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Figure 1: Underwater image generation with precise appearance control. Compared with ex-
isting methods, the proposed method, named SEADIFF, can precisely control the appearance of un-
derwater images, such as luminance (top), dynamic range (lower left), and color cast (lower right).
The text above each subfigure represents the input attribute to the model, while the label “act.” on
the images indicates the actual appearance attribute of the generated images. It can be observed
that the underwater images, generated from left to right, show an increasing trend in appearance.
Notably, these images were generated multiple times from scratch rather than being edited from a
same image.

ABSTRACT

REBUTTAL20241120 With the advancement of diffusion models, the controlla-
bility of image generation has significantly improved. However, due to the re-
fraction and absorption of light in water, underwater images often exhibit notable
variations in luminance and color cast. This leads to challenges for generative
models pre-trained on terrestrial images, as they struggle to produce underwater
images with a diverse range of these variations, severely limiting the appearance
diversity of generated underwater images. To address this issue, we focus on the
precise control of appearance in underwater images. We model the appearance of
underwater images using three attributes: luminance, dynamic range, and color
cast. We propose a new method, SEADIFF, which introduces a Symmetrical Pa-
rameter Control structure to achieve precise control over the appearance of under-
water images. The proposed method comprises two modules: Appearance Writer,
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which encodes and injects appearance attributes into the U-Net encoder, and Ap-
pearance Reader, which ensures that the generated images align with the desired
appearance by analyzing the feature maps. Experimental results demonstrate that
the proposed SEADIFF method significantly improves control over underwater
image appearance while maintaining image quality, validating its effectiveness in
underwater image generation.

1 INTRODUCTION

In the field of deep learning, data collection and annotation have always been challenging. This is
especially true for underwater images. Due to the difficulties in collecting and annotating underwater
data, existing underwater datasets (Fu et al., 2023; Jiang et al., 2021; Liu et al., 2021; Pedersen et al.,
2019; Song et al., 2023a; Lian et al., 2023) often lack diversity. This is primarily reflected in the
fact that many datasets are composed of similar frames extracted from the same video. As a result,
these datasets exhibit low diversity in appearance such as luminance, dynamic range, and color cast,
and typically only reflect the characteristics of specific water regions at similar depths. This lack
of variability significantly limits the performance of underwater perception models (Xu et al., 2023;
Yeh et al., 2021; Jia et al., 2022; Wang & Xiao, 2023). Meanwhile, the development of generative
models has provided an effective means to expand existing datasets (Fang et al., 2024; Hao et al.,
2024). Generative models have been widely used as a form of data augmentation (Zhang et al.,
2024). A natural approach is to leverage these models to augment underwater datasets and mitigate
the limitations imposed by the low diversity of existing data.

However, this approach does not yield the expected results. Due to the refraction and absorption of
light in underwater environments, underwater images exhibit a wide range of variations and signif-
icant appearance discrepancy compared to terrestrial images (Raveendran et al., 2021; Zhang et al.,
2022; Peng et al., 2023). Specifically, these discrepancy manifest in three main aspects: 1) lumi-
nance: As depth increases, light attenuates rapidly, resulting in gradually decreasing brightness. 2)
dynamic range: Suspended particles in the water scatter light, causing the image’s dynamic range
to vary over a wide range in different water conditions. 3) color cast: Due to the different absorp-
tion rates of light wavelengths in water, longer wavelengths like red attenuate faster than shorter
wavelengths like blue and green. This causes underwater images at greater depths to typically dis-
play a blue shift or green shift, while images in shallower areas maintain relatively normal colors.
These significant variations in appearance are exactly why generative models pre-trained on terres-
trial images (Rombach et al., 2022; Podell et al., 2023) perform poorly when generating underwater
images.

To mitigate the negative impact of these appearance discrepancies, our research focuses on precise
control of underwater image appearance. We model the appearance of underwater images using
three parameters: luminance, dynamic range, and color cast, referred to as appearance attributes,
and turn the appearance control of underwater images into a parameter-controlled conditional gen-
eration problem.

