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Abstract

Causal inference is essential for developing and evaluating medical interventions,
yet real-world medical datasets are often difficult to access due to regulatory bar-
riers. This makes synthetic data a potentially valuable asset that enables these
medical analyses, along with the development of new inference methods them-
selves. Generative models can produce synthetic data that closely approximate real
data distributions, yet existing methods do not consider the unique challenges that
downstream causal inference tasks, and specifically those focused on treatments,
pose. We establish a set of desiderata that synthetic data containing treatments
should satisfy to maximise downstream utility: preservation of (i) the covariate
distribution, (ii) the treatment assignment mechanism, and (iii) the outcome genera-
tion mechanism. Based on these desiderata, we propose a set of evaluation metrics
to assess such synthetic data. Finally, we present STEAM: a novel method for
generating Synthetic data for Treatment Effect Analysis in Medicine that mimics
the data-generating process of data containing treatments and optimises for our
desiderata. We empirically demonstrate that STEAM achieves state-of-the-art per-
formance across our metrics as compared to existing generative models, particularly
as the complexity of the true data-generating process increases.

1 Introduction

Access to medical data is crucial for advancing healthcare research, enabling novel medical discoveries
and providing a testbed for developing new analytical approaches, such as machine-learning-based
causal inference methods [6, 94, 28]. However, regulations restrict access to patient data for research
purposes [3, 92]. Synthetic data, which is gaining significant recognition in medical literature [48],
offers a way to increase data availability, and recent initiatives are aiming to generate synthetic data
for broad ‘health data research’ [20, 72], such as testing of learning algorithms [33] and replication of
clinical trial results [17]. Importantly, the promise of synthetic data hinges on its ability to preserve
information critical to relevant downstream tasks. The majority of recent literature [7] focuses on
downstream predictive tasks, shaping standard evaluation and generation practices to this setting.

Medical data typically contain treatment assignment variables which invite unique approaches to
downstream analysis, beyond standard prediction [28]. Data containing treatments are typically anal-
ysed via causal inference (e.g. treatment effect estimation methods) to examine causal relationships
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between covariates, treatments, and outcomes. Despite this, many works in synthetic data which use
medical data for motivation and validation [13, 58, 98, 10] employ standard, prediction-oriented, gen-
eration and evaluation techniques (see Appendix A for more details). Such failure to acknowledge the
likely downstream uses of synthetic data containing treatments leads to low-quality data generation,
and evaluation via misaligned metrics.

Evaluation. Standard synthetic data evaluation involves holistic statistical comparisons of synthetic
and real data (Table 1). In this paradigm, causal inference tasks are overlooked, as treatments
are handled like any other variable, limiting the relevance of such assessment in medical settings.
To illustrate this, consider the following key questions that an analyst working with a synthetic
medical dataset, Ds, may ask: Q1 How representative are the patient covariates in Ds?; Q2 How
accurate are the treatment assignment decisions in Ds?; and Q3 How much error might be introduced
in treatment effect estimates derived from Ds? These questions require differentiation between
covariates, treatments, and outcomes, and they cannot be answered with current evaluation protocols.

Generation. Generic generative models (Table 2) are typically designed to minimise the divergence
between real and synthetic joint distributions. In doing so, these models overlook the specific causal
relationships between covariates, treatments, and outcomes that are essential for downstream medical
applications. Existing causal generative models, on the other hand, generally assume access to a
causal graph that describes all causal relationships between variables, which is often unrealistic in
complex domains like medicine, where true causal structure is rarely known [27].

In this work we address these limitations by proposing novel approaches to evaluation and generation
of synthetic data containing treatments, operating under reasonable assumptions and explicitly
considering the downstream use of such data. In doing so, we make the following contributions:

1. Desiderata: By examining typical medical analyses conducted on data containing treatments,
we establish a set of desiderata that synthetic data should satisfy in this context (§4).

2. Evaluation: We show that existing synthetic data evaluation metrics are inadequate in this
setting, as they do not measure adherence to these desiderata. As a remedy, we propose
a principled set of metrics derived from our desiderata, allowing meaningful evaluation of
synthetic data containing treatments (§5).

3. Generation: We propose STEAM, a method for generating synthetic data that augments
generic generative models to encode inductive biases to optimise for our desiderata (§6).

4. Empirical analysis: We demonstrate that STEAM generates state-of-the-art synthetic data con-
taining treatments, particularly as the real data-generating process (DGP) grows in complexity,
and in high-dimensional scenarios (§7).2

2 Problem formulation

Setup. We consider a data owner with access to observational or experimental real data
Dr = {(X(i)

r ,W
(i)
r , Y

(i)
r )}ni=1 sampled from a population P , where X

(i)
r ∈ X is a vector of

d binary or continuous covariates, W (i)
r ∈ {0, 1} is a binary treatment assignment, and Y

(i)
r ∈ Y is a

binary or continuous outcome. We refer to the set of all variables in Dr as V = {X1, ..., Xd,W, Y }.
We denote the propensity score with π(x) = PW |X(W = 1 | X = x).

Objective. We wish to enable the release of synthetic data to downstream users with various
analysis goals, such as estimation of propensity scores, average treatment effects (ATEs), and
conditional average treatment effects (CATEs). To do so, we aim to generate synthetic data
Ds = {(X(i)

s ,W
(i)
s , Y

(i)
s )}ni=1 from a distribution Q and evaluate how well Ds captures the

information in Dr that is relevant to likely downstream tasks with a set of metrics M(Dr,Ds).

3 Related work

Evaluation. Evaluation of synthetic tabular data, the modality we focus on here, has two common fo-
cuses: resemblance and predictive utility [73]. While predictive utility assesses model accuracy when

2Our code is available at https://github.com/harrya32/STEAM and https://github.com/
vanderschaarlab/STEAM.
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Table 1: Synthetic data evaluation methods. d and ρ are distance and correlation functions, SP is the
support of distribution P . ‘Q?’: which of the questions from §1 does the method answer?

Method Formula Differentiates between X,W, Y ? Q?
E

xi
st

in
g

Marginal 1
|V|

∑
i∈V d(Pi, Qi) ✗ —

Correlation 1
|V|(|V|−1)

∑
i,j∈V
i ̸=j

d(ρ(Pi, Pj), ρ(Qi, Qj)) ✗ —

Joint d(PV , QV) ✗ —
Prec., Rec. |SP ∩ SQ|/|SQ|, |SP ∩ SQ|/|SP | ✗ —

O
ur

s Pα,X, Rβ,X Equations 3 and 4 ✓ Q1
JSDπ Equation 5 ✓ Q2
UPEHE Equation 6 ✓ Q3

Table 2: Synthetic data generation methods. d is a distance function. PAG(Vi) refers to the set of
parents of node Vi in the causal graph G.

Example methods Distributional target Assumptions on Dr Ds application

G
en

er
ic

ge
n.

m
od

el
s

NFlow [80]

min d(QV , PV) None Prediction
CTGAN [97]
TVAE [97]

TabDDPM [58]
ARF [93]

C
G

M
s min d

(
QV1|PAG(V1), PV1|PAG(V1)

)
...

min d
(
QV|V||PAG(V|V|), PV|V||PAG(V|V|)

) G
Interventional/
counterfactual
queries on G

DCM [12]
VACA [83]

O
ur

s

STEAM
min d(QX, PX) Caual

inference with
treatments

min d(QW |X, PW |X) Valid DGP
min d(QY |W,X, PY |W,X)

trained on Ds, it is unsuitable for causal tasks lacking observable ground-truths [44]. On the other
hand, resemblance metrics compare statistical properties of Dr and Ds (marginals, correlations, joint
distributions, supports; Table 1). Existing methods handle all variables similarly, not differentiating
between X, W , and Y , and they therefore cannot answer Q1-3. Our metrics (§5) remedy this.

Generation. We consider two related approaches to generative modeling (Table 2). Firstly, generic
generative models make minimal assumptions on Dr, minimising the difference between real and
synthetic joint distributions. In doing so, these methods forego any treatment-related inductive biases,
unlike our STEAM method. Causal generative models (CGMs), on the other hand, require full
knowledge of the causal graph, G, to model each conditional distribution as dictated by G. STEAM’s
assumptions (§6), that the underlying DGP of Dr is of the form X ∼ PX, W ∼ PW |X, Y ∼ PY |W,X,
are much less restrictive, not requiring knowledge of individual causal relationships between variables,
and they will hold for a wide array of datasets containing treatments. For further elaboration on
specific evaluation and generation methods, see Appendix B.

4 Desiderata for synthetic data containing treatments

We cover three essential distributions for treatment data: (i) the covariate distribution PX, (ii) the
treatment assignment mechanism PW |X, and (iii) the outcome generation mechanism PY |W,X. While
their importance is clear in the causal inference community, hence Q1-3, this has not been adequately
recognised by the synthetic data community, and methods that target them are missing. To bridge this
gap, we establish desiderata for synthetic data containing treatments based on these distributions.
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(i) The covariate distribution PX describes the population of interest and, in medicine, it is
standard to report its characteristics [95], as it determines to whom analysis is relevant.

Why is its preservation important? Inadequate covariate coverage in Ds can result in exclusion
from downstream analysis of members of the population whose covariates are not well explored,
as making reliable inferences can become infeasible [78, 81]. On the other hand, generating
out-of-distribution covariates in Ds can cause groundless extrapolation by synthetically-trained
models, leading to potential misuse.

(ii) The treatment assignment mechanism PW |X is a nuisance parameter in many treatment
effect models [4, 15], and it can be a target for analysis itself when examining treatment protocols.

Why is its preservation important? Since PW |X is used as a nuisance parameter, errors in its
modelling propagate to treatment effect estimates derived from Ds. Furthermore, PW |X can guide
the difficult task of CATE model selection [47], so poor preservation can lead to inconsistency
in model selection between Dr and Ds, which is unideal [37]. Misrepresenting PW |X also risks
misreporting treatment protocols. Given that extreme propensities of π(x) ≈ 0 (or π(x) ≈ 1) are
common in data such as electronic health records [63], often because of safety, inaccurate QW |X
could encourage exploration of treatments in patient subgroups for which they are highly unsafe.

(iii) The outcome generation mechanism PY |W,X is the distribution through which treatment
effects can be estimated, by comparing the statistical functionals of PY |W=1,X and PY |W=0,X.

Why is its preservation important? PY |W,X must be preserved, so that Ds can permit accurate
estimation of treatment effects. If QY |W,X is inaccurate, then even a perfect model could not
estimate correct treatment effects from Ds, and the worse this relationship is preserved, the less
useful Ds becomes.

Preserving (i)–(iii) is necessary and sufficient for Q to be a high-quality approximation of P . Mod-
elling each distribution well is evidently necessary given the above reasons, and it is also sufficient,
which is clear from the following decomposition of P :

P (X,W, Y ) = PX(X)︸ ︷︷ ︸
(i)

PW |X(W |X)︸ ︷︷ ︸
(ii)

PY |W,X(Y |W,X)︸ ︷︷ ︸
(iii)

(1)

The components (i)–(iii) offer a complete factorisation of the joint distribution, and therefore Q
matching P in each component is sufficient for Q to match P entirely. As such, accurate modelling
of (i)–(iii) forms our desiderata for synthetic data containing treatments. Generation methods should
seek to maximise adherence to these desiderata, and evaluation metrics should assess how successful
Ds is in this regard (and therefore answer Q1-3).

On causal assumptions. Even if these desiderata are satisfied, Ds may not permit useful analysis via
causal inference. Assumptions, such as typical identifiability assumptions,3 must still be critically
examined by analysts, since any violations in Dr will almost surely be violated in a faithful Ds as
well. Accounting for violated assumptions is a task orthogonal to synthetic data generation, with
existing literature [52, 29], and we do not consider it necessary for Q to improve upon any biases in
P , allowing post-generation methods to rectify them, if necessary, instead.

