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ABSTRACT

Despite the significant progress in image denoising, it is still challenging to re-
store fine-scale details while removing noise, especially in extremely low-light
environments. Leveraging near-infrared (NIR) images to assist visible RGB im-
age denoising shows the potential to address this issue, becoming a promising
technology. Nonetheless, existing works still struggle with taking advantage of
NIR information effectively for real-world image denoising, due to the content
inconsistency between NIR-RGB images and the scarcity of real-world paired
datasets. To alleviate the problem, we first propose an efficient Selective Fusion
Module (SFM), which can be plug-and-played into the advanced denoising net-
works to merge the deep NIR-RGB features. Specifically, we sequentially perform
the global and local modulation for NIR and RGB features, and then integrate the
two modulated features. Furthermore, we present a real-world NIR-Assisted Im-
age Denoising (NAID) dataset, which covers diverse scenarios as well as various
noise levels and is expected to serve as a benchmark for future research. Exten-
sive experiments on both synthetic and our real-world datasets demonstrate that
the proposed method achieves better results than state-of-the-art ones. The dataset,
codes, and pre-trained models will be publicly available.

1 INTRODUCTION

In low-light conditions, it’s common to use short exposure time and high ISO in imaging to prevent
motion blur, while this approach inevitably introduces noise due to the limited number of photons
captured by camera. With the development of deep learning (He et al., 2016; Liang et al., 2021;
Vaswani et al., 2017), many image denoising methods (Zhang et al., 2017; 2018a; Abdelhamed et al.,
2020; Zamir et al., 2022; Wang et al., 2022; Zhang et al., 2022; Li et al., 2023) have been proposed
to remove the noise. Although great progress has been achieved, it is still challenging for these
methods to recover fine-scale details faithfully due to the severely ill-posed nature of denoising. A
practical solution is burst denoising (Mildenhall et al., 2018; Godard et al., 2018; Pearl et al., 2022;
Wu et al., 2023), in which multiple successive frames are merged to improve performance. But it is
susceptible to the misalignment between frames, and may be less effective in facing dynamic scenes.

Fortunately, near-infrared (NIR) images with low noise can be captured at a cheap cost and utilized
to enhance the denoising of visible RGB images, which has attracted increasing attention (Lv et al.,
2020; Wu et al., 2020; Jin et al., 2022; Wan et al., 2022). Specifically, on the one hand, the NIR
band lies outside the range of the human visible spectrum. It enables us to turn on an NIR light
that is imperceptible to humans, thus capturing NIR images (Fredembach & Süsstrunk, 2008) with
a low noise level. On the other hand, modern CMOS sensor is sensitive to partial near-infrared
wavelengths (Xiong et al., 2021), thus allowing NIR signals to be acquired cheaply and conveniently.

Nevertheless, the inconsistencies between NIR and RGB content limit the positive effect of NIR
images in denoising. Firstly, NIR images are captured under additional NIR light and are monochro-
matic, which leads to brightness and color discrepancies between the two modalities. Secondly, the
NIR images may ‘more-see’ or ‘less-see’ the objects than the visible light ones, primarily due to in-
herent differences in the optical properties within each spectral domain (Fredembach & Süsstrunk,
2008). For example, as shown in Fig. 1 (a), the RGB image clearly contains textual information,
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(a) Structure visible in RGB image but not in NIR image. (b) Structure visible in NIR image but not in RGB image.

RGB image NIR image NIR imageRGB image

Figure 1: Examples of the structure discrepancy between RGB-NIR images. (a) The structure is
visible in the RGB image but not in the NIR image, as shown in the red box. (b) The structure is
visible in the NIR image but not in the RGB image, as shown in the yellow box.

while the corresponding NIR image lacks that. In Fig. 1 (b), the NIR image exhibits extra fruit pat-
terns, while these patterns are absent in the RGB image. DVD (Jin et al., 2022) and SANet (Sheng
et al., 2023) have noticed this problem, but their solutions are both complex and less effective. Addi-
tionally, due to the lack of real-world paired datasets, existing methods mainly focus on processing
synthetic noisy images. NIR-assisted real-world noise removal is rarely explored.

In this work, on the one hand, we focus on dealing with the content inconsistency problem, and hope
to construct a simple yet effective RGB-NIR fusion module that can be easily integrated into the ex-
isting denoising networks. Specifically, we propose a lightweight Selective Fusion Module (SFM),
which consists of a Global Modulation Module (GMM), a Local Modulation Module (LMM), and a
fusion operation. GMM and LMM mainly handle color and structure inconsistency issues, respec-
tively. They predict and assign soft weights to NIR and RGB features, thus preparing for subsequent
feature fusion. On the other hand, we introduce NIR-Assisted Image Denoising (NAID) dataset for
NIR-assisted real-world noise removal. It encompasses diverse scenarios and various noise levels,
providing a valuable resource for evaluating and promoting research in this field. We conduct exten-
sive experiments on both synthetic DVD (Jin et al., 2022) and our real-world NAID datasets. The
results show that the proposed method performs better than state-of-the-art ones.

