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Abstract: After the success of deep learning in point cloud segmentation and classification tasks, it
has also been adopted as common practice in point cloud registration applications. State-of-the-art
point cloud registration methods generally deal with this problem as a regression task to find the
underlying rotation and translation between two point clouds. However, given two point clouds,
the transformation between them could be calculated using only definitive point subsets from each
cloud. Furthermore, training time is still a major problem among the current registration networks,
whereas using a selective approach to define the informative point subsets can lead to reduced
network training times. To that end, we developed ALReg, an active learning procedure to select
a limited subset of point clouds to train the network. Each of the point clouds in the training set is
divided into superpoints (small pieces of each cloud) and the training process is started with a small
amount of them. By actively selecting new superpoints and including them in the training process,
only a prescribed amount of data is used, hence the time needed to converge drastically decreases.
We used DeepBBS, FMR, and DCP methods as our baselines to prove our proposed ALReg method.
We trained DeepBBS and DCP on the ModelNet40 dataset and FMR on the 7Scenes dataset. Using
25% of the training data for ModelNet and 4% for the 7Scenes, better or similar accuracy scores are
obtained in less than 20% of their original training times. The trained models are also tested on the
3DMatch dataset and better results are obtained than the original FMR training procedure.

Keywords: point cloud registration; active learning

1. Introduction

In recent years, point cloud classification and segmentation methods using deep
learning have dominated the field. The pioneer work in the field is the PointNet [1], in
which the point positions are fed directly to the network. After PointNet’s success, many
other methods handled the problem using a deep learning approach [2–4]. Despite the
mentioned studies feeding a whole point cloud to the network in the training process, it
is shown that not all points in a point cloud have the same contribution to the output of
the network [5], and using a relatively smaller amount of points, similar results could be
obtained [6]. Thus, especially for large point cloud sets, an active learning-based approach
could be adopted to only use a certain count of patches in the training procedure [7–10]. A
keypoint-based approach is followed, which also utilizes a relatively smaller number of
points while matching the point clouds [3,11].

Point cloud registration, which could be defined as the calculation of the rigid trans-
formation between multiple point clouds and aligning them, is an important problem for
many computer vision tasks in robotics, autonomous driving, and 3D reconstruction [12].
The traditional methods, like Iterative Closest Point (ICP) [13] and other methods consider-
ing point-to-point or point-to-plane matching using only mathematical constraints [14–16],
have been replaced by learning-based methods [3,17,18]. Using the deep feature represen-
tation of each point or local patch of the point cloud, feature-based metrics are involved to
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gain more robust matching against outliers and noises. Even though point cloud registra-
tion has achieved significant progress using the previously mentioned methods, most of
them (even in the partial-to-partial point cloud registration [19–21]) are focused on the use
of the whole shape to train the network for registration. However, similarly, this problem
could also be handled using active learning which was not been addressed in the literature.

Active learning is substantially useful where data labeling is costly, and hence, only a
subset of the data ought to be used in the training process. Thus, the most discriminative
and diverse subset of the data should be selected. Initially, the training is started with a
very small subset of the training data and, using the active learning pipeline, this subset
is expanded. A simplified active learning pipeline could be considered as a three-part
system: A predictor, an oracle , and a guide [22]. In the common approach, the predictor
is a parametric machine learning model (e.g., a deep neural network) which is trained
for the task using the labeled data (despite the traditional denomination in segmentation
and classification problems, the term labeled data here refers to the data engaged in the
training procedure). The guide calculates an acquisition score for each unlabeled data using
a heuristic function and/or the feedback obtained from the predictor. This feedback could
be simply the uncertainty/discrepancy amount of each unlabeled sample, since a sample
for which the network could not reach a decision certainly, will have an impact on the
construction of the network when included in the training procedure. Finally, the oracle
uses the Guide’s scores and labels some of the unlabeled data according to a policy.

Instead of selecting samples from the training set, in the 2D image segmentation
methods utilizing active learning [23–25], some parts of each image could also be selected.
Considering that the labeling cost of 3D segmentation is higher than its 2D counterparts,
some efforts have been devoted to using active learning in point cloud segmentation [26–28].
These studies adopted the superpoint [29] representation where each point cloud is divided
into many superpoints using an over-segmentation approach and labeled superpoints in
the active learning pipeline.