5 How to evaluate synthetic data containing treatments
With our desiderata established, we now investigate how to evaluate the adherence of Ds.

5.1 Inadequacy of existing metrics

Existing evaluation metrics do not measure how well Ds satisfies our desiderata. These metrics do
not differentiate between X, W , and Y , and they therefore cannot directly assess any of QX, QW |X,
or QY |W,X. Joint-distribution-level metrics, such as Kullback–Leibler (KL) divergence [59], are the
most common approach, offering a holistic assessment of how well Q models P . However, these are

3Consistency: Y (i) = Y (W (i)), overlap: 0 < π(x) < 1, and unconfoundedness: Y (0), Y (1) ⊥⊥ W |X
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only loosely related to our desiderata, and they do not allow a user to disentangle how each of (i)–(iii)
is preserved, limiting the depth of information offered on Ds. Furthermore, we argue that they tend
to be dominated by X as it grows in dimensionality, and they will lose sensitivity to the treatment
assignment and outcome generation mechanisms. By this, we mean that these metrics tend to fail to
notice differences in the modelling of PW |X or PY |W,X by two proposal distributions.

For an illustrative example of this phenomenon with KL divergence, consider a simple P which can
be factorized as P =

∏d
i=1 PXi PW |X PY |W,X. Let there be two learnable distributions Qθ1 and

Qθ2 with the same form Qθk =
∏d

i=1 Q
θX
Xi

Q
θW,k

W |X Q
θY,k

Y |W,X, and which only differ in either θW,k or
θY,k (i.e., they either model PW |X or PY |W,X differently). In this setting, the following holds:

Theorem 1. Let P , Qθ1 , Qθ2 be of the above form, and M be KL divergence. If we assume that
Qθ1 and Qθ2 have sufficient capacity to have bounded error on each component, i.e. ∀i, 0 <

M(PXi
, QθX

Xi
) < εX, and 0 < M(PW |X, Q

θW,k

W |X) < εW,k, and 0 < M(PY |W,X, Q
θY,k

Y |W,X) < εY,k,
then:

M(P,Qθ1)

M(P,Qθ2)
→ 1, as d → ∞ (2)

Proof. See Appendix C.

Theorem 1 shows that KL divergence loses sensitivity to W |X and Y |W,X as d grows, suggesting
that it will struggle to select between Qθ1 and Qθ2 , despite any difference in their modelling of
PW |X or PY |W,X. For an empirical example of this phenomenon arising across an extended array of
joint-distribution-level metrics, see Appendix D.

5.2 Metrics for synthetic data containing treatments

These findings motivate us to design our own metrics for synthetic data containing treatments which
directly measure adherence to desiderata (i)–(iii) and offer answers to Q1-3.

5.2.1 The covariate distribution

Evaluating QX requires comparing the generally high-dimensional covariate distributions of Dr and
Ds, which is non-trivial. Nevertheless, this is a standard synthetic data evaluation task, as X does not
contain treatments. We see precision/recall analysis as the most useful approach. There is typically
a trade-off between these two qualities, which generative models balance differently [8, 82], and
by measuring them both, a data holder can guide generation towards their preferences for covariate
realism and diversity. Without a strong preference, balancing the two is recommended [50].

We propose the use of the integrated Pα and Rβ scores, introduced in [2], which compare the α-
supports of Dr and Ds, for α ∈ [0, 1].4 Intuitively, Pα captures how well Ds falls within the support
of Dr, and Rβ reflects how well Dr is covered by the support of Ds. We denote the covariate precision
and recall with Pα,X and Rβ,X respectively, which are calculated by applying integrated Pα and Rβ

to the covariates of Dr and Ds only, as in Eq. (3) and Eq. (4).

Pα,X(Dr,Ds) = 1− 2

∫ 1

0

|P(X̃s ∈ Sα
r )− α| dα (3)

Rβ,X(Dr,Ds) = 1− 2

∫ 1

0

|P(X̃r ∈ Sβ
s )− β| dβ (4)

where X̃⋄ and S□
⋄ are the embedding X̃⋄ = Φ(X⋄) and □-support as defined in [2], respectively.

We have 0 < Pα,X, Rβ,X < 1, and scores near 1 indicate a realistic and diverse QX. Together, these
metrics can be used to answer Q1.

4An α-support is the minimum volume subset of the domain that contains probability mass α.
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5.2.2 The treatment assignment mechanism

While in general we do not have access to PW |X and QW |X, we know that, for each X = x, they
are Bernoulli distributions, since W is a binary variable. The success probabilities can be estimated
from Dr and Ds with a probabilistic classifier, which can be used to form approximations of PW |X
and QW |X. There is then an array of valid options to compare these approximations. We propose
the use of Jensen-Shannon distance,5 given its desirable properties of symmetry, smoothness, and
boundedness (we discuss alternatives in Appendix E). For a given probabilistic classifier π̂, we define
P̂W |X=x = Bern(π̂r(x)) and Q̂W |X=x = Bern(π̂s(x)) where π̂r and π̂s are trained on Dr and Ds
respectively, and we measure the preservation of PW |X as in Eq. (5).

JSDπ(Dr,Ds) = 1− EPX

[√
1

2
(KL(P̂W |X=x ||M) + KL(Q̂W |X=x ||M))

]
(5)

where M = 1
2 (P̂W |X=x + Q̂W |X=x) and KL is KL divergence using log2.

JSDπ can be used to answer Q2. We have 0 < JSDπ < 1, with scores near 1 indicating that QW |X
matches PW |X well. The validity of JSDπ will depend on the accuracy of π̂, so conducting π̂ model
selection is an important pre-evaluation step, although, amongst reasonable model choices, we find
the information offered by JSDπ does not significantly differ.

5.2.3 The outcome generation mechanism

To evaluate the preservation of PY |W,X, we consider a treatment effect analogue of predictive utility.
We address the unavailability of ground-truths by seeking parity in performance between Dr and Ds,
rather than quantifying error from an oracle value. Such evaluation is inherently task dependent, yet
the specific quantity Ds may be used to estimate is unclear. Assessment should therefore centre on a
complex task, in which comparable performance will likely imply the same for simpler tasks. In this
case, we consider the most difficult treatment effect task likely to arise in the medical field—CATE
estimation—as similarity in this between Ds and Dr will tend to imply similarity in simpler tasks,
such as ATE estimation.6 If Ds yields accurate CATEs across the full patient population then, by
definition, it will also yield an accurate ATE, but the reverse is not true, i.e., Ds can reproduce the
correct ATE and yet contain arbitrarily incorrect CATEs. Therefore, we evaluate how well QY |W,X

preserves PY |W,X by calculating the PEHE between synthetic- and real-trained CATE learners (see
Appendix E for alternatives). Given a family F of CATE learners τ̂ , where τ̂r and τ̂s are trained on
Dr and Ds respectively, we assess the preservation of PY |W,X as in Eq. (6).

UPEHE(Dr,Ds) =
1

|F|
∑
τ̂∈F

√
EPX

[(τ̂s(X)− τ̂r(X))2] (6)

UPEHE can answer Q3. We average over F since CATE model validation is difficult [16], so τ̂ cannot
be set as the best performing model in a similar fashion as is done for JSDπ (we discuss choices for
F in Appendix F). As such, UPEHE rewards synthetic data which permit proximity in CATEs across
an array of potential learners, where a lower UPEHE indicates better preservation of PY |W,X.

6 Generating synthetic data containing treatments

To illustrate the standard DGP of data containing treatments, shown in the middle of Figure 4,
consider a simple hospital dataset. Patient covariates X, such as height, weight, etc., are drawn from
an underlying covariate distribution PX, which is dictated by the local population. Treatments are
then assigned by a domain expert, such as a doctor, conditioned on X, i.e., W ∼ PW |X. Finally,
patients’ outcomes are dictated by the dynamics of their ailments, conditional upon W and X, i.e.,
Y ∼ PY |X,W . We now propose STEAM, a novel model-agnostic framework for generating Synthetic
data for Treatment Effect Analysis in Medicine which mimics this DGP.

5JSD(P ∥Q) =
√

1
2
KL(P ∥M) + 1

2
KL(Q ∥M), where M = 1

2
(P +Q).

6Denoting the potential outcomes as Y(0) and Y(1), ATE is defined as ATE = EP [Y (1)− Y (0)] and CATE
is τ(x) = EP [Y (1)− Y (0)|X = x].
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6.1 STEAM

STEAM, shown on the right of Figure 4, conducts a three-step generation process, mimicking the real
DGP to push Q closer towards P in structure and directly target each distribution from our desiderata.
STEAM involves three components:

1. QX. X is generated from a generic generative model trained to match PX.
2. QW |X. Treatments are assigned according to a propensity function trained on Dr. If Dr is

experimental data with known PW |X, then QW |X can be directly set as the true distribution,
negating the need for any optimisation at this step.

3. QY |W,X. Potential outcome (PO) estimators are trained on Dr to match PY |W=0,X and
PY |W=1,X, and the relevant outcome is generated for each instance based on their assigned
treatment.

Each component can be defined from a diverse array of potential models. QX can be any generic
generative model, QW |X can be any classifier, and QY |W,X can use any regressors. Generation via
the STEAM framework can therefore be framed as augmenting any generic base generative model to
improve its generation of medical data for use in downstream causal inference tasks, allowing it to
easily fit within existing synthetic data generation pipelines.

7 Empirical analysis

In §7.1.1 and §7.1.2, we compare generic generative models and CGMs, respectively, with STEAM
models on medical data. Then, in §7.2, we examine performance in a number of targeted settings to
better understand where the STEAM framework is particularly successful.

In STEAM, we consistently set QW |X as a logistic regression classifier, and QY |W,X as the PO
estimators from S-learner [60]. We use the open source synthcity [79] for all generic generative
models, and we indicate what we set for QX in STEAM with subscript, i.e., STEAM⋄ uses generative
model ⋄ for QX. We detail data and experimental set-ups in Appendix H.

7.1 Generation of medical data containing treatments

To compare STEAM with existing generation frameworks, we consider performance across three
medical datasets:

1. AIDS Clinical Trial Group (ACTG) study 175. A trial on subjects with HIV-1 [36].
2. Infant Health and Development Program (IHDP). A semi-synthetic medical dataset, with

real covariates and simulated outcomes, using data from an experiment evaluating the effect of
specialist childcare on the cognitive scores of premature infants [11].

3. Atlantic Causal Inference Competition 2016 (ACIC). A semi-synthetic medical dataset,
with real covariates and simulated outcomes, containing data from the Collaborative Perinatal
Project [74].

7.1.1 Comparison with generic generative models

We compare state-of-the-art generic tabular data generators with their STEAM counterparts across all
three datasets. We choose baselines across the major families of tabular data generators: CTGAN
[97], TVAE [97], ARF [93], NFlow [80], and TabDDPM [58]. We display comprehensive results for
each dataset and model combination in Table 3.

