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Abstract

Efficiency, specialization, and adaptability to new data distributions are qualities
that are hard to combine in current Large Language Models. The Mixture of Experts
(MoE) architecture has been the focus of significant research because its inherent
conditional computation enables such desirable properties. In this work, we focus
on “upcycling” dense expert models into an MoE, aiming to improve specialization
while also adding the ability to adapt to new tasks easily. We introduce Nexus, an
enhanced MoE architecture with adaptive routing where the model learns to project
expert embeddings from domain representations. This approach allows Nexus
to flexibly add new experts after the initial upcycling through separately trained
dense models, without requiring large-scale MoE training for unseen data domains.
Our experiments show that Nexus achieves a relative gain of up to 2.1% over the
baseline for initial upcycling, and a 18.8% relative gain for extending the MoE with
a new expert by using limited finetuning data. This flexibility of Nexus is crucial
to enable an open-source ecosystem where every user continuously assembles their
personalized MoE-mix according to their needs.

1 Introduction

In an era of bigger and bigger models [Canziani et al., 2016, Strubell et al., 2019, Rae et al., 2021,
Raffel et al., 2020, Bommasani et al., 2022, Hooker, 2024], there are several key objectives driving
state-of-art progress. Doing more with less by improving efficiency [Treviso et al., 2023] remains
paramount, but in addition to efficiency the deployment of these models in the wild means that the
ability to adapt to new data [Pozzobon et al., 2023b, Gururangan et al., 2020a, Jang et al., 2022, Jin
et al., 2022], and specialization of compute [Zadouri et al., 2024, Shazeer et al., 2018, Riquelme et al.,
2021, Du et al., 2022, Fedus et al., 2022] have gained renewed focus. While all these properties are
desirable, a formidable challenge is designing architectures that can fulfill all of these requirements.

The Mixture-of-Expert (MoE) approach gained prominence because of its efficiency properties. In
contrast to dense models which require significant compute to deploy, MoE approaches only activate
a subset of the parameters for every single token. Intuitively, not all parameters are necessary for each
request, as some parameters will specialize on certain tasks, and those unrelated to the current request
can be ignored. However, while MoEs greatly improved efficiency, the ability to induce meaningful
specialization has been more limited with observations that experts don’t appear to exhibit dedicated
expertise [Jiang et al., 2024, Zoph et al., 2022, Zadouri et al., 2023]. Furthermore, MoEs tend to
suffer from severe training instabilities [Zoph et al., 2022].

Recent work has attempted to address both the training instabilities and the lack of specialization.
These techniques often train completely separate experts and “upcycle” (combine) them into a single
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Figure 1: The Nexus architecture: A) Each expert is trained separately and an embedding of its training data
is stored. The experts are combined by extracting their FFNs into the MoE layer, and finetuning the model
on a mix of all domains. We perform top-1 routing based on the similarity of the input data with each of the
transformed expert embeddings. The seed model FFN is used as the shared expert and always activated. B)
Later, we can add a new expert by appending its training data embedding to the existing domain embeddings.

unified MoE model after dense training [Sukhbaatar et al., 2024]. This reduces the memory and
communication cost, and improves efficiency during training as computations are more local and
cross-device communication is reduced [Li et al., 2022, Gururangan et al., 2023]. Notably, the other
major advantage of these approaches is the increase in specialization with separate experts that are
trained on specific domains, making them clearly responsible for their human-interpretable subset of
the data. On the other hand, MoEs with a standard router, which needs to be trained on a mix of all
training data, are not designed to maintain domain specialization [Jiang et al., 2024].

However, efficiently integrating new experts into upcycled MoE models - a setting that is of great
interest for adaptability objectives is far less studied. For most practitioners, given the scale of
modern LLMs [Brown et al., 2020, Touvron et al., 2023, Kaplan et al., 2020, Anil et al., 2023]
training MoEs repeatedly is an infeasible computational cost. Furthermore, most model development
fails to take into account distribution drift in use cases, with limited flexibility and applicability across
different tasks and domains [Pozzobon et al., 2023a, Gururangan et al., 2020b]. However, human
language is shaped by a cumulative culture, constantly building upon itself and evolving over time
[Silvey, 2016]. Also, specialized use cases such as multilingual, code and math often require tailored
additional training.

