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ABSTRACT

Designated driving service is a fast-growing market that provides drivers to trans-
port customers in their own cars. The main technical challenge in this business is
the design of driver dispatch due to slow driver movement and sparse orders. To
address these challenges, this paper proposes Reinforcement Learning for Desig-
nated Driver Dispatch (RLD3). Our algorithm considers group-sharing structures
and frequent rewards with heterogeneous costs to achieve a trade-off between het-
erogeneity, sparsity, and scalability. Additionally, our algorithm addresses long-
term agent cross-effects through window-lasting policy ensembles. We also im-
plement an environment simulator to train and evaluate our algorithm using real-
world data. Extensive experiments demonstrate that our algorithm achieves supe-
rior performance compared to existing Deep Reinforcement Learning (DRL) and
optimization methods.

1 INTRODUCTION

Designated driving, also known as chauffeur service and substitute driving, is an emerging business
in the field of mobility service platforms. These platforms offer professional drivers to transport
customers who are unable to drive, such as drunk drivers, rookie drivers, and tired drivers. The des-
ignated driver arrives with an electric scooter and drives the customer to their destination, as shown
in Figure[I] The platform controller manages dispatching behaviors to improve customers’ experi-
ence and drivers’ income. Designated driving has become a significant and promising industry, with
a market size of over 4 billion in China (BusinessGrowthReport, 2022).

One of the critical challenges in this industry
is the design of driver dispatch, also known
as the fleet management problem. While typ-

ical ride-hailing platforms focus on improving Dispatch 5‘:’ é e b
the matching quality between drivers and cus- ~ pesighate driver

tomers, designated driving platforms still strug- (
gle to find a driver for each order. This is due to CopOig
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movement. Besides, designated orders have 88 < Designated driving service
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centrated in specific hotspots (e.g., bars, restau-
rants) and destinations primarily being residen-
tial areas, which often result in drivers being far

away from potential customers. . . ..
y P Figure 1: Designated driving.

Optimization methods are commonly used to

address fleet management problems (Zhang

et al.l 2017 |[Robbennolt & Levin, [2023), but they require a certain level of modeling for the supply
and demand dynamics, which is complex in the real world. Recently, many Deep Reinforcement
Learning (DRL) approaches have been proposed to solve fleet management problems in ride-hailing
services (Oda & Joe-Wongl [2018}; |Al-Kanj et al., [2020; |[Zhang et al., 2020; |L1u et al., 2020; Shou
& Di, 2020; |Qin et al.l 20215 [Eshkevari et al.l 2022} [Liu et al.l 2022} Zheng et al. 2022)). How-
ever, designated drivers present unique challenges compared to traditional taxi ride-hailing systems.
The challenges stem mainly from the sparsity, which can be attributed to three key factors. Firstly,
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the dataset itself exhibits sparsity. In the case of designated driving, the number of drivers is con-
siderably smaller compared to taxi drivers, resulting in a sparser spatial-temporal distribution. To
illustrate, our dataset collected from Hangzhou, a Chinese city with a population of approximately
10 million, has only around 3,000 designated drivers and nearly 13,000 order requests per day. Sec-
ondly, individual drivers experience sparse feedback on the direct matching of orders. As designated
drivers move slowly and are often located far away from available orders, each driver, on average,
completes only 3 to 4 orders per day. Additionally, after matching with an order, the driver also
spends a significant amount of time on the way to pick up the client. Thirdly, the cross-effect of
agents is sparse and long-lasting. This is due to the slow and continuous impact of driver move-
ments on their distribution, which is crucial in fleet management. Before each driver is matched
with an order, they typically engage in continuous movement for several quarters. Therefore, con-
sidering the lasting impact becomes more crucial than focusing solely on the transient movements
of other agents. Moreover, the heterogeneity and scalability of agents pose additional challenges
for traditional MARL algorithms. Factors such as varying speeds and mileage limitations among
different drivers, as well as the fluctuating number of drivers commuting to work each day, further
contribute to these challenges.

To address these challenges, this paper proposes a group-sharing window-lasting Reinforcement
Learning framework for Designated Driver Dispatch problems, RLD3. We model the problem as a
Decentralized Partially Observed Markov Decision Process (Dec-POMDP), capturing the fact that
drivers usually have local observations. RLD3 incorporates several novel designs. Firstly, we in-
troduce a group-sharing structure, where agents are classified into several groups. Agents within
the same group share the same network parameters and experience data. This design strikes a bal-
ance among sparsity, heterogeneity, and scalability. Secondly, we design a reward structure for the
DRL algorithm. This specially designed reward estimates the potential of the neighborhood around
the driver by considering the distances of all unmatched orders in that area, addressing the issue of
sparse feedback. It also incorporates complicated movement constraints by applying heterogeneous
moving costs. Thirdly, we design a time window to calculate the cumulative actions of agents during
consecutive execution periods, allowing estimation of other agents’ policies and making it suitable
for sparse and lasting multi-agent interactions. Finally, we implement an environment simulator us-
ing real-world designated driving datasets and conduct extensive experiments to train and evaluate
different algorithms. The results demonstrate that RLD3 outperforms existing DRL benchmarks and
optimization policies in terms of completed order numbers and adherence to moving constraints.

