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Abstract

Mechanism design in resource allocation studies dividing limited resources among self-
interested agents whose satisfaction with the allocation depends on privately held utilities.
We consider the problem in a payment-free setting, with the aim of maximizing social
welfare while enforcing incentive compatibility (IC), i.e., agents cannot inflate allocations by
misreporting their utilities. The well-known proportional fairness (PF) mechanism achieves
the maximum possible social welfare but incurs an undesirably high exploitability (the
maximum unilateral inflation in utility from misreport and a measure of deviation from
IC). In fact, it is known that no mechanism can achieve the maximum social welfare and
exact incentive compatibility (IC) simultaneously without the use of monetary incentives
(Cole et al., 2013). Motivated by this fact, we propose learning an approximate mechanism
that desirably trades off the competing objectives. Our main contribution is to design an
innovative neural network architecture tailored to the resource allocation problem, which
we name Regularized Proportional Fairness Network (RPF-Net). RPF-Net regularizes the
output of the PF mechanism by a learned function approximator of the most exploitable
allocation, with the aim of reducing the incentive for any agent to misreport. We derive
generalization bounds that guarantee the mechanism performance when trained under finite
and out-of-distribution samples and experimentally demonstrate the merits of the proposed
mechanism compared to the state-of-the-art.

The PF mechanism acts as an important benchmark for comparing the social welfare of any
mechanism. However, there exists no established way of computing its exploitability. The
challenge here is that we need to find the maximizer of an optimization problem for which
the gradient is only implicitly defined. We for the first time provide a systematic method
for finding such (sub)gradients, which enables the evaluation of the exploitability of the PF
mechanism through iterative (sub)gradient ascent.

1 Introduction

Mechanism design studies how to allocate items (resources) to market participants (agents) holding private
preferences with the goal of maximizing a criterion such as cumulative revenue (Manelli & Vincent, 2007;
Navabi & Nayyar, 2018; Kazumura et al., 2020) or social welfare (Balseiro et al., 2019; Padala & Gujar, 2021),
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while ensuring incentive compatibility (IC) (Hurwicz, 1973), i.e., that strategic agents cannot inflate their
allocation by misrepresenting utilities.

This problem class breaks down along (i) the number of items to allocate, (ii) whether items are divisible or
indivisible, (iii) the manner in which demand is communicated to the supplier (monetary or non-monetary
preferences), (iv) the measure of fairness/social welfare. (v) whether the agents are truthful or strategic.
Regarding (i): in the single-item multiple-agent case, optimal mechanism design has been resolved when
monetary payments are made by the agents to the supplier (Myerson, 1981). Addressing the case of multiple
bidders and items is the focus of this work, following Cai et al. (2012a;b); Yao (2014).

Regarding (ii), indivisible item settings exhibit fundamental bottlenecks due to combinatorial optimization
underpinnings (Chevaleyre et al., 2006; Sönmez & Ünver, 2011). In this work, we study the divisible setting,
which is applicable to, e.g., financial assets (Ko & Lin, 2008) and GPU hours (Ibrahim et al., 2016; Aguilera
et al., 2014).

Regarding (iii): an agent requesting resources must indicate its interest in the form of a monetary bid or
alternatively provide a utility function that represents its preferences. Numerous prior works on resource
allocation consider auctions, where payments indicate interest in resources (Pavlov, 2011; Giannakopoulos
& Koutsoupias, 2014; Dütting et al., 2023), yet many settings forbid payment (e.g. organ donation, food
and necessity distribution by charity, allocation of GPU hours by an institution to its employees). Our work
focuses on designing mechanisms without money (Dekel et al., 2010; Procaccia & Tennenholtz, 2013; Cole
et al., 2013).

(iv) In the payment-free setting, measuring whether an allocation is fair among agents on a social level may
be formalized through proportional fairness (PF) (Kelly, 1997). An allocation is said to achieve PF if any
deviation from the allocation results in a non-positive change in the percentage utility gain summed over
all agents. It is known (see Bertsimas et al. (2011)) that PF is achieved by maximizing Nash social welfare
(NSW), the product of all agents’ utilities, which we use as a quantifier of fairness/social welfare in this work.

What remains is (v) whether agents are truthful or strategic, i.e., they may misreport their preferences. In
the later case, the mechanism needs to be designed so as not to provide incentive for the agents to misreport,
i.e., to possess incentive compatibility (IC). The PF mechanism, which directly optimizes NSW of the
allocation outcome assuming truthful reporting, is not incentive compatible. By contrast, several recent
works study IC mechanism design without money (Dekel et al., 2010; Procaccia & Tennenholtz, 2013; Cole
et al., 2013). Most germane to this discussion is the Partial Allocation (PA) mechanism (Cole et al., 2013)
based on “money burning” (Hartline & Roughgarden, 2008), where the supplier intentionally withholds a
proportion of the resources as an artificial payment. However, this mechanism is incentive compatible at
significant cost to NSW.