Takeaway. In the vast majority of cases, generation via STEAM leads to better performance
across our metrics. Improvements in terms of JSDπ and UPEHE are most notable, indicating that
STEAM significantly increases the preservation of PW |X and PY |W,X. There is relatively little
difference in Pα,X and Rβ,X between generic and STEAM models, which is expected. While
STEAM does isolate the modelling of the covariates in QX, giving that component model an
ostensibly easier task than its joint-level alternative, modelling the complete PX,W,Y is nearly of
equivalent difficulty to modelling PX when the number of covariates is high, since they dominate
the dimensionality. Table 3 also demonstrates that STEAM’s performance is sensitive to the

7



Table 3: Medical data generation with generic and STEAM models, averaged over 20 runs with 95%
CIs. Coloured numbers are the relative differences between each STEAM and generic model.
Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG TVAE 0.926 ± 0.013 0.483 ± 0.010 0.946 ± 0.004 0.564 ± 0.017
STEAM TVAE 0.929 ± 0.008 (+0.003) 0.486 ± 0.009 (+0.003) 0.958 ± 0.004 (+0.012) 0.492 ± 0.011 (-0.072)
ARF 0.818 ± 0.012 0.453 ± 0.007 0.960 ± 0.004 0.577 ± 0.015
STEAM ARF 0.836 ± 0.008 (+0.018) 0.464 ± 0.007 (+0.011) 0.962 ± 0.004 (+0.002) 0.423 ± 0.016 (-0.154)
CTGAN 0.889 ± 0.020 0.444 ± 0.014 0.934 ± 0.008 0.586 ± 0.017
STEAM CTGAN 0.892 ± 0.017 (+0.003) 0.437 ± 0.012 (-0.007) 0.959 ± 0.005 (+0.025) 0.436 ± 0.012 (-0.150)
NFlow 0.817 ± 0.032 0.418 ± 0.008 0.913 ± 0.016 0.643 ± 0.026
STEAM NFlow 0.837 ± 0.040 (+0.020) 0.417 ± 0.015 (-0.001) 0.962 ± 0.005 (+0.049) 0.445 ± 0.020 (-0.198)
TabDDPM 0.067 ± 0.060 0.036 ± 0.035 0.812 ± 0.029 1.761 ± 0.230
STEAM TabDDPM 0.609 ± 0.106 (+0.542) 0.310 ± 0.055 (+0.274) 0.952 ± 0.009 (+0.140) 0.468 ± 0.013 (-1.293)

IHDP CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 (+0.011) 0.424 ± 0.011 (+0.005) 0.928 ± 0.009 (+0.040) 1.709 ± 0.052 (-0.812)
TabDDPM 0.477 ± 0.036 0.340 ± 0.022 0.862 ± 0.011 2.706 ± 0.138
STEAM TabDDPM 0.553 ± 0.029 (+0.076) 0.396 ± 0.015 (+0.056) 0.918 ± 0.011 (+0.056) 2.346 ± 0.088 (-0.360)
ARF 0.528 ± 0.009 0.381 ± 0.010 0.921 ± 0.009 3.019 ± 0.117
STEAM ARF 0.565 ± 0.014 (+0.037) 0.394 ± 0.010 (+0.013) 0.921 ± 0.009 (+0.000) 1.629 ± 0.056 (-1.390)
TVAE 0.622 ± 0.014 0.410 ± 0.010 0.880 ± 0.014 3.198 ± 0.172
STEAM TVAE 0.629 ± 0.015 (+0.007) 0.412 ± 0.011 (+0.002) 0.927 ± 0.007 (+0.047) 2.100 ± 0.075 (-1.098)
NFlow 0.406 ± 0.028 0.309 ± 0.012 0.882 ± 0.012 3.835 ± 0.345
STEAM NFlow 0.435 ± 0.034 (+0.029) 0.333 ± 0.020 (+0.024) 0.921 ± 0.007 (+0.039) 2.177 ± 0.118 (-1.658)

ACIC TVAE 0.901 ± 0.014 0.513 ± 0.004 0.929 ± 0.005 4.223 ± 0.138
STEAM TVAE 0.900 ± 0.014 (-0.001) 0.514 ± 0.004 (+0.001) 0.972 ± 0.002 (+0.043) 2.422 ± 0.118 (-1.801)
CTGAN 0.880 ± 0.016 0.421 ± 0.013 0.942 ± 0.005 4.518 ± 0.186
STEAM CTGAN 0.873 ± 0.014 (-0.007) 0.424 ± 0.014 (+0.003) 0.972 ± 0.002 (+0.030) 2.268 ± 0.154 (-2.250)
ARF 0.828 ± 0.003 0.430 ± 0.002 0.945 ± 0.002 4.633 ± 0.146
STEAM ARF 0.835 ± 0.004 (+0.007) 0.430 ± 0.004 (+0.000) 0.977 ± 0.002 (+0.032) 2.449 ± 0.149 (-2.184)
NFlow 0.748 ± 0.019 0.333 ± 0.014 0.838 ± 0.035 5.068 ± 0.282
STEAM NFlow 0.744 ± 0.021 (-0.004) 0.333 ± 0.010 (+0.000) 0.971 ± 0.002 (+0.133) 2.938 ± 0.149 (-2.130)
TabDDPM 0.124 ± 0.028 0.002 ± 0.001 0.813 ± 0.023 9.281 ± 1.033
STEAM TabDDPM 0.141 ± 0.035 (+0.017) 0.002 ± 0.000 (+0.000) 0.955 ± 0.019 (+0.142) 4.497 ± 0.501 (-4.784)

choice of QX, as performance significantly differs between different STEAM configurations on
the same dataset.

7.1.2 Comparison with causal generative models

To fairly compare with CGMs, we must first address their more restrictive assumptions, as discussed
in §3. For the ACTG, IHDP, and ACIC data, we do not know the true causal graphs; we simply
know which features are the treatment and outcome. To construct reasonable causal graphs using this
knowledge, we consider three methods:

1. Construction of a naive graph, Gnaive, in which each covariate in X causes W and Y , W causes
Y , and every pair of covariates has a causal relationship between them;

2. Using the constraint-based PC causal discovery algorithm [89] to discover a graph, Gdiscovered;
3. Pruning Gdiscovered by removing any edges which contradict the DGP we assume, i.e., edges

from Y to W or X, or from W to X are removed, to form Gpruned.

In Table 4, we compare the best STEAM models from Table 3 with two CGMs (using the best of the
above graph methods): the additive noise model (ANM) [46] implementation from DoWhy-GCM [9],
and a diffusion-based causal model (DCM) from [12] (full results in Appendix M).

Takeaway. For each dataset, we see that STEAM outperforms the CGMs in almost every metric,
only being outperformed in Pα,X on the ACIC dataset. These results validate that, when the true
causal graph is unknown, our less restrictive assumptions enable better generation of synthetic
data containing treatments than CGMs.

7.2 Comparisons on simulated data

To investigate the performance delta between STEAM and generic generation, we use simulated
data with tunable experimental knobs, similar to [14]. These knobs include covariate dimensionality
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Table 4: Medical data generation with CGMs and STEAM models, averaged over 20 runs with 95%
CIs. Coloured numbers are the relative differences between each CGM and STEAM model.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG STEAM TVAE 0.929 ± 0.008 0.486 ± 0.009 0.958 ± 0.004 0.492 ± 0.011
DCM Gpruned 0.758 ± 0.013 (-0.171) 0.358 ± 0.007 (-0.128) 0.957 ± 0.003 (-0.001) 0.596 ± 0.017 (+0.104)
ANM Gdiscovered 0.836 ± 0.007 (-0.093) 0.419 ± 0.007 (-0.067) 0.952 ± 0.004 (-0.006) 0.578 ± 0.019 (+0.086)

IHDP STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052
DCM Gpruned 0.658 ± 0.011 (-0.016) 0.360 ± 0.007 (-0.064) 0.893 ± 0.008 (-0.035) 2.059 ± 0.140 (+0.350)
ANM Gpruned 0.589 ± 0.012 (-0.085) 0.359 ± 0.009 (-0.065) 0.892 ± 0.008 (-0.036) 1.865 ± 0.059 (+0.156)

ACIC STEAM TVAE 0.900 ± 0.014 0.514 ± 0.004 0.972 ± 0.002 2.422 ± 0.118
DCM Gdiscovered 0.942 ± 0.004 (+0.042) 0.422 ± 0.003 (-0.092) 0.957 ± 0.003 (-0.015) 4.249 ± 0.132 (+1.827)
ANM Gdiscovered 0.929 ± 0.003 (+0.029) 0.404 ± 0.003 (-0.110) 0.872 ± 0.002 (-0.100) 4.193 ± 0.127 (+1.771)

d, propensity function π : X (d) → [0, 1], and prognostic and predictive functions µprog., µpred. :

X (d) → R.7 Simulated sample i is generated by drawing X(i) ∼ N (0, Id), W (i) ∼ Bern[π(X(i))],
and Y (i) ∼ N (µprog.(X

(i)) +W (i) · µpred.(X
(i)), 1). With this DGP, we can assess performance on

datasets tailored to specific situations. Across these experiments, we consistently compare between
TabDDPM and STEAMTabDDPM, and the default settings for each experimental knob are: d = 10,
π(X) = (1 + e−1/2(X1

2+X2
2))−1, µprog.(X) = X1

2 +X2
2, µpred.(X) = X3

2 +X4
2.

7.2.1 Increasing covariate dimensionality

To investigate performance as Dr increases in dimensionality, we vary
d ∈ {5, 10, 20, 50}.

Takeaway. The performance delta between STEAM and generic
generation grows with the dimensionality of X. This follows
the intuition that, as d grows, PX will dominate the joint dis-
tribution, and the comparatively small PW |X and PY |W,X will
be overlooked by generic models. The top of Figure 1 shows
that, as d increases, both STEAMTabDDPM and TabDDPM pre-
serve PY |W,X worse, but STEAMTabDDPM is less affected. The
bottom of Figure 1 is similar, showing that TabDDPM degrades
more than STEAMTabDDPM in preserving PW |X as d grows. Direct
modelling of these small, but important, distributions by STEAM
results in better performance in high dimensions.

5 10 20 50
1
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3

4

5

U
PE

H
E

5 10 20 50
d

0.7

0.8

0.9

JS
D

Standard
STEAM

Figure 1: UPEHE and JSDπ

as d increases. Averaged
over 10 runs, with 95% CIs.

7.2.2 Increasing treatment assignment complexity

To investigate performance as PW |X increases in complexity, we vary
the number of covariates upon which it depends. We set π(X) =

(1 + e−1/K
∑K

k=1 X2
k)−1 for K ∈ {1, 2, 3, 4, 5}.

Takeaway. STEAM increasingly outperforms generic generation
in preserving more complex PW |X. Figure 2 shows that, as K
increases, STEAMTabDDPM maintains a good estimate of PW |X,
with JSDπ consistently near 1. TabDDPM degrades with K,
widening the performance gap. Direct modelling by STEAM
allows more complex PW |X to be preserved.

1 2 3 4 5
K

0.80

0.85

0.90

0.95

1.00

JS
D

Standard
STEAM

Figure 2: JSDπ as K in-
creases. Averaged over 10
runs, with 95% CIs.

7Prognostic variables affect an outcome regardless of treatment, while predictive variables only affect treated
outcomes. Prognostic/predictive functions dictate the effects of the relevant variables on the outcome.
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7.2.3 Outcome heterogeneity

To investigate performance as outcomes become increasingly heteroge-
neous, we vary the number of covariates upon which PY |W,X depends.
We set µpred.(X) =

∑K
k=3 X

2
k for K ∈ {3, 4, 5, 6, 7}.

Takeaway. As PY |W,X becomes increasingly heterogeneous, its
preservation by STEAMTabDDPM degrades only slightly, and much
more dramatically for TabDDPM, as shown in Figure 3. Again,
direct modelling of QY |W,X by STEAM better preserves complex
distributions.

3 4 5 6 7
K

1

2

3

4

5

U
PE

H
E

Standard
STEAM

Figure 3: UPEHE as K in-
creases. Averaged over 10
runs, with 95% CIs.

The performance delta between STEAM and generic generation grows in complex settings. When
generating synthetic copies of real data with high-dimensionality, or complex dependencies in PW |X
or PY |W,X, STEAM increasingly outperforms. These situations are likely to emerge in real-world
data, which is often highly complex, heightening the relevance of the STEAM framework.

8 Discussion

In this paper, we tackle a problem impeding progress in the medical community—low-quality
synthetic data. Existing methods produce data that are poor for causal inference tasks, which are
evaluated with misaligned metrics. Our evaluation metrics and generation framework, grounded in
our desiderata which stem from the needs of analysts, remedy this.