In this work, we attempt to reconcile all three desirable properties: efficiency, specialization, and
adaptability. We ask “how can we adaptively combine separately trained specialized experts?” To
address this, we introduce Nexus, a novel MoE architecture that parameterizes the router based
on domain-specific data by learning to project the embedding of each data domain to an expert
embedding. This learnable projection for the router allows for the easy extension of the MoE model
with new experts that are trained independently on new datasets of interest. This also avoids the
difficulties of MoE training, as our learned router scales with the number of experts without needing
to be trained from scratch, which enables adding or removing experts as desired.

Our experiments show that Nexus outperforms previous work when upscaling an MoE from separately
trained specialized domain experts. Going beyond the single upscaling phase, Nexus can be efficiently
extended with a new expert trained on a new domain, by finetuning it with much fewer tokens,
compared to the finetuning after the initial upcycling.

In summary, our contributions are as follows: 1) We present Nexus, a novel MoE framework designed
to enhance sparse upcycling of specialized dense experts, while reducing the training cost of MoEs
by facilitating easy adaptation to unseen data distributions. In Nexus, the traditional linear router
from vanilla MoE models is replaced with routing based on the similarity of layer inputs to an expert
embedding vector, derived from the average embedding of the corresponding expert dataset. 2) Our
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method outperforms the existing approach for upcycling specialized models into MoE, leading to
2.1% and 1.6% relative increase over the upcycled MoE (linear router) in 470M and 2.8B scales
respectively. This enables performance increase in general tasks with 5.8% and 7.4% relative gains
over the dense seed model at 470M and 2.8B respectively. 3) Our method enables efficient adaptation
to new domains by extending upcycled MoE with the new experts trained on unseen dataset. In
this setting, Nexus outperforms the baseline MoE (linear router) when finetuning on the limited
amount of data, leading 18.8% relative gain on the new domain with 1B finetuning tokens upon MoE
extension. 4) We show that our method is robust across different load balancing and data mixtures,
and consistently outperforms the MoE with a linear router for specialized upcycling, confirming the
benefits of the adaptive routing based on domain projections used in Nexus.

2 Adaptive Router for Upcycling Specialized Experts as MoE

The core component of an MoE model is the router, as it determines which experts to activate
for any given input. In vanilla MoEs, the router is a learned linear layer that takes the token
intermediate representations as input and computes the expert probabilities. However, this router does
not necessarily learn specialization as MoEs are commonly trained using an auxiliary load balancing
loss to improve training stability [Fedus et al., 2022, Jiang et al., 2024]. In Nexus, we propose a
novel MoE router where per MoE block we learn a projection layer from given pre-computed domain
embeddings to expert embeddings. We parametrize this projection layer Pr as a two-layer MLP with
a SwiGLU activation function [Shazeer, 2020]:

eexpert
i = Pr(e

domain
i ) (Domain to Expert Embeddings)

= W2 · SwiGLU(W1 · edomain
i )

where edomain
i ∈ Rd, and eexpert

i ∈ Rh are the domain and expert embeddings for the ith domain
respectively, with d and h as the domain embedding and the model dimensions. W1 ∈ R2h×d,W2 ∈
Rh×h are linear layers, and SwiGLU is defined as R2h → Rh. Given the expert embeddings eexpert

i

and layer inputs x ∈ Rs×h, we then compute routing probabilities si using softmax(x · eexpert
i ).

Unlike the standard router, Nexus’s router includes a stronger inductive bias through pre-computed
domain embeddings1 that enables expert embedding to specialize. Thus, x · eexpert

i gives a high value
for input tokens that are closer to the domain of the corresponding expert. Notably, this router is
particularly suited for the sparse upcycling setting where the dense experts are separately trained on
different domains.

Upcycling dense experts as an MoE. After training dense expert models, we merge the individual
experts into a unified MoE by appending their FFNs along a new dimension to create an MoE layer
per Transformer block. Unlike Sukhbaatar et al. [2024], instead of using the original FFN of the
seed model as one of the routed experts in an MoE layer, we use it as the “shared expert” FFNs

[Rajbhandari et al., 2022, Dai et al., 2024] to better preserve the previous capabilities in the MoE
model. For all non-FFN parameters including the attention weights, we merge expert parameters
using simple weight averaging:

FFNmoe = FFNs + [FFNe1,FFNe2, ...,FFNen] (MoE Layer FFNs)

ϕmoe =

∑n
i=1 ϕi

n
(Merge Non-FFN params.)

