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ABSTRACT

Contrastive vision–language models (VLMs) such as CLIP achieve strong zero-
shot recognition yet remain vulnerable to spurious correlations, particularly back-
ground over-reliance. We introduce Cluster-based Concept Importance (CCI),
a novel interpretability method that attributes image–text similarity by grouping
patches into coherent clusters, masking them, and evaluating relative changes in
model predictions. CCI sets a new state of the art on faithfulness benchmarks, sur-
passing prior methods by large margins; for example, it yields more than a twofold
improvement on the deletion-AUC metric for MS COCO retrieval. We further
propose that CCI when combined with GroundedSAM, automatically categorizes
predictions as foreground or background-driven, providing a crucial diagnostic
ability. Existing benchmarks such as CounterAnimals, however, rely solely on
accuracy and implicitly attribute all performance degradation to background cor-
relations. Our analysis shows this assumption to be incomplete, since many errors
arise from viewpoint variation, scale shifts, and fine-grained object confusions.
To disentangle these effects, we introduce COVAR, a benchmark that systemati-
cally varies object foregrounds and backgrounds. Leveraging CCI with COVAR,
we conduct a comprehensive evaluation of eighteen CLIP variants, providing both
methodological advances and empirical evidence that chart a path toward more
robust vision–language models.

1 INTRODUCTION

Contrastive vision–language models (VLMs) such as CLIP (Radford et al., 2021) demonstrate strong
generalization in tasks including zero-shot classification, retrieval (Luo et al., 2021), and open-
vocabulary recognition (Li et al., 2022; 2021) across diverse domains (Kim et al., 2022; Liu et al.,
2024). Despite this success, they remain vulnerable to spurious correlations (Wang et al., 2024;
Yang et al., 2023; Xu et al., 2025), that is, associations driven by dataset biases rather than true
semantic grounding (Geirhos et al., 2020). For instance, in Figure 1(a), CLIP predicts water ouzel
by relying on the surrounding water instead of the object. Such correlations reduce robustness under
distribution shifts (Chen et al., 2025a; Koddenbrock et al., 2025; Varma et al., 2024).

Recent work shows spurious correlations in VLMs often stem from dataset-specific artifacts, with
object–background priors constituting a dominant source (e.g., zebras in grasslands, sharks in wa-
ter) (Tian et al., 2025; Lu et al., 2025; Yang et al., 2025; Wang et al., 2024; Varma et al., 2024).
A notable attempt to quantify the role of background context is the CounterAnimals (CA) bench-
mark (Wang et al., 2024), which partitions images into “easy” and “hard” sets based on CLIP’s
accuracy, with the latter intended to probe sensitivity to atypical backgrounds. However, this opera-
tionalization is limited: declines in accuracy need not unambiguously signify reliance on background
features, while elevated accuracy cannot be presumed to reflect object-centric reasoning.

Using our interpretability method CCI (Section 3), we analyze CLIP’s (ViT-B/16) behavior on
the CA dataset and show that accuracy-based partitioning is insufficient for diagnosing background
sensitivity. As illustrated in Figure 1(a), correct predictions may rely on background cues (e.g.,
water ouzel identified via surrounding water), while errors can occur despite object-focused atten-
tion (e.g., jaguar misclassified as cheetah). Quantitative results reinforce this: although 32.1% of
the easy set and 46.6% of the hard set are misclassified, the proportion attributable to background
reliance remains nearly identical (6.23% vs. 7.26%, BG-Er, Figure 1(d)). Instead, most failures
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GT: jaguar Pred: cheetahGT: water ouzel Pred: water ouzel

CropH-flip V-flipScale Viewpoint Rotation Translate

(b) Sample Images from Counter Animals (2 backgrounds per class)

Bg-varied

(c) Sample Images from Proposed Dataset (20 backgrounds per class, 7 variants per background)

(a) CCI Highlights Why Accuracy Alone Misleads

(d) Sources of Error

ForegroundBackground Class: FlamingoClass: Bittern

Easy [grass] Hard [tree] Easy [water] Hard [sky]

Figure 1: (a) Image and CCI maps for CLIP’s prediction (red–blue heatmap, red = stronger atten-
tion). (b) Samples from easy and hard sets of CA. (c) Example of dataset curation in COVAR. (d)
Proportion of different sources of errors in CA, ImageNet and COVAR subsets.

arise from fine-grained confusions (Fine-Er), indicating that raw accuracy is an unreliable proxy for
disentangling object versus background-driven errors.

These findings highlight structural limitations of CA. By collapsing diverse visual variation into
a binary easy–hard split, it overlooks heterogeneity in viewpoint, scale, pose, and composition.
Errors therefore often reflect non-background factors; for example, failures on the flamingo class
(Figure 1(b)) may stem from contrasting poses across easy–hard splits rather than background con-
text. As shown in Figure 1(d), background-driven errors (BG-Er) form only a small fraction overall.
Consequently, CA’s coarse partitioning and absence of fine-grained annotations restrict its diagnostic
capacity and preclude precise assessment of CLIP’s dependence on background correlations.

In summary, current benchmarks for spurious background correlations are deficient in two respects:
(i) accuracy is an inadequate proxy, e.g., conflating background reliance with fine-grained class
confusions, and (ii) effective evaluation requires controlled, diverse variation in visual factors to
both isolate individual effects and expose a broader spectrum of failure modes.

To address these gaps, our first contribution is a training-free method, called Cluster-based Concept
Importance (CCI), to interpret CLIP’s predictions. CCI identifies the image regions driving im-
age–text similarity by grouping patches into semantically coherent clusters, systematically masking
them, and measuring changes in model predictions relative to the unmasked input (e.g. Figure 1,
first row). In contrast to gradient-based approaches Zhao et al. (2025), which frequently yield noisy
and fragmented pixel-level saliency maps, CCI identifies coherent and semantically meaningful re-
gions, thereby enabling direct region-level interpretability (Figure 3). This property is crucial for
our analysis, as CCI disentangles background and object contributions, providing a principled basis
for diagnosing shortcut reliance and robustness failures in CLIP.

Our second contribution is COVAR (COntrolled VARiants), a dataset developed for systematically
evaluating models’ reliance on spurious correlations. In contrast to the CA benchmark, which pro-
vides only two background variants and ignores other visual dimensions, COVAR introduces fine-
grained and explicitly controlled variations. For each class, we begin with a base image (e.g., a swan,
see Figure 1) and generate paired variants that independently perturb background, viewpoint, scale,
translation, flip, rotation, and crop. Through this design, multiple factors shaping model behavior
are explicitly represented and disentangled, thereby enabling rigorous, factor-wise evaluation.
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As our third contribution, we benchmark 18 CLIP variants on CCI and our proposed dataset COVAR
(Section 4) to assess their reliance on spurious correlations. We present results across eight subsets
of COVAR, identify the dominant influences on model behavior, and provide insights for mitigating
these vulnerabilities.

2 RELATED WORKS

Research on vision–language models spans interpretability, which explains predictive mechanisms,
and robustness evaluation, which probes behavior under distribution shifts and challenging condi-
tions. These are intertwined: interpretability reveals the cues models rely on, while robustness tests
whether such dependencies yield failures like spurious correlations.