We allow meaningful evaluation with our metrics, proposed in §5, that can answer the key questions
Q1-3 of downstream analysts from §1. STEAM generates synthetic data of substantially higher quality
than existing methods, demonstrated across a range of experiments in §7, as well as in an ablation
study (Appendix J) and hyperparameter stability study (Appendix K). While we focus on medical
data, our methods are also applicable to other fields where data contain treatments, or interventions,
such as education, marketing, and public policy. In Appendix I we demonstrate performance on the
Jobs dataset [61], showing STEAM has similar benefits in non-medical settings.

8.1 Future work

There are many future research directions in this setting. In particular, generating synthetic data
that respects formal definitions of privacy is an important step. In Appendix N, we prove the
immediate compatibility of STEAM with existing differentially private methods, and we conduct
initial experiments showing promising results. Developing sophisticated mechanisms for assigning a
privacy budget across the component models in STEAM is a potential area of future work, as we
discuss in Appendix N.4.

Beyond privacy, extending STEAM to operate in more complicated settings presents several opportu-
nities. One extension, for instance, in settings with a valid instrumental variable Z, could be to adapt
the STEAM generation process to follow the corresponding causal structure:

Z ∼ PZ , X ∼ PX|Z , W ∼ PW |X,Z , Y ∼ PY |W,X.

This would produce synthetic data suitable for treatment effect analysis using instrumental variable
methods [38, 30], which do not require the unconfoundedness assumption.

Other extensions could be designed for settings with multiple, or continuous, treatment options.
STEAM can easily extend to accommodate multiple treatments by using a multi-class classifier
for QW |X, and PO regressors compatible with > 2 treatment arms for QY |W,X. More significant
architectural changes would be required for continous treatments, as QW |X would have to be replaced
with a regressor, and QY |W,X would require PO regressors designed for continuous treatments, such
as those based on the generalised propensity score [42].
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A Example synthetic data papers using medical data containing treatments

Here, we detail selected works in the synthetic data literature that do not consider the downstream task
of causal inference. Note that we do not claim that this list is exhaustive, as this is a pervasive problem
in the synthetic data literature, and we mean only to provide a few examples here to demonstrate this
problem and provide motivation for our paper.

A.1 MedGAN

In the paper ‘Generating Multi-label Discrete Patient Records using Generative Adversarial Networks’
[13], the authors propose a GAN-based approach to generate ‘realistic synthetic patient records’. In
doing so, they experiment on multiple datasets containing treatments, including one from Sutter Palo
Alto Medical Foundation (PAMF), which consists of longitudinal medical records of 258,000 patients,
as well as the MIMIC-III dataset [49], which includes 46,000 intensive care unit patient records. Both
datasets include treatments administered to patients, and they therefore invite downstream analysts to
conduct causal inference tasks, such as treatment effect estimation.

Nevertheless, in this paper, standard generation and evaluation practices are followed, not differen-
tiating between covariates, treatments, and outcomes. In particular, the evaluation protocol relies
on marginal comparisons and predictive utility assessment, which offers limited information as to
how well the generation method, medGAN, produces useful data for causal inference. Furthermore,
medGAN itself draws samples directly from the joint distribution, not mimicking the DGP of treatment
data, or optimising for the distributions most important for causal inference.

A.2 TabDDPM

The paper ‘TabDDPM: Modelling Tabular Data with Diffusion Models’ [58] proposes a diffusion-
based tabular data generation method. While not explicitly geared towards medical data, this paper
does use medical data with variables that could be seen as treatments in its experiments. It, therefore,
at least implicitly, positions itself to work on data containing treatments, and invites users to conduct
generation with TabDDPM on such data. Specifically, the cardiovascular disease dataset from https:
//www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset is used, and
this data could be analysed via causal inference by setting ‘physical activity’ as a treatment, to
estimate its effect on cardiovascular disease.

However, in this paper, only standard evaluation and generation methods are used, and the needs of
downstream analysts pursuing causal inference tasks are not acknowledged. Evaluation involves only
predictive utility measures, and the TabDDPM method generates all variables in a sample simultane-
ously, not optimising for the distributions most important for causal inference.

A.3 GReaT

The paper ‘Language Models are Realistic Tabular Data Generators’ [10] proposes an LLM-based
generator. Similar to the TabDDPM paper, this paper is not explicitly geared towards medical data,
but it demonstrates on medical data containing treatments, thereby implicitly condoning its use on
this type of data. Specifically, the dataset sick from https://www.openml.org/search?type=
data&sort=runs&id=38&status=active is demonstrated on, which could be analysed via causal
inference to assess the effect of ‘thyroxine’ or ‘antithyroid’ treatments. Nevertheless, once again, this
paper does not consider downstream analysis involving causal inference, only evaluating its GReaT
method with predictive utility metrics and a discriminator score.

A.4 Benchmarking process for synthetic electronic health records

Finally, the paper ‘A Multifaceted benchmarking of synthetic electronic health record generation
models’ proposes a benchmarking framework for use on synthetic electronic health record (EHR)
data [98]. Naturally, EHRs will include treatments administered to patients, and they will likely
be analysed with treatment effect estimation in mind. In the proposed benchmarking framework,
the evaluation procedures—including marginal comparison, correlation comparison, and predictive
utility—do not differentiate between covariates, treatments, and outcomes, or acknowledge the needs
of downstream analysts conducting causal inference.
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B Extended literature review

To provide useful context for readers, we extend our literature review here.

Evaluation. We extend on the synthetic data evaluation practices summarised in Table 1 here.

Marginal comparison. Assessing the distributional distance between synthetic and real marginals is
often used to offer a quantitative assessment of how well individual variables are modelled [98, 91, 32].
The distance function d to conduct this can be set from a variety of choices, including including KL
divergence [59], Jensen-Shannon distance [64], Wasserstein distance [53], Kolmogorov-Smirnov
score [69], MMD [35], and many more.

Correlation matrix comparison. Correlation-based assessment can offer a sense of how well inter-
dependencies between variables are modelled in synthetic data [73]. This commonly involves
calculating synthetic and real 2-way correlation matrices, and assessing their difference, by setting d
as a distance such as Frobenius norm [32] and absolute error [54].

Joint distribution comparison. Metrics based on notions of statistical divergence can offer a means of
quantifying how different the entire joint distributions of real and synthetic data are [99, 91, 90]. The
distance function d can be set to largely the same family of functions as in the marginal comparison
case.

Precision and recall analysis. Precision and recall, originally proposed for generative model as-
sessment in [82], measure if generated samples are covered by real samples, and vice versa. Alpha
precision and beta recall [2] are refined versions of the original metrics, which account for the
densities of the real and generative distributions, rather than just comparing supports.

Discriminator performance. Discriminator performance is a slightly unique evaluation practice,
involving a ‘discriminator’, which predicts whether instances are synthetic or real, where poor
performance of the discriminator indicates realism in the synthetic data [54, 62, 24, 10].

Predictive utility. Predictive utility metrics offer a practical evaluation of synthetic data by quantifying
the performance of a synthetically-trained predictive model. The “train on synthetic, test on real”
(TSTR) paradigm [25] is the common approach to such assessment, measuring the accuracy of a
synthetically-trained model in predicting a target label on a real test set.

Generic generative models. We expand on the generic generative modelling paradigm outlined
in Table 2 by describing specific existing generative models which adhere to it. These models
approximate the real joint distribution using a diverse range of techniques.

GAN-based models. GANs [34] consist of a generator and discriminator network, which are trained
adversarially to generate and identify synthetic data, respectively, until the samples are realistic.
Originally proposed for image generation, GANs have been adapted to tabular generation, and there
are many methods that adopt this popular architecture (e.g., CTGAN [97], TableGAN [75]), including
those specifically designed for medical data (e.g., MedGAN [13]).

VAE-based models. VAEs [56] are another common architecture, which learn to encode data into a
lower-dimensional latent space and then decode it back to reconstruct the original data. They generate
new data samples by sampling from the latent distribution and decoding these samples, and their
application to tabular data involve techniques to handle mixed data types (e.g., TVAE [97]), and
regularisation for improved robustness (e.g., RTVAE [1]).

Diffusion-based models. Diffusion models [43, 88] learn the gradient of the data distribution, and
generate data via progressive denoising, beginning with a noisy sample and using a neural network to
predict and remove noise over a number of timesteps, including for tabular data (e.g. TabDDPM [58]).
Extensions for direct treatment effect estimation exist [68], but not for synthetic data generation for
this purpose.

Forest-based models. Random forests can estimate the density of a probability distribution, as leaf
nodes partition the data space into distinct hyper-rectangles with estimated densities of the proportion
of samples that fall into them. Samples can then be drawn from this estimated density. Random
forests can easily handle heterogeneous data types, so their application to tabular data synthesis is
natural. They are particularly fast to train and generate from [86, 93]).
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Normalizing flow-based models. Normalizing flows estimate the target density by transforming a
tractable density (e.g., a Gaussian) into the target through a series of invertible transformations, called
’flows’. Probabilities from the target distribution can then be found using the change of variables
formula (e.g. [80]). Recent work has shown their theoretical similarity to diffusion models [65].

Causal generative models. Causal generative models [57, 9, 12] are a class of generative models,
distinct from generic tabular data generators, that approximate the underlying structural causal model
(SCM) [76] of a dataset. While such models are related to our work with STEAM and are likely to
better preserve causal relationships than generic generators in settings where they can be used, their
assumptions can restrict their practical use cases. In comparison to STEAM, they generally differ in
terms of their (1) assumptions, (2) motivation, and (3) flexibility, which we detail here.

(1): Importantly, causal generative models typically assume that the data holder has knowledge of the
entire causal graph of the real data, which is a more restrictive assumption than we make in this work.
We assume that our specification of the underlying DGP X ∼ PX, W ∼ PW |X, Y ∼ PY |W,X is
correct for datasets containing treatments, but we do not require knowledge of the causal graph, as we
do not need to know the causal links between individual variables. We do not assume knowledge of
the causal relationships amongst the covariates, nor knowledge of which covariates cause treatment
assignment or patient outcomes. As such, we make less restrictive assumptions than works that
require knowledge of a causal graph, and we suggest that our approach is more realistic in complex,
real-world scenarios, such as those that arise in medicine, where the true causal graph is unlikely to
be available.

(2): The motivation for causal generative models is typically to allow the generation of data to answer
graph-specific interventional and counterfactual queries that require knowledge of the full causal
graph. With STEAM, however, we seek to generate useful synthetic data only from the observational
distribution, for use by analysts with goals such as treatment effect estimation (e.g., CATE).

(3): STEAM’s design can, in principle, incorporate any generative model for QX, essentially acting
as a wrapper around QX to improve its generation quality for causal inference tasks. This allows
STEAM to very easily empower many existing generative modelling frameworks, without having to
incorporate bespoke generators. Also, it allows STEAM models to continuously improve along with
the base generative model. Existing causal generative models do not generally allow such flexibility,
and therefore cannot as easily benefit from future improvements in underlying generic generative
models.

Despite these differences, we conduct empirical comparisons between STEAM and some baseline
causal generative models in Appendix M.

Privacy. Despite the popularity of some of the above generators, memorisation of training samples
is a phenomenon observed in generative models [31]. Therefore, provably private generation is often
desired to limit the amount of information leaked. Differential privacy [22] is the most common
standard adopted, and there are multiple generators which guarantee this, including GAN-based
methods (e.g., PATE-GAN [51], DP-GAN [96]) and query-based methods (e.g., GEM [66], MST
[70], RAP [5], AIM [71]).