To address this issue, we propose a straightforward yet effective solution called SEADIFF. Our ap-
proach employs a Symmetrical Parameter Control framework to achieve precise control over the ap-
pearance of underwater images. This framework consists of two main modules: Appearance Writer
(A-Writer) and Appearance Reader (A-Reader). 1) The A-Writer module encodes appearance at-
tributes and utilizes a cross-attention mechanism (Vaswani et al., 2017) to inject these attributes into
the U-Net encoder (Ronneberger et al., 2015) . This enables the model to dynamically adjust for
appearance discrepancies, significantly enhancing the visual consistency and realism of the gener-
ated underwater images. 2) The A-Reader module reads the feature maps from each layer of the
U-Net decoder, predicting appearance attributes and providing deep supervision. This ensures that
the appearance attributes predicted at different layers align with the expected appearance, maintain-
ing high consistency between the generated images and the desired attributes. SEADIFF, through
the combined use of these modules, effectively improves the controllability of underwater image
appearance. As shown in Fig. 1, the proposed SEADIFF significantly enhances precise control over
underwater image appearance while maintaining image quality and layout controllability.
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In summary, the contributions of this paper are as follows:

1. We focused on the appearance discrepancies of underwater images and modeled them as
three attributes: luminance, dynamic range, and color cast.

2. We proposed the Appearance Writer (A-Writer) module, which encodes appearance at-
tributes and utilizes a cross-attention mechanism to inject these attributes into the U-Net
encoder, significantly enhancing the visual consistency and realism of underwater images.

3. We proposed the Appearance Reader (A-Reader) module, which reads feature maps from
each layer of the U-Net decoder, analyzes these features layer by layer to predict appearance
attributes, and provides deep supervision to ensure that the generated images align with the
expected appearance.

2 RELATED WORK

Diffusion models. Diffusion models have shown strong progress as generative models in recent
years. Early models like DDPM (Ho et al., 2020) and DDIM (Song et al., 2020) generate clear
images by progressively denoising Gaussian noise. This process transforms noise into high-quality
images. Diffusion models are widely applied in tasks such as text-to-image synthesis (Nichol et al.,
2021; Ramesh et al., 2022), image-to-image translation (Saharia et al., 2022a;b), image inpainting
(Wang et al., 2022), and text-guided image editing (Nichol et al., 2021; Hertz et al., 2022). How-
ever, they struggle with underwater image generation due to challenges like light refraction and
absorption.

Layout-to-image generation This area focuses on generating realistic images from layout infor-
mation. Early methods like Layout2Im (Zhao et al., 2019) combined VAE (Kingma & Welling,
2013) and LSTM, using adversarial loss for realism and consistency. Recent approaches using
GANs, such as LostGAN (Sun & Wu, 2019) and LAMA (Li et al., 2021), improve image qual-
ity. LAMA introduces a local perceptual mask adaptation module for handling overlapping object
masks. Diffusion models have also made progress in this area. GLIGEN (Li et al., 2023) adds
gated self-attention layers to a pre-trained diffusion model for better layout control, while Control-
Net (Zhang et al., 2023) improves detail precision by incorporating semantic segmentation masks.
ReCo (Yang Z & et al., 2023) uses both text and bounding boxes for text-to-image generation, and
GeoDiffusion (Chen et al., 2023) supports geometric control with foreground prior re-weighting.
However, these methods struggle with precise appearance control in underwater image generation,
especially in terms of brightness, contrast, and color cast.

Underwater image generation Underwater image generation aims to create realistic underwater
scenes. Early methods applied color correction techniques (Reinhard et al., 2001; Nguyen et al.,
2014) to existing images. More recent work, such as GAN-based models (Liu et al., 2018), generates
underwater images from terrestrial ones. (Desai et al., 2021) proposes a method that uses depth
data to generate underwater images. Research using diffusion models (Zhang et al., 2024) has also
explored generating realistic underwater images with terrestrial depth data. Additionally, (Desai
et al., 2024) incorporates downwelling irradiance and direct light scattering for realistic synthetic
underwater images. However, these methods still lack control over underwater image appearance.

3 PROBLEM STATEMENT

In this section, we first introduce the basic formulation of the problem discussed in Sec. 3.1. Then,
we provide a detailed explanation of the three appearance attributes we modeled, including their
computation methods in Sec. 3.2.

3.1 FORMULATION

The problem we focused on includes two aspects of control: layout control and appearance control.