A similar approach could be applied to point cloud registration. Instead of decreasing
the time budget allocated to manually label the dataset, our main aim is to decrease the
training time of the network model. Since learning the rigid transform between two point
clouds is equivalent to learning the transform between patches of these point clouds, the
learning procedure can be altered to its superpoint variant. It is unnecessary to use similarly
structured point cloud patches that have resembling features. In this study, we present
ALReg, an active learning approach to efficiently use the informative regions for point
cloud registration to decrease the training time. As the predictor, the baseline registration
networks are modified to use Monte Carlo DropOut (MCDO) [30] to efficiently calculate
uncertainty. The guide works on each point cloud separately and calculates acquisition
scores for a given point cloud’s unlabeled superpoints. The oracle provides a superpoint
chosen by the guide.

Our main motivation is that, by using fewer point clouds or point cloud parts in the
training phase of any point cloud registration network, a similar accuracy score could be
obtained. However, it depends to the efficient selection of these training samples/parts.
By the usage of ALReg, we aim the involve the most effective point cloud parts to the
training procedure.

To demonstrate the effect of the ALReg, we took three deep learning-based meth-
ods as our baselines: Deep Best Buddies (DeepBBS) [31], Feature Metric Registration
(FMR) [32] and Deep Closest Point (DCP) [33]. As in the official papers, we evaluated FMR
on 7Scenes [34] and the other methods on ModelNet40 [35]. To further investigate our
method we also evaluated our trained FMR networks on 3DMatch [18] as unseen data.
To demonstrate the performance of ALReg extensively, we used datasets from different
domains and structures. We observe in our experiments, that our method matches or
outperforms other existing methods, but with significantly reduced computation time.

The three main contributions of this study are as follows:
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• We propose ALReg, an active learning pipeline that can be used to drastically decrease
trainingtime for registration networks with either a similar performance or even an
increase in terms of accuracy. Regarding the drawbacks of the overcalculations for
network training for whole-to-whole point cloud registration, ALReg focuses on using
only a relevant and adequate subset of superpoints during the process.

• A novel uncertainty-based acquisition function that could be used to calculate super-
point uncertainties is presented. In the previous studies focusing on active learning
for point cloud data, class labels were used for uncertainty calculations.

• ALReg is tested on three popular registration methods (DCP, FMR, DeepBBS) for both
real (7Scenes, 3DMatch) and synthetic (ModelNet) point cloud datasets. Overall, an
improvement over the existing methods in terms of accuracy scores is obtained.

2. Related Work
2.1. Point Cloud Registration

Iterative Closest Point (ICP) [13] is the pioneer method in point cloud registration
which is an iterative process aiming to find the closest point correspondences in each
transformation iteration and to calculate the current optima using SVD (Singular Value
Decomposition). However, ICP is very sensitive to outliers. Despite various extensions to
ICP that focus on enhancing the method exists [36–38], learning-based methods which are
easy to generalize are commonly used.

As the performance boost of deep neural networks in point cloud segmentation and
classification tasks became prominent, deep approaches also dominated the registration
task. Using deep features from the point clouds, these methods demonstrate increased
robustness and give better performance results. PointNetLK (PointNet Lucas-Kanade) [39]
is a hybrid method that extracts global features from the PointNet and iteratively min-
imizes the distance between feature spaces between the source and target point clouds
with the help of the Lukas–Kanade algorithm. SpinNet [40] is an approach that produces
rotation-invariant local features from the source and target, and ensures an SO(2) (special
orthogonal) equivariance by mapping them onto a cylindrical volume. RGM (Robust
Graph Matching) [41] proposes a model to create graphs using node features extracted
from the points of each cloud and transforms the problem to graph matching. DeepVCP
(Virtual Corresponding Points) [42] generates virtual corresponding points and predicts
a relative pose using candidate correspondence probabilities. PointDSC (Deep Spatial
Consistency) [43] uses SC-Nonlocal blocks to check spatial consistency between matches.
RPM-Net (Robust Point Matching) [44] uses a Sinkhorn layer for coarser assignments to
reduce the effect of outliers and enhances the results step-by-step taking advantage of its
recurrent neural network structure. PCRNet (Point Cloud Registration Network) [45] uses
PointNet-sytle multi-layer perceptrons for both source and target point clouds in a Siamese
architecture model. PPF-FoldNet [46] uses Point Pair Features from PPFNet inside a Fold-
ingNet [47] based autoencoder network to obtain features for local patches and uses those
patches to match the clouds. DDRNet (Deep Direct Registration Net) [48] uses a spatially
aware encoder to find features for each local region, then applies attention-weighting to
weight the local features according to their similarities between each other and finally uses
a pyramid-shaped decoder which maps the features to rotation and translation vectors.
Fore-Net [49] uses a dual space attention module to map source and target features to a
dynamic feature space and a fixed Cartesian space. In PREDATOR (Pointcloud REgistration
with Deep ATtention to the Overlap Region) [50], a cross-attention block is presented where
each superpoint from the source is connected to all superpoints of the target to form a
bipartite graph and utilized message-passing formulation for graph neural networks [51] to
control information flow between source and target features. In [52], a Hough voting mech-
anism is introduced to find a consensus on each correspondence. TriVoC (Triple-layered
Voting with Consensus maximization) [53] is inspired by this approach and repeats the
voting mechanism in three consecutive layers. In HDRNet (High-Dimensional Regression
Network) [54], after feature extraction and point correspondence matrix estimation, a
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parametric regression is used to find the rotation quaternion and translation vector. In [55],
a reinforcement learning approach is applied where the source point cloud is rotated and
translated in many steps and for each step, a reward is defined. In [56], the real-life problem
of pallet pose estimation is considered and the registration is done using sample consensus
initial alignment and iterative closest point algorithms.