19



C Theorem 1 proof

Theorem 1. Let P , Qθ1 , Qθ2 be of the form described in §5.1, and M be KL divergence. If we
assume that Qθ1 and Qθ2 have sufficient capacity to have bounded error on each component, i.e. ∀i,
0 < M(PXi

, QθX
Xi

) < εX, and 0 < M(PW |X, Q
θW,k

W |X) < εW,k, and 0 < M(PY |W,X, Q
θY,k

Y |W,X) <

εY,k, then:
M(P,Qθ1)

M(P,Qθ2)
→ 1, as d → ∞ (7)

Proof. From the factorizations of P and Q, KL divergence decomposes:

DKL(P∥Qθk) =

d∑
i=1

DKL(PXi∥Q
θX
Xi

)+EPX

[
DKL(PW |X∥QθW,k

W |X)
]
+EPX,W

[
DKL(PY |W,X∥QθY,k

Y |W,X)
]

(8)

As such, the following holds for when KL divergence is set as M.

Define the ratio:

R(d) =
M(P,Qθ1)

M(P,Qθ2)
.

Substituting the decompositions, we have:

R(d) =

∑d
i=1 M(PXi

, QθX
Xi

) + EPX

[
M(PW |X, Q

θW,1

W |X)
]
+ EPX,W

[
M(PY |W,X, Q

θY,1

Y |W,X)
]

∑d
i=1 M(PXi , Q

θX
Xi

) + EPX

[
M(PW |X, Q

θW,2

W |X)
]
+ EPX,W

[
M(PY |W,X, Q

θY,2

Y |W,X)
] .

As the dimensionality d increases, the marginal summations
∑d

i=1 M(PXi
∥QθX

Xi
) grow linearly

with d, since each M(PXi
∥QθX

Xi
) is, by assumption, non-negative, and they therefore dominate the

bounded conditional contributions:

EPX

[
M(PW |X, Q

θW,k

W |X)
]
< εW,k,

EPX,W

[
M(PY |W,X, Q

θY,k

Y |W,X)
]
< εY,k.

Thus, M(PX,W,Y , Q
θk
X,W,Y ) ∼

∑d
i=1 M(PXi

, QθX
Xi

) and R(d) ∼
∑d

i=1 M(PXi
,Q

θX
Xi

)∑d
i=1 M(PXi

,Q
θX
Xi

)
= 1.

Therefore:
R(d) → 1, as d → ∞
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D Empirical demonstrations of current metric failure

D.1 Failure to identify changes to the outcome generation mechanism

We demonstrate this with a simple experiment investigating how four Ds of size n = 1000, which
only differ in their outcome generation mechanisms, are assessed by an array of current metrics.
We simulate Dr from a simple DGP with 10 covariates with PX = N (0, I), PW |X = Bern(0.5),

PY |W,X = N (W ·X1
2, 1). We generate four Di

s with the same Qi
X

d
= PX, Qi

W |X
d
= PW |X, ∀i ∈

{1, 2, 3, 4}. We vary each Qi
Y |W,X ∼ N (W ·Φi(X, 1)+(1−W ) ·Φi(X, 0), 1) where Φi represents

a potential outcome (PO) estimator with the architecture from either an S-Learner, T-Learner [60],
DragonNet [85], or TARNet [84]. These four architectures will model Qi

Y |W,X differently, inducing
the only point of variation amongst the Di

s .

Since we simulate Dr, we know the ground-truth treatment effects, and an oracle metric can be
established to determine the true quality of each Di

s . We define this as the precision of estimating
heterogeneous effects (PEHE) [41] of estimates from a CATE learner trained on Di

s and the ground-
truth CATEs. In Table 5 we report the scores of Pα, Rβ [2], inverse KL divergence [59], Kolmogorov-
Smirnov (KS) score [69], Wasserstein distance (WD) [53], and Jensen-Shannon distance (JSD) [64]
on each Di

s . All report very similar scores across the Di
s , with most offering no statistically significant

best option, suggesting that their quality is the same. The oracle metric, however, determines that Di
s

using a T-Learner for Φi is a clear best, and Di
s with an S-Learner as Φi is more than twice as bad at

preserving the true treatment effects. Clearly, even in a moderately sized dataset, these metrics cannot
reliably identify changes in Qi

Y |W,X, despite the large effect that this distribution has on downstream
performance.

Table 5: Joint-distribution-level metrics on Di
s which differ in Qi

Y |W,X architecture only. Averaged
over 10 runs, with 95% CIs.

Qi
Y |W,X Pα (↑) Rβ (↑) Inv. KL (↑) KS (↑) WD (↓) JSD (↓) Oracle (↓)

T-Learner 0.927 ± 0.001 0.584 ± 0.006 0.947 ± 0.000 0.979 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.525 ± 0.012
TARNet 0.919 ± 0.002 0.573 ± 0.005 0.950 ± 0.006 0.985 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.616 ± 0.015
DragonNet 0.921 ± 0.001 0.574 ± 0.004 0.947 ± 0.000 0.984 ± 0.001 0.002 ± 0.000 0.002 ± 0.000 0.618 ± 0.007
S-Learner 0.926 ± 0.002 0.579 ± 0.007 0.957 ± 0.009 0.990 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 1.279 ± 0.015

Comparison to UPEHE. Since we only alter Qi
Y |W,X between each Di

s , all have the same Pα,X,
Rβ,X, and JSDπ . In Table 6 we report UPEHE on each dataset, and we see that it fully reproduces the
oracle ranking, and correctly identifies the best dataset to a statistically significant level, which no
existing metric could do.

Table 6: UPEHE on Di
s with varied Qi

Y |W,X. Averaged over 10 runs, with 95% CIs.

Qi
Y |W,X UPEHE (↓) Oracle (↓)

T-Learner 0.693 ± 0.013 0.525 ± 0.012
TARNet 0.731 ± 0.016 0.616 ± 0.015
DragonNet 0.754 ± 0.019 0.618 ± 0.007
S-Learner 0.906 ± 0.019 1.279 ± 0.015

D.2 Failure to identify changes to the treatment assignment mechanism

We conduct a similar experiment varying Qi
W |X across three Di

s . We simulate Dr ∼ PX,W,Y from
a DGP with 5 covariates, all of which contribute to the propensity score. We set PX = N (0, I),
PW |X = Bern(π(X)), π(X) = (1 + e−1/5

∑5
i=1 Xi)−1, PY |W,X = N (0, 1). We generate three

Di
s ∼ Qi

X,W,Y which vary only in the degree to which they correctly model π(X) by setting Qi
X

d
=

PX, Qi
Y |W,X

d
= PY |W,X, ∀i ∈ {1, 2, 3} and Qi

W |X = Bern(πi(X)) where π1(X) = (1 + e−X1)−1,

π2(X) = (1 + e−1/3
∑3

i=1 Xi)−1, and π3(X) = (1 + e−1/5
∑5

i=1 Xi)−1. In this way, we know that,
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Table 7: # correct var.: The number of correctly identified variables in the propensity score. Pα: α
precision. Rβ : β recall. Inv. KL: Inverse KL divergence. KS: Kolmogorov-Smirnov score. WD:
Wasserstein distance. JSD: Jensen-Shannon distance. JSDπ: Ours. Averaged over 10 runs, with 95%
CIs.

# correct var. Pα (↑) Rβ (↑) Inv. KL (↑) KS (↑) WD (↓) JSD (↓) JSDπ (↑)

5 0.863 ± 0.024 0.456 ± 0.017 0.989 ± 0.002 0.965 ± 0.003 0.017 ± 0.001 0.004 ± 0.000 0.963 ± 0.007
3 0.868 ± 0.022 0.457 ± 0.012 0.981 ± 0.006 0.966 ± 0.003 0.018 ± 0.001 0.004 ± 0.000 0.942 ± 0.006
1 0.866 ± 0.021 0.453 ± 0.013 0.985 ± 0.003 0.965 ± 0.003 0.018 ± 0.001 0.004 ± 0.000 0.908 ± 0.013

in truth, Q3
X,W,Y is a better model than Q2

X,W,Y , which in turn is better than Q1
X,W,Y , and we can

now assess how well existing metrics, and our JSDπ metric, recover this ranking.

We display the scores of Pα, Rβ , inverse KL, Kolmogorov-Smirnov score, Wasserstein distance,
Jensen-Shannon distance, and our metric JSDπ on each Di

s in Table 7. We see that the existing
metrics report very similar scores across the three datasets, and none offer a statistically significant
best option. This contrasts with our JSDπ metric, which correctly orders the three models and selects
Q3

X,W,Y as the best option to a statistically significant level.

To further elucidate the differences in rankings between existing and our metrics, both in this
experiment and the outcome generation comparison in §5, we list each ranking and their Spearman’s
rank correlation coefficient with the oracle ranking in Tables 8 and 9. Assessment via our metrics is
the only protocol that reproduces the oracle ranking across both experiments.

Table 8: Treatment assignment experiment: rankings by different metrics, sorted by Spearman’s rank
correlation coefficient (rs) with oracle ranking. Numbering indicates the oracle order of πi(X).

Metric Ranking rs (↑)

Pα 2,3,1 -0.5
KS 2,1,3 0.5

Inv. KL 1,3,2 0.5
Rβ 2,1,3 0.5
WD 1,2,3 1

JSDπ 1,2,3 1

Table 9: Outcome generation experiment: Rankings by different metrics, sorted by Spearman’s rank
correlation coefficient (rs) with oracle ranking. Qi

Y |W,X are numbers by oracle ranking, 1: T-Learner,
2: TARNet, 3: DragonNet, 4: S-Learner.

Metric Ranking rs (↑)

KS 4,2,3,1 -0.80
Inv. KL 4,2,1,3 -0.40
Pα 1,4,3,2 0.20
Rβ 1,4,3,2 0.20
WD 2,3,1,4 0.40
UPEHE 1,2,3,4 1

D.3 Existing metric failure: extreme example

As a ‘proof by contradiction’ that current metrics can offer a good level of information on the preser-
vation of (i)–(iii), we present some extreme examples. We show that joint-distribution-level metrics
do not have enough resolution to identify how well (i)–(iii) are preserved, even if Q comprehensively
fails in modelling any one of the component distributions PX, PW |X, or PY |W,X.

We perform a series of experiments where we evaluate adversarial synthetic versions of a simulated
dataset, with each synthetic version failing in one of the above components, and we show that standard
metrics do not identify these failure modes. We simulate real data using the DGP in CATENets
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from [15] and we create three Ds that perfectly model two component distributions of Dr but poorly
approximate the remaining one. For poorly modelled PX, we set X = 0; for poorly modelled
PW |X, we assign all instances with W = 0; and for poorly modelled PY |W,X, we draw Y from a
normal distribution with mean 0 regardless of treatment. All such Ds are useless for treatment effect
estimation.

Table 10: Scores on adversarially created Ds which poorly perform on desiderata (i), (ii), or (iii).
Inv. KL (↑) Pα (↑) Rβ (↑) MMD (↓)

Poor (i) 0.681 0.902 0.368 0.085

Poor (ii) 0.685 0.501 0.333 0.074

Poor (iii) 0.844 0.905 0.430 0.008

We report the inverse of KL divergence, Pα, Rβ , and MMD, which all have range [0, 1], for these
synthetic datasets in Table 10. We see that these conventional evaluation metrics do not accurately
reflect the invalidity of each Ds for treatment effect estimation. None report significantly low scores,
despite the failure of each Ds. Rβ reflects these failures best, although its scores still do not adequately
reflect how these datasets render correct treatment effect analysis impossible, and it does not allow a
granular enough analysis to disentangle which component distribution is poorly modelled.

In further detail, for the experiments that examine poor modelling of PX and PW |X, we simulate Dr
of size n = 1000 with d = 1 covariate as follows:

X ∼ N (0, 1) (9)
W ∼ Bernoulli(0.5) (10)

Y (0), Y (1) = 0 (11)
Y = (1−W )Y (0) +WY (1) + ϵ, ϵ ∼ N (0, 1) (12)

We manufacture Ds that exhibits poor modelling of PX by generating W and Y from the true
distributions as above, but set X = 0. For Ds that exhibits poor modelling of PW |X, we generate X
and Y from their true distributions, but set all W = 0.