Our contributions can be summarized as follows:

(1) For NIR-assisted image denoising, we propose a plug-and-play selective fusion module to handle
content inconsistency issues between RGB-NIR images, which assigns appropriate fusion weights
to the deep NIR and RGB features by global and local modulation modules.

(2) We construct a paired NIR-assisted real-world image denoising dataset with diverse scenarios
and various noise levels, which has the potential to promote further research in this field.

(3) Extensive experiments on both synthetic and our real-world datasets demonstrate that our method
achieves better results than state-of-the-art ones.

2 RELATED WORK

2.1 SINGLE IMAGE DENOISING

With the advancements in deep learning (Ronneberger et al., 2015; He et al., 2016; Vaswani et al.,
2017), numerous single-image denoising methods (Zhang et al., 2017; 2018a; Abdelhamed et al.,
2020; Chen et al., 2021; Zamir et al., 2022; Wang et al., 2022; Zhang et al., 2022; Li et al., 2023) have
emerged. DnCNN (Zhang et al., 2017) pioneers the utilization of deep learning techniques and sur-
passes traditional patch-based methods (Buades et al., 2005; Dabov et al., 2007; Gu et al., 2014) on
Gaussian noise removal. Recently, some methods (Zamir et al., 2021; Wang et al., 2022; Zamir et al.,
2022; Chen et al., 2022) are developed with advanced architectures. For example, MRPNet (Zamir
et al., 2021) applies a multi-stage architecture for progressive image restoration and achieves re-
markable performance. Uformer (Wang et al., 2022) introduces the locally-enhanced transformer
by employing the non-overlapping window-based self-attention. Restormer (Zamir et al., 2022)
further reduces the computation cost by modifying the self-attention calculation from the spatial di-
mension to channel one. NAFNet (Chen et al., 2022) proposes a simple baseline that does not apply
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nonlinear activation. Despite the significant progress achieved by these methods, the performance is
still unsatisfactory when handling images with high-level noise captured under low-light conditions.

2.2 NIR-ASSITED IMAGE RESTORATION

Compared to single-image restoration, NIR images have the potential to assist in restoring details
from degraded images. The earlier work (Krishnan & Fergus, 2009) utilizes gradient constraints for
NIR-assisted image denoising. Wang et al. (Wang et al., 2019b) further improves the performance
with deep learning methods. SSN (Wu et al., 2020) proposes a multi-task deep network with state
synchronization modules. TC-GAN (Yang et al., 2021) fuses the NIR images and RGB ones based
on a texture conditional generative adversarial network. DCMAN (Cheng et al., 2023) employs
spatial-temporal-spectral priors to introduce NIR videos for low-light RGB video restoration. How-
ever, these methods have overlooked the color and structure inconsistency issues between the NIR
images and RGB ones. CCDFuse (Zhao et al., 2023) addresses this issue by combining the local
modeling ability of convolutional blocks and the non-local modeling ability of transformer ones to
extract local and global features of NIR and RGB images respectively. SANet (Sheng et al., 2023)
proposes a guided denoising framework by estimating a clean structure map for the noisy RGB im-
age. Wan et al. (Wan et al., 2022) disentangle the color and structure components from the NIR
images and RGB ones. Besides, a few works (Deng & Dragotti, 2020; Xu et al., 2022b; Jin et al.,
2022) incorporate different priors into the network design, like sparse coding (Deng & Dragotti,
2020), deep implicit prior (Xu et al., 2022b) and deep inconsistency prior (Jin et al., 2022). How-
ever, their complexity makes it difficult to be integrated into existing advanced restoration networks,
hindering their extensions and improvements.

2.3 DATASETS FOR NIR-ASSISTED IMAGE RESTORATION

Existing available NIR-RGB datasets suffer from limitations such as scarcity of data samples (Krish-
nan & Fergus, 2009), absence of paired real-world RGB noisy images (Brown & Süsstrunk, 2011;
Zhi et al., 2018; Jin et al., 2022; Lv et al., 2020), or lack of public accessibility (Wang et al., 2019a;
Lv et al., 2020). For instance, Krishnan et al. (Krishnan & Fergus, 2009) develop a prototype cam-
era to capture image pairs under varying low-light conditions but only containing 5 image pairs.
Its size is too small to fulfill the demands of data-driven deep-learning algorithms. IVRG (Brown
& Süsstrunk, 2011) and RGB-NIR Srereo (Zhi et al., 2018) construct datasets consisting of RGB
and NIR image pairs for image recognition and stereo matching, respectively. DVD (Jin et al.,
2022) captures images within a controlled light-box environment. However, these datasets comprise
solely clean RGB and NIR image pairs, lacking real-world noisy RGB images. Burst Dataset (Wang
et al., 2019a) captures real-world noisy images by a mobile imaging device that is sensitive to both
near-infrared and near-ultraviolet signals. Lv et al. (Lv et al., 2020) introduces the VIS-NIR-MIX
dataset which utilizes a motorized rotator to manipulate illumination conditions. But they are not
publicly available. The scarcity of real-world datasets has hampered future research. To address
this limitation, we introduce the NIR-Assisted Image Denoising (NAID) benchmark dataset, which
encompasses diverse scenarios and various noise levels.