Interpretability in Vision-Language Models: Early interpretability efforts applied methods such
as attention rollout (Abnar & Zuidema, 2020), which aggregates attention weights across layers, and
gradient-based techniques like GradCAM (Selvaraju et al., 2017) and GAME (Chefer et al., 2021a),
which compute feature importance through gradients. With the advent of CLIP (Radford et al.,
2021) and successors like BLIP (Li et al., 2022) and ALBEF (Li et al., 2021), researchers developed
VLM-specific techniques: Grad-ECLIP (Zhao et al., 2025) extends gradient-based attribution to
multimodal settings, CLIPSurgery (Li et al., 2023) identifies important regions through similarity
masking, MaskCLIP (Zhou et al., 2022) performs token-level masking to localize influential regions,
ECLIP (Chefer et al., 2021b) leverages gradient-weighted attention, and M2iB (Wang et al., 2023)
employs perturbation-based explanations. Perturbation-driven methods such as RISE (Petsiuk et al.,
2018) further provide model-agnostic saliency through random masking. More recent concept-based
approaches like SpLiCE (Bhalla et al., 2024) learn sparse concept embeddings, while others (Kim
et al., 2024) use foundation models for concept discovery, building on earlier methods like Concept
Bottleneck Models (Koh et al., 2020). Existing methods yield noisy, low-level attributions lacking
semantic coherence. CCI overcomes these limitation with concept-level attributions.

Benchmarks for Robustness and Spurious Correlations: Complementing interpretability work,
robustness benchmarks have evolved from broad evaluations of adversarial robustness (Goodfellow
et al., 2014) and distribution shifts (Hendrycks & Dietterich, 2019) to targeted assessments of spe-
cific weaknesses. ImageNet-A/R/C (Hendrycks et al., 2021) and WILDS (Koh et al., 2021) high-
lighted vulnerabilities to natural adversarial examples and domain shifts, while synthetic datasets
like ObjectNet (Barbu et al., 2019) and 3D-Common (Kar et al., 2022) enabled systematic testing
of pose and context. For VLMs, specialized benchmarks have emerged: Winoground (Thrush et al.,
2022) probes compositional reasoning, and Waterbirds (Sagawa et al., 2019) exposes background
bias in bird classification. Most recently, CA (Wang et al., 2024) investigated CLIP’s background
sensitivity but, by relying on accuracy drops as a proxy. We extend this line of work by isolating
visual factors and applying interpretability to distinguish spurious correlations from other errors.

3 CONCEPT CLUSTER IMPORTANCE

We present Concept Cluster Importance (CCI), a training-free interpretability method for CLIP
models that quantifies the contribution of semantically coherent visual concepts to image–text simi-
larity scores. CCI operates entirely at inference time, requiring no model modification or retraining.

Patch Embedding Clustering. We focus on the patch embeddings X = {zi}Ni=1, which encode
localized semantics. To extract coherent visual concepts, we perform K-means clustering over X,
yielding C = {C1, . . . , CK}, where each cluster aggregates semantically similar patches (See Fig-
ure 2 for examples with K = 7, where distinct colors denote different clusters).

Preliminaries. Given an input image I , the CLIP image encoder (e.g., a Vision Transformer) pro-
cesses I into a sequence of token embeddings Z = [zCLS, z1, z2, . . . , zN ] ∈ R(N+1)×d where
zCLS ∈ Rd is the global [CLS] embedding used for final image representation, and {zi}Ni=1 are
patch embeddings corresponding to N fixed-size patches extracted from the image.

Attention Attenuation with Cluster Masks. The CLIP image encoder contains L transformer
layers, each with self-attention matrices A(l) ∈ R(N+1)×(N+1), where the first token corresponds to
the CLS embedding and the rest correspond to patches.
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Figure 3: Qualitative comparison of CCI against baseline interpretability methods.
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Figure 2: Patch clusters.

To measure the contribution of cluster Ck, we construct a binary mask
mk(j) that indicates whether patch j belongs to cluster Ck:

mk(j) =

{
1, j ∈ Ck,

0, otherwise.

The attention logits are then modified before softmax:

Â
(l)
k (i, j) =

{
A(l)(i, j), mk(j) = 0,

−∞, mk(j) = 1.

This masking is applied at every transformer layer and head, prevent-
ing the CLS token from aggregating information from the patches cor-
responding to the selected cluster.

Importance Scoring via Similarity Drop. Let zCLS be the original
final CLS embedding, and t the corresponding text embedding. The original similarity score is
s = cos(zCLS, t) =

z⊤
CLSt

∥zCLS∥∥t∥ . After attention attenuation for cluster k, we obtain a modified CLS
embedding ẑCLS,k and similarity sk = cos(ẑCLS,k, t).

The relative importance of cluster Ck is quantified by the similarity drop ∆sk = s − sk. We
normalize the importance scores as wk = ∆sk∑K

j=1 ∆sj
, and compute the spatial importance map S ∈

RW×H as a weighted sum of cluster masks S =
∑K

k=1 wk · mk. The map S identifies regions
contributing most to the similarity score and is visualized as a heatmap overlay on I .

3.1 CCI RESULTS

We evaluate CCI against a diverse set of baselines spanning gradient-based, attention-based, and
perturbation-based techniques: Attention Rollout (Abnar & Zuidema, 2020), GradCAM (Selvaraju
et al., 2017), GAME (Chefer et al., 2021a), MaskCLIP (Zhou et al., 2022), M2iB (Wang et al.,
2023), RISE (Petsiuk et al., 2018), and Grad-ECLIP (Zhao et al., 2025). Unless otherwise specified,
all experiments use CLIP with a ViT-B/16 image encoder, and maps are computed with respect
to the ground-truth class label.

Qualitative Comparison with Baselines. Figure 3 compares attention maps from CCI and baseline
methods. CCI consistently produces coherent, object-aligned heatmaps, whereas baselines yield
sparse or noisy patterns. For instance, in the slug image (row 1), CCI captures the entire object while
baselines highlight scattered regions; in the digital clock (row 2), CCI sharply localizes the digits
on the clock face, relevant to CLIP’s prediction, unlike baselines that miss or misfocus; and in the
shark example (row 3), CCI emphasizes the teeth-features, whereas baselines diffuse attention across
irrelevant regions. Additional examples are provided in supplementary (Appendix A.1). We also
show results with variants other than CLIP ViT-B/16 in supplementary (Appendix A.2). These
results underscore CCI’s key strengths: the clustering of semantically related patches into coherent
concepts and the principled use of similarity-drop scoring to quantify their predictive contribution,
together enabling precise, concept-level visualizations.

Quantitative Comparison. Consistent with prior work, we evaluate the faithfulness of CCI us-
ing deletion and insertion metrics (Samek et al., 2016). CCI produces a patch-level importance
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Table 1: Faithfulness evaluation of image expla-
nations on ImageNet validation: AUC of Dele-
tion/Insertion curves using Top-1 (@1) or Top-5
(@5) accuracy, with either ground-truth or pre-
dicted labels as CLIP text input.