The main contributions of this paper are summarized as follows:

i) We are the first to formulate a general Dec-POMDP framework for designated driver dis-
patch problems in designated driving markets.

ii) We propose a novel MARL algorithm, RLD3, to address the challenges of designated driver
dispatch and achieve trade-off among scalability, heterogeneity, and sparsity. This algo-
rithm builds upon group-sharing structures and window-lasting agent interactions with a
potential/cost-aware reward.

iii) We design a designated driving simulator using real-world datasets and conduct extensive
experiments. The results show that RLD?3 efficiently learns system dynamics and outper-
forms existing DRL and optimization methods.

2 RELATED WORK

Driver Dispatch. As mentioned in Section I} the driver dispatch problem has been extensively
investigated in the existing literature. Two prominent methodologies have garnered significant at-
tention: optimization algorithms (Zhang et al.| [2016; [Robbennolt & Levin, 2023 and DRL-based
algorithms (Oda & Joe-Wong, [2018} |Al-Kanj et al.,|2020; Zhang et al., 2020; Liu et al., | 2020; Shou
& Di, [2020; |Qin et al., 2021} [Eshkevari et al., [2022; [Liu et al} 2022} [Zheng et al., 2022). Opti-
mization algorithms leverage historical driver and order distributions to formulate dispatch policies,
but they require precise knowledge of demand-supply dynamics, which is challenging to obtain in
the real world. DRL-based algorithms are powerful in solving driver dispatch problems as they can
learn a parametric model without relying on strong problem-based assumptions and can optimize
long-term effects through sequential decision-making. However, taxi drivers move at a faster speed,
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and taxi orders are much denser and more balanced. These features significantly reduce the spar-
sity challenges faced by traditional DRL-based dispatch algorithms. Thus, it is difficult to directly
transfer the models and algorithms to the designated driving platform.

Reinforcement Learning. Reinforcement learning (RL) techniques have shown promise in ad-
dressing complex multi-agent problems. The Multi-Agent Deep Deterministic Policy Gradient al-
gorithm (MADDPG) (Lowe et al} [2017) extends the Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al.l [2016) and Deterministic Policy Gradient algorithms (Silver et al., 2014) by using
deep neural networks to approximate action values and handle agent interactions. Such algorithms
within the traditional CTDE paradigm Claus & Boutilier| (1998) often allow agents to achieve good
overall performance by utilizing heterogeneous strategies. However, due to the independent nature
of each agent’s policy, they encounter the challenge of sparse feedback in the designated driving
problem, leading to lower efficiency in exploration and policy learning.

To address sparsity, Random Network Distillation (RND) (Burda et al., 2019) uses an additional
value function to estimate intrinsic reward in order to enhance exploration. In the designated driv-
ing platform, due to the unique “hub-and-spoke” structure of orders, the hotspots of orders are more
concentrated. Exploring non-semantic information would result in excessive driver movement costs.
Curriculum Learning approaches, such as Curriculum Deep Reinforcement Learning (Hacohen &
Weinshall, [2019) and Relevant Curriculum Reinforcement Learning (Flet-Berliac & Preux| 2020),
help in learning from sparse feedback by planning the neural network’s learning path. However,
planning learning paths in multi-agent scenarios is challenging due to the complex dynamics of
cooperation and competition among drivers. Mean-Field Reinforcement Learning (MFRL) tech-
niques, such as Mean Field Multi-Agent Reinforcement Learning (MFMARL) (Yang et al.| [2018))
and Multi-Agent Mean Field Q-Learning (Ganapathi Subramanian et al., 2020), model agent inter-
actions as the interaction between a single agent and a field effect. Mean-field methods can address
the issue of sparse agent distributions but lack consideration for the lasting interaction of differ-
ent drivers, which should be taken into account since designated drivers have slow movement and
complex constraints.

To address scalability and heterogeneity, Hierarchical Reinforcement Learning (HRL) approaches,
such as Feudal HRL (Vezhnevets et al., 2017), Data-Efficient HRL (Nachum et al.l 2018), and
Model-Free HRL (Rafati & Noelle, 2019), decompose large-scale problems into sub-agents. But
in the context of designated driver dispatch, additional attention should be paid to the complex
interactions among agents and various sparsity issues as mentioned before.