3 REAL-WORLD NIR-ASSISTED IMAGE DENOISING DATASET

Existing publicly available NIR-assisted image denoising datasets generally lack real-world noisy
RGB images paired with the clean RGB and NIR images, which limits the investigation in real-
world NIR-assisted image denoising. To break such a limitation, we build a NIR-Assisted Image
Denoising (NAID) dataset. Specifically, we employ high ISO and short exposure time to capture
the real-world noisy RGB images, as shown in Fig. 2 (a). The camera’s ISO and exposure time are
adjusted to capture images with different noise levels. For capturing the corresponding clean RGB
images, we lower the ISO of the camera and appropriately increase the exposure time, as shown in
Fig. 2 (b). To obtain paired NIR images, we activate NIR light to ensure a sufficient supply of NIR
illumination and then capture the NIR ones with a dedicated NIR camera, as shown in Fig. 2 (c).

All images are captured with the Huawei X2381-VG camera, which is equipped with a built-in NIR
illuminator specifically designed for capturing NIR images. To ensure image registration among
multiple captures, we securely position the camera and develop a remote control application to
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Figure 2: The construction of NIR-Assisted Image Denoising (NAID) dataset. (a) Capture noisy
RGB images with high ISO and short exposure time. (b) Capture clean RGB images with low ISO
and long exposure time. (c) Turn on the NIR light, then capture the clean NIR images with low ISO
and short exposure time.

Figure 3: Image examples from our real-world NIR-assist image denoising (NAID) dataset.

Table 1: Comparisons of some existing datasets consisting of paired NIR and RGB images. ‘Public’
refers to its current public accessibility. ‘Dataset Size’ denotes the number of paired images.

Dataset Real Noise Public Dataset Size Image Resolution

RGB-NIR Video (Cheng et al., 2023) 11444 1280× 720

RGB-NIR Stereo (Wang et al., 2019a) ✓ 42000 ∼ 582× 492

IVRG (Brown & Süsstrunk, 2011) ✓ 477 ∼ 1024× 680

DVD (Jin et al., 2022) ✓ 307 1792× 1008

Burst Dataset (Wang et al., 2019a) ✓ 121 512× 512

VIS-NIR-MIX (Lv et al., 2020) ✓ 206 ∼ 3072× 2048

Dark Flash Photography (Zhi et al., 2018) ✓ ✓ 5 ∼ 1400× 1000

NAID (Ours) ✓ ✓ 300 2160× 2048

capture images of static objects. In total, the dataset comprises 100 scenes with diverse contents,
and each scene has three noisy images with various noise levels. 90 scenes are randomly sampled
as the training set and the remaining 10 ones are used for the testing set. In addition, we compare
the NAID dataset with other existing NIR-RGB ones to demonstrate the strengths of our dataset, as
shown in Table 1. Some image examples in the dataset are also provided in Fig. 3. More details
about the dataset are provided in Sec. A of the appendix.

4 METHOD

4.1 PROBLEM FORMATION

NIR-assisted image denoising aims at restoring the clean RGB image Î ∈ RH×W×3 from its noisy
RGB observation IR ∈ RH×W×3 with the assistance of the NIR image IN ∈ RH×W×1, where H
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(c) NIR-assisted denoising with our SFM(a) RGB denoising pipeline (b) NIR-assisted denoising baseline

RGB output

Block

RGB input

Block

Block Block

Block

NIR input

Block Block

Block

Block Block

Block

RGB input RGB output

SFM

SFM

Block

Block

BlockBlock

Block

RGB input

NIR input

RGB output

Block

Block

Block

Figure 4: Comparison of different image denoising methods with multi-scale architecture. (a) RGB
image denoising. (b) NIR-assisted RGB image denoising baseline. (c) NIR-assisted RGB image
denoising with our proposed Selective Fusion Module (SFM).
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(a) Structure of Selective Fusion Module (SFM)
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Figure 5: The structure of our proposed Selective Fusion Module (SFM), where Global Modulation
Module (GMM) and Local Modulation Module (LMM) focus on color and structure discrepancy
issues between the NIR images and RGB ones, respectively. Two 1× 1 blocks and 5× 5 blocks are
used in GMM and LMM, respectively.

and W denote the height and width of images, respectively. Compared to the vanilla image denoising
based on the multi-scale encoder-decoder architectures as shown in Fig. 4 (a), it further plays the
role of the corresponding NIR image to guide the noise removal. And that’s also the core of the
NIR-assisted image denoising. Assuming that the clean NIR images are perfectly consistent with
the noisy RGB ones in color and structure, we can simply adapt the existing denoising architectures
in Fig. 4 (a) to Fig. 4 (b). The output Î can be written as,

Î = D(EN (IN) + ER(IR)), (1)

where D denotes the decoder of the denoising network, EN and ER denote the feature encoders for
NIR and RGB images, respectively.

