dmax − dmin
. (A.17)

In this study, we define excitable regions as the states that
are geometrically close to a saddle proxy, within the 20%
closest shell around it,

Excitable region =

{
xn

∣∣∣∣
∥∥xn − s

∥∥
2
− dmin

dmax − dmin
< 0.2

}
.

(A.18)
This provides a quantitative measure of how close each sys-
tem state is to the separatrix, thereby allowing us to examine
how model saliency varies with dynamical sensitivity.