In this work, we develop a payment-free mechanism that balances the competing criteria of fairness (in NSW
sense) and IC. Our approach formulates the allocation problem as the one that maximizes NSW subject to a
constraint on exploitability, which quantifies the maximum obtainable gain from misreporting and measures
the deviation from exact IC. Similar trade-offs are considered in related resource allocation settings that
require monetary payment (Dütting et al., 2023; Ivanov et al., 2022) and those not involving payments (Zeng
et al., 2024), as well as in game-theoretic pricing models (Goktas & Greenwald, 2022). We detail our main
contributions below.

• We develop a subgradient-based method for computing the exploitability of the PF mechanism. The
PF mechanism acts as an important benchmark for welfare maximization in resource allocation.
However, there exists no established method for computing the exploitability of the PF mechanism yet,
making it difficult to compare against. This paper fills in the gap. As the PF mechanism is defined
through an optimization program, our main innovation here is to derive the (sub)gradient of the
output of the program with respect to the input, extending the results from the differentiable convex
programming literature. This allows us to calculate the exploitability by iterative (sub)gradient
ascent. We believe that the technique for differentiating through the PF mechanism may be of
broader interest beyond mechanism design.
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• We propose a novel neural network architecture, RPF-Net, that is highly effective for learning an
approximately fair and IC allocation mechanism. RPF-Net can be interpreted from two perspectives.
One is that it modifies the PF mechanism by adding a linear regularization designed to increase
the robustness to potential misreports. The regularization is computed from the output of a neural
network learned from data. From another perspective, RPF-Net can be viewed as standard neural
network with a specific-purpose activation function tailored to the resource allocation problem
structure. We derive the (sub)gradient of RPF-Net, which enables efficient end-to-end training.

• We provide a generalization bound of RPF-Net when it is trained on finite samples (Theorem 2). The
result shows that the generalization error decays at rate O(L−1/2) where L is the training sample
size. In auction design with payment, RegretNet, the state-of-the-art learned mechanism proposed in
Dütting et al. (2023), also achieves a O(L−1/2) rate, which we match in the non-payment setting.
Our bound is derived by adapting and extending the techniques in Dütting et al. (2023) to the special
activation function in RPF-Net.

• We provide a guarantee under distribution shift. The implication of this result is that we can train
RPF-Net with samples from distribution F ′ and expect them to perform well under distribution F ,
provided that the mismatch between F and F ′ is controlled.

• We experimentally validate RPF-Net across problem dimensions and distribution shift. The robustness
to distribution shift, specifically, demonstrates the significance of our contribution by allowing the
training data itself to be subjected to adversarial contamination.

1.1 Related Work

Our paper relates to the existing literature on resource allocation with and without monetary payments, as
well as those that study incentive compatibility in the context of mechanism design and beyond. We discuss
the most relevant works in these domains to give context to our contribution.

Resource allocation without payment: Guo & Conitzer (2010) considers the problem of allocating two
divisible resources to two agents and show that any IC mechanism achieves at most 0.841 of the optimal
social welfare in the worst case (defined as an overall utility of all agents). They further show that a linear
increasing-price mechanism nearly achieves the lower bound. Han et al. (2011) obtains an analogous worst-case
lower bound for a more general case of n agents but does not provide a mechanism. Cole et al. (2013) proves
that no IC mechanism can guarantee to every agent a fraction of their proportionally fair allocation greater
than n+1

2n as the number of resources becomes large, and proposes a partial allocation (PA) mechanism that
allocates to each agent a fraction (at least 1/e) of the corresponding PF allocation. These works assume that
the supplier has no prior knowledge of the agents’ preference (or its distribution), whereas our work considers
the setting where (possibly inaccurate) historical samples of the agents’ utility parameters are available for
training. Also assuming the access to training samples, Zeng et al. (2024) is highly related to our work. Zeng
et al. (2024) studies learning an approximately fair and IC mechanism named ExS-Net parameterized by a
neural network and trains the network parameters on the same objective that we consider in this work. Our
important distinction from ExS-Net lies in the activation function of the output layer: while the activation
function in ExS-Net is composed of a simple softmax function and a synthetic agent which receives the
portion of resources to be withheld, the activation function we propose leverages a convex optimization
program. ExS-Net is an important baseline for comparison. In Section 6 we show that the proposed RPF-Net
mechanism materially outperforms ExS-Net due to the innovation in the network architecture.

Auction design/resource allocation with payment: When payments from the agents to the supplier
are allowed, Chawla et al. (2010); Roughgarden (2010); Brânzei et al. (2022) design sophisticated monetary
transfer schemes that ensure truthful reporting. More recently, (Dütting et al., 2023; Ivanov et al., 2022) adopt
a learning-based framework similar to the one in our paper. A neural-network-parameterized mechanism,
RegretNet, is proposed in (Dütting et al., 2023), which determines the price of a resource with the aim of
increasing supplier’s revenue while guaranteeing the approximate truthfulness of the agents. Our work is
partially inspired by RegretNet. Similar to our “differentiation through an optimization program” approach
in spirit, Curry et al. (2022) learns approximately IC and revenue-maximizing auction mechanisms, designed
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through a differentiable regularized linear program. Compared to RegretNet, the method in Curry et al.
(2022) enlargens the solvable class of auctions.