However, in practical scenarios, there are color and structure inconsistencies between the NIR im-
ages and the RGB ones, as illustrated in Fig. 1. Leveraging the NIR images in a naive way like
Eqn. (1) only gains limited performance improvement. Instead, we propose an Selective Fusion
Module (SFM) for combining NIR-RGB information to address the issue, as shown in Fig. 4 (c).
Thus, Eqn. (1) can be modified to,

Î = D(SFM(EN (IN), ER(IR))). (2)

4.2 SELECTIVE FUSION MODULE

SFM should select valuable information and avoid harmful one from the current NIR-RGB features
for feature fusion. To achieve that, we suggest that SFM predicts and assigns pixel-wise weights
for NIR-RGB features fusion. Denote the current NIR and RGB features from the corresponding
encoders by FN and FR, SFM can be written as,

SFM(FN,FR) = WN ⊙ FN +WR ⊙ FR, (3)

where ⊙ is the pixel-wise multiply operation. WN and WR denote the weight of NIR and RGB fea-
tures, respectively. In order to model the color and structure discrepancy respectively, we decouple
the weight W (including WN and WR) into global and local component, i.e., W = Wg ⊙ Wl,
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where the former one concentrates on the differences in global information and the latter one fo-
cuses on the discrepancy in local information between NIR-RGB features. Based on that, we further
present a Global Modulation Module (GMM) to estimate Wg and a Local Modulation Module
(LMM) to estimate Wl, as shown in Fig. 5.

Global Modulation Module. GMM should handle the global color and brightness difference be-
tween the NIR and RGB ones. As shown in Fig. 5 (a), it takes the current NIR features FN and
the RGB ones FR as inputs to estimate the NIR global modulation weights Wg

N and the RGB ones
Wg

R. Detailly, FN and FR are concatenated along channel dimension followed with a 1 × 1 con-
volutional layer for channel reduction. Two 1 × 1 blocks are then deployed to get the deep fused
feature maps, which are passed into another 1×1 convolutional layer , a channel split operation, and
a softmax operation sequentially to get the estimated NIR weights Wg

N and RGB ones Wg
R. Each

1× 1 block is composed of a 1× 1 convolutional layer, a Layer Normalization (Ba et al., 2016), and
a PReLU (He et al., 2015) function, as shown in Fig. 5 (b). We modulate the NIR features FN and
the RGB ones FR with Wg

N and Wg
R, respectively, i.e.,

Fg
N = Wg

N ⊙ FN, Fg
R = Wg

R ⊙ FR, (4)

where Fg
N and Fg

R are the globally modulated NIR features and the RGB ones, respectively.

Local Modulation Module. The Local Modulation Module (LMM) should focus on the structure
inconsistency between NIR images and RGB ones. We suggest increasing the receptive field to
perceive more structure information from a range of neighboring pixels. In detail, LMM takes the
globally modulated NIR features Fg

N and the RGB ones Fg
R as inputs to estimate the local NIR

weights Wl
N and the RGB ones Wl

R, as shown in Fig. 5 (a). Without complex network design,
LMM is built upon GMM by replacing the 1 × 1 convolutional layer in 1 × 1 block to a large
kernel depth-wise convolutional layer (DWConv) (Howard et al., 2017) for capturing more local
information, as shown in Fig. 5 (c). Finally, Wl

N and Wl
R are employed to get the fused NIR and

RGB feature FNR as,
FNR = Wl

N ⊙ Fg
N +Wl

R ⊙ Fg
R. (5)

FNR is then passed to the decoder to output the denoising result.

Discussion. There are several advantages of our proposed SFM. First, the color and structure dis-
crepancy issues are decoupled and addressed with GMM and LMM respectively, which achieves
significant performance improvements while maintaining interpretability. Second, the compact and
lightweight network design makes it only add few parameters and computation costs. Third, it is
plug-and-play and can be simply integrated into existing advanced denoising networks. The related
experiment results are presented in Sec. 5.

4.3 LOSS FUNCTION

A multi-scale loss function is adopted for updating network parameters. In detail, we employ a 3×3

convolutional layer after the decoder at scale s to generate the noise-free image Îs. Therein, Î1
represents the final output with full resolution. Subsequently, we can calculate the multi-scale loss
by the following formulation,

L =

3∑
s=1

||̂Is − I↓2s−1 ||2, (6)

where I↓2s−1 denote the ground truth after ×2s−1 down-sampling.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Experiments are conducted on the synthetic and our real-world NAID datasets. The
details of the real-world NAID dataset can be seen in Sec. 3. In addition, We use the DVD (Jin et al.,
2022) dataset to generate synthetic noisy images. It comprises 307 pairs of clean RGB images (and
corresponding RAW images) and NIR images. 267 pairs are used for training and 40 pairs are for
testing. The way to simulate noisy data follows DVD (Jin et al., 2022). We first scale the mean value
of the clean RAW images, getting synthetic low-light clean RAW images. Then we add Gaussian
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noise with the variance σ and Poisson noise with a noise level σ to the generated low-light images.
Finally, the synthetic low-light noisy RAW images are converted to RGB ones for training models.
We conduct experiments with σ = 4 and σ = 8 (the larger the σ , the heavier the noise).