Deletion ↓ Insertion ↑
Method Ground-truth Prediction Ground-truth Prediction

@1 @5 @1 @5 @1 @5 @1 @5

raw attention 0.3831 0.6239 - - 0.2492 0.4195 - -
Rollout 0.4082 0.6556 - - 0.2803 0.4665 - -
Grad-CAM 0.3417 0.5628 0.3518 0.5817 0.2682 0.4454 0.2526 0.4206
GAME 0.3356 0.5734 0.3497 0.5938 0.3611 0.5636 0.3425 0.5384
MaskCLIP 0.2848 0.4885 0.2886 0.4957 0.3335 0.5351 0.3275 0.5267
CLIPSurgery 0.3115 0.5235 0.3217 0.5412 0.3832 0.6021 0.3727 0.5719
M2IB 0.3630 0.5953 0.3633 0.5951 0.3351 0.5411 0.3347 0.5410
Grad-ECLIP w/o λi 0.2535 0.4379 0.2634 0.4568 0.3715 0.5831 0.3528 0.5556
Grad-ECLIP 0.2464 0.4272 0.2543 0.4420 0.3838 0.5993 0.3672 0.5749
CCI (Ours) 0.1809 0.3276 0.1789 0.3318 0.4175 0.6518 0.3893 0.6201

Table 2: Evaluation of image explanation
faithfulness on MS COCO image-text retrieval
(Karpathy’s split) val-set: AUC for Deletion and
Insertion curves for performance on image re-
trieval (IR) and text retrieval (TR) tasks.

Deletion↓ Insertion↑

Method IR TR IR TR
@1 @5 @1 @5 @1 @5 @1 @5

raw attention 0.1708 0.3554 0.1923 0.3720 0.1247 0.2552 0.1544 0.2969
Rollout 0.1948 0.3946 0.2268 0.4238 0.1294 0.2932 0.1753 0.3503
Grad-CAM 0.1717 0.3502 0.2161 0.4008 0.1027 0.2216 0.1152 0.2327
GAME 0.1706 0.3552 0.1982 0.3800 0.1537 0.3083 0.2097 0.3735
MaskCLIP 0.1321 0.2841 0.1516 0.2949 0.1423 0.2953 0.1891 0.3514
CLIPSurgery 0.1794 0.3652 0.2381 0.4292 0.1419 0.2941 0.1771 0.3384
M2IB 0.1797 0.3671 0.2057 0.3905 0.1469 0.3004 0.2058 0.3691
Grad-ECLIP w/o λi 0.1390 0.2940 0.1827 0.3386 0.1403 0.2895 0.1735 0.3279
Grad-ECLIP 0.1246 0.2670 0.1550 0.2933 0.1576 0.3203 0.2056 0.3761
CCI (Ours) 0.0650 0.1056 0.0677 0.1184 0.1812 0.3513 0.2224 0.3943

map (14×14 for ViT-B/16), which is upsampled to 224×224 to assign pixel-level scores. Pix-
els are ranked by importance; in deletion, top-ranked pixels are iteratively replaced with ran-
dom noise, while in insertion, they are progressively revealed from a blank canvas. At each
step, ∼0.5% of pixels are modified, over 100 steps, cumulatively altering about half the image.
The model’s top-1 and top-5 accuracy is tracked at every step, and the area under the resulting
curves (AUC) is used as a summary measure: lower AUC for deletion and higher AUC for inser-
tion indicate causal influence of the highlighted regions. We report these scores on ImageNet-
1K classification (Deng et al., 2009)) and MS COCO cross-modal retrieval (Lin et al., 2014).

Figure 4: Deletion and insertion curves demonstrating CCI’s
quantitative superiority in identifying decision-relevant regions.

Across both datasets, CCI con-
sistently outperforms all base-
lines. On ImageNet, deletion
curves in Figure 4 drop sharply
when removing regions iden-
tified by CCI, while insertion
curves recover accuracy sub-
stantially faster, confirming that
the highlighted regions capture
the core evidence leveraged by
CLIP. These trends are reflected
in the AUC scores (Table 1),
where CCI achieves state-of-
the-art performance across Top-
1 and Top-5 metrics. The same
holds for image–text retrieval (Table 2), where CCI delivers state-of-the-art results for both image
and text retrieval on COCO. Notably, in deletion, CCI attains over two-fold error reduction (0.2670
→ 0.1056) in Top-5 IR, over the second-best Grad-ECLIP method. Collectively, these results show
that CCI yields faithful, generalizable attributions of CLIP’s decisions.

Understanding CLIP’s Failure Modes: We use CCI to analyze CLIP’s zero-shot predictions by
visualizing attention maps with respect to the predicted class (Figure 5, ImageNet-1k in part a and
CA in part b), focusing on misclassifications to expose error sources. Several failures are foreground-
driven: in part a, row 1, a chimpanzee is misclassified as a siamang despite correct focus on the
face; in row 2, attention is misdirected to a bucket, leading to error; and in row 3, CLIP fixates on a
squirrel rather than the target class. In CA (part b, rows 2–3), CCI likewise reveals attention on the
foreground, but errors arise from clutter, occlusion, or subtle visual distinctions.

Other errors are background-driven: in part a, row 4, attention to the grassy field results in croquet
ball, while in part b, row 1, focus on background produces water snake. Even under occlusion
or partial visibility (part b, rows 2 and 4), CCI consistently highlights the object, whereas baselines
scatter attention across irrelevant regions. Overall, CCI accurately predicts CLIP’s attention, offering
interpretable insights, with clarity unmatched by existing methods.
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FG masks Grad-ECLIP CCI (Ours) Grad-ECLIP CCI (Ours)

GT: chimpanzee Pred: siamang GT: bullfrog Pred: water snake

GT: ice bear Pred: bucket GT: African hunting dog Pred: hartebeest

GT: park bench Pred: squirrel GT: bittern Pred: American egret

GT: park bench Pred: croquet ball GT: bittern Pred: red-backed sandpiper(a) ImageNet (b) Counter Animals

MaskCLIPMaskCLIP FG masks

Figure 5: CCI analysis of CLIP failures on (a) ImageNet and (b) Counter Animals. Rows show
the image, ground-truth foreground (FG) mask obtained using GroundedSAM, and attribution maps
from MaskCLIP, Grad-ECLIP, and CCI, with ground-truth (GT) and predicted (Pred) labels below.

Diagnosing Error Sources with CCI: While prior sections qualitatively showed that CLIP’s errors
extend beyond background bias to factors such as viewpoint, occlusion, and fine-grained confusion,
here we use CCI to systematically measure the role of background cues. Using GroundedSAM (Ren
et al., 2024), we obtain ground-truth foreground (FG) and background (BG) masks for ImageNet-
1k and CA datasets (details are given in supplementary, Appendix A.3). CCI heatmaps are then
computed with respect to CLIP’s predicted class, and IoU overlap with FG/BG masks is used to
classify predictions as foreground-driven (FG-Er) or background-driven (BG-Er).

For foreground-driven errors, we further identify cases of fine-grained confusion (Fine-Er). Using
GPT-4o (prompt in Appendix A.4.1), we assess whether the predicted and ground-truth categories
are visually similar (e.g., siamang vs. chimpanzee) or unrelated, thereby distinguishing subtle fine-
grained inter-class confusions from more severe errors caused by distractors or other factors.

Figure 1(d) summarizes errors: the first three rows show CA-hard, CA-easy, and ImageNet respec-
tively. BG-Er constitute only a small fraction (9.1% on ImageNet, 6.7% on CA), with similar rates
across CA’s easy and hard sets, questioning the assumption that accuracy gaps primarily reflect
background correlations. In contrast, a substantial portion of errors arise from Fine-Er (46.6% on
ImageNet-1k, 60.4% on CA), underscoring the need to look beyond the background cues.

4 COVAR: A NEW BENCHMARK

As discussed in Section 1 and shown in our CCI analyses, the CA benchmark is limited, offering
only coarse background variation and no control over viewpoint, scale, flip, or crop. To address
these gaps, we introduce COVAR, where each object is placed into multiple backgrounds and, for
every such instance, its appearance is systematically varied along several visual factors.