Approximate incentive compatibility in ML: Dekel et al. (2010) consider regression learning where the
global goal is to minimize average loss in the setting of strategic agents that might misreport their values over
the input space. When payments are disallowed, they present a mechanism which is approximately IC and
optimal for the special case of the buyer’s utilities defined by the absolute loss. More recently, (Chen et al.,
2020) focus on learning linear classifiers, when the training data comes in online manner from the strategic
agents who can misreport the feature vectors, and propose an algorithm that exploits the geometry of the
learner’s action space. Ravindranath et al. (2021) is another highly related work that designs approximately
IC and stable mechanisms for two-sided matching using concepts from differentiable economics.

Organization. The rest of the paper is structured as follows. In Section 2 we formulate the payment-free
resource allocation problem and introduce the existing mechanisms. In Section 3, we present the proposed
mechanism with the novel neural network architecture as well as the procedure to train the mechanism.
In Section 4 we develop the methods for evaluating the exploitability of the PF mechanism and for back-
propagating the gradient through RPF-Net during training. Section 5 provides guarantees on the performance
of RPF-Net trained under finite and out-of-distribution samples. Simulations that illustrate the merits of the
proposed mechanism are presented in Section 6. Finally, we conclude and reflect on the connection to the
literature in Section 7.

2 Preliminaries & Problem Formulation

We study the problem of allocating a finite number M of divisible resources to N agents in the form of a
vector a ∈ RNM , with ai,m the amount of resource m allocated to agent i. There is a budget bm ≥ 0 on each
resource m = 1, · · · ,M , and we denote b = [b1, · · · , bM ]⊤ ∈ B ⊆ RM+ . We assume that every agent has a
(thresholded) linear additive utility – each additional unit of resource m linearly increases the utility of agent i
by value vi,m, up to the demand xi,m. We represent the overall values and demands as vi = [vi,1, · · · , vi,M ]⊤,
xi = [xi,1, · · · , xi,M ]⊤, and v = [v⊤

1 , · · · , v⊤
N ]⊤, x = [x⊤

1 , · · · , x⊤
N ]⊤. Given allocation a ∈ RNM+ , value v ∈ V,

and demand x ∈ D, the utility function u : RNM+ × V × D → RN+ is agent-wise expressed as

ui(a, v, x) ≜
∑M

m=1
vi,m min{ai,m, xi,m}, (1)

with V ⊆ [v, v]NM , D ⊆ [d, d]NM for some scalars v, v, d, d > 0.

The linear additive utility structure is widely considered and realistically models satisfaction in many practical
problems (Bliem et al., 2016; Camacho et al., 2021), though the mechanism proposed in the paper may handle
alternative utility functions. The supplier knows the functional form of the utility function and relies on each
agent i to report the parameters vi and xi. It may be in the interest of the agents to report untruthfully.

Since the allocation needs to satisfy budget constraints and should not exceed what the agents request, valid
allocations have to be contained in the set Ab,x = {a ∈ RNM : 0 ≤ ai,m ≤ xi,m,∀i,m,

∑N
i=1 ai,m ≤ bi,∀m}. A

mechanism may incorporate non-negative agent weights w ∈ RN+ to encode prioritization. Next, we formalize
that a mechanism is a mapping from values, demands, budgets, and weights to a valid allocation.
Definition 1 (Mechanism). A mapping f : V × D × B × RN+ → RNM+ is a mechanism if f(v, x, b, w) ∈ Ab,x

for all v ∈ V, x ∈ D, b ∈ B, w ∈ RN+ .

Agent weights w may be determined solely by the supplier before the agents reveal their requests or can
potentially be a function of the reported values and demands. Since agents may not directly alter weights, we
suppress dependence on w to write allocations as f(v, x, b).

Two competing axes for characterizing the merit of a mechanism exist: social welfare and incentive compatibility
(IC). Among the many social welfare metrics (see (Bertsimas et al., 2011)), we consider Nash social welfare
(NSW), which balances fairness and efficiency.
Definition 2 (Nash Social Welfare). The NSW of a mechanism f is

NSW(f, v, x, b) ≜ ΠN
i=1ui(f(v, x, b), v, x)wi , (2)
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Due to NSW as the product of agents’ utilities, it may become numerically unstable as the number of agents
scales up. In comparison, dealing with the logarithm NSW is usually more convenient

logNSW(f, v, x, b) ≜ log(NSW(f, v, x, b)).

The definition simplifies to logNSW(f, v, x, b) = w⊤ log u(f(v, x, b), v, x).

To quantify approximate incentive compatibility, we next introduce exploitability as the maximum positive
unilateral deviation in an agent’ utility when it misreports its preferences.
Definition 3 (Exploitability). Under mechanism f and v ∈ V, x ∈ D, b ∈ B, we define the exploitability at
agent i as its largest possible utility increase due to misreporting, given that the every agent j ≠ i reports vj , xj

expli(f, v, x, b) ≜ max
v′

i
,x′

i

ui
(
f((v′

i, v−i), (x′
i, x−i), b), v, x

)
− ui

(
f(v, x, b), v, x

)
. (3)

A mechanism f is incentive compatible (IC) if it satisfies expli(f, v, x, b) = 0, for all v, x, b and i = 1, · · · , N .