Since we adopt DCP, DeepBBS and FMR as baselines, detailed explanations for these
methods will be given in the Method section.

2.2. Active Learning

Active learning [57] is a method to use fewer training labels for a machine learning
approach. Although it has been heavily associated with deep learning, it was studied
before the deep learning era as well. In [58], an active learning method to select sam-
ples from a class-imbalance dataset for Support Vector Machines (SVM) [59] is presented.
Similar data-selection methods for SVM have been successfully applied to areas like text
classification [60,61] and image retrieval [62].

Here, we will mainly focus on active learning strategies for deep learning and we
follow the taxonomy from [27], discuss the active learning methods according to the
acquisition functions they use: uncertainty-based, diversity-based and hybrid methods.

In general, maximum entropy sampling and its variances are widely used as the
acquisition functions to score uncertainty. BALD (Bayesian Active Learning by Disagree-
ment) [63], using an information-theoretic approach, in addition to uncertainty, measures a
selected sample’s impact on the network’s uncertainty. AL-DL (Active Learning in Deep
Learning) [64] uses confidence scoring, margin sampling, and entropy scoring for image
classification. In [65], new acquisition functions focusing on samples with maximum
variation ratio and mean standard deviation are presented. In CoreGCN (Core Graph
Convolutional Network) [66], a graph convolutional network is formed where labeled and
unlabeled samples are represented as nodes, and the cross-entropy between each labeled
and unlabeled node is minimized. Then, samples are selected according to their uncertainty
values. In QUIRE (QUerying Informative and Representative Examples) [67], representa-
tiveness and informativeness measures are calculated using network uncertainties.

In [68], a diversity-based active learning mechanism that is inspired by a core-set se-
lection is presented. Using the k-center algorithm on training samples, most representative
points are selected according to their position in the feature space.

Hybrid approaches, like BADGE (Batch Active learning by Diverse Gradient Embed-
dings) [69], create hypothetical labels for unlabeled data using the predictions of neural
network and represent their representation in gradient space where large gradients indicate
uncertain samples, then they cluster the feature representations of those samples to select a
diverse set. In ALBL (Active learning by learning) [70], a multi-armed bandit selects one
of the active learning algorithms according to an important-weighted accuracy score. For
many general vision tasks like semantic segmentation [71–73], object detection [74] and
classification [75] hybrid approaches are used.