Efficient adaptation to new domains. An important advantage of method is that when a new data
domain is present after MoE training, we use the learned projection Pr to compute expert embedding
of the new domain as enew = Pr(dnew). This enables to enhance the trained MoE model with
additional dense experts, which are trained in the same way as the initial experts. The FFN parameters
of the new expert are simply appended to the array of existing experts.

To adequately preserve the non-FFN parameters of existing experts, we perform a weighted average
ϕf = (1 − λ) · ϕmoe + λ · ϕnew where ϕf , ϕe, and ϕmoe are parameters of the final MoE, dense

1We used Cohere Embed v3 [Cohere, 2023] as an external embedding model to compute domain embeddings
based on individual data sources. However, similar to [Gururangan et al., 2023], pre-training data can also be
clustered and the centroids can be used for domain embeddings.
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Figure 2: (a) Downstream performance at 470M and 2.8B scales. We report the average performance
on Knowledge, Science, Reasoning, and MMLU. (b) Extending upcycled MoE models with the
Code experts. After initial upcycling, we extended Nexus and MoE(̇linear router) using an
independently trained dense Code expert and finetuned the resulting models small number of tokens
(200M, 500M, and 1B finetuning tokens) as described in 2.

expert, and initial MoE model and λ = 1/(n+ 1). This enables efficiently adapting Nexus to new
domain by extending it with the new dense expert trained independently. After extending the MoE
with a new expert, we perform a lightweight finetuning with a limited number of tokens.

3 Experiments

Our experimental setup includes 3 phases: 1) Training specialized expert LMs, where we train
separate dense models on different data domains, 2) MoE training, where we combine those dense
models into an MoE model and train it on a mix of all domains, and 3) Extending the MoE model
with new experts, where after phase 2, we add a new dense expert to the model to demonstrate how
it can adapt to new data. More details about the seed model, data mix, and training procedure can be
found in Appendix B. Figure 1 shows the architecture of Nexus and how a new expert can be added.

We compare our experiments against 1) Dense Merging where all separately pre-trained experts and
the seed model merged into a dense Transformer via equal weight averaging, and 2) MoE (Linear
Router) which is an MoE with a standard linear router that is upcycled from dense experts, to evaluate
Nexus’s novel router for upcycling. For a fair comparison, we also train this MoE model on the
same datasets and for the same number of tokens as our method, and use the same architectural
modifications such as shared experts.

For the downstream evaluation, we measure the performance of each model on 15 tasks from five
evaluation categories (Knowledge, Science, Reasoning, General Language Understanding, and
Code) that reflect different capabilities based on the tasks and the datasets used in the benchmarks.
Appendix C details the evaluation datasets for each category.

4 Results and Discussion

4.1 Main Results for Upcycled Models

We first compare Nexus to the upcycled baselines MoE with linear router and dense merging.
Here, we ask “How does our MoE upcycling recipe with adaptive routing compare against baseline
upcycling approaches?”

470M parameter seed model. Table 2 (Appendix D) shows performances of upcycled models
including Nexus where a 470M seed model is used to train dense experts. Both Nexus and the
upcycled MoE(̇linear router) consist of 1 shared and 6 routed experts, corresponding to a total
number of 1.3B parameters where 605M parameters are activated per input for top-2 routing (1 expert
always activated, 1 chosen by the router). The dense merging baseline is created by averaging the
weights of all dense experts and the seed model, and therefore has the same number of parameters as
the seed model.

Compared to the seed model, Nexus performs better in all evaluation categories with a 5.8% relative
gain on average (38.5 vs 36.4). Compared to upcycled models, Nexus outperforms MoE(̇linear
router) in 3 out of 4 categories with 3.2% relative gain (38.5 vs 37.3) on average, and beats dense
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merging by 8.5% overall relative increase (38.5 vs 35.5). Notably, while both upcycled MoEs
outperform the seed model, dense merging underperforms on average, showing the benefits of
MoE upcycling over parameter averaging.

