
Neural Modulation for Flash Memory: An
Unsupervised Learning Framework for Improved

Reliability

Jonathan Zedaka Elisha Halperin Evgeny Blaichman Amit Berman
Samsung Semiconductor Israel Research and Development Center

{jonathan.z,elisha.h,evgeny.bl,amit.berman}@samsung.com

Abstract

Recent years have witnessed a significant increase in the storage density of NAND
flash memory, making it a critical component in modern electronic devices. How-
ever, with the rise in storage capacity comes an increased likelihood of errors in
data storage and retrieval. The growing number of errors poses ongoing challenges
for system designers and engineers, in terms of the characterization, modeling, and
optimization of NAND-based systems. We present a novel approach for modeling
and preventing errors by utilizing the capabilities of generative and unsupervised
machine learning methods. As part of our research, we constructed and trained a
neural modulator that translates information bits into programming operations on
each memory cell in NAND devices. Our modulator, tailored explicitly for flash
memory channels, provides a smart writing scheme that reduces programming
errors as well as compensates for data degradation over time. Specifically, the
modulator is based on an auto-encoder architecture with an additional channel
model embedded between the encoder and the decoder. A conditional generative
adversarial network (cGAN) was used to construct the channel model. Optimized
for the end-of-life work-point, the learned memory system outperforms the prior
art by up to 56% in raw bit error rate (RBER) and extends the lifetime of the flash
memory block by up to 25%.

1 Introduction

The continued scaling of flash memory technology into smaller process nodes, combined with
the increased information capacity of each flash cell (i.e, storing more bits per cell), has placed
NAND flash memory at the forefront of modern storage technology. Those advances comes at the
cost of increased vulnerability to various error mechanisms that can compromise data integrity and
system reliability. The endurance of the flash can be measured by the number of program-erase (PE)
cycles the cells can undergo, before the error-correction-code (ECC) decoder fails to reconstruct the
programmed bits.

Modern flash devices suffer from multiple sources of error, such as write-induced [1], data retention
[2, 3] and read-induced [4] errors. The impact of these different mechanisms vary between physical
locations in the chip. In addition, the probability of errors to occur on different cells is not independent:
The charge stored in a flash memory cell is affected by the state of its neighboring cells (see section
2.1.4), a phenomenon dubbed inter-cell interference (ICI).

To maintain high reliability while pushing for ever-growing storage density, manufactures devote
significant resources to comprehensive characterization and optimization of flash systems [5, 6]. Over
the years, the industry has developed numerous strategies for mitigating errors, including robust ECC
algorithms [7], smart writing schemes [8] and adaptive read methods [9, 10]. However, all above

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



techniques optimize either the data storage or retrieval operations individually, ignoring their built-in
dependencies. Furthermore, they typically neglect the inter-cell correlations between the cells. To
that end, we introduce the neural-modulation framework—an end-to-end unsupervised optimization
method which is designed to mitigate the complex error patterns of flash memory devices and address
the plethora of correlations between their components. By using a learning based approach, we enable
(i) state-of-the-art modeling and optimization of the system; and (ii) flexibility and generalization:
optimization of a new flash generation can be done in a simple and automatic procedure.

The flash memory stores information in an array of cells, where the information stored in each
cell is encoded in its transistor threshold voltage vth. Current writing schemes allocate each cell
with a target vth. The targets are optimized to result in a minimal error-rate with an emphasize
on the end-of-life workpoint. So far, such prior art modulation methods base the choice of the
target voltage solely on the data stored in the cell. This kind of modulation, illustrated in Fig
1, is referred to as a pulse amplitude modulation (PAM). In this work, we propose a novel ap-
proach to mitigate the ICI by optimizing the target vth of the memory cells with respect to the data
designated to their neighbors. By employing such a scheme, we preemptively counteract the ICI.

Figure 1: An illustration of a 4-PAM modulation
for a Multi-Level cell NAND device (storing 2 bits
per cell). Each data symbol is allocated with a sin-
gle vth target that minimize the BER at the end-of
life work-point. Panel (a) shows the distribution of
the cells vth around the chosen targets immediately
after the writing operation. Panel (b) illustrates the
same data, at the end-of life work-point. Cells with
vth within the overlap region between the distribu-
tions are susceptible to a read error.