4.1 CREATING BACKGROUND VARIATIONS

The objective is to synthesize diverse backgrounds for a given object. Unlike CA, which has limited
diversity (45 animal classes), COVAR spans semantically and visually varied categories, from non-
living objects (e.g., airships, locomotives) to living entities (e.g., birds, reptiles). A complete class
list with ID mappings is provided in the Appendix A.4.2.

We select 33 classes from ImageNet and sample 50 images per class. Using the Emu2 image editing
model Sun et al. (2024), each image is synthesized across 20 curated background types (via GPT-
4o (Hurst et al., 2024) prompts; see Appendix A.4.3) spanning outdoor (e.g., beach, railway track)
and indoor (e.g., living room, kitchen) contexts, resulting in 1000 images per class. Figure 1(c)
illustrates this process with a swan across four different backgrounds.

6
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Figure 6: Class-wise accuracy drops for Bg-varied set.

We evaluate the 33,000 background-
varied (Bg-varied) images using CLIP
ViT-B/16 in zero-shot mode over the full
1000 class-labels from ImageNet. Figure 6
reports the average per-class accuracy drop
relative to the original ImageNet images.
While the mean drop is 23.78, the effect
is highly uneven: classes 11, 22, and 31
show little-to-no decline, whereas classes
5, 23, and 32 suffer drops exceeding 50%, indicating that some categories are robust to background
variation while others are strongly background-dependent. We show similar per-class accuracy
drops for CLIP variants other than ViT-B/16 in the supplementary material (Appendix A.5).

4.2 EXTENDING WITH STRUCTURED VARIANTS

Bg-varied H-flip Rotation Translate Crop Viewpoint V-flip Scale
Variant Type

40

60
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 (
%

)

Figure 7: Subset-wise accuracy drops

To study additional factors influencing CLIP’s accu-
racy, we extend each of the 33,000 Bg-varied im-
ages into 11 structured transformations: four dif-
ferent scales, two different viewpoints, horizontal
and vertical flips, and single versions of translation,
crop, and rotation (see Appendix A.6 for implemen-
tation details). Figure 1(c) illustrates this setup: the
first column shows the object in varied backgrounds,
while the remaining columns show transformed im-
ages. Together with the Bg-varied images, this ex-
pansion results in 396,000 samples, constituting the complete COVAR dataset.

We conduct zero-shot classification with CLIP ViT-B/16 on eight COVAR subsets (bg-varied and
seven transformations). Figure 7 shows that when compared with Bg-varied set, factors such as
scale, v-flip and viewpoint cause steep declines. Hflip, rotation and translate lead to little or no
degradation, crop leads to minor gains.
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Figure 8: Class-wise average and maxi-
mum accuracy drops across variants.

We evaluate class-wise accuracy drops (Figure 8), for
each class, accuracies are computed across the eight
subsets, averaged, and compared to the accuracy on
the original ImageNet images. We also record the
drop for the subset with maximum decline. The ob-
served drops are substantially larger than those for
background alone. Notably, even when average drops
are modest, individual subsets can show severe degra-
dation. For example, for class 22 the average drop is
10% while one subset exceeds 50%. Comprehensive
subset-wise results for all classes are provided in the supplementary material (Appendix A.7).

Diagnosing error sources. We systematically analyze BG-Er and Fine-Er across all COVAR sub-
sets, benchmarking against CA and original ImageNet (Figure 1(d)). The Bg-varied subset exhibits
a notable rise in BG-Er relative to CA (6.7 to 15.6%). Scale and viewpoint variations further elevate
both overall error rates and the proportion of BG-Er failures, with scale showing the strongest effect,
indicating increased reliance on background cues under these transformations. In contrast, vertical
flip, horizontal flip, translation, and crop do not exhibit such increases. Across all subsets, however,
Fine-Er remains the dominant source of error.

5 EVALUATION AND DISCUSSION

We benchmark CLIP variants from OpenCLIP (Ilharco et al., 2021) and OpenAI’s original mod-
els (Radford et al., 2021) on COVAR, varying backbone size, patch resolution, and pretraining data
(e.g., DataComp (Gadre et al., 2023), LAION (Schuhmann et al., 2022), DFN (Fang et al., 2023),
WebLI (Chen et al., 2022)). We also evaluate SigLIP variants (Zhai et al., 2023; Tschannen et al.,
2025). Tables 3 and 4 present classification accuracy along with BG-Er and Fine-Er.
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Table 3: CLIP variant accuracies across subsets of COVAR; final column shows overall average.
Name Method Bg-varied H-flip Translate Crop V-flip Rotation Viewpoint Scale Avg

Patch Res Dataset Acc Acc Acc Acc Acc Acc Acc Acc Acc
ViT-B 32 256 DataComp-1B 55.8 55.2 55.8 59.4 32.2 44.6 28.5 24.2 44.5
ViT-B 16 224 DataComp-1B 55.7 54.3 53.7 56.5 37.5 44.9 27.7 27.2 44.7
ViT-L 14 224 DataComp-1B 62.2 61.3 60.7 62.3 48.3 54.9 30.3 32.6 51.6
ViT-L 14 224 LAION-2B 59.7 58.9 60.0 60.2 43.2 53.9 32.2 30.1 49.8
ViT-H 14 224 LAION-2B 60.2 59.2 59.4 60.9 45.3 54.2 30.1 31.0 50.0

ViT-bigG 14 224 LAION-2B 61.6 62.1 62.2 63.8 45.7 56.5 34.2 33.5 52.5
ViT-L 14 224 DFN-2B 59.1 57.8 58.0 59.5 41.8 51.3 28.0 31.1 48.3

ViT-SO-SigLIP2 14 224 WebLI 63.3 62.7 62.4 63.6 53.0 58.6 34.1 36.9 54.3
ViT-B-SigLIP 16 256 WebLI 57.5 56.8 56.6 57.4 38.7 48.9 27.9 29.1 46.6

ViT-B-SigLIP2 16 384 WebLI 64.1 63.3 63.4 63.8 48.1 59.9 31.0 37.8 53.9
ViT-B-SigLIP2 32 256 WebLI 54.8 53.9 55.0 58.2 30.9 41.6 26.0 25.6 43.2
ViT-B-SigLIP2 16 512 WebLI 64.9 63.8 63.9 64.1 49.3 60.6 30.5 36.4 54.2

ViT-H-qgelu 14 378 DFN-5B 65.2 65.4 65.5 65.7 55.0 61.7 36.7 39.3 56.8
ViT-H-qgelu 14 224 DFN-5B 63.2 62.9 63.3 64.1 50.9 57.4 35.9 38.2 54.5

ViT-B 16 224 OpenAI 52.2 52.3 51.7 54.8 35.2 42.6 26.1 25.0 42.5
ViT-B 32 224 OpenAI 47.9 48.0 46.0 48.3 26.8 30.1 21.8 22.1 36.4
ViT-L 14 224 OpenAI 56.5 56.7 56.0 57.4 46.9 49.2 26.7 28.3 47.2
ViT-L 14 336 OpenAI 57.6 57.8 57.2 58.4 49.5 53.1 27.3 31.8 49.1

Table 4: BG-Er and Fine-Er across different subsets of COVAR.
Name Method Bg-varied H-flip Translate Crop V-flip Rotation Viewpoint Scale