2.3. Active Learning for Point Clouds

Recently, active learning gained prominence in 3D point cloud research. In [28], an
active learning framework for point cloud segmentation is presented. In this study, three
selection methods are investigated (shape-level, superpoint-level and point-level) using a
hybrid acquisition function. While a feature-based distance metric is introduced to evaluate
the diversity of unlabeled data, entropy is used as an uncertainty score. In ReDAL (Region-
Based and Diversity-Aware Active Learning) [26], a super-point level active selection is
done for training. Although entropy is used as an uncertainty metric as in the previous
study, feature diversity is calculated using color intensity differences and surface variances.
Also, a diversity-aware selection is presented to assure diversity while selecting multiple
items. In SSDR-AL (Spatial-Structural Diversity Reasoning for Active Learning) [27], the
uncertainty score is weighted according to class distributions. Then, Chamfer distance
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on the feature-graph space is used to select the most diverse points. In [7], a conditional
Markov random field for segmentation is trained using classification errors as scores. In [10],
a classification method for terrestrial laser scanning data is presented and a classification
confidence metric to select points is used. In [8], four different active learning strategies are
evaluated on airborne laser scan (ALS) data: Random sampling, point entropy, segment [76]
entropy, and mutual information where segment entropy metric has the best scores. In [9],
an ensemble of classifiers is used, and disagreement between each classifier’s predictions
is scored for segmenting ALS point clouds. In [77], a multi-granularity active learning
pipeline is developed.

As can be seen from the related works, studies on active learning for point clouds
entirely focus on the segmentation task. Generally, the main purpose is using fewer point
clouds or point cloud parts while training. However, none of these studies have considered
active learning usage in point cloud registration. Thus, to the best of our knowledge, AlReg
is the first study on point cloud registration with active learning.

3. Method
3.1. Problem Definition

Given two point clouds X = {x1, ..., xi, ..., xN} ∈ RN×3 and Y = {y1, ..., yi, ..., yN} ∈
RN×3, our aim is to find the rigid transformation [R, t] with six degrees of freedom where
R ∈ SO(3) is the rotation matrix and t ∈ R3 is the translation vector according to the
error function:

argmin
R∈SO(3),t∈R3

N

∑
i
||Rxi + t− yi||. (1)

The baseline studies have different architectures and methods to minimize error.
However, they use all points from a training sample. To train the network using an ac-
tive learning approach, every sample from the training set D = {X0, ...Xi, ..., XN} should
be decomposed into superpoints Xi = {Si0, ..., Sij, ..., SiM} = SL(Xi) ∪ SU(Xi) where M
represents superpoint count. SL and SU represent sets of labeled and unlabeled super-
points respectively. In ALReg, an active learning approach is followed to efficiently select
superpoints from SU to be used in the training process.

3.2. Baseline Methods

As the baseline models, DCP, DeepBBS and FMR are utilized, whose details are
summarized below. The architectural details of these methods are depicted in Figure 1.
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Figure 1. Registration frameworks for (a) DCP [33] and DeepBBS [31] , (b) FMR [32] . To ensure
simplicity, some details given in the method section are not shown.

DCP: Deep Closest Point framework uses a dynamic graph-based encoder to obtain
point cloud features F(X) and F(Y) from source X and target Y. Then, using a trans-
former [78] with conditional attention, integrated features ϕ(F(X), F(Y)) and ϕ(F(Y), F(X))
are obtained. To benefit from both local and global information, new point embeddings are
created as

ϕ(X) = F(X) + ϕ(F(X), F(Y))

ϕ(Y) = F(Y) + ϕ(F(Y), F(X)). (2)

Then, a probabilistic point-to-point mapping matrix is formed as
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m(xi, Y) = so f tmax(ϕ(Y)ϕ(xi)
T)

so f tmax(zi) =
ezi

∑K
j=1 ezj

f or i = 1, 2, . . . , K (3)

where m(xi, Y) represents a row of the matrix indicating the probabilistic distribution of xi’s
corresponding point among the points of Y. For every point xi, the predicted corresponding
point ŷi is found, and the cross-covariance matrix H(X, Y) is filled as

ŷi = YTm(xi, Y), H(X, y) =
N

∑
i
(xi − x)(ŷi − y). (4)

Using singular value decomposition (SVD) on H(X, y) = USVT , R and t are found by
R = VUT and t = −Rx + y.

DeepBBS: Deep Best Buddies could be considered as an extension to DCP where xi
and yj are called best buddies if they are the closest points to each other according to their
features ϕ(xi) and ϕ(yj). Given the feature distance matrix Di,j, the BBS score between two
points is calculated as

B(xi, yj) =
e
−Dij

α

∑i′ e
−Di′ j

α

.
e
−Dij

α

∑j′ e
−Dij′

α

. (5)

Similarly to the approach in (6), predicted correspondences and cross-covariance
matrix are calculated as

ŷi = YT Bi

∑j Bij
, H(X, y) =

N

∑
i

γi(xi − x)(ŷi − y) (6)

where γi indicates correspondence weights. For the remaining part of the method, steps in
DCP are applied.