We optimize the vth target modulation by per-
forming an end-to-end training of the flash
memory system (see Fig 2). Our method is
based on the analogy between memory cells
and communication channels—both systems re-
ceive and transmit data. Consequently, we can
follow recent advances in communication re-
search [11, 12, 13]. We use an unsupervised
learning method, jointly training the transmit-
ter and receiver of a communication system as
an auto-encoder. The channel auto-encoder is
trained using a reconstruction loss between the
input of the encoder and the output of the de-
coder (see Fig. 5). In the flash memory domain,
we define the transmitter of the system, which
we dub the modulator, as the module translating
the information bits into vth targets.

The joint optimization of the transmitter and
receiver, using standard back-propagation, re-
quires calculating the channel gradient with re-
spect to the transmitted signal (see x in Fig.
5). Since, however, the flash channel is non-
differentiable, we cannot naively implement this
technique. To overcome this issue, we train a
conditional generative adversarial network (cGAN) based channel model as proposed in [14]. Recent
work by [15] showed that GANs can be useful in modeling the vth distribution of the flash cells by
using the data symbols. In this work, the trained channel model learns to produce samples from
the vth distribution of a memory cell given the vth targets of the cell and its neighbors. Using the
neighbors data, the channel model is able to capture the inter-cell interference statistics, allowing the
modulator to counteract this phenomenon.

To reduce the additional programming latency caused by our neural modulator, we develop a novel
shared pulses programming scheme. The suggested scheme, which is based on the Incremental Step
Pulse Programming (ISPP) scheme [16], achieves accurate programming, without increasing the
amount of programming pulses, and with only a minor increase in programming time.

When optimized for the EOL work-point, the learned memory system outperforms the prior art by up
to 56% in terms of raw bit error rate (RBER), extending the tested EOL work-point of the chip by
25% in terms of PE cycles. This gain is achieved without increasing the read latency.

2



Figure 2: The neural modulation system architecture. The channel generator is a pre-trained model
of the NAND device. The modulator is trained to output the optimal program vth target for each cell,
considering its input symbol and the symbols of its neighbors. The output targets flow through the
GAN based channel model that simulates the programming operation, data retention process and
subsequent read operation, to output a stochastic vth read for the cell. From there, the vth read is
passed to the demodulator to recover the original programmed symbol.

2 Preliminaries

2.1 Flash memory basics

2.1.1 The 3D NAND flash architecture

The basic unit of a 3D-NAND Flash Memory is a cell—a semiconductor based charge trap transistor.
The cell’s information is encoded in its transistor threshold voltage vth, which is a real value
vth ∈ [vmin, vmax]. The range [vmin, vmax] is referred to as the dynamic range.

Modern flash devices typically store multiple bits per cell (BPC). The dynamical range is divided
into 2BPC segments, each corresponding to a different information bits dubbed symbol. We define a
level as the group of cells that hold the same symbol. Flash devices that store 1/2/3/4 BPC are usually
referred to as single-level cell (SLC)/multi-level cell (MLC)/triple-level cell (TLC)/quadruple-level
cell (QLC), respectively.

The flash cells are organized in three dimensional arrays called blocks (see Fig. 3). The three
dimensions of the block are the pillar/string axis, the wordline (WL) axis and the bit-line (BL) axis.
The two dimensional cross section of the block consisting of the pillar and WL axes is called the
string select line (SSL).

2.1.2 The flash memory interface

Figure 3: Top view of the 3D NAND flash block
structure

The two most basic operations on the flash mem-
ory device are programming and reading.

1. Programming the block with informa-
tion; and more specifically, bringing
the vth of each flash cell to the volt-
age target assigned to the symbol that
should be stored in that cell. This oper-
ation is done using the ISPP algorithm
described in the supplementary mate-
rial.

2. Reading the data stored in a WL.
This operations is done by segment-
ing [vmin, vmax] into 2BPC voltage re-
gions, corresponding to the 2BPC data
symbols.

3



2.1.3 Errors in NAND flash memory

Read errors occurs if there is a mismatch between the symbol designated for the cell and its actual
threshold voltage. The fraction of bits which were incorrectly assigned by the reading algorithm out
of all bits read is called the Bit Error Rate (BER).

Errors in flash memory devices can be induced by many factors [1], but for the purpose of this work
we will focus only on two of them - programming variation and retention disturb.