3 RLD3: REINFORCEMENT LEARNING FOR DESIGNATED DRIVER DISPATCH

In this section, we present the formulation of the Decentralized Partially Observed Markov Decision
Process (Dec-POMDP) for the designated driver dispatch problem. We introduce three unique de-
signs in our algorithm: the grouped structure, the potential reward, and the lasting agent interaction.

3.1 FORMULATION

We consider the designated driving service in one metropolis. Each day, there are N drivers with
random initialization. Orders appear in the system at specific times and locations. Unmatched orders
have limited patience and will be canceled after a waiting period following a Poisson distribution.
Drivers that have completed their corresponding orders leave the system after off-duty time.

For simplicity, we assume that time in the system is slotted, with each time step corresponding to
30 seconds. At each time step, the platform decides the dispatch movement for every idling driver.
We assume that drivers fully comply with movement instructions. The statuses of drivers and orders
are updated until the next time step due to matches between idling drivers and unmatched orders, as
well as the generation/completion processes.

The Dec-POMDP formulation (N, S, O, A, P, R, ~) is presented as follows:
Agent i € [N]: Each driver is considered an agent, resulting in a total of N unique agents. The

platform can only dispatch idling drivers, as each agent can be in one of three statuses: offline, idle,
or serving orders at any given time ¢.
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State s € S: At each time ¢, a global state is maintained, taking into account the status of all
drivers and orders. This includes coordinates, moving distance, working status, serving targets, and
moving targets for drivers. The state also includes calling time, patience, origin, destination, and
serving status for orders.

Observation s —; o; € O: Drivers have partial observations of the state s. In our implementation,
each agent’s observation is represented by a 22-dimensional vector:

([#order), [#driver], min dist|, t, lat, Ing, move), (1)

where the first three terms denote the number of orders to be matched, the number of idling drivers,
and the distance to the closest order in six-segment-direction neighborhoods as shown in Figure
The last four terms represent time, latitude, longitude, and the distance the driver has already moved.

Action a; X --- X ay € A: The platform proposes a joint action instructing the movement policy
for all available drivers based on their observations o’ at time ¢. The action space for an individ-
ual agent consists of seven discrete actions including six neighboring directions and staying at the
current location as shown in Figure [IT] Agents located at the boundary and corners have a smaller
action space.

State Transition P : s x ajn] +— s": The movement of drivers, along with order updates and
matches between drivers and orders, induces state transitions in the environment.

Reward r7; € R: After executing an action, each agent receives its distinct instant reward r;.
The instant reward 7 is defined as the sum of the immediate match reward, neighborhood potential
reward, and move cost:

rt = mtt 4+ nbl + mol. 2)
Immediate match reward mt! directly relates to the gross merchandise volume of the platform,
which is the objective of our algorithm. To optimize volume without using discriminatory personal
information, the immediate match reward is set to a fixed number:

mtt =

3

{50, if agent ¢ is matched with an order at ¢; 3)

0, otherwise.
The move cost and neighborhood potential reward will be introduced in Section[3.2]and [3.3]

3.2 TOWARDS DATASET SPARSITY THROUGH GROUP SHARING

We introduce the concept of group sharing to address dataset sparsity issues in our approach. Mean-
while, we estimate the influence between these groups using the mean-field effect to ensure hetero-
geneity and scalability.

In real-world scenarios, drivers can be classified into several types based on their cost conditions.
These endogenously heterogeneous agents are naturally mediated into several groups. Agents within
the group share the same network along with their experience data in the training process. Specifi-
cally, we divide the N agents into M classes, where M is a fixed number.

To control grouped drivers” moving distance, we include move cost muv! as a regularizer that influ-
ences the behavior of agents in the reward. The move cost for agent 7 at time ¢ is set as follows:
—c;, if agent ¢ moves;
mul = g I agentt “)
0, if agent ¢ stays;

where j is the group index of agent i.

RLD3 utilizes double critic-networks and double actor-networks, with the delayed copy used for
soft-update. During the training stage, a group network can access the experienced data of all agents
belonging to that group, stored in a replay buffer. Therefore, a network can efficiently explore dif-
ferent individuals of the same category in the metropolis and gather more experiences. During the
execution stage, each agent calls its corresponding group network to perform policy execution inde-
pendently. The policy input for each agent is based on its current observation while the output is its
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Figure 2: Information flow in the execution stage.

deterministic action. To transform the continuous output seven-dimensional vector into a determin-
istic action, the last layer uses Gumble-Softmax (Jang et al.,2017)). Such mixed strategy ensures that
even agents of the same group at the same location may execute different discrete actions, avoiding
competition among agents. The information flow during the execution stage is illustrated in Figure

3.3 TOWARDS FEEDBACK SPARSITY THROUGH SPACE POTENTIAL

Since the immediate match reward is highly sparse for the DRL method in designated driving plat-
forms (i.e., it only occurs at the time step with a successful order match, which is rare), we introduce
a dense neighborhood potential reward nb! to reflect the potential value of the current area. The
intuition is that the distance to an order in the neighborhood reflects how fast an agent can pick up
the order. Almost all orders in the neighborhood are attractive to the driver, although the closest
ones are especially attractive.