As shown in Fig. 2, let L = {(ci, bi)Ni=1} be a layout with N bounding boxes, where ci ∈ C is
the class of the bounding box and bi = [xi, yi, wi, hi] is the position and size of the bounding box
in the image lattice (H × W ). Let KD = {kd}d∈D be the appearance attributes, where D =

3
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Figure 2: The pipeline for controlling appearance in underwater image generation. Given the
coarse information in the layout L and the appearance attributes KD, we train a model G to generate
realistic underwater images IG .

{luminance, dynamic range, color cast}. The goal of the problem is to build a model G, which can
generate a realistic underwater image IG ∈ R3×H×W , given the coarse information in the layout L
and the appearance attributes KD.

3.2 APPEARANCE ATTRIBUTE

As discussed in the introduction, underwater images differ significantly from their terrestrial coun-
terparts due to the unique effects of light refraction and absorption in aquatic environments. Specif-
ically, these differences manifest in three primary aspects: luminance, dynamic range, and color
cast. Understanding and controlling these attributes are crucial for generating realistic underwater
images, as conventional models trained on terrestrial datasets often struggle to replicate the under-
water appearance accurately. These challenges arise from the inherent discrepancies in appearance
between terrestrial and underwater environments.

To address these challenges, we quantitatively model the three primary aspects as appearance at-
tributes:

Luminance. Due to the rapid attenuation of light with increasing depth, underwater images exhibit
significantly lower luminance compared to terrestrial images. To quantify this effect, we calculate lu-
minance as follows: kL = 1

N

∑N
i=1 Ii, where N is the total number of pixels, and Ii is the grayscale

value of the i-th pixel. This formulation captures the overall light intensity of the underwater image,
reflecting decreased visibility at greater depths.

Dynamic range. In underwater environments, light scattering caused by suspended particles re-
duces dynamic range in images, making them appear flatter than terrestrial images. To quantify this
effect, we calculate dynamic range as follows: kDR = 1

N

∑N
i=1(Ii − Ī)2, where Ī represents the

average grayscale value of the image. This metric measures the variation in brightness, capturing
the extent to which light scattering affects the dynamic range in underwater images.

Color cast. Due to the differential absorption of light wavelengths in water, longer wavelengths,
such as red, attenuate more rapidly than shorter wavelengths like blue and green. This results in
underwater images often appearing biased towards blue or green hues. We express color cast as
follows: kCC = 1

N

∑N
i=1 Hi, where Hi represents the hue value of the i-th pixel. This attribute

describes how the colors in the image deviate from the actual scene colors, reflecting the color
distortion caused by underwater conditions.

By accurately modeling these attributes, we transform the control of underwater image appearance
into a parameter-based conditional generation problem. This approach allows us to effectively ad-
dress discrepancies in appearance and generate more realistic underwater images.

4
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Figure 3: Model architecture of our SEADIFF. Our model extends the capability of layout-
controllable generation by incorporating appearance attributes as input, allowing for simultaneous
control over both layout and appearance. This model adds a Symmetrical Parameter Control com-
ponent to an existing layout-controllable generation framework, which includes two modules: Ap-
pearance Writer (A-Writer) and Appearance Reader (A-Reader). A-Writer encodes the appearance
attributes and injects them into the U-Net through Cross-Attention, while A-Reader reads the cor-
responding features from the U-Net and predicts the appearance attributes. A-Writer and A-Reader
form a symmetric structure that jointly controls the appearance attributes.

4 SEADIFF

4.1 PRELIMINARY: CONDITIONAL DIFFUSION MODELS

Conditional diffusion models represent a significant advancement over traditional generative models
such as GANs (Goodfellow et al., 2014) and VAEs (Kingma & Welling, 2013). These models
learn the underlying data distribution through a T -step denoising process, beginning with normally
distributed noise. This approach can be conceptualized as the inverse process of a fixed-length T
Markov chain (Ho et al., 2020).

In this framework, the model ϵθ(xt, t) is trained to reconstruct the clean data x from a noisy input
xt at a specific time step t ∈ {1, ..., T} by estimating the noise added at that time. The training
objective is defined as:

LDM = Ex,ϵ∼N (0,1),t∥ϵ− ϵθ(xt, t)∥2. (1)

An extension of this concept is found in Latent Diffusion Models (LDM) (Rombach et al., 2022),
which perform the diffusion process in the latent space of a pre-trained Vector Quantized Variational
AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017). In LDM, the input image x is first encoded
into the VQ-VAE latent space, yielding z = E(x) ∈ RH′×W ′×D′

. This latent representation serves
as the clean sample in Eqn. 1.