Assuming that the agents truthfully report their preferences, the following mechanism directly seeks to
optimize the (log) NSW and achieves the largest possible NSW by definition. The mechanism is usually
referred to as the Proportional Fairness (PF) mechanism, as the solution satisfies the proportional fairness
property: when switching to any other allocation the percentage utility changes across all agents sum up to a
non-positive value (Caragiannis et al., 2019).

Mechanism: Proportional Fairness

fPF (v, x, b) = argmin
a∈RNM

−
∑N

i=1
wi log(a⊤

i vi)

s.t. 0 ≤ a ≤ x,
∑N

i=1
ai,m ≤ bm, ∀m.

(4)

With D = 1⊤
N ⊗ IM×M ∈ RM×NM , the last inequality of (4) can be expressed in the matrix form Da ≤ b.

It is important to note that the PF mechanism is not IC, i.e., it has nonzero exploitability. This fact motivates
us to develop ways to ensure it is approximately so by trading off NSW.

2.1 PF Mechanism Has a Non-Zero Exploitability

Figure 1: Exploitability of PF and learned RPF-Net.

In this section, we illustrate the exploitability of the
PF mechanism using a simple example. Consider a
two-agent two-resource allocation problem, in which
we choose x = 1NM , b = 1M , and w = 1N . Both
agents have a higher valuation for the first resource,
with v1 = {1, 1/2} and v2 = {1, 1/4}. When agent
2 reports truthfully, Figure 1 plots the utility of
agent 1 [cf. (1)] as it varies the reported preference
ratio v1,2/v1,1 from 0.1 to 3 (the true ratio is 0.5).
With the dashed line indicating the utility of agent
1 under truthful reporting, under-reporting v1,2/v1,1
increases agent 1’s utility up to 17%. By contrast,
RPF-Net proposed in this work substantially reduces
the exploitability.

The state-of-the-art IC mechanism in the non-
payment setting is Partial Allocation (PA) (Cole
et al., 2013), built upon the PF mechanism, which
strategically withholds resources to ensure truthfulness1. Under the PA mechanism, each agent can only be

1Detailed presentation of the PA mechanism can be found in Appendix A.
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guaranteed to at least receive a 1/e fraction of the resources that it would receive under the PF mechanism,
meaning that there is resource waste and a significant reduction in NSW. In other words, the best known IC
mechanism achieves a sub-optimal NSW, whereas the PF mechanism is optimal in NSW but incurs high
exploitability. This dichotomy does not exist in the auction setting due to payments as an enforcement for
truthful reporting. At least in the case m = 1, classic auction mechanisms including the VCG mechanism
(Vickrey, 1961; Clarke, 1971; Groves, 1973) and Myerson mechanism (Myerson, 1981) can achieve IC and
revenue maximization. However, in the payment-free setting, NSW maximization and IC are conflicting
objectives that are provably not perfectly achievable at the same time (Hartline & Roughgarden, 2008; Cole
et al., 2013).

2.2 Learning Approximate Payment-Free Mechanism

In this work, we are motivated to design a mechanism that approximately optimizes NSW and exploitability
and strikes a desirable balance between them. Specifically, assuming that in a resource allocation problem the
values and demands of the agents and the budgets on the resources follow a joint distribution F , we formalize
our objective as maximizing the (log)NSW subject to a constraint on the exploitability for some ϵ ≥ 0.

max
ω

E(v,x,b)∼F [logNSW(fω, v, x, b)]

s.t. E(v,x,b)∼F [expli(fω, v, x, b)] ≤ ϵ, ∀i
(5)

We say a mechanism is ϵ-incentive compatible over the distribution F if it satisfies the constraints in (5).

PA and PF mechanisms are on the two ends of the trade-off between NSW and exploitability that are not
optimal/feasible in the sense of (5). In this work, we propose parameterizing the mechanism with a neural
network and learning the solution to (5) from data. This can be regarded as an adaptation of Dütting et al.
(2023) to the payment-free setting. However, different from the auction setting, due to the impossibility result
which states that IC cannot be achieved without “money burning” (i.e., resource withholding) (Hartline
& Roughgarden, 2008), a regular neural network not equipped with the ability to withhold may fail to
achieve low exploitability. In the following section, we propose a mechanism built on a novel neural network
architecture specially designed for learning (5). We show later through numerical simulations that the
architectural innovation is crucial – the mechanism with the proposed architecture performs substantially
better than a learned mechanism parameterized by a regular neural network or ExS-Net (Zeng et al., 2024)
which is the state-of-the-art learning-based solution.

3 Regularized Proportional Fairness Network

We develop a novel learning-based mechanism for resource allocation that can be regarded as a composition of
a neural network (in this work we employ a feed-forward neural network of identical structure to parameterize
both mechanisms, but in general any function approximation can be used) and a novel specific-purpose
activation function. The mechanism, RPF-Net (Regularized Proportional Fairness Network), is a regularized
variant of the PF mechanism that diverts allocation from what the agents would like to receive when they
misreport to their largest advantage. A schematic representation of the mechanism is presented in Figure 2.

Figure 2: RPF-Net Pipeline.
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3.1 Neural Network Design

The motivation behind RPF-Net is that we would like to reduce the agents’ incentive to misreport through a
linear regularization added to the NSW objective. We use a function approximation to track the allocation
that an agent aims to receive when misreporting, and penalize such allocation to be produced.