Patch Res Dataset BG-Er Fine-Er BG-Er Fine-Er BG-Er Fine-Er BG-Er Fine-Er BG-Er Fine-Er BG-Er Fine-Er BG-Er Fine-Er BG-Er Fine-Er
ViT-B 32 256 DComp-1B 23.6 40.9 21.2 44.6 18.9 46.2 18.5 47.7 22.6 33.3 21.3 39.5 22.9 29.5 50.7 16.1
ViT-B 16 224 DComp-1B 14.2 49.3 11.7 52.7 11.3 53.4 11.9 52.2 13.8 42.6 12.4 50.4 15.7 33.5 30.5 28.4
ViT-L 14 224 DComp-1B 15.7 51.8 13.5 56.0 12.4 56.6 12.2 56.6 15.2 50.2 14.5 53.9 17.1 36.0 30.2 31.2
ViT-L 14 224 LAION-2B 16.9 49.8 14.0 55.0 13.8 53.2 12.4 55.4 15.4 44.3 16.2 51.4 17.1 33.5 35.5 27.8
ViT-H 14 224 LAION-2B 16.4 54.8 13.6 59.4 13.0 58.7 15.1 56.3 15.9 49.6 14.8 55.2 18.2 35.1 33.8 30.9

ViT-bigG 14 224 LAION-2B 17.8 51.2 16.0 54.3 16.4 53.6 17.2 52.3 15.4 48.3 17.4 54.0 19.6 33.0 32.7 29.7
ViT-L 14 224 DFN-2B 15.7 50.2 13.7 53.2 14.2 54.1 15.5 52.3 15.2 45.6 13.5 54.4 17.4 34.7 29.6 31.8

ViT-SO-SigLIP2 14 224 WebLI 25.3 47.8 22.7 52.8 21.2 53.1 20.0 53.8 23.0 51.7 25.4 51.4 27.0 32.7 42.3 29.3
ViT-B-SigLIP 16 256 WebLI 16.5 49.2 13.5 53.6 13.0 53.8 13.0 54.4 15.2 44.3 14.4 52.6 17.1 33.8 33.6 26.7

ViT-B-SigLIP2 16 384 WebLI 19.8 51.5 17.5 55.2 15.9 56.7 16.6 55.2 19.7 49.9 20.2 54.5 25.4 33.1 36.8 28.3
ViT-B-SigLIP2 32 256 WebLI 36.0 33.6 35.8 35.0 37.2 34.6 31.2 42.7 36.1 24.5 32.3 24.7 34.7 20.8 45.7 7.7
ViT-B-SigLIP2 16 512 WebLI 20.3 51.8 18.1 55.2 16.7 55.8 17.2 53.1 20.3 50.1 20.2 53.8 24.8 31.9 39.3 22.3

ViT-H-qgelu 14 378 DFN-5B 15.9 54.4 13.4 57.8 13.4 57.8 12.7 58.5 14.9 54.4 15.4 57.1 16.8 36.3 30.4 33.1
ViT-H-qgelu 14 224 DFN-5B 16.2 51.3 13.8 55.7 13.6 54.8 14.3 54.2 15.6 49.2 15.0 52.5 17.4 34.7 29.4 23.2

ViT-B 16 224 OpenAI 15.6 43.7 13.8 48.2 14.0 48.8 13.1 48.0 14.2 37.9 16.0 45.1 16.8 31.3 33.9 23.7
ViT-B 32 224 OpenAI 14.0 37.3 12.0 41.5 13.7 42.0 12.6 46.3 13.2 30.2 15.3 34.4 14.5 26.4 38.2 21.4
ViT-L 14 224 OpenAI 17.1 44.3 14.9 48.2 15.2 48.1 16.8 45.2 15.6 44.6 16.8 46.0 16.7 34.3 30.1 12.1
ViT-L 14 336 OpenAI 15.3 46.4 12.8 50.8 13.3 49.7 11.7 50.9 13.4 48.1 15.3 49.2 14.4 35.4 28.4 30.4

Overall performance: Among all models, ViT-H-qgelu(DFN-5B) at 378px achieves the
highest average accuracy of 56.8% (Table 3). ViT-B-SigLIP2 performs strongly at 384px and
512px, while ViT-SO-SigLIP2 maintains competitive accuracy even at 224px, underscoring
its training efficiency. Larger models such as ViT-bigG also show reasonable performance.

Performance across eight subsets: On the Bg-varied set, most models retain accuracies above
55%. Cropping does not hinder performance and often improves it, while H-flip and Translation
cause only minor declines (e.g., large models such as ViT-bigG remains above 62%). Rota-
tion produces minor drops, V-flip somewhat larger, and Viewpoint and Scale lead to the most
severe declines. Across all perturbations, larger models consistently surpass smaller ones; for
example, under Rotation, ViT-H-qgelu(378px) achieves 57.4% accuracy versus 30.1% for
ViT-B/32(DataComp-1B), underscoring the benefits of greater capacity and training scale.

Among all variants, Scale is the most challenging. ViT-L/14(DataComp-1B) drops from
62.2% on Bg-varied to 32.6% under Scale, while even the stronger ViT-H-qgelu(378px) de-
clines from 65.2% to 39.3%. Viewpoint changes also yield substantial drops (e.g., ViT-L/14 to
30.3%), though unlike Scale they do not coincide with major increases in BG-Er (Table 4). The first
row in Appendix A.8 demonstrates how reduction in object scale may cause reliance on background.

Background reliance. Accuracy drops alone do not explain why models fail. Reducing Scale
not only lowers accuracy but also nearly doubles BG-Er relative to the Bg-varied subset (Table 4),
reaching 50.7% for ViT-B/32(DataComp-1B). By contrast, under flips, rotations, or viewpoint
changes, BG-Er remains stable (e.g., 12–17% for ViT-L/14). The findings imply that errors
observed under these perturbations are more indicative of broad robustness deficits than spurious
background correlations, underscoring the importance of disentangling these distinct failure modes.

Model size and data: Comparisons across architectures show that model size alone does not guar-
antee robustness. Large models such as ViT-bigG and ViT-H/14(DFN-5B) attain higher accu-
racy on the Bg-varied set (Table 3) yet exhibit substantial BG-Er under Scale (≈30–33%, Table 4).
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In contrast, models trained on curated data (e.g., DataComp-1B) display reduced background re-
liance, indicating that pretraining data quality shapes shortcut behavior as much as model size.

Backbone and resolution effects. With fixed training data, architecture matters: within DataComp-
1B, ViT-B/16 records lower BG-Er than ViT-B/32 across nearly all perturbations (30.5% vs.
50.7% under scale, Table 4), suggesting finer patching helps reduce background reliance. Scaling
up models (e.g., ViT-bigG) achieve higher raw accuracy (Table 3) but still sustain background-
driven errors (32.7% in scale, Table 4). Similarly, higher input resolutions (e.g., ViT-B-SigLIP2
at 512px) improve Bg-varied accuracy (64.9%, Table 3) but only marginally reduce BG-Er (39.3%
under scale, Table 4), showing that resolution alone does not mitigate background reliance.

Fine-grained confusion: Factors like clutter, occlusion, and viewpoint shifts hinder discrimina-
tion between fine-grained classes (e.g., chimpanzee vs. siamang). As shown in Table 4 (Fine-
Er columns), such errors persist across subsets, underscoring the inherent difficulty of the COVAR
dataset. At smaller scales (last column, Table 4), models trade off Fine-Er against BG-Er. At larger
patch sizes (e.g., ViT-B-SigLIP2/32), reduced access to detail further obscures fine distinctions
and instead amplifies reliance on spurious background correlations.