The vth of a memory cell after receiving a programming pulse is a stochastic function of the initial
cell vth and the pulse magnitude. Therefore, programming a level ℓ in some WL w will result in
some distribution of the vth close to the desired target, regardless of the writing algorithm. We define
the programming variation as the noise injected by the programming algorithm.

The retention disturb [2, 3] is defined as the vth change during the data storage time, after the
programming phase has completed. The retention disturb happens because charge leaks out of the
cell over time, thus changing its vth.

The shift in vth due to programming variation and retention disturb varies between WLs and SSLs.
Furthermore, it is also a function of the number of PE cycles experienced by the block. Each PE
cycle wears down the block cells, making them more vulnerable for disturbs, and therefore increases
the BER of the block.

2.1.4 Inter-cell interference in the 3D-NAND block

Figure 4: Lateral migration out of a 3D-NAND
memory cell as a function of its neighbor symbol.
The change of vth of level 15, shown in the figure,
was measured on a single WL of a QLC flash mem-
ory device. The charge loss grows as the neighbors’
symbol is lower. The figure is presented with 95%
confidence interval.

The most dominant coupling between cells in
a 3D-NAND, and hence Inter-Cell Interference
(ICI), occurs along the pillar axis, and it includes
phenomena such as programming interference
and lateral migration. The programming inter-
ference is the phenomenon at which program-
ming of a flash cell increases the vth of adjacent
neighbor cells [1]. The programming interfer-
ence effect on a flash cell is a stochastic function
of the amount and magnitude of the pulses its
neighbors experience. Therefore, it is also a
function of the vth targets of its neighbors.

The lateral migration [1, 17], which takes place
during data retention period, describes charge
migration between cells with different vth. Fig
4 illustrates the lateral migration phenomenon
measured on a 3D-NAND chip programmed
with QLC data. We measure the vth of each
cell immediately after programming the block,
and again after an effective retention period of
one month at room temperature.1 The figure
shows the mean vth change of the cells programmed to data symbol 15 as a function of the symbol of
its two adjacent cells. We obtained that low-symbol-neighbors cause higher voltage loss over time.

2.2 Generative adversarial networks

Generative adversarial networks (GANs) [19] are a class of generative models consisting of two
separate neural networks (NNs), a generator GΘ and discriminator DΨ. The basic setup of GANs
consists of a set of samples {xi}mi=1 ⊂ X drawn from some distribution of interest p, which we wish
to produce new samples from. GANs learn the distribution p by fixing a rather simple distribution pZ
(Gaussian for example) over a latent space Z and then optimizing the generator function GΘ : Z → X
such that the push-forward measure pG := G⋆ (pZ) = pZ ◦G−1 will be as close as possible to p.

1The effective data retention time is simulated at 100◦C according to Arrhenius’ Law as described in [18]

4



In this work we apply a conditional version of the Wasserstein GAN (WGAN) proposed in [20, 21],
which uses the Wasserstein distance as the training loss of the generator. WGANs were proven to
enable more stable training and convergence[20].

2.3 End-to-end training of autoencoder-based communication systems

End-to-end training of autoencoder-based communication systems is a relatively new approach [13]
for the joint optimization of both the transmitter and the receiver of the system. With this approach,
an autoencoder-like architecture is used, where the transmitter acts as the encoder and the receiver as
the decoder. Both are represented as NNs with parameters ΘT and ΘR, respectively, which we train
jointly using back-propagation. The training uses a reconstruction loss between the symbol s at the
input of the transmitter, and the reconstructed symbol ŝ at the output of the receiver (see Fig 5), where

ŝ = fΘR
(C (fΘT

(s)))

This reconstruction loss is commonly defined as the categorical Cross-Entropy (CE) between s and ŝ,
where C represents the system channel.

3 End-to-end learning based modulation for the flash memory

The basic program-read flow of the 3D-NAND flash memory suffers from multiple sources of error,
degrading its endurance both in terms of PE cycles, as well as data retention time. To mitigate the
effects of those errors we introduce a neural-modulation system, which is inspired by the end-to-end
training approach described in Section 2.3. Given some programming scheme, the neural-Modulation
system optimizes the vth targets of the 3D-NAND block. On top of optimizing the vth targets, our
system performs pre-distortion of the target of each cell, to counter the ICI phenomenon (see section
2.1.4). For this purpose, the vth target is optimized conditioned on the symbols of its pillar neighbors.
This novel approach gives rise to a significant BER reduction, and by that, extend the EOL work-point
of the NAND flash block.