Suppose that each agent i has the perfect information about the mechanism and the parameters of others
(x−i, v−i). The most adversarial misreport occurs when it maximizes its own utility under mechanism f , i.e.,
it would select (ṽi, x̃i):

(ṽi, x̃i) = argmaxv′
i
,x′

i
ui(f((v′

i, v−i), (x′
i, x−i), b), v, x). (6)

Let yi = fi((ṽi, v−i), (x̃i, x−i), b) ∈ Rm denote the allocation to agent i under the optimal misreport. The goal
of agent i when misreporting is to obtain allocation yi. To ensure robustness to misreporting, the mechanism
f should avoid allocating yi to agent i, which could be enforced as a constraint:

⟨ai, yi⟩ ≤ δ, ∀i (7)

for some constant δ > 0. With δ selected sufficiently small, alignment between the allocation decision ai
and the direction yi desired by the untruthful agent i is penalized by the inner-product constraint, which
prevents allocating ai = yi. In other words, the constraint (7) ensures that the allocation to an untruthful
agent deviates from what it most desires, hence reducing the incentive to misreport. This line of reasoning is
in the spirit of robust control (Zhou & Doyle, 1998; Borkar, 2002).

Denote the stacked vector of nominal allocations as y = [y⊤
1 , · · · , y⊤

N ]⊤ ∈ RNM . If y were known, (4) with
the additional inner-product constraint would be equivalent to

argmina∈RNM −
∑N

i=1
wi log(a⊤

i vi) +
∑N

i=1
ξ⋆i ⟨ai, yi⟩

s.t. 0 ≤ a ≤ x,
∑N

i=1
ai,m ≤ bm, ∀m

(8)

where ξ⋆i is the optimal dual variable associated with the inner-product constraint (7) for each i. Unfortunately,
y is difficult to compute as it encodes a notion of self-consistency – y defines the mechanism (7) but is
simultaneously the output of (7) under specific misreports. Due to difficulty of practical evaluation, we
instead approximate y from data.

We propose substituting ξ⋆i yi by a parameterized function approximator. To be more precise, since the
vector yi can be a function of values, demands, and budgets, we fit zω : V × D × B → RNM such that
[zω(v, x, b)]i tracks ξ⋆i yi under reported values v, demands x, and budgets b. In this work, we take the function
approximator to be a feed-forward neural network – w represents the set of weights and biases while zw
represents the neural network parameterized by w as a mapping from the input values, demands, and budgets
to an allocation outcome. Here [zω(v, x, b)]i denotes the evaluation of the neural network restricted to the
component associated with the allocation of agent i. Substituting zω into (8) leads to our first proposed
approach, RPF-Net, whose associated mechanism [cf. Definition 1] is detailed below.

Mechanism: Exploitability-Aware PF

(1) Compute zω(v, x, b) as output of neural network
(2) Solve

fRPFω (v, x, b) = argmin
a∈RNM

−
∑N

i=1
wi log(a⊤

i vi) + ⟨a, zω(v, x, b)⟩

s.t. 0 ≤ a ≤ x,
∑N

i=1
ai,m ≤ bm, ∀m.

(9)

Given a learned network parameter ω, this procedure describes the operations to be performed in the inference
phase. For any ω, the output of the RPF-Net mechanism is always feasible, i.e., is non-negative, not exceeding
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the demand, and within the budget constraint, by the definition of the optimization problem (9), which can
be regarded as a special activation function operating on the output of the neural network zω(v, x, b). Note
that for (9) to be a proper activation function we need to be able to back-propagate gradients through it. It
is not obvious how we can back-propagate through (9) as the mapping from zω(v, x, b) to fRPFω (v, x, b) is
defined indirectly through an optimization problem. We address this important question in Section 4.3.

3.2 Training RPF-Net

While we would like to solve the objective (5) over distribution F , in practice, we often may not have access to
F , but instead a training set of values, demand, and budgets {(vl, xl, bl) ∼ F}Ll=1. We train the mechanisms
with the finite dataset via empirical risk minimization (ERM) by forming the sample-averaged estimates of
the expected NSW and exploitability.

maxω
∑L

l=1
logNSW(fω, vl, xl, bl) (10)

s.t.
∑L

l=1
expli(fω, vl, xl, bl) ≤ ϵ, ∀i

The sample-averaged performance of a mechanism approaches its expectation as the number of collected
samples increases – the gap between them is known as generalization error (Shalev-Shwartz & Ben-David,
2014). In Sec. 5, we bound the generalization error by a sublinear function of batch size L for both proposed
mechanisms.

It is important to note that the learning objective does not require paired samples of (vl, xl, bl) and the
ground-truth optimal allocation under (vl, xl, bl). We only need samples of valuations, demands, and budgets
to learn the optimal parameter w in an unsupervised manner.

To train the neural network, we optimize (10) with respect to ω by using a simple primal-dual gradient
descent-ascent algorithm to find the saddle point of the Lagrangian. We present the training scheme in
Alg. 1, where Π+ denotes the projection of a scalar to the non-negative range. The dual variable γi ∈ R+ is
associated with the ith exploitability constraint in (10).