FMR: Contrary to the other two studies used as baselines for this work, the feature
metric registration framework does not find correspondences between X and Y. Instead,
it focuses on minimizing the feature distance between the source and the target after the
alignment is done. To obtain the point features, a PointNet-like encoder is used without
a transformation. Due to the nature of the PointNet, the obtained features are rotation-
attentive. A decoder is also trained to obtain meaningful features F(X) and F(Y) in an
unsupervised way. Here, the projection error was defined as

e = ||F(X)− F(RY + t)||, (7)

where e is fed into the inverse compositional algorithm [79] to stepwise increment the
transformation as

[∆R, ∆t] = (JT J)−1(JTe), (8)

where J represents Jacobian of e with respect to R and t.

3.3. Active Selection

For the training set D, very few labeled superpoints SL are initially selected randomly,
and the selected registration network is trained with these labeled superpoints. At certain
points of the training process, an acquisition score is calculated for each superpoint in
DU and according to their sorted scores, some of them are included in DL. It should be
remarked that, for every selection phase, only one unlabeled superpoint from each training
sample is selected. Otherwise, the algorithm may select the newly labeled superpoints so
that there could be an unbalance among point counts. Considering that our main focus for
ALReg is to decrease training time, creating batches for variable-sized samples will be more
time-consuming than the mentioned setup. The full framework is depicted in Figure 2.
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Act�ve Select�on

Unlabeled
D

Labeled
D

D Features

Reg�strat�on Network

D Features Uncerta�nty Scores

Uncerta�nty Scores

Label�ng

Superpo�nt Features

Figure 2. The ALReg Framework. In training time, only the labeled superpoints DL are used. In the
active selection phase, uncertainty scores and network features are obtained to select new superpoints
for labeling.

In this study, we present two different acquisition scoring mechanisms: ALRegDIV
and ALRegUNC focusing on diversity and uncertainty respectively.

ALRegDIV: To calculate the diversity of a superpoint, the acquisition functions in
ReDAL and SSDR-AL are unsuitable here since ReDAL benefits from color discontinuity
and SSDR-AL uses class distributions. Thus, to obtain diversity scores, following a similar
approach to [28], a feature diversity metric is calculated. Diversity score of an unlabeled
superpoint Si ∈ SU(Xj) is calculated as

D(s) = min
sk∈SL(Xj)

||F(si)− F(sk)|| (9)

where F denotes the encoder features from the selected network.
ALRegUNC : To calculate the uncertainty of a superpoint, a Monte Carlo Dropout

(MCDO) [80] approach is followed. Since dropout is a specific type of Bayesian neural
network (BNN), after each layer of the encoder layer, a dropout layer is placed to obtain
varying outputs for the same points. Since it is not a classification task, the uncertainty
metrics presented before are unusable. Thus, a variance-based uncertainty metric used for
BNNs with latent variables [81,82] could be applied to our problem.

For the data point x and the network output y, total uncertainty in terms of variance
could be written as

σ2(y|x) = σ2
q(W)(E[y|W, x]) + Eq(W)[σ

2(y|W, x)] (10)

where q(W) represents the posterior approximation according to weights W. Here, the first
term represents epistemic uncertainty and the second term represents aleatoric uncertainty.
The aleatoric uncertainty term could be calculated by M× N network passes. The network
weights W are sampled M times (corresponding to using M different MCDO setups)
and the variable is sampled N times (corresponds to use N different point sets from a
selected superpoint). For a feature vector with size K, means of variances are calculated
for each of the K features and their average will indicate the uncertainty of the selected
superpoint U(s).