3.1 Flash memory as classical communication system

In order to fully describe the end-to-end training approach outlined in the previews section, we first
turn to formally define the NAND flash memory as a classical communication system. The three
components of a classical communication system are the transmitter, channel and receiver. We adjust
their definition to memory devices in the following way:

1. The transmitter fΘM
, which we dub the modulator, is the component responsible for

translating the input symbols s into vth targets for the programming algorithm.
2. The channel C is the composition of the programming scheme, the data retention process,

and the vth read operation. It simulates the disturbs and errors described in Section 2.1.3.
3. The system receiver fΘD

, which we dub the demodulator, is the component which re-
constructs the data symbols ŝ from the vth readings.

Using this formulation we can adopt the end-to-end learning based approach described in Section 2.3
to learn an optimal modulation for our channel. Bellow we elaborate on the three main components
of our system.

3.2 cWGAN as NAND channel model

We model our NAND channel as a cWGAN [21]. Modeling the NAND as a cGAN is essential for
training the auto-encoder because it allows differentiating the channel [14]. The generator is trained

Figure 5: The structure of an end-to-end learning based communication system.

5



to learn the cell’s threshold voltage vcellth distribution given its “context” - the cWGAN condition -
which includes the following:

1. The program target of the cell tcell.
2. The target vth of the two nearest pillar neighbors of the cell Tneighbors ∈ R2.
3. The SSL index, ssl ∈ [Nssls] and WL index wl ∈ [Nwls] of the programmed WL.

Including Tneighbors in the cell context is crucial for modeling the ICI effects. Consequently, it
allows the neural-modulator to adjust the target of each cell according to vth of its neighbors and
counteract the ICI. Since different WLs in the block exhibit different reactions both to programming
pulses as well as the ICI noise, the SSL and WL indices of the programmed WL are also used to
condition our cWGAN. We can therefore formulate the cWGAN objective as learning to produce a
sample of vcellth (vth reads from the NAND) given the conditional density

P
(
vcellth |tcell, Tneighbors, ssl, wl

)
For full model specification see the supplementary material.

3.3 The neural modulator and demodulator

The next two components of our system are the modulator and the demodulator. The modulator is a
function

fΘM
:
[
2BPC

]
× C −→ [vmin, vmax] ,

mapping information symbols s ∈
[
2BPC

]
to vth targets to be programmed to the NAND, conditioned

on the “context” of the target cell c ∈ C. The context c comprises of the symbols designated to the
two neighboring cells along the SSL (one on each side of our given cell), the SSL index and WL
index of the target cell C =

[
2BPC

]
×
[
2BPC

]
× [Nssls]× [Nwls] .

The demodulator,
fΘD

: [vmin, vmax]× [Nssls]× [Nwls] −→ R2BPC

,

receives a vth read from the channel. It then reconstructs the programmed symbol by learning the log
likelihood ratio (LLR) of each symbol s ∈

[
2BPC

]
given the vth read. Note that the demodulator

does not receive any information about the cell’s neighbors. This forces our system to exploit the
information about the neighbors only at the modulation stage, and thus perform pre-distortion to
offset the ICI. In other words, all the information about the neighbors is already encoded by the
modulator into its output. This independence of the demodulator from the cell’s neighbors also
guarantees that our system will not require any changes to be made to the current reading algorithm.
As there are physical differences between different sections of the block, we use the SSL and WL
indices as input to both the modulator and the demodulator.

The number of layers and other NN parameters of both modulator and demodulator are given in
the supplementary material. The output of the modulator is passed through a tanh function, to
enforce it to be in the range of (−1, 1). This output is then scaled to the dynamic range of the chip
(vmin, vmax), forcing the modulator to choose only targets that are feasible for programming.