To facilitate conditional generation, LDM introduces a conditional encoder τθ(·), modifying the
objective to:

LLDM = EE(x),ϵ∼N (0,1),t∥ϵ− ϵθ(zt, t, τθ(y))∥2, (2)

where y represents the condition applied, such as text in the context of LDM (Rombach et al., 2022).

4.2 METHOD OVERVIEW

The core of our proposed SEADIFF method lies in using Symmetrical Parameter Control to achieve
precise control over underwater image appearance. It consists of two main modules: A-Writer and
A-Reader. The A-Writer module (see Sec. 4.3) encodes appearance attributes and injects them into
the U-Net via a cross-attention mechanism, allowing for fine control over the image features. Mean-
while, the A-Reader module (see Sec. 4.4) predicts appearance attributes by reading feature maps

5
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from the U-Net decoder, providing deep supervision to ensure better alignment with the desired at-
tributes and improving image quality. The combination of these modules enhances both appearance
and layout control. For layout control, we use a grid-based method, where each grid position is
represented by a unique position token encoded using the CLIP text encoder (Radford et al., 2021).

4.3 APPEARANCE WRITER

We utilize the Appearance Writer (A-Writer) module to regulate appearance in the diffusion model.
In this work, we adopt a finely-tuned Vision Transformer (ViT) (Dosovitskiy et al., 2020) as the de-
sign for A-Writer to meet the control requirements for appearance. Experimental results in Sec. 5.4
demonstrate that this design effectively models appearance discrepancies.

As illustrated in Fig. 3, a shallow ViT is incorporated after each layer of the U-Net encoder to
model these discrepancies. The appearance attributes KD are initially encoded into tokens using an
attribute tokenizer:

w = Tokenizer(KD). (3)

Specifically, the attribute tokenizer is implemented as a shallow MLP that maps the appearance
attributes KD ∈ R|D|×1 into a vector representation w ∈ R|D|×dk , which serves as the token. Here,
|D| refers to the number of appearance attributes, and dk denotes the dimension of the keys in the
cross-attention mechanism.

Next, the encoded tokens w are injected into the U-Net through cross-attention (Vaswani et al.,
2017):

z′ = Softmax
(
QKT

√
dk

)
V, (4)

where Q = WQz, K = WKw, and V = WV w. The feature maps z and z′ represent the U-Net
feature maps before and after the update via the A-Writer module, respectively. The attention mech-
anism enables the diffusion model to take appearance attributes into account during the generation
process.

During the fine-tuning process, we froze the U-Net encoder (Ronneberger et al., 2015) and trained
only the proposed A-Writer along with the K and V parameters in the cross-attention mechanism.
This approach enhances the model’s ability to control the appearance of underwater images while
preserving the quality of the generated results, enabling improved appearance control without com-
promising image fidelity.

4.4 APPEARANCE READER

The Appearance Reader (A-Reader) is another key component of our method. It aims to predict
appearance attributes based on the feature maps extracted from each layer of the U-Net decoder.
Inspired by (Luo et al., 2024), A-Reader analyzes feature maps at various levels to capture the
intricate patterns and variations associated with appearance.

As shown in Fig. 3, A-Reader first extracts the corresponding feature maps Z = {zi}UL
i=1 from each

layer of the U-Net decoder, where each feature map zi has dimension of RHi×Wi×Ci . Here, Hi,
Wi, and Ci represent the height, width, and number of channels, respectively, of the feature map at
layer i, and UL denotes the total number of layers in the U-Net decoder.

Then, each feature map is resized to obtain standardized feature maps {zsi }
UL
i=1 using the interpola-

tion function, and these standardized feature maps are concatenated to form the aggregated feature
map ZA:

ZA = Concat
(
{Interpolate(zi)}UL

i=1

)
. (5)

After obtaining the aggregated feature map ZA, we employ a decoder consisting of a Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) and a multilayer perceptron (MLP) to predict the appearance
attributes K ′

D:
K ′

D = Dec(ZA) = MLP(Self-Attn(ZA)). (6)

The predicted appearance attributes K ′
D = {k′d}d∈D are then compared with the ground truth KD =

{kd}d∈D to calculate the A-Reader loss LAR, obtained by computing the mean squared error (MSE)

6
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between KD and K ′
D:

LAR =
1

|D|
∑
d∈D

(kd − k′d)
2. (7)

The final loss L is defined as the sum of the LDM (Rombach et al., 2022) loss LLDM and the
A-Reader loss LAR, expressed as L = LLDM + LAR.