Specifically, we assign potential values to nearby unmatched orders, with higher feedback given to
closer orders. We then sum up all potential values to represent the total potential value of the driver’s
current position. This provides reward feedback to the driver at every time step, compensating for
the sparse immediate match reward. The potential reward is defined as follows:

nbt = (d* +0.1)7%% 4+ 0.1 x Z (dij +0.1)707, )

neighbor order j

where d;; denotes the distance from driver ¢ to order j, and d* denotes the distance to the closest
order. The power index is set to —0.5 to ensure that the potential reward increases as the distance
approaches and is a convex function, in order to encourage designated drivers to approach a specific
order rather than maintain an equal distance from all orders.

3.4 TOWARDS INTERACTION SPARSITY THROUGH WINDOW LASTING

In designated driving platforms, agents are often far away from each other, resulting in sparse and
long-term agent interactions instead of single-step actions. For example, a driver’s income is not di-
rectly influenced by the short-term actions of drivers located far away, but rather by the accumulated
distribution changes caused by the lasting movements of drivers. Therefore, we use the average
action over a time window, instead of a single-step action, when considering other agents’ policies.

To achieve this, in addition to recording regular tuples (s, a[N]; T[N]s s'), the buffer calculates and
stores the window-lasting actions for all agents. The window-lasting action d; represents the average
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of sequential idling actions for the last W time steps:
&t,:E[af]’SN [t_mﬂmﬂastidley (6)

3

where Tiag igle Tefers to the most recent period in which the driver was idling, considering possible
different idling periods that may result in diverse moving directions. Thus, the mean-field effect for
group j is defined as:

g; = ]EiEgroupj [&f] . (N
Additionally, we use an encoder in the input of the critic to handle complex state representations and
their varying dimensions. This encoder is responsible for the distribution of the current unmatched
orders and idling agents respectively. We employ the K-Means algorithm (Hartigan & Wong, |1979)
for this encoder. Therefore, the input structure of the critic network is Q;(0;, encode(s), ai, giary)
as shown in Figure [3] All networks utilize two fully connected layers and the GELU activation
function (Hendrycks & Gimpel, 2016).

Order Pool |53 State

Action

Fully-connected

Figure 3: Network structure.

3.5 NETWORK UPDATE

The network update follows the gradient-based actor-critic paradigm. To ensure smoother driver
trajectories, we add the temporal difference of adjacent actions H (a, a’) = |ja — a’||, to the Bellman
loss as the critic loss. After incorporating the above techniques, the loss function for the value
network becomes:

ﬁ(el) :Esa'rrzplef [(QZT (Oi, enCOde(s)v aiag[M]) - y)2 +)‘H(ai7 a;)} s

, @®)
y=ri +7QF (02, encode(s'), a;,ng]) :
Similarly, the gradient of the policy network is now:
v97‘](7r2) :Esample,f [vgmﬂ_i(ai | Oi)vﬂiQ? (0i7 encode(s), alag[M]) a,i:‘n',i(oi)] . )

The complete algorithm framework is summarized in Algorithm 1]

4  SIMULATOR & EXPERIMENT

We design and implement a simulator based on real-world datasets to train and evaluate RL algo-
rithms for the designated driver dispatch problem. We then conduct experiments on our proposed
model using the simulator and real-world data. We sample 50 drivers and 500 orders for the training
stage. Each experiment is repeated with 4 different seeds, and the average results with confidence
intervals are presented. To mitigate the sparsity issue in early training, we use the first 100 episodes
for random exploration.
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Algorithm 1 RLD3.

Require: order data, driver pool [N], episode number M AX, episode length 7', learning rate A,
update rate 7, batch size S, group number M, window size .

1: for episode from 1 to M AX do

2 Initialize environment and receive an initial state s.

3 for ¢ from 1 to T and not all drivers are off-line do

4: Generate action a; = m;(0;).

5: Execute action (a1, as, - - - ,an) and observe reward 7 and next state s’.

6 Push (s, a,r, s’, a) into buffer.

7 s=s.