Takeaways. Our analysis highlights concrete avenues for enhancing robustness in CLIP-like mod-
els. Scale emerges as the most challenging perturbation, affecting both accuracy and background
reliance, underscoring the need to explicitly address scale variation during training. One approach is
multi-scale feature alignment (Chen et al., 2025b), which fuses features across resolutions to reduce
sensitivity to object size. Complementarily, RobustMixGen (Kim et al., 2025) augments data with
diverse object–background combinations, enhancing robustness and mitigating reliance on spurious
cues. Second, as viewpoint shifts degrade accuracy without increasing BG-Er, architectures that
reduce over-reliance on 2D context, such as equivariant attention (Romero & Cordonnier, 2020),
may help. Third, the persistence of high BG-Er in large models indicates that scaling alone cannot
mitigate spurious background reliance. Curated pretraining data that decouples objects from typical
contexts is crucial, as exemplified by ObjectNet (Barbu et al., 2019) and noise-robust training (Xiao
et al., 2020). Together, these results underscore that data-centric strategies, rather than mere scaling,
are essential for achieving improved robustness and generalization. Fourth, our backbone com-
parisons indicate that smaller patch sizes consistently mitigate background reliance. Hierarchical
architectures such as the Swin Transformer (Liu et al., 2021), with finer-grained patch granularity,
could support better object localization and reduced dependence on global context, making them
a worthwhile direction for further investigation. Finally, persistent Fine-Er patterns indicate that
robustness cannot be achieved by background debiasing alone. Prior work shows leveraging fine-
grained, category-specific textual descriptions (Reed et al., 2016) and integrating part-based local-
ization and attention mechanisms (Zheng et al., 2017; Fu et al., 2017) may help improve intra-class
separability. Such strategies complement background robustness by helping models resist spurious
correlations while capturing subtle distinctions needed for fine-grained categories. Overall, these
findings point to the value of combining data curation, targeted augmentations, architectural refine-
ments, and fine-grained supervision to advance model robustness.

6 SUMMARY

We considered the problem of CLIP’s vulnerability to spurious correlations during model prediction
and proposed a new visual interpretability technique, called CCI, for analyzing and understanding
these issues. CCI generated attention maps by identifying semantically relevant groups of pixels and
evaluating model changes with these regions masked out in the input, resulting in state-of-the-art per-
formance on standard faithfulness benchmark datasets. By combining CCI with GroundedSAM, we
showed that existing benchmarks, such as CounterAnimals, are insufficient for properly characteriz-
ing CLIP’s error behavior. Our results showed that while these benchmarks attributed performance
degradation primarily to background, the true underlying reasons point to other visual factors such
as viewpoint variations, scale shifts, and fine-grained confusions. Building on this observation, we
next proposed a new benchmark dataset, called COVAR, which systematically synthesized all these
variations for each object category. We then used COVAR to benchmark the performance 18 differ-
ent CLIP variants to both summarize the current state of their performance and provide insights and
clear recommendations for how to improve these models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. arXiv preprint
arXiv:2005.00928, 2020.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the
limits of object recognition models. Advances in neural information processing systems, 32,
2019.

Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio Calmon, and Himabindu Lakkaraju. Inter-
preting clip with sparse linear concept embeddings (splice). Advances in Neural Information
Processing Systems (NeurIPS), 37:84298–84328, 2024.

Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-model explainability for interpreting
bi-modal and encoder-decoder transformers. In International Conference on Computer Vision
(ICCV), pp. 397–406, 2021a.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 782–791, 2021b.

Xi Chen, Xiao Wang, Soravit Changpinyo, Anthony J Piergiovanni, Piotr Padlewski, Daniel Salz,
Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled
multilingual language-image model. arXiv preprint arXiv:2209.06794, 2022.

Yiwei Chen, Yuguang Yao, Yihua Zhang, Bingquan Shen, Gaowen Liu, and Sijia Liu. Safety mirage:
How spurious correlations undermine vlm safety fine-tuning. arXiv preprint arXiv:2503.11832,
2025a.

Yixin Chen, Weilai Jiang, and Yaonan Wang. Famhe-net: Multi-scale feature augmentation and mix-
ture of heterogeneous experts for oriented object detection. Remote Sensing, 17(2):205, 2025b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 248–255. Ieee, 2009.

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal
Shankar. Data filtering networks. arXiv preprint arXiv:2309.17425, 2023.

Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see better: Recurrent attention convolu-
tional neural network for fine-grained image recognition. In Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4438–4446, 2017.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In
search of the next generation of multimodal datasets. Advances in Neural Information Processing
Systems (NeurIPS), 36:27092–27112, 2023.

Shanghua Gao, Zhong-Yu Li, Ming-Hsuan Yang, Ming-Ming Cheng, Junwei Han, and Philip Torr.
Large-scale unsupervised semantic segmentation. IEEE transactions on pattern analysis and
machine intelligence, 45(6):7457–7476, 2022.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15262–15271,
2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.
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A APPENDIX

A.1 ADDITIONAL QUALITATIVE CCI RESULTS

We present further qualitative comparisons of CCI against baseline methods in Figure 9 with a
broader set of categories. Across diverse object types, CCI continues to generate heatmaps that are
coherent, in contrast to the scattered or noisy activations produced by baselines. For instance, con-
sider the hair spray in second row where CCI correctly attends to the spray bottles, while baselines
either confuse or focus on small, disconnected fragments. Similarly, in challenging cases where
object visibility is poor (see fourth row), CCI isolates the object of interest (spider) with sharper
boundaries compared to baselines. These additional examples further provide strong evidence on
the efficacy of proposed CCI method.
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Figure 9: Additional Results comparing CCI against baseline interpretability methods.

A.2 CCI RESULTS WITH OTHER CLIP VARIANTS

We repeat CCI computation with two other pretrained vision–language models, the OpenAI CLIP
ViT-B/32 at 224px model (Radford et al., 2021) and a SigLIP variant (Zhai et al., 2023)
ViT-L/16 at 334px, to evaluate the generality of our methodology. Figures 10 and 11 show re-
sults for the two variants repsectively. Findings are consistent with CLIP ViT-B/16: CCI generates
concept-level, coherent heatmaps, indicating that CCI adjusts effectively to variations in backbone
resolution and loss formulation. These findings demonstrate that CCI is independent of model and
reliably generates comprehensible visual explanations for encoders from the OpenAI and OpenCLIP
families.

A.3 FOREGROUND MASK COMPUTATION

We leverage GroundedSAM (Ren et al., 2024) to generate foreground (FG) and background
(BG) masks, which are then used to classify CLIP predictions as foreground-driven (FG-Er) or
background-driven (BG-Er) across various datasets. For each image, we provide GroundedSAM
with the prompt <class name>, foreground objects. The inclusion of “foreground ob-
jects” ensures that any distractor objects such as the bucket in Section 3.1 are correctly captured as
part of the foreground mask. These masks then serve as a proxy for ground-truth object regions
when computing Class-Conditional Importance (CCI) heatmaps. For each prediction, we compute
the intersection-over-union (IoU) between the CCI heatmap and the FG/BG masks to determine
whether the error is primarily foreground-driven (FG-Er) or background-driven (BG-Er).