To demonstrate assessment under poor modelling of PY |W,X, we set the covariate in Dr to be
predictive, such that it affects the value of the potential outcome Y (1), but not Y (0). The distributions
remain the same as the above, although now the potential outcomes are:

Y (0) = 0 (13)

Y (1) = X2 (14)

We manufacture Ds that poorly models of PY |W,X by generating X and W from their true distribu-
tions, but we set Y (0), Y (1) = 0.
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E Discussion on alternative metrics

While we propose a set of metrics M for evaluation of Ds, there are many possible alternatives to
each choice we make. Our choices enable evaluation of how well Ds adheres to our desiderata, but,
like any metrics, they may be sub-optimal for certain data holders with specific preferences. Here,
we list some alternative definitions, and we detail when they may be preferable. We would like to
emphasise that conducting any reasonable assessment of the preservation of (i)–(iii) is beneficial
compared to standard evaluation practices.

E.1 Alternative covariate distribution assessment

As we state in the main paper, comparison of PX and QX is essentially a standard synthetic data
evaluation problem, and therefore any standard protocol can be applied.

For example, if the dimensionality of X is small, manual evaluation via visualisation may be
preferable to the precision/recall analysis we suggest, as this can provide a more granular and
interpretable assessment. On the other hand, if a single all-encompassing score is desired, rather than
the two-dimensional metric (Pα,X, Rβ,X), then statistical divergence metrics can offer this. These
one-dimensional metrics can lead to more straightforward model selection than (Pα,X, Rβ,X), as
ordering based on a two-dimensional metric can be ambiguous.

E.2 Alternative treatment assignment mechanism assessment

Similarly, there is a vast array of metrics which could be substituted into Eq. (5) over Jensen-Shannon
distance, which could measure the difference between PW |X and QW |X. These include metrics
such as KL divergence and Wasserstein distance, which are also very common in machine learning
literature. For example, a data holder may prefer KL divergence if they want to more harshly punish
QW |X for failing to place density where PW |X is probable, encouraging mode-covering behaviour.
On the other hand, if a data holder wants to more harshly punish QW |X for spreading mass away
from the modes, Wasserstein distance may be preferable, leading to mode-seeking behaviour. JSD
achieves a balance between these two focuses, but if a data holder has a strong preference for one
or the other, these alternate choices would be preferable. Nevertheless, we suggest that, apart from
extreme scenarios, most reasonable methods to assess the preservation of PW |X will lead to similar
analysis.

E.3 Alternative outcome generation mechanism metrics

Raw similarity of PEHE in CATE estimation between Dr and Ds may not be the most important
quantity of interest for certain data holders. This can be particularly true in medical practice, as raw
performance is not the only important aspect of a downstream model. We propose some alternatives
that may be more applicable in the following situations:

1. Correct estimation of the sign of the CATE may be of heightened importance if the CATE
learner is assisting with policy decisions. The wrong CATE sign will lead to incorrect
policy administration, whereas the magnitude of the effect may not be as important for
decision-making.

2. Discovering the correct drivers of effect heterogeneity may be important, as how a learner
arrives at its final estimation is particularly important to consider in applications such as in
drug discovery or clinical practice [40, 14].

E.3.1 Policy assignment

If policy guidance is of interest, then quantification of how well the sign of CATE estimates is
preserved between Ds and Dr may be desired, which can be done as follows:

Upolicy(Dr,Ds) =
1

|F|
∑
τ̂∈F

EPX
[I(τ̂synth(X)× τ̂real(X) > 0)] (15)

where I is the indicator function.
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E.3.2 Feature importance

If assessing how well Ds permits the discovery of the correct drivers of effect heterogeneity is
important, this can be quantified through the use of feature importance methods. Given a CATE
learner τ̂ , feature importance methods offer a means to measure the sensitivity of the model to each
covariate by assigning an importance score ai(τ̂ ,x) to each feature xi that reflects its importance
in the prediction of the CATE τ̂(x). There are many different instantiations of feature importance
methods with different strengths [26], and the metric we propose here is method-agnostic. We
quantify how well PY |W,X is modelled according to feature importance similarity between Ds and
Dr as follows:

Uint(Dr,Ds) =
1

|F|
∑
τ̂∈F

SC(Areal,τ̂ , Asynth,τ̂ ) (16)

where SC is cosine similarity, and Areal,τ̂ and Asynth,τ̂ are d-dimensional vectors with ith entries

Ai
⋄,τ̂ = EPX

[ai(τ̂⋄,X)], ⋄ ∈ {real, synth} (17)

Uint ∈ [−1, 1], where Uint = 1 indicates total agreement in the feature importances of Dr and Ds,
while Uint = 0 indicates that the feature importances are uncorrelated, suggesting that QY |W,X does
not allow discovery of the correct drivers of heterogeneity. Finally, Uint = −1 indicates antithetical
feature importances, suggesting a drastic failure of QY |W,X in estimating PY |W,X.

25



F Defining F for UPEHE

In CATE estimation, model validation is a difficult task [16]. As such, it is reasonable to expect that a
set of downstream analysts conducting CATE estimation on Ds will use different learners. Therefore,
we want UPEHE to reflect the expected difference in downstream performance between Ds and Dr
across a diverse array of potential learners, such that it is representative for the entire population
of analysts, and has limited bias towards any particular learner class. To achieve this, we propose
averaging UPEHE across a family of CATE learners F , and we suggest that larger |F| and a diverse
selection of the learners within F is preferable.

Of course, there is a trade-off between the size of F , and therefore the stability of UPEHE, and the
computational cost of repeated CATE estimation. With this in mind, to limit the computation involved
in calculating UPEHE, we suggest that users should be selective of the learners included in F to
maximize learner diversity, and minimise |F|. For example, in our experiments, we set |F| = 4,
and we chose learners from both of the high-level CATE learning strategies described in [15] (i.e.,
one-step plug-in learners, and two-step learners). Specifically, for the one-step learners we use S-
and T-learners [60], and for the two-step learners we use RA- and DR-learners [55]. All four of
these learners conduct CATE estimation differently, and encode different inductive biases in their
approaches, and thus they form a good diverse base for F .

For our experiments, on each of the real datasets, the runtime for calculating UPEHE for one run is
shown in Table 11. Note that these are much less than the typical generation times for each dataset, so
this step is unlikely to be a large time burden for the data holder. Also note that these calculations can
be parallelised across the learner classes, which we did not do, and this can improve the computational
feasibility of using a larger |F|.

Table 11: Runtime to calculate UPEHE

Dataset UPEHE runtime (s)

ACTG 26
IHDP 60
ACIC 191
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G STEAM diagram

See Figure 4 for flowcharts of the generic DGP for synthetic data generation, real datasets containing
treatments, and STEAM. STEAM is designed to closely mimic the real DGP.

Figure 4: DGPs for generic generative models (left), real datasets (middle), and STEAM (right).
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H Main experimental details

Here we add any additional details to the experiment set-ups from §7. All experiments were run on an
Azure VM with a 48-Core AMD EPYC Milan CPU and an A100 GPU. We report typical runtimes
where relevant. An estimated total compute time for all experimental runs is ∼72 hours. This does
not include the compute required for preliminary experimentation.

For all generative models, we use the open source library synthcity [79] (Apache-2.0 License),
and we do not change the default hyperparameters. We set the treatment and outcome generators of
STEAM using a logistic regression function from scikit-learn [77] and S-Learner from CATENets
[15], respectively.

We release code here https://github.com/harrya32/STEAM and here https://github.com/
vanderschaarlab/STEAM.

H.1 Generation of medical data containing treatments

To assess sequential generation in a number of real-world scenarios, we evaluate performance on
ACTG [36] and on the popular treatment effect estimation datasets IHDP [41] and ACIC [21]. We
also report further results in Table 12 on a non-medical dataset, Jobs [61], which is also popular
amongst the treatment effect estimation community, to show that STEAM can be applied beyond
the medical context, to any dataset containing treatments. More in-depth descriptions of the datasets
used are here:

1. AIDS Clinical Trial Group (ACTG) study 175. A clinical trial on subjects with HIV-1 [36].
Preprocessed as in [39] to compare CD4 counts at the beginning of the study and after 20 ± 5
weeks across treatment arms using zidovudine (ZDV) and zalcitabine (ZAL) vs. ZDV only. The
ACTG dataset contains n = 1056 instances with d = 12 covariates and a continuous outcome,
and we use the publicly available version from https://github.com/tobhatt/CorNet.

2. Infant Health and Development Program (IHDP). A semi-synthetic medical dataset, with
real covariates and simulated outcomes, using data from a randomised experiment designed
to evaluate the effect of specialist childcare on the cognitive test scores of premature infants
[11]. Confounding and treatment imbalance were introduced in [41] to mimic an observational
dataset. The IHDP dataset consists of n = 747 instances with d = 25 covariates and a
continuous outcome. We use the publicly available version from https://github.com/
AMLab-Amsterdam/CEVAE [67], with the first batch of simulated outcomes.

3. Atlantic Causal Inference Competition 2016 (ACIC). A semi-synthetic medical dataset,
with real covariates and simulated outcomes, containing data from the Collaborative Perinatal
Project [74]. The data was modified in [21] to simulate an observational study examining
the impact of birth weight in twins on IQ. The ACIC dataset consists of n = 4802 instances
with d = 58 covariates and a continuous outcome. We use the publicly available version from
the causallib package [87] (Apache-2.0 License) available here https://github.com/
BiomedSciAI/causallib, using the first simulated set of treatments and potential outcomes.

4. Jobs. Jobs contains experimental data from a male sub-sample from the National Supported
Work Demonstration from [61] to evaluate the effect of job training on income. The Jobs dataset
consists of n = 722 instances with d = 7 covariates and a continuous outcome. We use the
publicly available version used in [18, 19], from https://users.nber.org/~rdehejia/
data/.nswdata2.html.

We report extended results for all models tested, and further results on the Jobs dataset, in Table 12.
For each model on each dataset, we conduct 20 runs. A typical run for a given real dataset and
generative model took 15 minutes.

H.2 Simulated experiments

For our simulated insight experiments, we compare the performance of a standard TabDDPM with
STEAMTabDDPM, and we report average results over 10 runs. A typical run took 5 minutes. For
simulation of Dr, we use the DGP from CATENets [15].
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H.3 Differentially private generation

For our experiment, which showcases the performance of STEAM when satisfying DP (Appendix N),
we compare the generative performance of baseline methods AIM [71], GEM [66], MST [70], RAP
[5] with their STEAM counterparts. We use the code provided by [71] in their GitHub https:
//github.com/ryan112358/private-pgm for the AIM and MST implementations, and we use
the code provided in the GitHub https://github.com/terranceliu/dp-query-release for
the GEM and RAP implementations. We use the default hyperparameter settings of these implemen-
tations, with the workload set as 3-way marginals. For the STEAM models, we use the relevant base
model for QX, DP random forest from the diffprivlib library [45] (MIT License) for QW |X, and
a custom implementation of a T-Learner [60] based on [15] which guarantees DP by training with
DP stochastic gradient descent, implemented with the Opacus library [100] (Apache-2.0 License).
We report comparative results on varied ϵ, averaged over 5 runs.
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I Extended results

We report the full set of results for each model and dataset from §7.1 in Table 12, including on
the Jobs dataset. We pair each standard model with its STEAM analogue, and report the relative
difference between them for each metric, where (green) indicates better performance by STEAM, and
(red) indicates better performance by standard modelling. We see that STEAM clearly outperforms.
Almost all STEAM models perform better in each metric than all standard models.