The procedure is explained in Algorithm 1.
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Algorithm 1: Acqusition function
Data: Labeled superpoints of Xi: SL(Xi), An unlabeled superpoint from Xi: s,

Feature extractor: fθ , a set of fixed DropOuts: {δ1, ..., δM}
Result: Acquisition scores: D(s), U(s)
f eatures[0...M, 0...N] = 0;
for k← 1 to N do

ssampled = sample(s);
for l ← 1 to M do

fθ,DO = setDropOut(Fθ , δl);
// Apply the predefined DropOut δl to the network.
f eatures[l, k] = fθ,DO(Ssampled);

end
end
U(s) = var(mean( f eatures));
f eaturess = fθ(s);
f eaturesSL(Xi)

= fθ(SL(Xi));
D(s) = min( f eaturesSL(Xi)

f eaturesT
s );

4. Experiments

To evaluate our method, we have done experiments using ModelNet40 (for DCP and
DeepBBS) and 7Scenes (for FMR) datasets. We test the ALReg method against random
selection (RAND) and also report the original results (FULL) obtained using the official
source code. We performed all the experiments on a computer with an NVIDIA RTX A5000
GPU and Intel(R) Core(TM) i7-7700K CPU @ 4.20 GHz.

We used the default hyperparameters of the mentioned methods. In FMR we used
Chamfer loss and geometric loss. In DCP we used an MSE based loss as

LDCP = ||RT
gtRpred − I||2 + ||tgt − tpred||2 + λ||θ||2 (11)

where Rgt and tgt refer to ground truth rotation matrix and translation vector and Rgt and
tgt refer to their predictions. The last part is a network regularization. For DeepBBS, the
used loss function is

LDeepBBS = ||RT
gtRpred − I||2 + ||tgt − tpred||2 + βn 1

N

N

∑
i=1

γgt,i||qi − (Rgt pi + tgt)||2 (12)

where γgt,i is an indicator showing whether pi and qi are matching points in the source and
target point clouds, β is a multiplier decreasing according to epoch number n. Here β is
selected as 0.95. For all experiments, the Adam [83] optimizer is used with a learning rate
of 0.001 and the batch size is selected as 32.

The only difference between our setup and the baselines is placing dropouts with
p = 0.25 after each layer of the encoders. After the last active selection phase, the dropouts
are removed from the networks for better convergence. Active selection is done after epochs
[20, 50, 70] for DCP/DeepBBS and after epochs [40, 60, 80] for FMR.

For DCP (the second version containing a transformer) and FMR, the official weights
are directly used. However, DeepBBS which originally uses 786 sampled points in both
train and test time, is retrained using 1024 points to ensure a fair comparison. For both
networks, using the common procedure, a rotation of [0, π

4 ] and translation of [−0.5, 0.5]
is used. For FMR, a rotation of [0, π

3 ] and and translation of [−0.5, 0.5] is used following
the original setup.

7Scenes is an indoor 3D scan dataset that contains 296 objects having an average
of points and it has 57 test point cloud objects. Since 7Scenes is a dense dataset, in full
FMR, randomly sampled 10,000 points are used during training and testing. In our active
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learning setup, we used VCSS [84] algorithm to divide each object into ∼150 superpoints.
For each superpoint, 20 sampled points from the superpoint are fed to the network. Initiall,
3 superpoints (60 points) of each object are used for training. After the last active selection
phase, only 4.16% of the training set is selected.

ModelNet40 is a CAD dataset of daily life objects containing 9840 training samples
and 2468 test samples from 40 different categories. In the aforementioned registration
methods, it is a rule of thumb to use 1024 points from CAD model for each object. Using
random sampling, ∼100 superpoints are created for each object as given in Figure 3.

…

…

Figure 3. Randomly created superpoints for ModelNet40 dataset.

After training the networks with the mentioned datasets, we also evaluated their
accuracy on 3DMatch to show their consistency on unseen data. 3DMatch is a real-life scan
dataset containing a total of 520 samples in its test set. Since we evaluated the dataset with
the FMR setup, color information is not used and each fragment is subsampled to contain
10,000 points.

To evaluate our method, adopting the metrics from DCP [33], mean square error
(MSE), root MSE (RMSE) and mean absolute error (MAE) for rotation and transformation
are used.

For the FMR training setup, the results on 7Scenes and 3DMatch datasets are given
in Table 1. As can be seen from the results, using only a limited amount of training data
with both ALRegDIV and ALRegUNC, better results are obtained than random selection for
7Scenes. Also, all methods outperformed the full train scenario, which demonstrates that
using all points leads to confusion for the network. Evaluating the network on 3DMatch,
ALRegUNC method still outperforms random selection.

Table 1. FMR training results for 7scene and 3DMatch datasets. ALReg method is also compared
with original full-size registration.