2.8B parameter seed model. Next, we experiment by upcycling dense models with 2.7B parameters
to validate if the results from the 470M seed model hold at a larger scale. Table 1 compares Nexus with
MoE(̇linear router) and dense merging. Both Nexus and MoE(̇linear router) use 1 shared
expert and 4 routed experts in these experiments, corresponding to 4.3B active parameters per input
(top-2) out of 9.1B total parameters.

Our results show that Nexus leads to higher upcycling results compared to the baselines at the
2.8B scale, confirming the previous findings. Nexus enables a 7.4% relative gain over the seed
model and outperforms the MoE(̇linear router) with a 1.6% relative increase (50.6 vs. 49.8).
Nexus outperforms the best baseline in 3 out of 4 task categories and achieves the highest increase
in knowledge tasks with 22.5% and 5.6% relative to seed model and MoE (linear router).

Similar to the 470M experiments, both Nexus and MoE(̇linear router) outperform the dense
merging baseline. We relate this to potential cross-task interference between diverse specialized
experts (including the seed model as an additional expert), leading to poor performance by applying a
simple weight averaging.

4.2 Extending the Upcycled MoE model with a New Expert

To support fully modular and efficient training of MoEs, besides upcycling the existing expert models,
it is crucial for an adaptive method to have the ability to continuously extend the upcycled MoE
with new experts trained using previously unseen data domains. To evaluate this, we train a dense
CODE expert and extend the upcycled MoEs (both Nexus and MoE(̇linear router)) as described
in Section 2. We perform a small-scale finetuning of up to 1B tokens after extending the models.
Figure 2b shows both the general performance and the target code performance at 200M, 500M, and
1B finetuning tokens. Here, we ask “Can we continuously upcycle dense models into an MoE without
requiring large-scale MoE training each time?”

Performance on the new domain. As shown in Figure 2b (right), Nexus outperforms the
MoE(̇linear router) for 200M, 500M and 1B finetuning tokens with 18.4%, 6.2% and 18.8%
relative gains respectively. Unlike MoE(̇linear router), where the router weights are reset after
extending the MoE layers, Nexus uses the information that is available about the new domain by
mapping the domain embedding to a new expert embedding for the router, and therefore finetunes the
router weights without a restart.

Comparison with the dense models. Nexus reaches the code performance of the seed model while
retaining superior performance on general tasks. In comparison to the seed model and the dense code
expert (trained for 8B code-only tokens on top of the seed model), although the dense code expert still
performs higher than both upcycled MoEs with a score of 14.3, its performance on general tasks is far
inferior (42.1). Our method also achieves up to 18.8% relative gains over the MoE(̇linear router).
These results show that with a fraction of the original upcycling budget (1B vs 40B tokens for initial
upcycling, and 1B vs 8B tokens for code expert training), Nexus can acquire a new capability.

Performance on general tasks. As a proxy for the knowledge for previously learned domains,
Figure 2b (left) shows the average performance of Nexus and MoE(̇linear router) in general
tasks. Although there is a slight drop on the general tasks for Nexus compared to initial upcycling
(a relative decrease of 1.9%), the competitive performance is maintained across different numbers
of finetuning tokens. We relate this to the composition of the finetuning mix where we use a high
percentage of the code data (50% of the code and 50% of the previous domains).

5 Conclusion

We propose Nexus, a new LLM framework that enables efficient upcycling of specialized dense
experts into a sparsely activated MoE model. We show that individual experts in our method retain
their specialization after upcycling, and that our router based on expert embeddings outperforms
previous approaches for combining dense experts. Furthermore, the model can be extended efficiently
with new dense experts after the initial training phase, saving much compute compared to re-training
the upcycled model or training from scratch.
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A Nexus routing algorithm

1 def router(self , inputs , domain_embeddings):
2 # domain_to_expert_ffn learns projection domain to expert

embeddings
3 # domain_embeddings: [e_dim x n_experts]
4 # expert_embeddings: [h_dim x n_experts]
5 expert_embeddings = self.domain_to_expert_ffn(self.

domain_embeddings)
6

7 # router probs: [batch , seq , n_experts]
8 router_probs = nn.softmax(inputs @ expert_embeddings)
9