We further validate GroundedSAM on the ImageNet-Segmentation (ImageNet-S) (Gao et al., 2022)
validation set, which contains segmentation annotations on 12,419 images spanning 919 ImageNet
categories. We create GroundedSAM masks using the same prompt and compare them against the
dataset-provided masks. Figure 13 shows qualitative examples displaying the input image, Ground-
edSAM predicted mask, and the ground-truth mask. The average IoU between predicted masks and
ImageNet-S masks is 0.93, demonstrating high alignment.

We show additional qualitative results on the CounterAnimals dataset in Figure 12. One can note
that even in cases of heavy occlusion (see fifth row the figure), GroundedSAM correctly captures
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Figure 10: CCI Results with OpenAI CLIP ViT-B/32-224px model.

the foreground region of interest, illustrating that it can reliably captures foreground objects across
diverse scenarios.

A.4 PROMPTING DETAILS

A.4.1 FINEG COMPUTATION

As mentioned in Section 3.1 in the main paper, we used GPT-4o as a vision expert to determine
whether the misclassified examples belonging to foreground-driven (FG-Er) represent fine-grained
visual confusion or egregious failures. Below, we provide the exact prompt:

Example Outputs:

• Ground truth: siamang, Predicted: chimpanzee → similar

• Ground truth: border collie, Predicted: australian shepherd → similar

• Ground truth: cat, Predicted: airplane → different

• Ground truth: lion, Predicted: bicycle → different
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System Prompt: You are a vision expert with deep knowledge of object categories
and visual characteristics. Your task is to determine whether two categories are
visually similar or clearly different based on appearance alone. Consider shape,
texture, color, size, and typical visual features that a human would notice.
User Prompt: Ground truth class: [gt class]
Predicted class: [pred class]
Question: Evaluate whether these two categories are visually similar or clearly
different. Consider the following:

1. Would a human observer easily confuse the two categories in a standard
image?

2. Do they share key visual features (shape, color patterns, textures) that
make them look alike?

3. If they are visually distinct and unlikely to be confused, classify them as
different.

Respond with a single word only: similar if they are visually alike,
different if they are clearly distinct.

By separating errors caused by mild intra-class similarity from more serious classification errors,
this automated labelling gives us more information about the nature of model confusion than just
accuracy metrics.

A.4.2 CLASS SELECTION

As mentioned in Section 4.1, we curate a representative subset of classes from ImageNet while
balancing semantic coverage and visual diversity. The goal is to avoid redundancy (e.g., multiple
dog breeds) while still spanning a broad range of living and non-living concepts. To guide this
process, we use GPT4o with the prompt shown below:

System Prompt: You are an expert in computer vision and dataset curation. Your
task is to select a semantically and visually diverse subset of ImageNet classes for
use in understanding spurious correlations in VLMs.
User Prompt: You are given a large set of 1,000 ImageNet classes. Your goal is to
propose a smaller subset of about 30–40 classes that are semantically and visually
diverse. Follow these guidelines:

1. Ensure coverage across living and non-living categories.
2. Avoid redundancy (e.g., do not include many dog breeds or many bird

species). Select only a few representative ones.

Table 5 lists all selected classes included in our benchmark, providing the foundation for the subse-
quent background and structured variant generation.

A.4.3 CURATING BACKGROUNDS

After selecting the classes, we systematically generate diverse background contexts for each image.
Our aim is to disentangle model reliance on object appearance from contextual cues by creating
multiple, semantically neutral backgrounds. The prompt used is below:

Table 6 lists all backgrounds included in our benchmark. These backgrounds cover natural, ur-
ban, and indoor environments, including water, snow, forest, desert, and indoor settings. Each
background is applied to all 33 classes, creating systematic variants that allow us to disentangle
object-specific recognition from spurious background reliance.

A.5 CLASSWISE RESULTS WITH OTHER CLIP VARIANTS

To assess the generality of the background sensitivity patterns observed with CLIP ViT-B/16,
we evaluated additional CLIP variants on the same 33,000 Bg-varied images. Our goal was to
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Table 5: Final set of 33 classes selected for the benchmark, labeled with Class IDs.
Class ID Class Name Class ID Class Name

1 African elephant 18 park bench
2 Arabian camel 19 prairie chicken
3 Gila monster 20 pretzel
4 airship 21 rain barrel
5 alligator lizard 22 sea anemone
6 barn spider 23 slug
7 black swan 24 stove
8 bulbul 25 street sign
9 bullfrog 26 studio couch

10 cauliflower 27 submarine
11 chimpanzee 28 suspension bridge
12 dishwasher 29 trailer truck
13 electric locomotive 30 vulture
14 great white shark 31 warplane
15 hen 32 water ouzel
16 hermit crab 33 zebra
17 ice bear

System Prompt: You are an expert in image editing and dataset creation. Your task
is to propose diverse and realistic background settings for synthesizing objects in
images.
User Prompt: Generate a list of 20 distinct background types that maximize diver-
sity across scenes. The list should be independent of any specific object class and
broadly applicable to placing different kinds of objects. Follow these guidelines:

1. Include both outdoor and indoor settings.
2. Ensure coverage across natural scenes, urban settings, and indoor envi-

ronments.
3. Avoid repeating backgrounds that are too similar.

determine which aspects of the per-class accuracy drop are model-specific versus broadly expected
across backbones.

Figures 15– 18 present classwise accuracy drops for various CLIP variants, with plots labeled from
(a) to (m). For example, in plot (a) (class ID 6), the OpenAI CLIP ViT-B/32 model exhibits a
substantially higher relative accuracy drop compared to the same class under CLIP ViT-B/16 (80
vs 20%). On the other hand, many other classes, such as IDs 1 and 33, continue to show smaller
drops, consistent with the pattern seen in ViT-B/16.

Overall, while some classes behave differently across variants, the broader patterns are consistent:
strongly background-dependent classes continue to exhibit significant drops, and those that were
resilient to background variation with ViT-B/16 typically remain resilient with other backbones.
This highlights the usefulness of our benchmark for examining spurious correlations and implies
that the observed background effects are primarily dataset- and class-intrinsic rather than an artifact
of a particular model.

A.6 IMPLEMENTATION DETAILS OF VARIANTS

Here we provide implementation details for the variants generated in our proposed COVAR dataset.

Background variants. We use Emu2 (Sun et al., 2024) to create background variants. For each
class, we kept the original object in the foreground while changing the background to various natural
settings. The model received instructions like “background description. Edit only the
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Table 6: Curated backgrounds for the benchmark. Each background is applied to all 33 classes to
generate systematic variants.

Bg ID Description
1 railway track in an outdoor setting
2 colorful garden with flowers and greenery
3 dense tropical forest
4 farmyard
5 hot desert with sand dunes
6 open grassland with tall green grasses
7 swampy area
8 cozy living room
9 savanna

10 calm ocean with clear blue water
11 fluffy white cloud in a bright blue sky
12 highway with empty road stretching behind
13 rocky shore with waves
14 rocky terrain
15 snowy landscape
16 beach
17 forest floor with leaves and sunlight filtering through trees
18 tree branches in a leafy forest
19 crowded marketplace with people and stalls
20 night cityscape with artificial lights

background and keep the foreground subject intact”. This ensured that only background pixels were
changed, while the object’s identity and position remained the same.