8: for group j from 1 to M do

9: Sample a batch of S samples (s, 0;, a;, i, 8", @) (i € group j) from replay buffer.
10 Update critic by minimizing £(6;).
11: Update actor using sample policy gradient Vg, J.
12: end for
13: Update the target network parameter for each agent i by 6, = 76, + (1 — 7)0..
14:  end for
15: end for

4.1 SIMULATOR

The simulator is built based on real-world designated driver and order datasets from Hangzhou,
a city in China. The datasets include over 3,000 drivers and nearly 13,000 orders per day. Each
order’s information consists of its coordinates and the time of generation, match, completion, and
possible cancellation. Each driver’s information includes their online time, offline time, and online
coordinates. The simulator models the entire process of how the states of drivers and orders evolve.
It includes a driver dispatch module that allows for the repositioning of any idling driver. The
simulator serves as a training environment for RL algorithms and can also evaluate the performance
of various dispatch policies. The detailed introduction of the simulator is in Appendix [A]

4.2 PERFORMANCE COMPARISON

We compare the performances of our algorithm
with existing DRL methods and optimization-
based policies. The benchmark DRL algo-
rithms include independent DDPG (Lillicrap 0959 T 1o

et all 2016), MADDPG (Lowe et al., 2017), 0901  woore
MAMFRL (Yang et al.,[2018)), and multi-agent a5 || Vaooramd
version RND (Burda et al., 2019). These al- e
gorithms are applied with the immediate match

reward and move cost to achieve a trade-off be-
tween match and movement. All DRL algo-
rithms use the same two hidden layers of di-
mension 64 and batch size of 512. The update 0.60
rate is set to 0.01, and the learning rate policy
uses the Adam optimizer (Kingma & Ba, |2015)) 3 200 o P o0 000
with an initial rate of 0.01. All DRL algorithms Episode

are trained for 1000 episodes. In RLD3, the

lasting window size is set to 60 steps, and the

group number is set to 5. Figure 4: Training performance. The order of the
legends in the figure is the same as the order of
performances in the last episode.

Normalized reward
o
3
G

The optimization-based policies included
order-oriented random-walk, Max-throughput
dispatch policy (Robbennolt & Levinl 2023),
and model predictive control (MPC) (Zhang et al.l 2016). To ensure fairness in comparison,
optimization-based methods estimate the current order and driver dynamics based on past history.
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Table 1: Testing performance. The testing performance is evaluated based on the model that has the
best episodic performance, while the IID generalization performance is measured using an additional
testing dataset of 10 episodes that are separated from the training dataset.

Algorithm Testing performance IID generalization
Order Distance (km) | Order Distance (km)

Our Algorithm | RLD3 2372+34 7.0+13 234.0+£39 7.0+13
Taxi-dispatch Deep-dispatch 233.3+23 155+24 229.0+23 151+23

DDPG 186.9£5.2 27.8+3.0 183.1£5.5 27.9+3.1
DRI-based MADDPG 215.7+£3.7 29.6+0.6 212.0+4.4 30.2+£0.5

MADDPG-RND | 228.6 £3.5 65.3+0.7 224.0+3.7 66.3+£0.9

MAMFRL 2243£3.7 343+5.3 221.1£48 349+55

Random 180.1 35.3 178.3 34.4
Optimization Max-throughput | 229.8 73.2 228.8 73.1

MPC 228.1 1.7 228.2 1.5

As shown in Figure @] and Table [T} our model outperforms all other algorithms in terms of the num-
ber of completed orders and had a smaller moving distance compared to methods that had similar
completed order performance. As mentioned in Section [2] RND falls into no-semantic exploration
due to always moving; MADDPG and MAMFRL fail to differentiate the value of different directions
when there are no nearby orders, resulting in a significant amount of random walking. For optimiza-
tion baselines, the Max-throughput policy optimizes the Lyapunov drift by treating the drivers as
servers, which in turn leads to intense competition among drivers for orders. As one of the most
popular algorithms in control theory, MPC outperforms the DRL baselines, except for our proposed
algorithm RLD3.

4.3 INDEPENDENT AND IDENTICALLY DISTRIBUTED (IID) GENERALIZATION

We conducted IID Generalization experiments to assess the robustness and generalization of our
algorithm. In IID Generalization, it is assumed that the data points in both the training and testing
datasets are drawn independently and identically from the same underlying distribution (Kirk et al.,
2023). The generalization performance is then synonymous with the test-time performance from
IID samples. We sampled another 500 orders from the real-world data that were not seen during
training in every episode.

As shown in Table |1} our algorithm did not decline significantly in IID performance and still out-
performed other methods. An interesting phenomenon is that all algorithms demonstrate good IID
generalization performance. This is because the designated driving platform itself exhibits sparsity,
and the hotspots of orders are concentrated. Since we maintain the same initial state for all drivers
and the same order underlying distribution in the IID generalization test, drivers are still able to
effectively transfer the learned hotspot information from previous experiences when moving.

4.4 ABLATION STUDY

We conducted an ablation study on the group-sharing structure, agent interaction design, state en-
coder, and reward design to gain insights into our model’s settings and behavior.