10 # Top -1 gate for routed experts
11 index , gate = nn.topk(1, router_probs)
12

13 # routed_experts_ffns: An MoE layer with FFN experts
14 # routed_expert_out: [batch , seq , h_dim]
15 # shared_expert_out: [batch , seq , h_dim]
16 routed_expert_out = self.routed_expert_ffns[index]( input)
17 shared_expert_out = self.shared_expert_ffn(input)
18

19 return shared_expert_out + gate * routed_expert_out

Figure 3: Router layer in Nexus: PyTorch-like pseudo-code illustrating a router layer, which
consists of a 2-layer MLP network (domain_to_expert_ffn) to project domain embeddings to
expert embeddings, shared and routed expert FFNs, and sparse Top-k gating. Note that the expert
embeddings are independent of the input and could be precomputed once and stored during inference.

B Experimental setup details

1. Training specialized expert LMs. For training the dense specialized experts, we use the sub-
datasets from the SlimPajama dataset [Soboleva et al., 2023], a 627B token English-language corpus
assembled from web data of various sources. We initialize four dense experts from the weights
of the seed model and train them on the ARXIV, BOOKS, C4, GITHUB, STACKEXCHANGE, and
WIKIPEDIA domains.2 As the seed model, we use a 470M and 2.8B parameters decoder-only
autoregressive Transformer models [Radford et al., 2019] that are trained with a standard language
modeling objective for 750B tokens. We train dense experts for 25 and 40 billion tokens for 470M
and 2.8B seed models respectively. We use parallel attention layers, [Anil et al., 2023, Wang, 2021],
SwiGLU activation [Shazeer, 2020], no biases in dense layers, and a byte-pair-encoding (BPE)
tokenizer with a vocabulary size of 256,000. During training, we use a linear warmup (10% of total
steps) to a maximum learning rate of 1e-3 and a cosine decay schedule to 3e-4.

2. MoE training. After the training of dense expert models, we merge them into a unified MoE by
appending their FFNs along a new dimension to create an MoE layer per Transformer block. For the
shared expert in our MoE layer, we use the original FFN layer of the seed model to better preserve
the previous capabilities in the MoE model. For all non-FFN parameters including the attention
weights, we merge expert parameters using simple weight averaging, following Sukhbaatar et al.
[2024]. After the MoE model is created, we continually train it for an additional 25B and 40B tokens
respectively for the 470M and 2.8B experiments, on a mix of all domain and original pre-training
datasets, using the same training hyperparameters as in the single expert training. Finally, we train
the MoE models using an additional 1B tokens by upweighting the original pre-training dataset as
it includes high-quality data sources such as instruction-style datasets using a cosine learning rate
decay to 3e-5 [Parmar et al., 2024].

3. Extending the MoE model with new experts. After adding a new expert as defined in Section
2, we finetune the extended MoE model for up to 1 billion tokens using a uniformly sampled data
mix consisting of 50% the previous domains and pre-training data and 50% the new domain. For the

2We exclude the Github and StackExchange datasets from SlimPajama in order to ablate adding a new expert
model using the CODE domain

11



Know. Science Reason. MMLU Code Avg.
(excl. in upcyc.) (w/o Code)

SEED MODEL (2.8B) 27.1 62.0 63.8 35.4 8.4 47.1

Upcycled Models
DENSE MERGING 17.6 60.3 59.2 36.0 3.4 43.3
MOE (LINEAR ROUTER) 31.5 66.5 62.9 38.6 2.6 49.8
NEXUS 33.2 67.3 62.6 39.4 2.7 50.6

Table 1: Downstream task results for Nexus with a 2.8B parameter seed model: Our approach outper-
forms the baselines in 3 out of 4 evaluation categories. Dense merging corresponds a dense model
with 2.8B parameters, while both Nexus and MoE (linear router) have 4.3B active and 9.1B
total parameters. Note that the trained models show severe forgetting on Code benchmarks, as we
exclude Code data on purpose during the upcycling phase to simulate extending models with a new
dataset in Section 4.2.

new expert (CODE), we train a dense model using code documents from StarCoder [Li et al., 2023]
with the same settings as for the training of the initial experts. As the 470M scale MoE did not have
sufficient instruction following capabilities to attempt the code benchmarks, we only tested extending
the MoEs with a new expert on the 2.8B scale.