Table 12: Pα,X, Rβ,X, JSDπ , and UPEHE values for STEAM and standard models. Averaged over 20
runs, with 95% confidence intervals. Each STEAM model is placed after its corresponding standard
model. Coloured numbers in brackets indicate relative difference between standard and STEAM
model, where (green) indicates better performance by STEAM, and (red) indicates better performance
by standard modelling.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG TVAE 0.926 ± 0.013 0.483 ± 0.010 0.946 ± 0.004 0.564 ± 0.017
STEAM TVAE 0.929 ± 0.008 (+0.003) 0.486 ± 0.009 (+0.003) 0.958 ± 0.004 (+0.012) 0.492 ± 0.011 (-0.072)
ARF 0.818 ± 0.012 0.453 ± 0.007 0.960 ± 0.004 0.577 ± 0.015
STEAM ARF 0.836 ± 0.008 (+0.018) 0.464 ± 0.007 (+0.011) 0.962 ± 0.004 (+0.002) 0.423 ± 0.016 (-0.154)
CTGAN 0.889 ± 0.020 0.444 ± 0.014 0.934 ± 0.008 0.586 ± 0.017
STEAM CTGAN 0.892 ± 0.017 (+0.003) 0.437 ± 0.012 (-0.007) 0.959 ± 0.005 (+0.025) 0.436 ± 0.012 (-0.150)
NFlow 0.817 ± 0.032 0.418 ± 0.008 0.913 ± 0.016 0.643 ± 0.026
STEAM NFlow 0.837 ± 0.040 (+0.020) 0.417 ± 0.015 (-0.001) 0.962 ± 0.005 (+0.049) 0.445 ± 0.020 (-0.198)
TabDDPM 0.067 ± 0.060 0.036 ± 0.035 0.812 ± 0.029 1.761 ± 0.230
STEAM TabDDPM 0.609 ± 0.106 (+0.542) 0.310 ± 0.055 (+0.274) 0.952 ± 0.009 (+0.140) 0.468 ± 0.013 (-1.293)

IHDP CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 (+0.011) 0.424 ± 0.011 (+0.005) 0.928 ± 0.009 (+0.040) 1.709 ± 0.052 (-0.812)
TabDDPM 0.477 ± 0.036 0.340 ± 0.022 0.862 ± 0.011 2.706 ± 0.138
STEAM TabDDPM 0.553 ± 0.029 (+0.076) 0.396 ± 0.015 (+0.056) 0.918 ± 0.011 (+0.056) 2.346 ± 0.088 (-0.360)
ARF 0.528 ± 0.009 0.381 ± 0.010 0.921 ± 0.009 3.019 ± 0.117
STEAM ARF 0.565 ± 0.014 (+0.037) 0.394 ± 0.010 (+0.013) 0.921 ± 0.009 (+0.000) 1.629 ± 0.056 (-1.390)
TVAE 0.622 ± 0.014 0.410 ± 0.010 0.880 ± 0.014 3.198 ± 0.172
STEAM TVAE 0.629 ± 0.015 (+0.007) 0.412 ± 0.011 (+0.002) 0.927 ± 0.007 (+0.047) 2.100 ± 0.075 (-1.098)
NFlow 0.406 ± 0.028 0.309 ± 0.012 0.882 ± 0.012 3.835 ± 0.345
STEAM NFlow 0.435 ± 0.034 (+0.029) 0.333 ± 0.020 (+0.024) 0.921 ± 0.007 (+0.039) 2.177 ± 0.118 (-1.658)

ACIC TVAE 0.901 ± 0.014 0.513 ± 0.004 0.929 ± 0.005 4.223 ± 0.138
STEAM TVAE 0.900 ± 0.014 (-0.001) 0.514 ± 0.004 (+0.001) 0.972 ± 0.002 (+0.043) 2.422 ± 0.118 (-1.801)
CTGAN 0.880 ± 0.016 0.421 ± 0.013 0.942 ± 0.005 4.518 ± 0.186
STEAM CTGAN 0.873 ± 0.014 (-0.007) 0.424 ± 0.014 (+0.003) 0.972 ± 0.002 (+0.030) 2.268 ± 0.154 (-2.250)
ARF 0.828 ± 0.003 0.430 ± 0.002 0.945 ± 0.002 4.633 ± 0.146
STEAM ARF 0.835 ± 0.004 (+0.007) 0.430 ± 0.004 (+0.000) 0.977 ± 0.002 (+0.032) 2.449 ± 0.149 (-2.184)
NFlow 0.748 ± 0.019 0.333 ± 0.014 0.838 ± 0.035 5.068 ± 0.282
STEAM NFlow 0.744 ± 0.021 (-0.004) 0.333 ± 0.010 (+0.000) 0.971 ± 0.002 (+0.133) 2.938 ± 0.149 (-2.130)
TabDDPM 0.124 ± 0.028 0.002 ± 0.001 0.813 ± 0.023 9.281 ± 1.033
STEAM TabDDPM 0.141 ± 0.035 (+0.017) 0.002 ± 0.000 (+0.000) 0.955 ± 0.019 (+0.142) 4.497 ± 0.501 (-4.784)

Jobs TabDDPM 0.890 ± 0.014 0.477 ± 0.011 0.949 ± 0.004 3.335 ± 0.516
STEAM TabDDPM 0.929 ± 0.009 (+0.039) 0.493 ± 0.008 (+0.016) 0.954 ± 0.003 (+0.005) 1.446 ± 0.052 (-1.889)
ARF 0.832 ± 0.010 0.431 ± 0.019 0.964 ± 0.004 3.173 ± 0.691
STEAM ARF 0.863 ± 0.011 (+0.031) 0.481 ± 0.016 (+0.050) 0.953 ± 0.004 (-0.011) 2.280 ± 0.381 (-0.893)
TVAE 0.886 ± 0.017 0.288 ± 0.009 0.944 ± 0.006 4.471 ± 0.336
STEAM TVAE 0.887 ± 0.014 (+0.001) 0.300 ± 0.012 (+0.012) 0.949 ± 0.004 (+0.005) 1.540 ± 0.167 (-2.931)
CTGAN 0.830 ± 0.049 0.339 ± 0.023 0.925 ± 0.033 4.608 ± 0.792
STEAM CTGAN 0.778 ± 0.076 (-0.052) 0.298 ± 0.030 (-0.041) 0.939 ± 0.007 (+0.014) 1.846 ± 0.270 (-2.762)
NFlow 0.716 ± 0.058 0.374 ± 0.017 0.920 ± 0.018 5.445 ± 0.883
STEAM NFlow 0.800 ± 0.041 (+0.084) 0.375 ± 0.017 (+0.001) 0.952 ± 0.006 (+0.032) 2.666 ± 0.200 (-2.779)
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J Ablation study

To add to the evidence of STEAM’s efficacy, we conduct an ablative study by assessing how jointly
modelling PX,W affects performance. On the medical datasets used in the main body of the paper,
we compare performance of the best standard models with their relevant ablation STEAM ⋄, joint X,W,
which models PX,W with the generative model and PY |W,X with a PO estimator, and regular STEAM.
We report the results in Table 13.

We see that the ablative model, while often improving upon standard generation, is not as effective as
STEAM. Directly modelling PW |X, as STEAM does, better preserves the treatment assignment and
outcome generation mechanisms, and both JSDπ and UPEHE are significantly improved by STEAM
in most cases. Using the full inductive bias of directly modelling each distribution of our desiderata,
and following the true DGP of data containing treatments is the best approach to generation.

Table 13: Pα,X, Rβ,X, JSDπ , and UPEHE values on standard, ablation, and STEAM models. Ablation
results averaged over 5 runs, with 95% CIs, other results use 20 runs.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG TVAE 0.926 ± 0.013 0.483 ± 0.010 0.946 ± 0.004 0.564 ± 0.017
STEAM TVAE, joint X,W (ablation) 0.918 ± 0.021 0.473 ± 0.012 0.939 ± 0.010 0.475 ± 0.012
STEAM TVAE 0.929 ± 0.008 0.486 ± 0.009 0.958 ± 0.004 0.492 ± 0.011

IHDP CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN, joint X,W (ablation) 0.639 ± 0.021 0.428 ± 0.009 0.908 ± 0.019 2.140 ± 0.134
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

ACIC TVAE 0.901 ± 0.014 0.513 ± 0.004 0.929 ± 0.005 4.223 ± 0.138
STEAM TVAE, joint X,W (ablation) 0.873 ± 0.022 0.512 ± 0.010 0.930 ± 0.019 2.447 ± 0.249
STEAM TVAE 0.900 ± 0.014 0.514 ± 0.004 0.972 ± 0.002 2.422 ± 0.118

J.1 QW |X ablation

We conduct a further ablation study to identify how setting different classifiers as QW |X within
STEAM models affects performance. On the IHDP dataset, we compare setting QW |X with a logistic
regression classifier, as is done in the main experimental section, against a random forest classier. We
report the respective JSDπ scores for each model in Table 14. We can see that there is no significant
difference between how each classifier preserves the treatment assignment mechanism in IHDP.
Model selection for QW |X is a much smaller priority than selecting QX, which can significantly
affect all metrics, as shown in Table 3.

Table 14: JSDπ values for STEAM models with different classifiers for QW |X.
Dataset Model JSDπ (↑)

IHDP STEAM CTGAN, log.reg. 0.928 ± 0.009
STEAM CTGAN, rf. 0.919 ± 0.020

STEAM TabDDPM, log.reg. 0.918 ± 0.011
STEAM TabDDPM, rf. 0.931 ± 0.015

STEAM ARF, log.reg. 0.921 ± 0.009
STEAM ARF, rf. 0.922 ± 0.016

STEAM TVAE, log.reg. 0.927 ± 0.007
STEAM TVAE, rf. 0.915 ± 0.020

STEAM NFlow, log.reg. 0.921 ± 0.007
STEAM NFlow, rf. 0.924 ± 0.016
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K Hyperparameter stability

The performance of generative models is typically sensitive to hyperparameters. To assess the
stability of STEAM’s performance across hyperparameters, on IHDP, we compare CTGAN with
STEAMCTGAN with multiple hyperparameter configurations. We report results by changing three hy-
perparameters: number of hidden units within the generator layers (generator_n_units_hidden)
(Table 15), number of hidden layers within the generator (generator_n_layers_hidden) (Ta-
ble 16), and activation functions used in the generator (generator_nonlin) (Table 17), keeping all
other hyperparameters default.

The performance gap between STEAMCTGAN and CTGAN is relatively stable across these configura-
tions. STEAMCTGAN outperforms CTGAN in each metric at almost all hyperparameter levels. The
most statistically significant differences are consistently noted in the JSDπ and UPEHE metrics, which
is compatible with the results displayed in the main paper.