Group Number. The group number is a typical hyperparameter that determines the number of
agent types. A larger group number can better represent the heterogeneity of drivers, but it also
increases the storage pressure and training time. Additionally, a large group number may not learn
well in sparse feedback situations. The results in Table[2]show that the group-sharing structure helps
improve the performance of MADDPG and our proposed algorithm RLD3.

Window-lasting Agent Interaction. Our algorithm uses a window-lasting policy ensemble in the
updating stage to better learn the cross-effects of other agents’ policies. We evaluated the algorithm
without the window average.

As shown in Table 2] the model without the window-lasting interaction cannot learn others’ policies
well. This could be due to high-frequency fluctuations in agent actions that are difficult to learn, as
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Table 2: Ablation study.

Algorithm Order Distance (km)
RLD3 2372+34 | 7.0£13
RLD3 for I group 150.5+9.2 | 21.5+1.2
RLD3 for 50 groups 231.7+£36 | 9.1+£04
MADDPG for 5 groups 223.0£3.6 | 245+1.2
MADDPG-RND for 5 groups 211.5+74 | 56.1+1.8
MAMERL for 5 groups 227.0£10.2 | 6.1 £1.7
RLD3 without window-lasting | 229.5 & 3.2 271+34
RLD3 without state encoder 2322+3.7 | 272£1.6
RLD3 without potential reward | 223.8 3.8 | 6.7+ 1.2
RLD3 without move cost 210.7+£6.7 | 48.3£2.6

well as the fact that single-step actions may not be executed for agents that are not idling. Conse-
quently, the value function underfits when other agents’ policies are ensembled without the window
average.

State Encoder. To capture the distribution information of orders and drivers during the training
stage, we employ an encoder to encode the system’s state. It is worth noting that due to the varying
number of orders and drivers, the dimensions of the state vector are constantly changing, making it
difficult to directly utilize by the value function. Therefore, we extract the distribution information
of orders and drivers separately using the K-Means method.

As shown in Table [2] such a state encoder can assist DRL algorithms in better understanding the
state of the designated driving platform, particularly in extracting driver-order distribution informa-
tion. Additionally, when comparing the performance of our algorithm without the state encoder and
traditional DRL baselines that only utilize observation information, our algorithm still outperforms
them due to the benefits of group-sharing and window-lasting interaction techniques.

Reward Design. We compared different reward components by removing the neighborhood po-
tential reward and move cost, as shown in Table[2] All reward settings were tested with our proposed
group-sharing structure and training process. The dense potential reward not only increases perfor-
mance but also stabilizes the training process, as indicated by the much smaller value function loss.
While the model without the cost falls into a suboptimal situation where only order numbers are
optimized, ignoring distance constraints.

5 CONCLUSION

In this paper, we addressed the problem of driver dispatch in designated driving platforms, which is a
complex scenario with sparsity issues and strict constraints. To capture the spatiotemporal dynamics
of imbalanced demand-supply relations, we proposed a novel multi-agent deep reinforcement learn-
ing (DRL) algorithm based on the decentralized partially observed Markov decision process (Dec-
POMDP) formulation. Our algorithm leverages a group-sharing structure and a specially designed
reward to address the trade-off between sparsity, scalability, and heterogeneity. The window-lasting
agent interaction technique enables our algorithm to handle the long-lasting cross-effect of agents.

Through extensive experiments on a simulator based on real-world data, we demonstrated that our al-
gorithm outperformed traditional optimization-based policies and existing DRL algorithms in terms
of completed order numbers and moving constraints. The results highlight the effectiveness of our
approach in addressing the challenges of the designated driver dispatch problem.

In future work, we aim to make the grouping process trainable by incorporating self-supervised
algorithms such as clustering. This would enable us to better model the interactions between agents
and enhance the performance of our algorithm. Additionally, we are interested in studying the
impact of non-compliance on the performance of driver dispatch, as existing literature often assumes
drivers’ full compliance. Understanding and addressing non-compliance issues can further enhance
the effectiveness of our algorithm in real-world scenarios.
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During the data collection process, we filtered out all personal information regarding designated
drivers and orders and used virtual IDs to prevent the leakage of behavior patterns. In the experi-
mental design, we did not employ any discriminatory strategies towards any specific driver or order.
Our optimization objective is to maximize the gross merchandise volume of the entire platform,
thereby improving service quality while increasing workers’ income.
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To facilitate reproducibility, we provide a detailed description of the models and training details in
the main text. We also list all relevant parameters in the appendix. If the paper is accepted, we will
provide an open-source link in the camera-ready version.
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APPENDIX

This appendix contains 3 sections. The first section provides details about the designated driving
simulator along with the real-world dataset. The detailed hyperparameters and random seeds are
presented in the second section. The third section presents additional experimental results to analyze
the differences between the baseline and our algorithm. This analysis will assist us in better utilizing
different DRL algorithms in other applications.