Algorithm 1: Training RPF-Net

Input: Initial network parameter ω[0], dual variables {γ[0]
i }Ni=1, training dataset {(vl, xl, bl)}Ll=1, batch

size s, training iterations K, primal and dual learning rate α, β
Output: Network parameter ω[K].
for k = 0, 1, · · · ,K − 1 do

1) Randomly draw sample index set S [k] with |S [k]| = s and compute empirical logNSW and
exploitability

̂logNSW
[k]

=
∑

l∈S[k]
logNSW(fω[k] , vl, xl, bl),

êxpl
[k]
i =

∑
l∈S[k]

expli(fω[k] , vl, xl, bl), ∀i

2) Neural network parameter update:

ω[k+1] = ω[k] − α∇ω[k]
(∑

i

γ
[k]
i êxpl

[k]
i − ̂logNSW

[k])
3) Dual variable update:

γ
[k+1]
i = Π+

(
γ

[k]
i + β

(
êxpl

[k]
i − ϵ

))
, ∀i

end

The RPF-Net mechanism is composed of a neural network and an optimization program. The latter can be
interpreted as a special activation function on the network output. Passing z through this activation in the
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forward direction requires solving (9). Backward pass is practiced in the training stage, in which we need to
back-propagate the training loss ℓ[k] =

∑
iγ

[k]
i êxpl

[k]
i − ̂logNSW

[k]
. As a critical step, we need to find the

gradient ∂ℓ[k]

∂z
ω[k]

given ∂ℓ[k]

∂fRP F
ω

. Computing such gradients is a challenging task, as the mapping from zω to the
solution of (9) is defined implicitly through the optimization program. In the following section, we develop
the technique that allows ∂ℓ[k]

∂z
ω[k]

to be computed (relatively) efficiently. But still, the gradient computation
requires inverting a square matrix of dimension (3NM +M) × (3NM +M). Both forward and backward
operations can be increasingly expensive as the number of agents and resources scales up, which is a fact that
we have to point out that may limit the scalability of RPF-Net in systems with computational constraints.
Detailed complexity evaluation of RPF-Net is given in Section 6.4.
Remark 1. We note that our work measures and optimizes exploitability only empirically and cannot
guarantee strict exploitability constraint satisfaction, at least for two reasons. First, we cannot guarantee
that gradient descent applied to the right hand side of Eq. (3) with respect to v′

i, x
′
i finds the global maximizer,

especially when the mechanism is a complicated mapping encoded by a neural network. Second, while we
aim to optimize the objective (10), we cannot guarantee that the parameter ω obtained from training is a
feasible solution. If the desired exploitability threshold ϵ is chosen too small, we sometimes observe constraint
violation.

4 PF Mechanism Exploitability Evaluation & RPF-Net Differentiation

Two main technical challenges are present at this point in training the proposed mechanism and evaluating
its performance against benchmarks.

1. It is unclear how we may systematically calculate the exploitability of the PF mechanism, which
is the fundamental baseline for any IC mechanism design. With a small number of resources, the
exploitability can possibly be computed by exhaustively searching in the valuation and demand
space, which we performed to generate Figure 1. However, as the system dimension scales up, an
exhaustive parameter search quickly becomes computationally intractable. The main difficulty in
computing expli(fPF , v, x) lies in finding the optimal misreport (ṽi, x̃i) as the solution to (6). It may
be tempting to solve (6) with gradient ascent. However, as the mapping fPF is implicitly defined
through an optimization problem (4), it is unclear how ∂fP F

∂v′
i

and ∂fP F

∂x′
i

(and potentially ∂fP F

∂w , since
w may be a function of x′

i, v
′
i) can be derived or even whether fPF is differentiable.

2. It is unclear how to back-propagate through RPF-Net. To train RPF-Net with gradient descent,
we need to compute ∂ℓ

∂zω
given ∂ℓ

∂fRP F
ω (v,x,b) where ℓ is a downstream loss function calculated from

fRPFω (v, x, b).

We address both challenges in this section, by adapting and extending the techniques from differentiable
convex programming (Amos & Kolter, 2017; Agrawal et al., 2019). As an important contribution of the
work, we characterize the (sub)differentiability of fPF (Section 4.1) and develop an efficient method for
calculating the (sub)gradients ∇v′

i
ui,∇x′

i
ui,∇wui of (6) (Section 4.2). This allows iterative (sub)gradient

ascent to be performed on the utility function ui to find a (locally) optimal solution of (6). This solution can
then be leveraged to evaluate the exploitability of the PF mechanism according to (3). Building on a similar
technique, we present an efficient method for differentiating through RPF-Net in Section 4.3.

The main property of fPF that we exploit to drive this innovation is the preservation of the KKT system of
(4) at the optimal solution under differential changes to values and demands. We now present the detailed
technical development.