C Evaluation details

For the downstream evaluation, we measure the performance of each model on 15 tasks3 from five
evaluation categories that reflect different capabilities based on the tasks and the datasets used in the
benchmarks:

• Knowledge: To measure question-answering capabilities based on world knowledge and
web documents such as Wikipedia, we report the performance on OpenBookQA [Mihaylov
et al., 2018], Natural Questions [Kwiatkowski et al., 2019], TriviaQA [Joshi et al., 2017],
QUAC [Choi et al., 2018] (all 0-shot) and SQuAD (4-shot) [Rajpurkar et al., 2016].

• Science: For measuring knowledge in science-oriented academic benchmarks, we use
ARC-Easy, ARC-Challenge [Clark et al., 2018], SciQ [Welbl et al., 2017] (all 0-shot).

• Reasoning: For reasoning abilities, we use CommonSenseQA [Talmor et al., 2019], SIQA
[Sap et al., 2019], PIQA [Bisk et al., 2020], WinoGrande [Sakaguchi et al., 2019], and
HellaSwag [Zellers et al., 2019] (all 0-shot).

• General Language Understanding: We use MMLU (5-shot) [Hendrycks et al., 2021] to
test general language understanding.

• Code: For code generation, we evaluate models on MBPP [Austin et al., 2021], LBPP
[Matton et al., 2024] and HumanEval-Pack [Chen et al., 2021] that includes Cpp, Javascript,
Java, Go, Python, and Rust (all 0-shot).

D Results for the 470M parameter model

Table 1 and 2 show detailed results for 2B and 470M parameter models respectively.

E Expert Specialization

To measure the specialization in our MoE, we take a closer look at how the MoE experts are activated
for samples of separate domains. We compute average routing frequencies across all Transformer
layers in Figure 4, where the labels on the x-axis represent which domain the tokens are coming
from, and the colored bars show the routing frequencies for each of the experts trained on one
of the domains. Since we select only one routed expert per token in each MoE layer, and expert

3We did not include ARC-Challenge and Natural Questions in 470M experiments as some model variants
were unable to achieve non-random performance.
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Know. Science Reason. MMLU Avg.

SEED MODEL (470M) 14.0 51.4 50.5 29.8 36.4

Upcycled Models
DENSE MERGING 10.9 52.0 50.3 27.8 35.5
MOE (LINEAR ROUTER) 13.4 55.0 51.3 29.6 37.3
NEXUS 16.7 55.0 52.3 29.8 38.5

Table 2: Downstream task results for Nexus with a 470M parameter seed model: Our approach outper-
forms baselines in all downstream benchmarks. Dense merging corresponds a dense model with
470M parameters, while both Nexus and MoE (linear router) consist of 605M active and 1.3B
total parameters.

Figure 4: Average routing proba-
bilities for each expert per domain
in Nexus: We compute the average
routing probabilities across Trans-
former blocks for 512 samples per
domain (from the 2.8B experiment).
The x-axis denotes the samples’ do-
main and the colored bars show the
routing probabilities for the corre-
sponding expert. We show the do-
mains that are used to train special-
ized experts.

FFN layers are inherited from dense experts, average routing frequencies present a good proxy for
specialization of each of the experts. Here, we ask “can Nexus retain a high degree of specialization
after upcycling?”

Routing for the upcycled experts. As shown in Figure 4, we find that the expert trained on the
corresponding domain always receives the highest share of the tokens from that domain, confirming
that Nexus retains the specialization from the specialized dense models. Concretely, this specialization
is higher for ArXiv, Books, and Wikipedia with 63.0%, 64.7%, and 69.8% respectively. Interestingly,
tokens from C4 are routed only 40.9% of the time to the C4 expert and distributed to the other experts
approximately 20% for each one. We relate this to the broad coverage of the C4 dataset, which
potentially includes samples closer to other domains and also a large percentage of the C4 used in the
MoE training phase (proportional to its size in the SlimPjama dataset). Especially the latter factor
pushes tokens from C4 to be distributed to the other experts due to the load balancing factor.