Implementation Details. We build our NIR-assisted denoising models by incorporating the pro-
posed SFM into a CNN-based advanced denoising network (i.e., NAFNet (Chen et al., 2022)) and
two Transformer-based ones (i.e., Uformer (Wang et al., 2022) and Restormer (Zamir et al., 2022)),
which are dubbed NIR-NAFNet, NIR-Uformer, and NIR-Restormer, respectively. All models
are trained by the Adam (Kingma & Ba, 2014) optimizer with β1 = 0.9 and β2 = 0.999 for 120k
iterations. The batch size is set to 32 and the patch size is set to 128 × 128. For synthetic image
denoising, the cosine annealing strategy (Loshchilov & Hutter, 2017) is employed to steadily de-
crease the learning rate from 2 × 10−4 to 1 × 10−6. For real-world image denoising, the initial
learning rate is set to 3× 10−4 and halved every 20k iterations. All experiments are conducted with
PyTorch (Paszke et al., 2019) on an Nvidia GeForce RTX A6000 GPU.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Experiments are conducted by comparing our NIR-NAFNet, NIR-Uformer, and NIR-Restormer
with 8 models, including 3 single image denoising methods (i.e. NAFNet (Chen et al., 2022),
Uformer (Wang et al., 2022), and Restormer (Zamir et al., 2022)) and 5 NIR-assisted denoising
methods (i.e. FGDNet (Sheng et al., 2022), SANet (Sheng et al., 2023), CUNet (Deng & Dragotti,
2020), MNNet (Xu et al., 2022a), and DVN (Jin et al., 2022)). To quantitatively evaluate the
performance, we calculate three metrics on the RGB channels, i.e. Peak Signal to Noise Ratio
(PSNR) (Huynh-Thu & Ghanbari, 2008), Structural Similarity (SSIM) (Wang et al., 2004) and
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018b). We also evaluate the
inference cost of different models. The #FLOPs when processing a 128 × 128 patch and the infer-
ence time when feeding a 1792× 1008 image are reported.

Results on synthetic DVD dataset. The quantitative results on the synthetic DVD dataset are
shown in Table 2. It can be observed that our method significantly improves performance against
single-image denoising methods, thereby demonstrating the effectiveness of NIR images. In com-
parison with existing NIR-assisted denoising ones, our methods also outperform by a large margin,
as the proposed SFM overcomes the discrepancy issues between the NIR-RGB images while cou-
pling with the advanced denoising backbone successfully. In particular, our NIR-NAFNet makes a
better trade-off between performance and efficiency than other methods. Besides, The qualitative
results in Fig. 6 show that our methods restore more realistic textures and fewer artifacts than others.

Results on real-world NAID dataset. Real-world data has much more complex degradation than
synthetic ones. The quantitative results in Table 3 show that our methods still keep high performance
in the real world. Taking NIR-Restormer as an example, our proposed NIR-Restormer achieves
0.33dB, 0.54dB, and 0.94dB PSNR gains than Restormer (Zamir et al., 2022) in dealing with low-
level, middle-level and high-level noise respectively. The higher the level of noise, the greater the
improvement achieved by our method, which further indicates the advantage of the utilization of
NIR information for low-light noise removal. The qualitative results in Fig. 7 demonstrate that our
models still recover fine-scale details in the real world, while other NIR-assisted denoising methods
may produce artifacts. More visual comparisons can be seen in Sec. D of the appendix.

6 ABLATION STUDY

We conduct ablation studies on our real-world NAID dataset when taking NIR-NAFNet as an exam-
ple. They include the effect of GMM and LMM, the effect of kernel size of DWConv in LMM, and
the effect of number of SFM. The metrics are reported by averaging these on three noise levels.

6.1 EFFECT OF GMM AND LMM IN SFM.

As shown in Table 4, the incorporation of global and local feature modulation yields 0.13dB PSNR
improvements each, which can be attributed to their effective handling of the inconsistencies be-
tween NIR-RGB images in color and structure, respectively. And with both global and local feature
modulation, it achieves results with 0.23dB PSNR gain. Additionally, GMM and LMM are both
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Noisy Image NIR Image FGDNet CUNet SANet MNNet DVN

NAFNet Uformer Restormer NIR-NAFNet NIR-Uformer NIR-Restormer Clean Image

Figure 6: Qualitative comparison on the synthetic DVD dataset. Bold marks our methods.