During the training process, A-Reader is jointly optimized with the rest of the model to ensure the
consistency and accuracy of the predictions. The combination of A-Writer and A-Reader enables
our method to control appearance in underwater images more effectively and accurately, providing
better results in various applications.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Dataset. Our experiments were conducted on the RUOD dataset (Fu et al., 2023). To enhance
the validity of our experiments, we annotated the appearance attributes introduced in Sec. 3.2 based
on the RUOD dataset (Fu et al., 2023). However, the dataset contains multiple frames from the
same video, leading to potential data leakage between training and testing sets due to the similarity
of adjacent frames. To address this issue, we re-divided the RUOD dataset. Specifically, we used
the first 10,000 images as the training set and the following 4,000 images as the testing set. Since
the remaining 4,000 images still contained many similar images, we randomly selected 310 images
from this subset for the final test set.

Optimization. We initialized our model using the pre-trained Stable Diffusion v1.5 model, which
leverages the LDM (Rombach et al., 2022) text-to-image diffusion framework. All parameters in the
U-Net (Ronneberger et al., 2015) were frozen, except for the K and V matrices. For training, we
used the AdamW (Loshchilov & Hutter, 2019) optimizer, with a batch size of 32. The learning rate
was set to 4 × 10−5 for the U-Net and 3 × 10−5 for the CLIP text encoder (Radford et al., 2021).
All experiments were conducted on dual NVIDIA L40 GPUs, resulting in a total training time of 12
hours.

Comparative experimental setting. Given that our focus is on controlling both appearance and
layout, and considering that most existing generative models do not support direct control over ap-
pearance, so we employ the layout-controllable generative models as comparative methods. We
utilize their text interface to input appearance attributes. We construct the text prompts using the
following template: “brightness: kL, color cast: kCC, contrast: kDR.” Fur-
thermore, all training hyper-parameters are aligned with those specified in the original papers for the
comparative methods. Furthermore, we do not include certain layout-controllable generative models
that do not support text input, such as the classical work LayoutDiffusion (Zheng et al., 2023), in
our comparisons.

Evaluation metrics. We use five metrics to evaluate the model’s performance in terms of appear-
ance controllability, generation quality, and layout controllability. For appearance controllability,
we propose the Appearance MSE (A-MSE) metric, which measures the mean squared error (MSE)
between the generated images and real images across the luminance, dynamic range, and color cast
attributes. The A-MSE is defined as A-MSE = 1

|D|
∑

d∈D(kd−k′d)
2. Generation quality is assessed

using SSIM, PSNR , and FID (Heusel et al., 2017). Layout controllability is evaluated using the
YOLO Score (Li et al., 2021). Specifically, we employ a YOLOv8 model (Reis et al., 2023b) that
has been trained on the RUOD dataset (Fu et al., 2023) to compute the mean average precision at a
50% intersection over union (mAP@50) for the generated images.

5.2 QUALITATIVE RESULTS

In this section, we provide a qualitative evaluation of SEADIFF, comparing it with several existing
methods on the RUOD dataset (Fu et al., 2023). We focus on three appearance attributes: luminance,
dynamic range, and color cast. The comparison is visualized in three columns: the first shows the

7
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Figure 4: Visualization of comparison with state-of-the-art methods on the RUOD dataset. We
present three representative cases of appearance attributes. The first column demonstrates the lumi-
nance attribute, ranging from dark to bright. The second column depicts the dynamic range attribute,
transitioning from low to high. The third column illustrates the color cast attribute, varying from
green-tinted to blue-tinted images. The label “act.” on each image indicates the actual appearance
attribute of the generated images. It can be observed that SEADIFF provides superior control over
appearance while maintaining comparable image quality and layout consistency compared to exist-
ing methods.

variation in luminance (dark to bright), the second in dynamic range (low to high), and the third in
color cast (green to blue).

Through a qualitative comparison with existing generative methods, we demonstrate the advantages
of SEADIFF in underwater image generation tasks, as shown in Fig. 4. The results indicate that
A-Reader generates images that are significantly closer to the GT images, particularly across the
dimensions of luminance, dynamic range, and color cast. These findings suggest that SEADIFF
offers more precise control over appearance attributes.