Specialized routing for the new expert. Next, we measure expert specialization for the newly
added expert on the new code domain. Figure 5 shows the average routing probability per expert for
sampled code tokens. We compute routing probabilities on the Nexus model with the code expert
after 1B finetuning tokens (See Section 4.2 for details). Here, we see clearly that code tokens are
routed to the code expert 69.1% of the time on average. This shows that Nexus not only retains the
specialization for the initial upcycling but also exhibits a high degree of specialization for a newly
added expert for its own domain.

F Ablations

Mixture-of-expert models are known to be sensitive to the choice of load balancing loss factor [Fedus
et al., 2022, Zoph et al., 2022] and sampling weights for each data domains during training. As
additional ablations, we run two new sets of experiments at 470M scale, one with a lower load
balancing factor and the other one with equal weighting of each domain during training (whereas
originally the weights were proportional to the share of tokens of that domain in SlimPajama). Figure
6 compares Nexus and MoE(̇linear router) in terms of their downstream performances for these
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Figure 5: Average routing probabili-
ties per expert for the new domain in
extended Nexus: We show the routing
probabilities for code tokens after ex-
tending MoE (1B finetuning).

Figure 6: Comparison between Nexus and the base-
line in different load balancing and data sampling
setups: We compare Nexus and MoE (linear router)
by lowering load balancing loss factor and uniformly
sampling the data domain during training in isolation.4

ablations. Finally, in this section, we also visualize domain and projected expert embeddings to see if
the relationship between embeddings is preserved after the learned projection.

Lowering the load balancing loss factor. In Figure 6 (baseline vs low load-bal.), we compare
two Nexus models with the corresponding MoE(̇linear router) baselines where we use load
balancing loss factor of 0.05 and 0.0005 for each set of experiments. We find that using a significantly
lower factor for the load balancing loss hurts MoE(̇linear router) performance by approximately
2% relative drop while Nexus shows a robust performance across both load balancing factors. We
hypothesize that because the expert embeddings in our router are always based on the domain
representations, we achieve more stable distribution of tokens even if the load balancing loss is
weighted extremely low.

Changing the training data composition. Next, we compare our default of sampling specialized
domain data proportional to the size of the domain (total amount of tokens in SlimPajama), with
a uniform sampling over all domains. Figure 6 (baseline vs equal data) shows the downstream
performances for both Nexus and MoE(̇linear router). Although sampling uniform sampling
domains’ data does not significantly impact the downstream performance for both models, we find that
it helps Nexus to improve specialization for all the domains in terms of expert routing probabilities
(Figure 8, Appendix H). In particular, compared to the size proportional sampling, tokens from the
C4 domain are routed more accurately (27.6% vs 71.1%) when data is equally sampled.

Domain embeddings before and after projection. Finally, in Figure 7, we visualize cosine
similarities between domains and the projected expert embeddings from the last Transformer block,
in our main upcycling experiments at the 470M scale. Comparing the embeddings before and after
mapping, we find that the router’s learned projection preserves the main relationship between domains.
For instance, relatively high cosine similarity between Books & C4, and StackExchange & GitHub
exist both between their domain embeddings and the projected expert embeddings. Interestingly,
while preserving the main relationships, we also find that the learned projection pushes expert
embeddings further away from each other, potentially due to our choice of only activating a single
expert per token besides the shared expert.

4We report the average performance on Knowledge, Science, Reasoning, and MMLU.
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G Comparison of domain embeddings and expert embeddings

Figure 7: Domain and the projected expert embeddings for Nexus: We visualize cosine similarities
between domains and the projected expert embeddings from the last Transformer block that are
obtained in 470M experiments. Our projected router maintains the relative similarity between the
original domains (e.g. Books & C4, Github & StackExchange) after the router’s projection.

H Routing Probabilities for Upcycling Ablations

Figure 8 shows the expert routing probabilities for Nexus for all three settings described in Section F.

Figure 8: Average routing probabilities for each expert per domain in different upcycling setting:
We show expert routing probabilities for Nexus for all three settings described in Section F.