A  SIMULATOR

As introduced in Sec .1 we have designed and implemented a designated driving simulator based
on real-world datasets to train and evaluate RL algorithms for the designated driver dispatch prob-
lem.

A.1 REAL-WORLD DATASET

The simulator is built on the data from a designated driving platform in Hangzhou, a Chinese city
with a population of tens of millions. It includes over 3,000 drivers and nearly 13,000 orders per
day. Each order’s information consists of the coordinates and the time of its generation, match,
completion, and possible cancellation. Each driver’s information consists of online time, offline
time, and online coordinates. The data collection process does not include personal information
about drivers and orders. To prevent the leakage of driver or passenger behavior patterns, we also
utilize virtual IDs.

A.2 ORDER STATE TRANSFER

For the order process, every appearing order enters the order pool and waits to be matched at a
predetermined real-world generation time. During the waiting period, if an unmatched order is not
answered within a specified period (15 minutes), it enters the timeout state and fails. Additionally,
each order may be canceled via a Poisson Process with a mean patience of 8 minutes if the order is
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Figure 6: Driver state-transfer.

not canceled due to a lack of patience in the real world. This process is memoryless and independent
for each order. However, if an order is canceled by the customer in the real world, the patience of
the order will be set to the actual value. When an unmatched order is matched with a driver, it enters
the on-service state and then transitions to the completion state after the expected completion time.
The whole state transfer for orders is illustrated in Figure [5]

A.3 DRIVER STATE TRANSFER AND DISPATCH

Each driver has a scheduled on-work and off-work time. When the current simulation time exceeds
the online time of a driver in the driver pool, the driver enters the idle state from its actual location
in the real world. Idling drivers can either move to a given location according to the dispatch policy
or match with an order for service. When an idling driver is matched with an order, the driver
immediately moves to pick up the customer. Once the order is completed, the driver returns to the
idle status until the simulation time exceeds their offline time. The whole state transfer for drivers is
illustrated in Figure[f]
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A.4 MATCHING MODULE

The simulator applies a simple two-step driver-searching algorithm to match drivers and nearby
orders. This algorithm called the AB-circle algorithm, is intuitive and is used by the platform from
which the dataset is provided. At each time step, for orders around which there are idling drivers
within the A-circle (with a radius of 3000 meters), the algorithm assigns the order to the closest
driver to minimize pick-up time. After matching all such orders, the algorithm calculates a global
optimal match between orders and drivers within the B-circle (with a radius of 5000 meters). The
optimal match is calculated using the Kuhn-Munkres algorithm (Kuhn, [1955) in a bipartite graph.

B EXPERIMENT DETAILS

All algorithms were trained and tested on the NVIDIA A40 Data Center GPU.

B.1 HYPERPARAMETERS

In order to keep our results as general as possible, we try to avoid hyperparameter tuning and choose
to train all agents with the optimization values suggested by OpenAl. Table [3] contains a summary
of all hyperparameters used and their meaning.

Table 3: Training hyperparameters used for RLD3 and DRL baselines.

Hyperparameter Value  Description

Optimizer Adam  Scheme to update the parameters

Activator GELU Nonlinear activation function in neurons

Learning rate 0.01 Initial optimization learning rate for Adam optimizer
Update rate 0.01 Updating ratio in soft update

Episode number 1000 Number of virtual days in simulator

Episode length 1200 Number of steps in single episode

Exploration number 100 Number of episodes for pure exploration in early experiment
Batch size 512 Batch size during optimization

Replay buffer size 1.2e6  Number of states stored in the replay buffer

Steps per update 60 Optimization interval

Window length 60 The maximal length of lasting interaction

Order number 500 Number of orders in a single episode

Driver number 50 Number of driver

B.2 SIMULATOR RANDOMNESS

To ensure reproducibility, we first sample 5000 orders with random state O from the dataset as our
training order set and sample 50 drivers with random state 1. In the training process, we randomly
sample 500 orders from the training order set for each episode, using the episode index as the random
seed. Additionally, we also utilize the episode index as the random seed for algorithm optimization.

C SUPPLEMENTAL EXPERIMENTS

We provide additional experiments to support the challenges faced by various baselines in designated
driver dispatching problems.

C.1 INSTABILITY ISSUE CAUSED BY SPARSE FEEDBACK

As discussed in Sec [#.2] MADDPG and MAMFRL struggle to learn and differentiate in different
directions when facing sparse feedback, especially in cold areas with few surrounding orders. This
is because, in the absence of shared networks or training experiences among agents, individual
agents receive insufficient feedback from the environment, which hinders their ability to grasp the
distribution of unmatched orders. The same issue also arises in the ablation study with 50 agents.
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Figure 7: Policy loss in the training stage. The policy loss is the negative mean of the Q-values
calculated from the data sampled from the buffer, since we update the actor-network using gradient
descent as introduced in Equation (9). The order of the legends in the figure is the same as the order
of performances in the last episode.