Noisy Image NIR Image FGDNet CUNet SANet MNNet DVN

NAFNet Uformer Restormer NIR-NAFNet NIR-Uformer NIR-Restormer Clean Image

Figure 7: Qualitative comparison on our real-world NAID dataset. Bold marks our methods.

Table 2: Quantitative comparison on the synthetic DVD dataset. Bold marks our results.

Methods σ = 4 σ = 8 #FLOPs
(G)

Time
(ms)PSNR↑/ SSIM↑/ LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

Single-Image
Denosing

Uformer (CVPR’22) 29.58 / 0.8967 / 0.271 27.36 / 0.8632 / 0.352 19.16 1748
Restormer (CVPR’22) 29.67 / 0.9038 / 0.262 27.41 / 0.8741 / 0.343 70.59 2048
NAFNet (ECCV’22) 29.49 / 0.8959 / 0.263 27.29 / 0.8638 / 0.336 8.10 312

NIR-Assisted
Denosing

FGDNet (TMM’22) 23.91 / 0.8371 / 0.439 22.02 / 0.7374 / 0.436 38.67 479
SANet (CVPR’23) 27.68 / 0.8648 / 0.343 25.28 / 0.8304 / 0.413 161.06 2763
CUNet(TPAMI’20) 28.01 / 0.8558 / 0.332 26.07 / 0.8182 / 0.412 14.48 542
MNNet (IF’22) 28.48 / 0.8994 / 0.274 26.33 / 0.8697 / 0.353 23.68 1360
DVN (AAAI’22) 29.69 / 0.9062 / 0.236 27.43 / 0.8799 / 0.292 104.05 761
NIR-Uformer 30.10 / 0.9188 / 0.192 28.03 / 0.9008 / 0.238 24.85 2500
NIR-Restormer 30.22 / 0.9209 / 0.193 28.11 / 0.8701 / 0.260 89.17 2747
NIR-NAFNet 30.08 / 0.9005 / 0.208 27.86 / 0.8664 / 0.273 13.17 462

Table 3: Quantitative comparison on our real-world NAID dataset. Bold marks our results.

Methods Low-Level Noise Middle-Level Noise High-Level Noise

PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

Single-Image
Denosing

Uformer (CVPR’22) 25.56 / 0.7736 / 0.304 24.52 / 0.7418 / 0.347 23.31 / 0.7091 / 0.389
Restormer (CVPR’22) 25.89 / 0.7842 / 0.294 24.98 / 0.7572 / 0.333 23.82 / 0.7297 / 0.387
NAFNet (ECCV’22) 25.71 / 0.7780 / 0.294 24.76 / 0.7482 / 0.335 23.71 / 0.7186 / 0.378

NIR-Assisted
Denosing

FGDNet (TMM’22) 24.25 / 0.7676 / 0.368 22.89 / 0.7367 / 0.430 21.86 / 0.7080 / 0.509
CUNet (TPAMI’20) 24.05 / 0.7314 / 0.313 23.29 / 0.7031 / 0.380 22.41 / 0.6398 / 0.449
SANet (CVPR’23) 24.93 / 0.7679 / 0.359 23.74 / 0.7335 / 0.416 22.69 / 0.7028 / 0.476
MNNet (IF’22) 25.68 / 0.7797 / 0.313 24.64 / 0.7512 / 0.364 23.36 / 0.7194 / 0.419
DVN (AAAI’22) 25.96 / 0.7853/ 0.298 24.93 / 0.7578 / 0.332 23.95 / 0.7360 / 0.382
NIR-Uformer 25.91 / 0.7919 / 0.276 25.14 / 0.7714 / 0.299 24.28 / 0.7534 / 0.321
NIR-Restormer 26.22 / 0.7963 / 0.265 25.51 / 0.7767 / 0.293 24.76 / 0.7626 / 0.315
NIR-NAFNet 26.06 / 0.7905 / 0.274 25.26 / 0.7676 / 0.303 24.48 / 0.7503 / 0.321
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Table 4: Quantitative comparison with dif-
ferent modulation modules in SFM.

GMM LMM PSNR↑ / SSIM↑ / LPIPS↓
× × 25.03 / 0.7647 / 0.304
✓ × 25.16 / 0.7675 / 0.302
× ✓ 25.16 / 0.7653 / 0.302
✓ ✓ 25.26 / 0.7695 / 0.299

Table 5: Quantitative comparison of different
arrangements of GMM and LMM.

Arrangement PSNR↑ / SSIM↑ / LPIPS↓
GMM + GMM 25.17 / 0.7652 / 0.302
LMM + LMM 25.18 / 0.7650 / 0.301
LMM + GMM 25.19 / 0.7669 / 0.301
GMM + LMM 25.26 / 0.7695 / 0.299

Table 6: Quantitative comparison of different
numbers of SFM at each scale.

#SFM PSNR↑ / SSIM↑ / LPIPS↓
1 25.26 / 0.7695 / 0.299
3 25.28 / 0.7699 / 0.299
5 25.29 / 0.7669 / 0.301

Table 7: Quantitative comparison of different
kernel sizes of DWConv in LMM.