FMR-7Scenes

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 0.39343 0.62724 0.25740 0.00614 0.07835 0.03035

RAND 0.2110 ± 0.0308 0.4581 ± 0.0344 0.1461 ± 0.0211 0.0036 ± 0.0009 0.0594 ± 0.0080 0.0181 ± 0.0038
ALRegDIV 0.1524 ± 0.0551 0.3842 ± 0.0692 0.1196 ± 0.0308 0.0131 ± 0.0162 0.0471 ± 0.0099 0.0152 ± 0.0041
ALRegUNC 0.1463 ± 0.0203 0.3816 ± 0.0266 0.1167 ± 0.0143 0.0021 ± 0.0002 0.0453 ± 0.0018 0.0139 ± 0.0011

FMR-3DMatch

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 0.35491 0.59574 0.26926 0.01624 0.12745 0.04916

RAND 0.1834 ± 0.0019 0.4283 ± 0.0022 0.1605 ± 0.0017 0.0070 ± 0.0004 0.0839 ± 0.0022 0.0275 ± 0.0002
ALRegDIV 0.1969 ± 0.0252 0.4428 ± 0.0281 0.1726 ± 0.0178 0.0078 ± 0.0005 0.0885 ± 0.0030 0.0298 ± 0.0021
ALRegUNC 0.1681 ± 0.0054 0.4099 ± 0.0065 0.1481 ± 0.0028 0.0066 ± 0.0002 0.0814 ± 0.0010 0.0256 ± 0.0006

In Figure 4, the superpoints actively selected by the different methods are visualized.
Qualitatively, both ALRegDIV and ALRegUNC selected a more representative set compared
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to the random selection. In fact, there are many common superpoints. Considering the
locations of these superpoints, it could be asserted that, selecting superpoints from the
borders is a better approach than selecting randomly.

ALRegDIV ALRegUNC RAND

Figure 4. Selected superpoints for 7Scenes dataset with different mechanisms.

We also evaluated ALReg’s performance on FMR according to the amount of rotation
starting from [0, 0, 0] to [π

2 , π
2 , π

2 ]. According to Figure 5, even though their metric
performances are worse, it is observed that for larger rotations on 3DMatch, both ALReg
methods provide reduced errors than the full point cloud training.

Figure 5. Results for FMR according to different rotation amounts.

For DCP and DeepBBS methods, the numerical results are given in Table 2. According
to the results, our ALRegUNC performs slightly behind performance than the full train
procedure in all cases.

We also evaluated ALReg’s robustness against Gaussian noise as well as incomplete
point clouds and used 7Scenes and 3DMatch as testbeds. For Gaussian noise, we jittered
each point cloud with a noise of N (0, 0.1). For incomplete point clouds, we randomly
select 90% of each point cloud. The results for each study are as given in Tables 3 and 4. In
both cases, ALReg’s performance is practically similar to other methods.

In Table 5, a comparison of training times for the full train and ALReg is given. Using
limited data, ALReg achieves to decrease in the training time by 25%, 18% and 20% for
FMR, DCP and DeepBBS respectively.
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Table 2. ModelNet40 results for DeepBBS and DCP methods. ALReg method is also compared with
original full-size registration.

DCP-ModelNet40

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 1.3073 1.1433 0.7705 0.0000 0.0017 0.0011

RAND 2.3273 ± 0.119 1.5255 ± 0.024 1.0506 ± 0.012
0.0000 ± 5.61 ×
10−9

0.0033 ± 3.28 ×
10−5

0.0023 ± 2.31 ×
10−5

ALRegDIV
1.9677 ± 7.78 ×
10−4

1.4027 ± 2.75 ×
10−4 1.4027 ± 5.11 × 10−3 0.0000 ± 1.44 ×

10−7
0.0034 ± 8.97 ×
10−9

0.0023 ± 1.31 ×
10−6

ALRegUNC 1.8217 ± 0.127 1.3497 ± 0.026 0.9474 ± 0.0133 0.0000 ± 4.32 ×
10−9

0.0032 ± 3.26 ×
10−5

0.0022 ± 2.27 ×
10−5

DeepBBS-ModelNet40

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 1.67 × 10−6 1.29 × 10−3 5.18 × 10−4 1.16 × 10−10 1.07 × 10−5 6.55 × 10−6