Viewpoint variants. To achieve viewpoint diversity, we used Zero123+ (Shi et al., 2023), a text-
to-3D image synthesis method. For a given original image, Zero123+ generates 6 new viewpoints
of which we randomly select 2. We created images using 75 inference steps, which were enough to
keep fine details in general objects while ensuring consistent viewpoint changes.

Scale variants. We produced scale variants with Stable Diffusion inpainting (Rombach et al.,
2022) by outpainting the original image onto larger canvases. Each image was expanded to different
scale factors (up to 8×), keeping the original object centered (see Figure 19 for an example). The
inpainting mask (generated using GroundedSAM as described in A.3) made sure that only the
surrounding areas were generated, preserving the original foreground content. We used a standard
classifier-free guidance scale of 7.5 and applied 30 diffusion steps for all images.

Others. We applied five standard geometric transformations using OpenCV, designed to preserve
semantic content while perturbing pixel-level statistics:

• Rotation: images were rotated by a random angle in [−45◦, 45◦], with borders filled via
Stable Diffusion inpainting.

• Horizontal and Vertical Flips: standard left–right and top–bottom flips.

• Crop: cropping a region from center covering 60–90% of the original image area, followed
by resizing.

• Translation: shifting the image up to 20% of its width/height in each direction, with bor-
ders filled via Stable Diffusion inpainting.

Together, these methods produce a well-rounded set of variants that enable controlled evaluation of
background reliance, viewpoint generalization, scale sensitivity, and standard geometric robustness.
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Figure 11: CCI Results with SigLIP ViT-L/16-334px model.

A.7 CLASSWISE RESULTS FOR ALL SUBSETS

Figure 20 presents per-class accuracy drops across seven subsets (excluding the bg-varied subset,
which is shown in the main paper in Section 4.2). For each class, we compute the accuracy over all
images in a subset and compare it to the original ImageNet accuracy for that class.

The plots in Figure 20 show that for all subsets other than scale, accuracy degradation varies signifi-
cantly across classes: some classes remain consistently robust, while others show notable sensitivity.
In contrast, for the scale subset in plot (a), every class exhibits a substantial drop, with a minimum
decline of approximately 25%. For example, class 33 shows a modest average drop of 5% across the
non-scale subsets, but under the scale subset, the drop is almost 30%, illustrating that scale affects
this class much more strongly than the others. Overall, these results indicate that CLIP’s robustness
is both class- and subset-dependent, with scale having a uniformly strong impact across all classes.

A.8 CCI RESULTS ON COVAR

Figure 21 presents CCI visualizations on samples from COVAR, illustrating how CLIP’s focus shifts
under different variant conditions. In the first row, we show a pair of images where the right image

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Input Image Input Image Input ImageFG masks FG masks FG masks

Figure 12: Qualitative results of GroundedSAM on the CounterAnimals dataset.

is a scale-reduced variant of the left. On the original image, CCI correctly focuses on the foreground
and predicts the class as African elephant. However, in the scale-reduced variant, the model’s at-
tention shifts toward the background resulting in a misprediction as a freight car, likely due to the
railway-track context. The second row depicts a barn spider in two different backgrounds: while
the model accurately predicts the left image, it attends to the beach background in the right image,
erroneously predicting a crab. Subsequent rows illustrate additional qualitative patterns, such as v-
flip variants where predictions are incorrect yet the model still focuses on the foreground. Notably,
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Figure 13: Comparison of GroundedSAM predicted foreground masks with the ImageNet-S ground-
truth segmentation masks. For each image, the first row shows the input image, the second row
shows the GroundedSAM predicted mask, and the last row shows the ImageNet-S ground-truth
mask.

in such cases, the misclassified classes remain visually similar to the ground truth, for example
predicting a moving van instead of a trailer truck. These examples complement the main paper’s
insights, demonstrating that even when accuracy drops for certain variants like v-flip, the fraction of
background-driven correlations remains largely unchanged.

A.9 AGGREGATING PREDICTIONS BY BACKGROUND CONTEXT

To complement the quantitative analysis of robustness and spurious correlations, we also conducted
a qualitative examination of CLIP’s background biases by aggregating its predictions across images
sharing the same background context. Specifically, for each background type, we averaged predic-
tions over all corresponding images and recorded the most frequently predicted classes. Table A.9
summarizes representative results for a subset of backgrounds. This view reveals strong, dataset-
wide associations between certain backgrounds and particular object categories- for example, rail-
way tracks strongly elicit predictions of locomotive or bullet train, even when the ground-truth object
is unrelated. Such correlations are likely a reflection of CLIP’s training distribution, where railway
tracks frequently co-occur with trains, leading the model to overweight background context as a
cue for object recognition. These observations highlight that CLIP’s predictions are often guided
more by contextual cues than by the objects themselves, underscoring the importance of explicitly
disentangling object and background information in evaluating model behavior.

Table 7: Top Predicted Classes per Background (Averaged across all images)
Background Classes
railway track locomotive, bullet train, freight car
rocky shore water ouzel, hermit crab
garden rain barrel, park bench
tropical forest chimpanzee, bulbul
sky vulture, airship
road zebra, trailor truck, street sign
swampy area bullfrog
desert Arabian Camel
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(a) Effect of training data (b) Effect of resolution

(c) Effect of architecture (fixed data) (d) Role of Architecture size

(e) Comparing SigLIP variants (f) Comparing top-performing variants

Figure 14: Average CLIP accuracies across dataset subsets.

A.10 LLM USAGE

We utilised LLM for retrieval and discovery of relevant papers in the literature, and for rephras-
ing/rewording few paragraphs. This paper’s research concepts, methodology, analysis, and insights
are all unique and LLM has absolutely no role to play in that process.
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(a) ViT-B/32 : 224px : OpenAI Proprietary

(b) ViT-L/14 : 224px : OpenAI Proprietary

(c) ViT-L/14 : 336px : OpenAI Proprietary

Figure 15: Classwise accuracy drops across OpenAI CLIP variants.
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(d) ViT-B/16 : 224px : LAION-400M

(e) ViT-B/32 : 224px : LAION-400M

(f) ViT-L/14 : 224px : LAION-400M

Figure 16: Classwise accuracy drops across OpenCLIP variants pretrained on LAION-400M.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(g) ViT-L/14 : 224px : LAION-2B

(h) ViT-H/14 : 224px : LAION-2B

(i) ViT-bigG/14 : 224px : LAION-2B

Figure 17: Classwise accuracy drops across OpenCLIP variants pretrained on LAION-2B.
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(j) ViT-B/16 : 224px : LAION-2B (k) ViT-B/16 : 224px : WebLI

(l) ViT-B/16 : 224px : DataComp (m) ViT-B/16 : 224px : DFN-2B

Figure 18: Classwise accuracy drops across ViT-B/16 OpenCLIP variants on different datasets.

Figure 19: Example demonstrating varying scales for the same input image.
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(a) Scale (b) H-flip

(c) Crop (d) Viewpoint

(e) Rotation (f) V-flip

(g) Translate

Figure 20: Per-class accuracy drops across various dataset subsets.
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GT: Barn Spider Pred: Barn Spider Pred: Crab

GT: African Elephant Pred: African Elephant Pred: Freight car

GT: Barn Spider

GT: African Elephant

GT: Studio couch Pred: Rain barrel

Pred: Moving vanGT: Trailor truck Pred: American CootGT: Water Ouzel

GT: Water Ouzel Pred: Water Ouzel

Figure 21: Qualitative CCI Results on COVAR.
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