3.4 The training procedure

The Neural-modulation training procedure is divided into two steps. In the first step we train the
cWGAN based channel model. The data we use as a train set is a set of vth reads of a single
block programmed with given targets T .2 The critic is utilized solely to train the generator, and is
afterwards discarded. The second step includes the joint training of the modulator and demodulator.
As a prerequisite, we assume to have the pretrained, frozen channel model (i.e. the generator from the
previous step). At each iteration a batch B of samples b ∈

[
2BPC

]
×C flows through the modulator,

generating a program target for each sample. At this point each cell has a corresponding target,
but we still require the targets of its neighbor cells as well, to be used as an input for the channel
model. We choose the neighbor cells targets according to some constant set of 2BPC − 1 targets that
we spread uniformly over the dynamic range [vmin, vmax] (we refer to those targets as the “default

2We use a set of 2BPC − 1 targets that we spread uniformly over the dynamic range [vmin, vmax]

6



Figure 7: Comparison of the real and generated vth histograms of a single QLC WL.

targets”). The targets and neighbor targets then pass through the channel model to sample from the
vth distribution of the cells when programming them to those targets. Finally, the demodulator is used
to predict the original symbols given the simulated vth and the SSL and WL indices of the cells. As a
training loss we use the CE loss between the recovered symbols and the input symbols as described
in Section 3. The supplementary material provides the full details of all training parameters.

3.5 Programming the learned targets

The modulator, which translate a block of information symbols into vth targets, is trained
upon completion of the second stage. However, the number of target values suggested
by the system is significantly larger than the number of data symbols, as it is equal
to the number of possible values of the input. As the number of unique targets in-
creases, programming operation latency increases, making it impractical with the conven-
tional programming scheme. Therefore, we propose performing the following two steps:

Figure 6: The real vs generated BER as function
of the targets shift. The shaded area marks the
standard deviation of the tested WLs.

1. Quantization of the modulator output,
by grouping together close targets to a
single target.

2. Expanding the ISPP program scheme,
to enable it to program simultaneous-
lymultiple, relatively close, targets, us-
ing a shared pulses mechanism. The
proposed scheme preserves the current
number of programming pulses and in-
troduces solely read operations. As per
[22], the effect of these read operations
on the programming latency is deter-
mined to be negligible.

Using these steps, we are able to program
learned targets, while still maintaining a state-of-
the-art programming time. A detailed descrip-
tion of both steps is given in the supplementary material.

4 Experiments

One of the main goal of the neural-modulation system is to extend the end-of-life work-point of
the chip in terms of PE cycles and data retention time. Therefore, we conduct our experiments at a
work-point with high amount of errors, to simulate an EOL scenario.

4.1 GAN channel model experiments

To evaluate the channel model, we first train our cWGAN on a vth read of a single block programmed
with 15 linearly spread targets (for QLC modulation) over the dynamic range. We then evaluate the

7



trained model over a test set which include six blocks. In each test block, we perturb the linearly
spread targets {T train

i }15i=1 by setting Ti = T train
i + λi∆, where

λi =


0 i ∈ {1, 3, 6, 9, 12, 15}
1 i ∈ {2, 5, 8, 11, 14}
−1 i ∈ {4, 7, 10, 13}

for ∆ in {15, 30, 45, 60, 75, 90}. The evaluation itself uses two criteria:

1. BER: We compare the real and generated BER of each WL in the block.

2. Histograms: We compare between the histograms generated by our model and those mea-
sured on a real chip (i.e. when programming an actual batch of cells to the same target).

The quality of both train and perturbed predicted vth histograms can be seen in Fig. 7. Specifically,
we measure a Wasserstein distance of 6 ± 2 mV between the real and generated histograms. For
comparison, the average Wasserstein distance between two real blocks in the same chip is 6 mV
as well. A detailed description of the distance calculation is given in the supplementary materials.
In Fig. 6 we compare the real and predicted BER of a QLC block for different target voltages, i.e.,
values of ∆. Again, we see that the BER prediction is very good and has an error margin of up to 5%.
This reassures us we can indeed use the trained model to generate targets from the entire vth range
(including targets it did not train over).

4.2 Neural-modulation experiments

We train the neural-modulation system as described in Section 3.4. Table 1 summarizes the perfor-
mance of the model in terms of average block BER at the EOL work-point. We note that not only
did the model significantly improve the BER compared to the baseline targets, but it also accurately
predicted the BER results via the channel model GAN (see the ’GAN prediction’ column of Table 1).
Specifically, we pass the modulator targets through the GAN, and use the generated vth distribution
to calculate the predicted BER.