Kernel Size PSNR↑ / SSIM↑ / LPIPS↓
3× 3 25.22 / 0.7685 / 0.298
5× 5 25.26 / 0.7695 / 0.299
7× 7 25.28 / 0.7717 / 0.301

lightweight modules that do not increase the number of parameters and inference time too much.
The number of parameters of GMM and LMM only account for 1.5% and 1.1% of those of NIR-
NAFNet, respectively. Applying an SFM on NIR-NAFNet only results in a time increase of 1 ms.
More results compared to the NIR-assisted image denoising baseline in Fig. 4 (b) with different
denoising backbones can be seen in Sec. B of the appendix.

To further demonstrate the effectiveness of decoupling the inconsistencies into color and structure
components, we conduct experiments with different arrangements of GMM and LMM. The results
are shown in Table 5. ‘GMM + GMM’ and ‘LMM + LMM’ mean that modulate features with
2 GMMs and 2 LMMs respectively, but results in limited performance gain. This shows that our
performance improvement is not due to a simple increase in parameter numbers. ‘LMM + GMM’
denotes that modulates features first locally and then globally, also leading to limited improvement.
It may be because the significant difference in global content leads to inaccurate local feature mod-
ulation. Therefore, we deploy a GMM to handle color discrepancy first followed by a LMM dealing
with structure discrepancy, dubbed ‘GMM + LMM’, achieving better results.

6.2 EFFECT OF KERNEL SIZE OF DWCONV IN LMM.

To illustrate the effect of the size of receptive fields in LMM, we conduct experiments employing
varying kernel sizes of DWConv as shown in Table 7. Generally, a larger kernel size leads to greater
performance improvement, which proves that a large reception field helps the local modulation of
features. But it is improved marginally when the kernel size is larger than 5 × 5. For the sake of
simplicity and efficiency, we set the kernel size of DWConv to 5× 5 as default.

6.3 EFFECT OF NUMBER OF SFM.

Here we investigate the effect of incorporating different numbers of SFM into the NAFNet (Chen
et al., 2022) at each scale. The results are shown in Table 6. It can be observed that the performance
generally increases marginally as the number of SFMs grows. Also for the sake of simplicity and
efficiency, we only set the number of SFM to 1 at each scale of the networks.

7 CONCLUSION

Near-infrared (NIR) images can help restore fine-scale details while removing noise from noisy RGB
images, especially in low-light environments. The content inconsistency between NIR-RGB images
and the scarcity of real-world paired datasets limit its effective application in real scenarios. In this
work, we propose a plug-and-play Selective Fusion Module (SFM) and a real-world paired NIR-
Assisted Image Denoising (NAID) dataset to address these issues. Specifically, SFM sequentially
performs global and local modulations on NIR-RGB features before their information fusion. The
NAID dataset is collected with various noise levels under diverse scenes. Experiments on both
synthetic and real-world datasets show our method achieves better results than state-of-the-art ones.
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APPENDIX

The content of the appendix involves:

• More details about the NAID dataset in Sec. A
• More comparisons with NIR-assisted image denoising baseline in Sec. B
• Effect of GMM and LMM in SFM in Sec. C
• More qualitative comparisons in Sec. D

A MORE DETAILS ABOUT THE NAID DATASET

All images in the NAID dataset are captured with the Huawei X2381-VG camera. It is a common
surveillance camera equipped with a built-in NIR illuminator specifically designed for capturing
NIR images. When capturing clean RGB images, the camera’s ISO is set to 600. When capturing
RGB images with low, middle, and high noise levels, we set ISO to about 4000, 12000, and 32000
respectively. It is worth noting that we adjust the exposure time of each noise level to keep the
brightness of noisy images relatively constant. Besides, following DVD (Jin et al., 2022), we crop
all images from 2048 × 3840 resolutions into 2048 × 2160 to mitigate the vignetting effect.

B MORE COMPARISONS WITH NIR-ASSISTED IMAGE DENOISING BASELINE

We incorporate our SFM into two Transformer-based denoising networks (i.e., Uformer (Wang et al.,
2022) and Restormer (Zamir et al., 2022)) and a CNN-based one (i.e., NAFNet (Chen et al., 2022)),
dubbed NIR-Uformer, NIR-Restormer, and NIR-NAFNet respectively. Uformer (Wang et al., 2022)
and Restormer (Zamir et al., 2022) are different representations of Transformer-based models, where
the former calculates self-attention in spatial dimension while the latter in the channel one. As shown
in Fig. 4 (b), we sum the NIR features and RGB ones as our baseline, i.e., ‘Uformer-Baseline’,
‘Restormer-Baseline’, and ‘NAFNet-Baseline’, respectively. From Table A and B, it is observed that
the performance of different denoising networks can be further improved by integrating our proposed
SFM on both synthetic DVD and real-world NVID datasets. It further validates the effectiveness of
our proposed SFM and its plug-and-play nature.