I Related Work

Routing Variants of MoEs. The most common MoE architecture [Shazeer et al., 2017, Lepikhin
et al., 2020, Fedus et al., 2022] employs a linear router with a top-k routing scheme, where k typically
equals 1 or 2. In this standard routing schema, only the k experts with the highest router gate
values are activated. There is substantial research proposing alternatives to top-k expert assignments
[Hazimeh et al., 2021, Lewis et al., 2021, Roller et al., 2021, Zhou et al., 2022, Zuo et al., 2022].
DeepSeek-MoE [Dai et al., 2024] introduces a routing variant where a number of experts are “shared”
and always assigned to all tokens. Our work also adopts this approach for our general base expert.
However, these efforts primarily focus on improving the general performance and/or training stability
of MoEs. In contrast, our work puts emphasis adaptability and extensibility.
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MOE BTM BTX NEXUS
(Vanilla) (Merge) (Linear router) (Ours)

Dense experts are trained independently (upcycling) ✗ ✔ ✔ ✔

Experts are specialized in different domains ✗ ✔ ✔ ✔

Experts are chosen by a learned router per input token ✔ ✗ ✔ ✔

Router is adaptive via learned projection for new domains ✗ ✗ ✗ ✔

Table 3: A comparison of existing approaches with Nexus: Unlike the vanilla MoE architecture [Shazeer
et al., 2017, Fedus et al., 2022] the Branch-Train-Merge [BTM; Li et al., 2022] and the Branch-Train-Mix [BTX;
Sukhbaatar et al., 2024] approaches train experts separately in different domains, reducing the training cost and
improving specialization. However, they either merge the experts during inference or learn an MoE router layer
from scratch, where prior domain information is not used. Our approach trains the MoE router based on domain
information, maintaining the specialization and enabling efficient extension of the MoE with a new expert after
training.

Efficient MoE Training by Re-Using Existing Dense Models. Training MoEs from scratch is
computationally expensive [Gale et al., 2023, Fedus et al., 2022] and often challenging due to training
instabilities [Zoph et al., 2022]. Alternatively, recent works have explored re-using existing dense
models to initialize MoEs. Sparse Upcycling [Komatsuzaki et al., 2023] re-uses a single dense model
to initialize the MoE by replicating the FFN weights in an MoE layer. The router is initialized
randomly, and all other parameters are copied directly from the dense model. BTX [Sukhbaatar
et al., 2024] extends this approach by upcycling not from a single dense model, but from multiple
specialized dense expert models. Furthermore, BAM [Zhang et al., 2024] expands BTX to upcycle
not only FFN experts but also attention experts. Our work also leverages this approach by reusing
specialized dense experts for an MoE, while extending it further to facilitate on-the-fly adaptations
for new experts specialized in unseen data domains.

Efficient MoE Architectures. Zadouri et al. [2024] proposes replacing traditional MoE’s
computation-heavy feed-forward network (FFN) experts with more efficient experts comprised of
smaller vectors and adapters, which are activated in parallel to a single dense FFN. This lightweight
architecture necessitates only a limited number of parameter updates when finetuning, offering
efficiency advantages. However, unlike our approach, it does not leverage existing specialized dense
models and lacks a notion of specialized experts, which are central to our method. Similar to our
work, Muqeeth et al. [2024] and Ostapenko et al. [2024] study combining separately trained experts
into a unified model. However, they focus on parameter-efficient adapters such as LoRA [Hu et al.,
2021] and supervised finetuning. In this work, we focus on efficiently pre-training fully-fledged MoE
models via upcycling.

Adaptive MoEs and Ensemble Models. ModuleFormer [Shen et al., 2023] also aims to produce
adaptable MoEs. The authors achieve adaptability by freezing existing MoE parameters while
only training newly added modules with optimization constraints to the router. Unlike our work,
ModuleFormer does not leverage existing expert dense seed models for efficiency gains, nor does it
have a notion of specialization which is central to our work. Similar to our work, DEMix [Gururangan
et al., 2021] independently trains different FFN experts on specialized data domains, with each expert
functioning as a domain-specific module. Modules can be added on-the-fly for adaptability. Followup
works BTM and C-BTM [Li et al., 2022, Gururangan et al., 2023] extend DEMix to create adaptive
ensemble models. However, all three works use a router requiring a forward pass for every expert at
inference instead of sparsely activating them, which significantly increases inference costs, especially
with a large number of experts. Unlike these approaches, our router cost is approximately the same
as standard top-k routing during both training and inference, offering a more scalable solution for
adaptability.
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