Unlike methods such as LayoutDiffuse (Cheng et al., 2023), which produce reasonably good object
layouts but show noticeable deviations in luminance and dynamic range from the ground truth im-
ages, our method not only preserves an accurate object layout but also achieves more precise control
over these attributes, resulting in generated images that closely resemble real underwater scenes.

8
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Table 1: Quantitative results on RUOD dataset. The proposed SEADIFF demonstrates signifi-
cant improvements across all evaluation metrics, showcasing enhanced appearance control, image
quality, and layout consistency compared to previous work. “Input Res.” refers to the input image
resolution. *: represents the real image Oracle baseline.

Method Input Res. A-MSE ↓ SSIM↑ PSNR↑ FID↓ YOLO Score↑
Oracle* - - - - - 0.768

ReCo 256×256 2047.4 0.086 10.602 73.263 0.005
GLIGEN 512×512 2122.2 0.132 10.490 69.161 0.020

InstanceDiffusion 512×512 2199.1 0.104 10.449 67.768 0.010
GeoDiffusion 256×256 1653.8 0.259 12.109 92.247 0.389
LayoutDiffuse 512×512 5169.1 0.107 9.248 84.395 0.274

SEADIFF (Ours) 256×256 375.1−1278.7 0.290+0.031 14.238+2.129 64.259−3.509 0.537+0.148

5.3 QUANTITATIVE RESULTS

Quantitative results on RUOD dataset. Table 1 presents a quantitative comparison of our pro-
posed SEADIFF against existing methods on the RUOD dataset (Fu et al., 2023), showcasing sig-
nificant improvements across all evaluation metrics, especially A-MSE. Specifically, our method
achieved a minimum A-MSE value of 375.1, indicating outstanding appearance control capability,
outperforming all baseline methods and reducing the appearance controllability metric by over 1200
compared to GeoDiffusion (Chen et al., 2023). Moreover, our method excels in image quality and
spatial controllability, achieving the highest SSIM and PSNR values, as well as the best FID score
by reducing it by at least 3.509, thus enhancing visual realism and diversity. Furthermore, our
model attained the highest YOLO Score of 0.537, indicating that the integration of the appearance
control module not only maintains but also enhances layout controllability.

Zero-shot quantitative results on UTDAC dataset. Table 2 presents the zero-shot performance
of our proposed SEADIFF on the UTDAC dataset, compared to state-of-the-art methods. Notably,
our approach exhibits outstanding generalization capabilities, consistently outperforming across
all evaluation metrics without requiring any fine-tuning on the UTDAC dataset. Specifically, our
method achieves a A-MSE value of 83.7, significantly exceeding all competing methods and show-
casing its robust appearance control in unseen scenarios.

Overall, these results highlight the effectiveness of SEADIFF. The proposed A-Reader effectively
enhances appearance controllability without compromising image quality or layout control. Quanti-
tative results underscore the robustness and effectiveness of SEADIFF in achieving superior perfor-
mance across multiple metrics.

Table 2: Zero-shot Quantitative results on UTDAC dataset. The proposed SEADIFF excels in
the zero-shot setting, outperforming prior methods in appearance control, image quality, and layout
consistency.

Method Input Res. A-MSE ↓ SSIM↑ PSNR↑ FID↓
ReCo 256×256 1149.3 0.173 14.199 149.677

GLIGEN 512×512 2105.1 0.182 12.579 196.895
InstanceDiffusion 512×512 2540.0 0.142 12.307 217.559

GeoDiffusion 256×256 658.8 0.617 16.903 144.576
LayoutDiffuse 512×512 2906.0 0.164 12.885 186.084

SEADIFF (Ours) 256×256 83.7−575.1 0.604 19.752+2.849 88.230−56.347

5.4 ABLATION STUDIES

To validate the contributions of A-Writer and A-Reader in our proposed method, we conducted a
series of ablation studies, summarized in Table 3. Without any components, the appearance control
capability was limited. Introducing A-Writer led to a significant decrease in the A-MSE, accompa-
nied by improvements in SSIM and PSNR, indicating enhanced image quality. The use of A-Reader
also yielded some improvements, though it was less effective in appearance control than A-Writer.
Combining both components led to a further reduction in the A-MSE to 375.1, alongside improve-
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Table 3: Ablation study of the proposed modules A-Writer and A-Reader. The table presents
the quantitative evaluation metrics for different configurations, demonstrating the impact of each
module on performance. “Param.” refers to the number of model parameters, and “Inf. Time.”
denotes the average inference time per image.