C EFFECT OF GMM AND LMM IN SFM

We provide the qualitative results of GMM and LMM in SFM taking NIR-NAFNet as an example.
As shown in Fig. A, the incorporation of our GMM and LMM in SFM both helps fine-scale texture
recovery. Please zoom in for more clear observation.

D MORE QUALITATIVE COMPARISONS

We provide more qualitative results by comparing our NIR-NAFNet, NIR-Uformer, and NIR-
Restormer with 8 models, including 3 single image denoising methods (i.e., NAFNet (Chen et al.,
2022), Uformer (Wang et al., 2022), and Restormer (Zamir et al., 2022)) and 5 NIR-assisted denois-
ing ones (i.e., FGDNet (Sheng et al., 2022), SANet (Sheng et al., 2023), CUNet (Deng & Dragotti,
2020), MNNet (Xu et al., 2022a), and DVN (Jin et al., 2022)). As shown in Fig. B and Fig. C,
our methods restore more fine-scale and photo-realistic textures than others, both on synthetic and
real-world images.
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Noisy Image NIR Image w/ GMM, w/o LMM w/ GMM, w/ LMM Clean Image

Noisy Image NIR Image w/o GMM, w/ LMM w/ GMM, w/ LMM Clean Image

Figure A: The qualitative comparisons of incorporating GMM and LMM to modulate features. We
mark some areas with yellow arrows for easier observation.

Table A: Comparisons of our proposed method with the NIR-assisted image denoising baseline (see
Fig. 4 (b)) on different networks on synthetic DVD dataset.

Methods
σ = 4 σ = 8 #FLOPs

(G)
Time
(ms)PSNR↑/ SSIM↑/ LPIPS↓ PSNR↑/ SSIM↑/ LPIPS↓

Spatial-Wised
Transformer-Based

Uformer-Baseline 29.74 / 0.9156 / 0.215 27.81 / 0.8917 / 0.264 23.39 2282
NIR-Uformer 30.10 / 0.9188 / 0.192 28.03 / 0.9008 . 0.238 24.85 2500

Channel-Wised
Transformer-Based

Restormer-Baseline 29.97 / 0.8897 / 0.199 27.88 / 0.8680 / 0.245 86.75 2578
NIR-Restormer 30.22 / 0.9209 / 0.193 28.11 / 0.8701 / 0.260 89.17 2747

CNN-Based
NAFNet-Baseline 29.70 / 0.8894 / 0.220 27.62 / 0.8621 / 0.276 11.72 461

NIR-NAFNet 30.08 / 0.9005 / 0.208 27.86 / 0.8664 / 0.273 13.17 462

Table B: Comparisons of our proposed method with the NIR-assisted image denoising baseline (see
Fig. 4 (b)) on different networks on our real-world NVID dataset.

Methods
Low-Level Noise Middle-Level Noise High-Level Noise

PSNR↑/ SSIM↑/ LPIPS↓ PSNR↑/ SSIM↑/ LPIPS↓ PSNR↑/ SSIM↑/ LPIPS↓

Spatial-Wised
Transformer-Based

Uformer-Baseline 25.80 / 0.7904 / 0.269 25.03 / 0.7687 / 0.294 24.02 / 0.7488 / 0.320
NIR-Uformer 25.91 / 0.7917 / 0.276 25.14 / 0.7714 / 0.299 24.28 / 0.7534 / 0.321

Channel-Wised
Transformer-Based

Restormer-Baseline 26.12 / 0.7948 / 0.265 25.38 / 0.7733 / 0.293 24.61 / 0.7587 / 0.316
NIR-Restormer 26.22 / 0.7963 / 0.265 25.51 / 0.7767 / 0.293 24.76 / 0.7626 / 0.315

CNN-Based
NAFNet-Baseline 25.92 / 0.7883 / 0.277 25.00 / 0.7628 / 0.304 24.16 / 0.7429 / 0.329

NIR-NAFNet 26.06 / 0.7905 / 0.274 25.26 / 0.7676 / 0.303 24.48 / 0.7503 / 0.321
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Noisy Image NIR Image FGDNet CUNet SANet MNNet DVN

NAFNet Uformer Restormer NIR-NAFNet NIR-Uformer NIR-Restormer Clean Image

Noisy Image NIR Image FGDNet CUNet SANet MNNet DVN

NAFNet Uformer Restormer NIR-NAFNet NIR-Uformer NIR-Restormer Clean Image

Figure B: More qualitative comparisons on synthetic DVD dataset. Bold marks our methods.

Noisy Image NIR Image FGDNet CUNet SANet MNNet DVN

NAFNet Uformer Restormer NIR-NAFNet NIR-Uformer NIR-Restormer Clean Image

Noisy Image NIR Image FGDNet CUNet SANet MNNet DVN

NAFNet Uformer Restormer NIR-NAFNet NIR-Uformer NIR-Restormer Clean Image

Figure C: More qualitative comparisons on real-world NVID dataset. Bold marks our methods.
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