4.1 Characterizing Sub-Differentiability of fPF

Our goal is to determine how the differential changes in v, x, and w affect the optimal solution of (4), which
we denote by a⋆(v, x, b) = fPF (v, x, b) (or a⋆ for short when v, x, and b are clear from the context). We

9
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start by writing the KKT equations of (4) for stationarity, primal and dual feasibility, and complementary
slackness

− wivi
v⊤
i a

⋆
i

− µ⋆i + ν⋆i + λ⋆ = 0, ∀i (11a)

µ⋆i,ma
⋆
i,m = 0, ∀i,m (11b)

ν⋆i,m(a⋆i,m − xi,m) = 0, ∀i,m (11c)
λ⋆m(Da⋆ − b)m = 0, ∀m, (11d)

where µ⋆, ν⋆, λ⋆ are the optimal dual solutions associated with constraints a ≥ 0, a ≤ x, and Da ≤ b,
respectively. As a⋆ satisfies v⊤

i a
⋆
i > 0 for all i (any allocation that makes v⊤

i a
⋆
i = 0 for any i blows up the

objective of (4) to negative infinity and thus cannot be optimal), (11a) can be re-written as

(µ⋆i − ν⋆i − λ⋆)v⊤
i a

⋆
i + wivi = 0. (12)

For (11) to hold when values, demands, and/or weights changes from v, x, w to v + dv, x+ dx,w + dw, the
optimal primal and dual solutions need to adapt accordingly. We can describe the adaptation through the
following system of equations on the differentials, which we obtain by differentiating (12) and (11b)-(11d).

(dµ⋆i − dν⋆i − dλ⋆)v⊤
i a

⋆
i + (µ⋆i − ν⋆i − λ⋆)dv⊤

i a
⋆
i + (µ⋆i − ν⋆i − λ⋆)v⊤

i da
⋆
i + widvi + dwivi = 0, ∀i,

dµ⋆i,ma
⋆
i,m + µ⋆i,mda

⋆
i,m = 0, ∀i,m,

dν⋆i,m(a⋆i,m − xi,m) + ν⋆i,m(da⋆i,m − dxi,m) = 0, ∀i,m,
dλ⋆mDma

⋆ + λ⋆mDmda
⋆ − dλ⋆mbm = 0, ∀m.

We can equivalently express this system of equations in a compact matrix form

M
[
(da⋆)⊤, (dµ⋆)⊤, (dν⋆)⊤, (dλ⋆)⊤]⊤ = h(dv, dx, dw), (13)

where M ∈ R(3NM+M)×(3NM+M) and vh(dv, dx, dw) ∈ R3NM+M are

M =


M1 M2 −M2 −M3

diag(µ⋆) diag(a⋆) 0 0
diag(ν⋆) 0 diag(a⋆ − x) 0

diag(λ⋆)D 0 0 diag(Da⋆ − b)

 and h(dv, dx, dw) =


c(dv, dw)

0
diag(ν⋆)dx

0

 .

The sub-matrices M1,M2 ∈ RNM×NM ,M3 ∈ RNM×M and sub-vector c ∈ RNM are

M1 =

 (µ⋆1 − ν⋆1 − λ⋆)v⊤
1 · · · 0

...
. . .

...
0 · · · (µ⋆N − ν⋆N − λ⋆)v⊤

N

 , M2 =

 v⊤
1 a

⋆
1IM×M · · · 0

...
. . .

...
0 · · · v⊤

Na
⋆
NIM×M

 ,

M3 =

 v⊤
1 a

⋆
1IM×M

...
v⊤
Na

⋆
NIM×M

 , c(dv, dw) = −


(
(µ⋆1 − ν⋆1 − λ⋆)(a⋆1)⊤ + w1IM×M

)
dv1 + v1dw1(

(µ⋆2 − ν⋆2 − λ⋆)(a⋆2)⊤ + w2IM×M
)
dv2 + v2dw2

...(
(µ⋆N − ν⋆N −λ⋆)(a⋆N )⊤ +wNIM×M

)
dvN + vNdwN

 .

Under any differential changes dv, dx, dw, their impact on da⋆ can be derived by solving (13), which by
definition gives the (sub)gradients when dv, dx, dw are set to proper identity matrices/tensors.
Example 4.1. To compute ∂a⋆

∂v1,1
, we evaluate how a unit change in dv1,1 affects da⋆. If M is invertible, we

solve [
(da⋆)⊤, (dµ⋆)⊤, (dν⋆)⊤, (dλ⋆)⊤]⊤ = M−1h(e1,0,0) (14)

10
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and extract da⋆ from the solution, where e1 ∈ RNM denotes a vector with value 1 at the first entry and 0
otherwise. Under a general profile of values and demands, the matrix M need not be invertible. A singular
matrix M leads to a non-differentiable mapping fPF , but all solutions of

M [(da⋆)⊤, (dµ⋆)⊤, (dν⋆)⊤, (dλ⋆)⊤]⊤ = h(e1, dx, dw)

are in the sub-differential of a⋆ at v1,1.
Theorem 1. Suppose that strict complementary slackness holds at solution (a⋆, µ⋆, ν⋆, λ⋆) and that the
demands are non-zero. When at least NM − N inequality constraints in (4) hold as equalities at a⋆, the
matrix M is invertible, and the mapping from (v, x) to a⋆ is differentiable. Otherwise, the mapping is only
sub-differentiable.