Fig. 8 illustrates the pulse amplitude modulation (PAM) constellation the modulator learned for a
single QLC WL, compared to the original 16 PAM constellation. The modulator found lower targets
for cells with higher symbol neighbors. Such scheme is consistent with the observation discussed in
Section 2.1.4, that the charge lose depends on symbols of the cell and its neighbors.

Next, we analyze the model effect as function of the data retention time. We measure the average BER
as a result of programming with the default and modulated targets, at different time points during the
data retention process. Fig. 9 (a) presents the BER reduction of the modulated targets compared to
the default targets. We found that the pre-distortion of the targets helps keeping the BER low over

Figure 8: The original and learned PAM constellations. The first row presents the original targets of
the WL which we used for the channel model training. The second row shows the learned by the
neural modulator; a zoom in of symbols 12 and 13 is displayed in the bottom row. In agreement with
the observation from Section 2.1.4, the modulator found lower targets for cells with higher symbol
neighbors, as we saw that such cells tend to lose less charge over time.

8



Table 1: The BER reduction achieved by the neural modulator. We extract the redaction by calculating
the BER after programming the cells once with the targets found by the neural modulator and once
with the default targets.

Average Worst case WL

BPC GAN
prediction

Empirical
result

GAN
prediction

Empirical
result

QLC 16% 17% 8% 9%
TLC 54% 56% 35% 36%

longer retention periods. Interestingly, the pre-distortion slightly deteriorate the BER at short times.
Since the BER at these time is overall small, there is no real price for using our modulator.

The ultimate purpose of our modulator is to extend the EOL work-point of the NAND block. We
would, therefore, like to estimate the change in the number of PE cycles before the the memory
device reaches its EOL. The EOL point is determined by a threshold BER value above which the data
cannot be reconstructed. This information can be extracted from Fig. 9 (b), where we show the BER
after a constant retention time as a function of PE cycles. We found that the modulator extends the
number of PE cycles by 25% (notice that the BER is normalized to its EOL value)

5 Conclusions and limitations

In this work, we demonstrated the potential of pre-distorted programming of the flash memory device
to mitigate errors caused by ICI. We applied state-of-the-art optimization methods for the program-
ming vth targets by performing end-to-end training of the channel’s modulator and demodulator
through a pre-trained channel model. To the best of our knowledge, our work is the first to introduce
an unsupervised learning based modulation for the flash memory. The importance of our modulator
is in reducing the BER for the stored information by 56% compared to conventional writing schemes,
and extending the NAND EOL work point by 25% in terms of PE cycles. Currently, our modulator
was optimized for a single work-point with a constant read disturb and PE cycles. Future work
may generalize the channel model and modulator to overcome this limitation using a dedicated
input features. Another drawback is that implementing the modulator in a flash controller requires
allocating extra write buffers for the neighbors data.3

(a) (b)

Figure 9: Comparison between the default and modulated targets BERs. Panel (a) shows the model’s
BER reduction at different time points during the data retention process, measured on QLC flash.
The modulated targets BER is higher right after programming the block, and lower along the rest
of the retention process due to the effect of the ICI on the programmed cells. Panel (b) presents the
block’s BER at different PE cycle workpoints and effective data retention time of one month at room
temperature. Programming the block with the modulator generated targets extends the EOL point of
the block by 25% in terms of PE cycles, while maintaining the same BER. The shaded area marks
the standard deviation of the tested WLs.

3Modern programming schemes already compromise about the buffer size for increased programming
accuracy [22].

9



References
[1] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. Error characterization,

mitigation, and recovery in flash-memory-based solid-state drives. Proceedings of the IEEE,
105(9):1666–1704, 2017. 1, 2.1.3, 2.1.4

[2] Yunjie Fan, Zhiqiang Wang, Shengwei Yang, Kun Han, and Yi He. Investigation of retention
characteristics in a triple-level charge trap 3d nand flash memory. In 2022 IEEE International
Reliability Physics Symposium (IRPS), pages P31–1–P31–4, 2022. 1, 2.1.3

[3] Shinkeun Kim, Kyunghwan Lee, Changbeom Woo, Yuchul Hwang, and Hyungcheol Shin.
Analysis of failure mechanisms during the long-term retention operation in 3-d nand flash
memories. IEEE Transactions on Electron Devices, 67(12):5472–5478, 2020. 1, 2.1.3

[4] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. Read disturb errors in mlc nand flash mem-
ory: Characterization, mitigation, and recovery. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 438–449, 2015. 1