As shown in Figure [/| the convergence performance of policy loss in MADDPG, MAMFRL, and
RLD3 for 50 groups is not as good as RLD3. Since the policy loss is the negative mean of the critic-
network sampling, this indicates that traditional DRL algorithms without data sharing encounter the
problem of Q-value overestimation when the experienced feedback for a single agent is sparse. Con-
sequently, the objective of policy optimization becomes unstable, especially when facing states with
few unmatched orders, making it difficult to differentiate between different directions of superiority
or inferiority.

C.2 OVER-EXPLORATION ISSUE CAUSED BY SPARSE DISTRIBUTION

It is worth noting that the intuition behind RND is to utilize an additional value function neural
network to estimate intrinsic rewards, thereby encouraging the exploration of unknown state-action
pairs and improving the performance of reinforcement learning algorithms in facing sparse feedback.
However, in the context of designated driver dispatch problems, due to the slow movement of drivers
and the significant moving cost involved, such unguided exploration of non-semantic information
would result in agents having excessive moving distances.

As shown in Figure[8] in the early stages of training, due to the issue of over-exploration, almost all
drivers in RND explore states that have not been visited before, resulting in high moving distances.
However, in the later stages of training, due to the misleading effect of data with matching orders
from distant locations, the drivers still fall into suboptimal solutions with long travel distances.
In comparison, for RLD3 without the moving cost version, the drivers’ distances are unrestricted,
making it easy for them to repeatedly visit distant orders from historical data.

Figure [9] illustrates the early exploration process of agent #0 in MADDPG-RND, where multiple
matches with distant orders located at the map boundaries lead to the learned strategy of always
moving west. However, in reality, staying at the location and waiting for potential orders in the east
would be more advantageous for agent #0.

Another interesting phenomenon is that in Table [T of the main text, we tested the performance of
the model with the optimal episodic reward during training. In this case, the optimal performance
of MADDPG-RND occurs during the exploration phase in the early stages of training. Table [
presents the comparison of the final trained models of MADDPG-RND, but its performance is still
unsatisfactory.
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Figure 8: Moving distance in the training stage. The order of the legends in the figure is the same as
the order of performances in the last episode.
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Figure 9: An example of misleading by exploration.

C.3 DRIVER MOVING PATTERN HETEROGENEITY

We analyze drivers’ behavior patterns and moving distances under moving constraints.

There are 5 groups in RLD3. Then the average moving distances of different cost scales are shown
in Figure[T0]
The result shows that with the increase in the move cost, the average moving distance of drivers
decreases. However, it is interesting to note that the drivers’ travel distances do not strictly decrease
in accordance with increasing costs. Additionally, the relationship between travel distance and cost
is not linear.

D EXTRA FIGURES

D.1 SIX-DIRECTION ACTION AND CORRESPONDING NEIGHBORHOOD SEGMENTATION

As introduced in Section 3.1} drivers’ actions include seven discrete actions: stay, due East, North
by 30 degrees east, North by 30 degrees west, due West, South by 30 degrees west, and South
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Table 4: Extended Performance Comparison.

Algorithm Order Distance (km)
RLD3 2372+34 70413
MADDPG-RND (best episodic performance) 228.6 3.5 65.3 £0.7
MADDPG-RND (final version) 187.14+3.3 23.84+0.5
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Figure 10: Move Distance for Different Groups.

by 30 degrees east, as shown in Figure [IT] Then the space of the neighborhood of one driver is
intuitively divided into six segments, each of which is extended by 30 degrees left and right in the
corresponding action direction.

D.2 DETAILED DESCRIPTION OF NEIGHBORHOOD REWARD

As introduced in Section we use potential reward nb to evaluate the potential for the location
of agent ¢ to match nearby orders, so every driver at the same location has the same potential reward,
which evaluates the distances and numbers of nearby unmatched orders and pays more attention on
the closest order. As shown in Figure[T2] the closest order contributes the majority of the potential
value, while other orders in the neighborhood all contribute to the potential reward, and the closer
the order, the greater the potential value. Such space-based reward encourages the driver to get
closer to unmatched orders. As a result, drivers may have a smaller pick-up distance to nearby
orders. Furthermore, as orders have ‘hub-and-spoke’ structure, drivers who are closer to locations
with more orders are also more likely to receive future orders.
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Figure 11: The six action directions and six segments of the neighborhood.

Figure 12: The neighborhood of a driver and the corresponding neighborhood reward nb;.
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