Table 15: Comparison of STEAM with standard generation on IHDP at different
generator_n_units_hidden levels. Averaged over 5 runs, with 95% CIs.

generator_n_units_hidden Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

5 CTGAN 0.517 ± 0.026 0.396 ± 0.015 0.863 ± 0.033 2.914 ± 0.047
STEAM CTGAN 0.565 ± 0.011 0.405 ± 0.011 0.941 ± 0.000 2.194 ± 0.265

50 CTGAN 0.622 ± 0.028 0.411 ± 0.043 0.916 ± 0.15 2.282 ± 0.141
STEAM CTGAN 0.664 ± 0.020 0.444 ± 0.017 0.905 ± 0.041 1.960 ± 0.174

100 CTGAN 0.607 ± 0.038 0.418 ± 0.032 0.894 ± 0.010 2.560 ± 0.289
STEAM CTGAN 0.682 ± 0.016 0.439 ± 0.018 0.912 ± 0.004 2.097 ± 0.095

300 CTGAN 0.619 ± 0.030 0.434 ± 0.030 0.908 ± 0.023 2.426 ± 0.289
STEAM CTGAN 0.699 ± 0.018 0.458 ± 0.015 0.928 ± 0.016 2.028 ± 0.163

500 CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

Table 16: Comparison of STEAM with standard generation on IHDP at different
generator_n_layers_hidden levels. Averaged over 5 runs, with 95% CIs.

generator_n_layers_hidden Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

2 CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

3 CTGAN 0.595 ± 0.067 0.395 ± 0.066 0.868 ± 0.064 2.982 ± 0.647
STEAM CTGAN 0.693 ± 0.075 0.441 ± 0.043 0.924 ± 0.018 2.028 ± 0.143

4 CTGAN 0.583 ± 0.049 0.259 ± 0.074 0.807 ± 0.054 3.278 ± 0.191
STEAM CTGAN 0.596 ± 0.220 0.301 ± 0.084 0.886 ± 0.014 2.690 ± 0.836

5 CTGAN 0.490 ± 0.092 0.313 ± 0.069 0.770 ± 0.127 2.871 ± 0.599
STEAM CTGAN 0.691 ± 0.071 0.386 ± 0.041 0.915 ± 0.010 2.498 ± 0.536

Table 17: Comparison of STEAM with standard generation on IHDP at different generator_nonlin
settings. Averaged over 5 runs, with 95% CIs.

generator_nonlin Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ReLU CTGAN 0.663 ± 0.018 0.419 ± 0.013 0.888 ± 0.010 2.521 ± 0.161
STEAM CTGAN 0.674 ± 0.014 0.424 ± 0.011 0.928 ± 0.009 1.709 ± 0.052

SELU CTGAN 0.604 ± 0.020 0.419 ± 0.015 0.855 ± 0.023 2.509 ± 0.160
STEAM CTGAN 0.699 ± 0.017 0.445 ± 0.025 0.929 ± 0.014 2.043 ± 0.130

Leaky ReLU CTGAN 0.648 ± 0.045 0.415 ± 0.015 0.889 ± 0.016 2.482 ± 0.210
STEAM CTGAN 0.699 ± 0.028 0.457 ± 0.019 0.916 ± 0.011 2.036 ± 0.135
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L Congeniality bias

Congeniality bias [16] is a phenomenon that may arise from generation with STEAM. In this scenario,
it refers to the fact that downstream models which are structurally similar to the outcome generator,
QY |W,X, may be advantaged in their performance on Ds. For example, if the potential outcomes
from an S-learner are used for QY |W,X, the outcome generation mechanism in Ds may be modelled
in such a way that it allows downstream S-learners to better estimate CATEs than other learners.
While we acknowledge this phenomenon may disadvantage certain downstream models, we note that
our outcome error metric, UPEHE, averages across a number of downstream learner types, such that
conducting generative model selection with UPEHE should lead to good performance across a wide
variety of downstream learners, not just those similar to QY |W,X, helping to reduce this congeniality
bias.
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M Causal generative model comparison

For the baseline models in §7.1.2, we use the code provided by [12] in their GitHub https:
//github.com/patrickrchao/DiffusionBasedCausalModels, and we use the same hyperpa-
rameter settings for both ANM and DCM as in that work.

In Table 18 we report the full set of results for ANM and DCM with each of these graph discovery
methods. We see that the differences between the graph discovery methods are relatively small,
except on the IHDP dataset, where Gdiscovered is significantly better than Gnaive for the DCM model.

Table 18: Pα,X, Rβ,X, JSDπ, and UPEHE values for CGMs with different graph discovery methods.
Averaged over 20 runs, with 95% confidence intervals.

Dataset Model Pα,X (↑) Rβ,X (↑) JSDπ (↑) UPEHE (↓)

ACTG DCM Gnaive 0.773 ± 0.013 0.369 ± 0.006 0.937 ± 0.006 0.665 ± 0.034
DCM Gdiscovered 0.756 ± 0.011 0.350 ± 0.007 0.956 ± 0.005 0.605 ± 0.023
DCM Gpruned 0.758 ± 0.013 0.358 ± 0.007 0.957 ± 0.003 0.596 ± 0.017
ANM Gnaive 0.787 ± 0.007 0.389 ± 0.008 0.954 ± 0.005 0.580 ± 0.017
ANM Gdiscovered 0.836 ± 0.007 0.419 ± 0.007 0.952 ± 0.004 0.578 ± 0.019
ANM Gpruned 0.839 ± 0.008 0.412 ± 0.005 0.952 ± 0.005 0.582 ± 0.014

IHDP∗ DCM Gnaive 0.557 ± 0.010 0.340 ± 0.009 0.883 ± 0.016 4.878 ± 0.395
DCM Gdiscovered 0.658 ± 0.011 0.360 ± 0.007 0.893 ± 0.008 2.059 ± 0.140
ANM Gnaive 0.597 ± 0.029 0.379 ± 0.011 0.900 ± 0.005 1.868 ± 0.147
ANM Gdiscovered 0.589 ± 0.012 0.359 ± 0.009 0.892 ± 0.008 1.865 ± 0.059

ACIC† DCM Gdiscovered 0.942 ± 0.004 0.422 ± 0.003 0.957 ± 0.003 4.249 ± 0.132
DCM Gpruned 0.939 ± 0.004 0.420 ± 0.004 0.959 ± 0.002 4.340 ± 0.159
ANM Gdiscovered 0.929 ± 0.003 0.404 ± 0.003 0.872 ± 0.002 4.193 ± 0.127
ANM Gpruned 0.930 ± 0.004 0.404 ± 0.003 0.880 ± 0.002 4.481 ± 0.174

∗ Gpruned was the same as Gdiscovered for IHDP
† Excessive runtime caused the exclusion of Gnaive ACIC results
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N Differential privacy with STEAM
Theoretical guarantees of the privacy of synthetic data are often required in high-stakes scenarios,
such as medicine. STEAM can permit this, satisfying DP when its three component models do, as an
application of the post-processing and composition theorems of DP [23].
Proposition 1. If QX, QW |X, and QY |W,X satisfy (ϵX, δX)-, (ϵW , δW )-, and (ϵY , δY )-differential
privacy respectively, STEAM satisfies (ϵtotal, δtotal)-differential privacy, where ϵtotal = ϵX + ϵW +
ϵY , δtotal = δX + δW + δY .

Proof. See below.

There are a number of existing DP generative models, classifiers, and regressors which can be set as
QX, QW |X, and QY |W,X respectively to enable this.

N.1 STEAM differential privacy proof

The theoretical guarantee of STEAM’s differential privacy (DP) when using individual DP compo-
nents is grounded in the post-processing and composition theorems of DP [23], as we state in the
main body of the paper. We make this derivation clear here by first outlining the post-processing and
composition theorems in full.

Theorem (Post-Processing Theorem). Let M : N|X | → R be a randomised algorithm that is (ϵ, δ)-
differentially private. Let f : R → R′ be an arbitrary randomised mapping. Then the composition
f ◦M : N|X | → R′ is (ϵ, δ)-differentially private.

Theorem (Composition Theorem). Let Mi : N|X | → Ri be an (ϵi, δi)-differentially private algo-
rithm for i ∈ [k]. Define M[k] : N|X | →

∏k
i=1 Ri as:

M[k](x) = (M1(x),M2(x), . . . ,Mk(x)),

then M[k] is
(∑k

i=1 ϵi,
∑k

i=1 δi

)
-differentially private.

Given these theorems, we have our guarantee of DP generation with STEAM, as stated in Proposition
1. Specifically:

Proof. QX generates X, and satisfies (ϵX, δX)-differential privacy by assumption.

By the post-processing theorem, inputting X as the condition to QW |X does not affect its privacy.
QW |X generates W , and satisfies (ϵW , δW )-differential privacy by assumption.

By the post-processing theorem, inputting W and X as the conditions to QY |W,X does not affect
their privacy. QY |W,X generates Y , and satisfies (ϵY , δY )-differential privacy by assumption.

STEAM generates (X,W, Y ), and is the composition of QX, QW |X, and QY |W,X, i.e. STEAM =
(QX, QW |X, QY |W,X)

Therefore, by the composition theorem STEAM satisfies (ϵtotal, δtotal)-differential privacy, where
ϵtotal = ϵX + ϵW + ϵY , δtotal = δX + δW + δY .

N.2 Differential privacy experiments

We now examine STEAM’s performance in (ϵ, δ)-DP generation. For comparison we use a state-
of-the-art DP generative model, AIM [71], set at privacy level (ϵ, δ), and, for STEAM, we set
QX as (ϵ/3, δ/3)-AIM, QW |X as an (ϵ/3, δ/3)-DP random forest, and QY |W,X as an (ϵ/3, δ/3)-T-
Learner, such that STEAM is also (ϵ, δ)-DP. We compare performance on the ACTG dataset across
ϵ ∈ {0.25, 0.5, 1, 2, 3, 5, 10, 15} with δ = 10−6 in Figure 5.

Takeaway. STEAMAIM models PY |W,X better on all tested values of ϵ, as UPEHE is significantly
lower than for standard AIM. PW |X is better modelled by STEAMAIM at small ϵ, with equivalent
performance between the methods at less conservative budgets. PX, on the other hand, is better
preserved by standard AIM, scoring higher on Pα,X and Rβ,X at most ϵ. This is likely because
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Figure 5: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMAIM and standard AIM
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.

assigning QX one third of the budget of the standard AIM model and having it model largely
the same distribution, save for the removed W and Y , is prohibitively restrictive given the
high-dimensionality of X. As such, with uniform distribution of (ϵ, δ) across each component,
there is a trade-off between STEAMAIM and standard AIM, where STEAMAIM better preserves
PW |X and PY |W,X, while standard AIM preserves PX better. Distributing (ϵ, δ) differently
amongst QX, QW |X, and QY |W,X could address this trade-off, as we discuss in Appendix N.4.

N.3 Extended differential privacy results

We now report (ϵ, δ)-DP generation results on the ACTG across a wider set of baseline models.
In Figure 6 we compare GEM [66] with STEAMGEM, in Figure 7 we compare MST [70] with
STEAMMST, and in Figure 8 we compare RAP [5] with STEAMRAP. While there are some nuances
to each baseline comparison, the general takeaway remains similar: STEAM models preserve PW |X
and PY |W,X better, while standard models preserve PX better.
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Figure 6: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMGEM and standard GEM
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.
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Figure 7: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMMST and standard MST
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.
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Figure 8: Pα,X (↑), Rβ,X (↑), JSDπ (↑), and UPEHE (↓) evaluating STEAMRAP and standard RAP
across privacy budgets. Averaged over 5 runs, shaded area represents 95% CIs.

It is worth noting, however, that when baseline models perform poorly in modelling PX, as is the
case for GEM and RAP, then the relevant STEAM model exhibits similar performance in this regard.

36



N.4 Allocation of the privacy budget in STEAM

In STEAM, uniform distribution of the privacy budget ϵ amongst the three component models ensures
(ϵ, δ)-DP. However, such allocation is uninformed on the difficulty of modelling of PX, PW |X, and
PY |W,X, and their relative importance to downstream analysts.

In relation to the importance of each distribution, one immediate improvement can be to distribute
ϵ according to some preference function f : (0,∞) ×△2 → ϵ · △2 (where △2 is the 2-simplex)
which takes input of the budget ϵ and weights w for the relative importance of good modelling in QX,
QW |X, and QY |W,X, and outputs a corresponding ϵ distribution. For example, a simple preference
function definition would be f(ϵ,w) = ϵ ·w where w could be defined by a data holder with some
prior knowledge of the importance level of each component distribution to downstream analysts.
Another approach, if it is not necessary to specify the desired ϵ distribution a priori, is to treat it as a
hyperparameter, to be tuned over a series of runs to optimize some metric, such as a combination of
Pα,X , Rβ,X , JSDπ , and UPEHE.

Incorporating knowledge of the complexity of modelling PX, PW |X, and PY |W,X is more difficult.
While some proxy measures could be established, such as the number of covariates in X indicating the
complexity of PW |X, establishing a robust understanding of how the complexity of these distributions
relate and compare, is highly non-trivial, and as such, we leave this for future work.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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faith effort.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documented code here https://github.com/harrya32/STEAM
and here https://github.com/vanderschaarlab/STEAM.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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well as details about compensation (if any)?
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Core method does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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