A-Writer A-Reader Param. Inf. Time A-MSE ↓ SSIM↑ PSNR↑ FID↓ YOLO Score↑
1117M 3805ms 1359.2 0.269 12.910 76.589 0.451

✓ 1211M 4455ms 397.8 0.284 14.191 64.814 0.457
✓ 1124M 3810ms 490.2 0.270 13.994 67.740 0.462

✓ ✓ 1232M 4846ms 375.1−984.0 0.290+0.021 14.238+1.327 64.259−12.331 0.537+0.086

Table 4: Downstream Task Results on the RUOD Dataset. The table presents the performance of
four representative object detection models trained on two datasets: RUOD and RUOD + SEADIFF.
The results demonstrate that models trained on RUOD + SEADIFF consistently outperform those
trained solely on RUOD, validating the practical value of SEADIFF-generated augmented data for
improving downstream task performance.

Data YOLO Libra R-CNN Boosting R-CNN Faster R-CNN
mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP

RUOD 0.567 0.421 0.698 0.492 0.764 0.541 0.692 0.468

RUOD + SEADIFF 0.668 0.502 0.771 0.525 0.781 0.579 0.718 0.470

ments in SSIM, PSNR, FID (Heusel et al., 2017), and YOLO Score (Li et al., 2021), highlighting a
significant enhancement in performance.

These findings underscore the critical roles of A-Writer and A-Reader in enhancing appearance con-
trollability, with their combination delivering the best overall performance. This emphasizes their
complementary advantages in generating high-quality underwater images and precise appearance
control.

5.5 DOWNSTREAM TASK

Data augmentation. To validate the practical value of the generated images, we used SEADIFF to
generate an augmented dataset, RUOD + SEADIFF, based on the RUOD dataset. In the experiment,
we used two sets of training data: one consisting of 10,000 real underwater images from the RUOD
dataset, and the other combining 10,000 augmented images generated by SEADIFF with the RUOD
dataset to form the RUOD + SEADIFF dataset. These augmented images exhibit rich variations in
brightness, dynamic range, and color cast. We conducted experiments on four representative under-
water object detection models as well as general object detection models, such as YOLOv8 (Reis
et al., 2023a), Libra R-CNN (Pang et al., 2019), Boosting R-CNN (Song et al., 2023b), and Faster
R-CNN (Ren et al., 2016). All models were trained on both training datasets and evaluated using
the RUOD test set. The experimental results (see Table 4) show that models trained with the SEAD-
IFF-augmented data (RUOD + SEADIFF) significantly outperform those trained only on the RUOD
dataset in terms of performance on the RUOD test set. Visual results of the detectors on downstream
tasks can be found in Appendix A.

6 CONCLUSION

This paper addresses the challenge of controlling underwater image appearance through three key
attributes: luminance, dynamic range, and color cast. We introduce SEADIFF, a novel method that
includes two main components: the Appearance Writer (A-Writer) and the Appearance Reader (A-
Reader). Our experimental results demonstrate that SEADIFF enhances control over underwater
image appearance, allowing precise adjustments in three key attributes while maintaining image
quality and layout consistency.

Limitations. Although this study yields promising results, it only focuses on the appearance at-
tributes of luminance, dynamic range, and color cast, without addressing the complex factors of
underwater environments. Future research should explore how to model these factors for more pre-
cise control over underwater images.
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APPENDIX

A MORE QUALITATIVE RESULTS

Fixing the layout. Since our method focuses primarily on controlling appearance, we fix the layout
and generate images with different appearance attributes for the same layout. Specifically, we set
luminance to {40, 64, 88, 112, 136, 160}, dynamic range to {10, 58, 106, 154, 202, 250}, and color
cast to {40, 56, 72, 88, 104, 120}. These values are chosen because the image attributes in the dataset
fall within these ranges, ensuring that the control aligns with real-world conditions. As demonstrated
in Fig. 5, SEADIFF can precisely control image generation based on these varying appearance at-
tributes, maintaining authenticity and consistency with real-world data.