[5] Kyul Ko, Jang Kyu Lee, and Hyungcheol Shin. Variability-aware machine learning strategy for
3-d nand flash memories. IEEE Transactions on Electron Devices, 67(4):1575–1580, 2020. 1

[6] Jihye Park, Jang Lee, and Hyungcheol Shin. Machine learning method to predict threshold
voltage distribution by read disturbance in 3d nand flash memories. Japanese Journal of Applied
Physics, 59, 07 2020. 1

[7] Manzur Gill Joe E. Brewer. Nonvolatile Memory Technologies with Emphasis on Flash: A
Comprehensive Guide to Understanding and Using NVM Devices, pages 548–552. IEEE Press,
2008. 1

[8] Yong Sung Cho, Il Han Park, Sang Yong Yoon, Nam Hee Lee, Sang Hyun Joo, Ki-Whan Song,
Kihwan Choi, Jin-Man Han, Kye Hyun Kyung, and Young-Hyun Jun. Adaptive multi-pulse
program scheme based on tunneling speed classification for next generation multi-bit/cell nand
flash. IEEE Journal of Solid-State Circuits, 48(4):948–959, 2013. 1

[9] Borja Peleato, Rajiv Agarwal, John M. Cioffi, Minghai Qin, and Paul H. Siegel. Adaptive read
thresholds for nand flash. IEEE Transactions on Communications, 63(9):3069–3081, 2015. 1

[10] Hyemin Choe, Jeongju Jee, Seung-Chan Lim, Sung Min Joe, Il Han Park, and Hyuncheol
Park. Machine-learning-based read reference voltage estimation for nand flash memory systems
without knowledge of retention time. IEEE Access, 8:176416–176429, 2020. 1

[11] Boris Karanov, Mathieu Chagnon, Vahid Aref, Domaniç Lavery, Polina Bayvel, and Laurent
Schmalen. Concept and experimental demonstration of optical im/dd end-to-end system
optimization using a generative model, 2019. 1

[12] Sebastian Dörner, Marcus Henninger, Sebastian Cammerer, and Stephan ten Brink. Wgan-based
autoencoder training over-the-air. CoRR, abs/2003.02744, 2020. 1

[13] Timothy J. O’Shea, Kiran Karra, and T. Charles Clancy. Learning to communicate: Channel auto-
encoders, domain specific regularizers, and attention. In 2016 IEEE International Symposium
on Signal Processing and Information Technology (ISSPIT), pages 223–228, 2016. 1, 2.3

[14] Timothy J. O’Shea, Tamoghna Roy, Nathan West, and Benjamin C. Hilburn. Physical layer
communications system design over-the-air using adversarial networks, 2018. 1, 3.2

[15] Simeng Zheng, Chih-Hui Ho, Wenyu Peng, and Paul H. Siegel. Spatio-temporal modeling for
flash memory channels using conditional generative nets, 2021. 1

[16] Kang-Deog Suh et al. A 3.3 V 32 Mb NAND flash memory with incremental step pulse
programming scheme. IEEE Journal of Solid-State Circuits, 30(11):1149–1156, 1995. 1

[17] A. Maconi, A. Arreghini, C. Monzio Compagnoni, G. Van den bosch, A. S. Spinelli,
J. Van Houdt, and A. L. Lacaita. Impact of lateral charge migration on the retention per-
formance of planar and 3d sonos devices. In 2011 Proceedings of the European Solid-State
Device Research Conference (ESSDERC), pages 195–198, 2011. 2.1.4

10



[18] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Heatwatch: Improving
3d nand flash memory device reliability by exploiting self-recovery and temperature awareness.
In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 504–517, 2018. 1

[19] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. 2.2

[20] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017. 2.2

[21] Ying Yu, Bingying Tang, Ronglai Lin, Shufa Han, Tang Tang, and Ming Chen. Cwgan:
Conditional wasserstein generative adversarial nets for fault data generation. In 2019 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages 2713–2718, 2019. 2.2,
3.2

[22] Seungjae Lee et al. A 1Tb 4b/cell 64-stacked-WL 3D NAND flash memory with 12MB/s
program throughput. In 2018 IEEE International Solid - State Circuits Conference - (ISSCC),
pages 340–342, 2018. 2, 3

11