RAND
2.39 ×
10−6 ± 1.27 ×
10−6

1.54 ×
10−3 ± 3.74 ×
10−4

7.63 × 10−4 ± 7.56 × 10−5
1.45 ×
10−10 ± 5.51 ×
10−11

1.20 ×
10−5 ± 2.43 ×
10−6

8.45 ×
10−6 ± 1.09 ×
10−6

ALRegDIV

4.32 ×
10−6 ± 2.51 ×
10−6

2.07 ×
10−3 ± 5.89 ×
10−4

7.78 × 10−4 ± 5.69 × 10−5
1.89 ×
10−10 ± 1.51 ×
10 × 10−10

1.37 ×
10−5 ± 5.09 ×
10−6

8.18 ×
10−6 ± 4.23 ×
10−7

ALRegUNC

2.36 ×
10−6 ± 4.90 ×
10−8

1.53 ×
10−3 ± 1.59 ×
10−5

6.87e-4 ± 8.99 × 10−6
9.61 ×
10−11 ± 1.12 ×
10−13

9.80 ×
10−6 ± 4.67 ×
10−9

6.34 ×
10−6 ± 1.00 ×
10−8

Table 3. Gaussian Noise results for FMR.

FMR-7Scene

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 0.097413 0.312111 0.124632 0.002955 0.054367 0.022471
RAND 0.095495 0.309023 0.115626 0.006207 0.078784 0.026926
ALRegDIV 0.177675 0.421516 0.144604 0.004147 0.064401 0.022502
ALRegUNC 0.092122 0.303516 0.112774 0.004568 0.067588 0.024137

FMR-3Dmatch

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 0.128283 0.358167 0.145229 0.005049 0.071057 0.027608
RAND 0.216643 0.465449 0.196329 0.006501 0.080629 0.029618
ALRegDIV 0.220736 0.469826 0.201843 0.007248 0.085136 0.031431
ALRegUNC 0.190331 0.436269 0.165844 0.007457 0.086357 0.029284
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Table 4. Sampled point cloud registration results for DeepBBS and DCP methods.

FMR-7Scene

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 0.031967 0.178795 0.053182 0.001211 0.034813 0.012048
RAND 0.048775 0.220852 0.057202 0.001240 0.035215 0.008836
ALRegDIV 0.083325 0.288661 0.059582 0.003184 0.056435 0.010117
ALRegUNC 0.025892 0.160910 0.037307 0.000107 0.010366 0.003278

FMR-3Dmatch

Method MSE (R) RMSE (R) MAE (R) MSE (t) RMSE (t) MAE (t)

FULL 0.136838 0.369917 0.150323 0.005441 0.073767 0.026348
RAND 0.184270 0.429267 0.176583 0.007063 0.084046 0.029235
ALRegDIV 0.176006 0.419531 0.173010 0.006890 0.083011 0.028737
ALRegUNC 0.136912 0.370016 0.130666 0.005077 0.071257 0.021303

Table 5. Train time of the studied methods in hours for full train mode and AlReg.

Full Train (h) ALReg (h)

FMR 0.20 0.05
DCP 8.51 1.56

DeepBBS 12.53 2.56

5. Discussion

Our experimental results demonstrate that ALReg achieves a very close performance
in 3D point cloud registration tasks by using only a small portion of the data. The difference
of error between full point cloud training or training using only actively selected point
cloud parts is relatively small considering the active areas to use. This provides evidence to
our hypothesis that following either an uncertainty-based or a diversity-based selection
mechanism, highly beneficial point cloud parts could be selected compared to random
selection.

Moreover, it can be thought that using only a few point cloud parts hinders the robust-
ness of the model. However, after applying Gaussian noise or using lesser corresponding
points, a drastic change is not observed, which indicates that models trained with ALReg
procedure is robust against point cloud malformations.

The acquisition functions for both ALRegDIV and ALRegUNC methods are easy to cal-
culate during the training time and they could be adapted to other point cloud registration
methods using deep learning.

6. Conclusions

We have presented ALReg, an active learning point cloud registration framework
that requires less training time and memory relative to existing point cloud registration
methods in the literature. According to the experimental results, we demonstrated that
using ALReg, whole-to-whole point cloud registration networks could be trained to obtain
similar or better results while facilitating speed-ups.

ALReg is the first study to integrate point cloud registration in an active learning
approach and introduces baselines. It will stimulate future registration studies with active
learning toward efficient model training. As a future work, an adaptation of ALReg to
partial registration problems will be investigated.
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