More generated images. We visualize additional images generated by our SEADIFF method on the
test set of RUOD dataset in Fig. 6, to further demonstrate its effectiveness in precisely controlling
the appearance of underwater images. The generated images closely match the real images, main-
taining spatial layout and ensuring high quality while achieving accurate control over appearance
attributes. Upon observation, it is evident that the various attributes of the generated images are
largely consistent with those of the real images, highlighting the robustness of our approach.

Enhancing Downstream Tasks. We conducted experiments on four representative object detection
models, including the classic underwater detection model Boosting R-CNN, as well as the widely
used general object detection models YOLO, Libra R-CNN, and Faster R-CNN. To validate the
effect of the augmented data generated by SEADIFF on downstream tasks, we used two sets of
training data: one consisting of 10,000 real underwater images from the RUOD dataset, and another
combining the RUOD dataset with 10,000 augmented images generated by SEADIFF, forming the
RUOD + SEADIFF dataset. The experimental results show that the models trained on RUOD +
SEADIFF significantly outperform those trained on the RUOD dataset alone in terms of detection
performance. As shown in Fig. 7, models trained with augmented data consistently show improved
object detection accuracy, further validating the practical value and potential of images generated by
SEADIFF for downstream tasks.

B MORE DISCUSSION

General parameter control for image generation. While our method primarily emphasizes con-
trolling the appearance of underwater images, its core algorithms and control mechanisms can be
effectively extended to parameter control in general image generation. This extension is of con-
siderable practical significance, as the control parameters we employ—such as brightness, contrast,
and color cast—are applicable across a wide range of image types. By leveraging cross-attention
mechanisms and deep supervision techniques, our approach achieves precise control over the ap-
pearance of underwater images, and these techniques hold great potential for application in various
other domains.

C MORE APPLICATION

Data generation. Our model possesses the capability to exert a broad range of control over appear-
ance, making it an effective tool for data generation. In the field of underwater image processing,
existing datasets often suffer from insufficient samples and a lack of diversity. Our model addresses
these shortcomings by generating high-quality underwater images. Specifically, the model simulates
diverse underwater environments by adjusting various generation parameters, such as lighting condi-
tions, color distribution, and object characteristics. This flexibility not only enhances the realism of
the generated images but also encompasses a wide range of potential underwater scenarios, enrich-
ing the existing dataset. The generated images can be utilized for training and validating underwater
algorithms, improving their adaptability to different environmental changes, thereby enhancing al-
gorithm performance.

Enhancing Existing Data. Real underwater datasets are often composed of continuous video
footage collected from the same marine area, resulting in relatively low diversity and minimal ap-
pearance variation in the images. Consequently, these datasets can only represent specific environ-
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mental characteristics, limiting the robustness of model training. Given that our model has been
trained on a large-scale appearance dataset, it possesses the ability to generate diverse appearances.
We can fine-tune this model on real datasets with lower diversity, enabling it to produce images
similar to those in these datasets while retaining control over a wide range of appearance variations.
In this way, we can generate numerous images that resemble the original dataset, while introducing
diverse appearances, effectively augmenting the existing dataset and enhancing its utility in deep
learning model training.
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Fixed Layout: Example Output:

Figure 5: Visualization of changing appearance attributes while fixing the layout. For the top
two images, the left one is the input layout and the right one is the example output. For the following
six images, they correspond to different color cast attributes that increase sequentially. For each sub-
image, the horizontal coordinate is luminance and the vertical coordinate is dynamic range. It can be
seen that the proposed SEADIFF can precisely control the appearance of underwater images within
a certain range.
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Figure 6: More results on the test set of the RUOD dataset. This figure showcases additional
images generated by our SEADIFF method. The first column displays the appearance attributes,
while the second and third columns show the ground truth (GT) images and generated images,
respectively. Each generated image closely resembles its corresponding real image, illustrating the
method’s effectiveness in controlling the appearance of underwater images. The generated images
maintain layout and high quality, with attributes that largely align with the real images, underscoring
the robustness of our approach.
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Figure 7: The benefits of SEADIFF data augmentation for underwater object detection tasks.
By comparing the original training set RUOD with the augmented dataset (RUOD + SEADIFF),
it can be observed that models trained on the augmented dataset achieve superior performance in
underwater object detection tasks. This indicates that SEADIFF, as a data augmentation method, not
only effectively improves data quality but also plays a positive role in enhancing the performance of
downstream tasks.
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