Theorem 1 provides a sufficient condition for the differentiability of fPF , and connects the differentiability to
the number of tight constraints. The proof is presented in Appendix B. Similar characterizations have been
established for quadratic programs and disciplined parameterized programs (Amos & Kolter, 2017; Agrawal
et al., 2019). However, (4) does not fall (and cannot be re-formulated to fall) under either category. Hence,
Theorem 1 generalizes these works to a broader category of convex programs; see Appendix E for further
discussions.

4.2 Composing (Sub)Gradients

In principle, one can find ∂a⋆

∂v (and also ∂a⋆

∂x , ∂a⋆

∂w with an identical approach) by repeatedly solving (14) for
the unit change in each entry of v. However, doing so would require solving a large system of equations
for every partial derivative or inverting M and storing its inverse, which is a costly operation. Fortunately,
the following proposition shows that if a⋆((vi′ , v−i), (xi′ , x−i), b) is used downstream to compute the utility
ui(a⋆((vi′ , v−i), (xi′ , x−i), b), v, x) in (6), we can back-propagate the gradient ∇a⋆ui through the PF mechanism
to obtain ∇vi′ui, ∇xi′ui, and ∇wui by pre-computing and storing a matrix-vector product.
Proposition 1. Under the same conditions as Theorem 1 and at least NM −N inequality constraints of (4)
are tight at a⋆((vi′ , v−i), (xi′ , x−i), b), then given ∇a⋆ui, we have

∇vi′ui =
(
(ν⋆i + λ⋆ − µ⋆i )(a⋆i )⊤ − wiIM×M

)
ga,iM :(i+1)M ,

∇xi′ui = diag(ν⋆)gν , ∇wi
ui = v⊤

i ga,iM :(i+1)M ,
(15)

with M⊤ [g⊤
a , g

⊤
µ , g

⊤
ν , g

⊤
λ

]⊤ =
[(

∇a⋆ui
)⊤
,0⊤,0⊤,0⊤]⊤. (16)

If the assumptions in Prop. 1 do not hold, M is singular, whereby (15) defines subgradients of ui, with ga
and gν as any solution of (16). In practice, we use the one with minimal ℓ2 norm. These results enable
performing (sub)gradient ascent to compute exploitability of the PF mechanism.

4.3 RPF-Net Differentiation

We can repeat the steps in Sections 4.1 and 4.2 on the modified objective (9) and derive the gradient of a loss
function ℓ, computed from ∂fRPFω (v, x, b), with respect to zω when we are given ∂ℓ

∂fRP F
ω (v,x,b)

2. We need to
solve the system of equations

(M ′)⊤ [g⊤
a , g

⊤
µ , g

⊤
ν , g

⊤
λ

]⊤ =
[( ∂ℓ

∂fRPFω (v, x, b)
)⊤
,0⊤,0⊤,0⊤]⊤

where the matrix M ′ ∈ R(3NM+M)×(3NM+M), defined in the appendix, shares common entries as M . Then,
with a⋆ = fRPFω (v, x, b), we have ( ∂ℓ

∂[zω(v, x, b)]i

)
= v⊤

i a
⋆
i ga,iM :(i+1)M .

2The detailed derivation is deferred to Appendix D.
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To evaluate the exploitability of the RPF-Net mechanism using gradient descent as outlined in Section 4, we
also need to find ∂ℓ

∂vi
, ∂ℓ
∂x , and possibly ∂ℓ

∂wi
. Their expressions are given as follows

∂ℓ

∂vi
=
(

− wiIM×M − (µ⋆i − ν⋆i − λ⋆ − zi)(a⋆i )⊤
)
ga,iM :(i+1)M ,

∂ℓ

∂x
= diag(ν⋆)gν ,

∂ℓ

∂wi
= v⊤

i ga,iM :(i+1)M ,

where µ⋆, ν⋆, λ⋆ are the optimal dual solutions of (9) associated with constraints a ≥ 0, a ≤ x, and Da ≤ b.

5 Theoretical Guarantees

In this section, we establish the convergence of the learned mechanism. First, we bound the sub-sampling
error by a sublinear function of the batch size, which matches recent rates for auctions (Dütting et al.,
2023), and ensures the objective of (10) converges to (5) with enough data. Next, we show that the learned
mechanism is robust under distribution mismatch, i.e., when we train (5) on a distribution F ′ and evaluate
on distinct distribution F , the learned mechanism achieves low exploitability with performance determined
by distributional distance between F and F ′.

5.1 Generalization Bounds

For mechanism f , we define the generalization errors with L samples as

εlogNSW(f, L) = −E(v,x,b)∼F [logNSW(f, v, x, b)] +
∑L

l=1
logNSW(f, vl, xl, bl),

εexp,i(f, L) = E(v,x,b)∼F [expli(f, v, x, b)] −
∑L

l=1
expli(f, vl, xl, bl).

With a slight abuse of notation, let uω(v, x, b) := u(fω(v, x, b), v, x) and let y 7→ (v, x, b).
Assumption 1. For each agent i, assume that 1

ψ ≤ uωi (y) ≤ ψ, ∀ y ∈ F and some ψ > 1, and vi(S) ≤ 1, ∀ i
and all subsets of resources.

An implication of this assumption is that the activation function of RPF-Net is Φ−Lipschitz for some Φ > 0.
Theorem 2 (Generalization Bound). Consider RPF-Net parameterized by a neural network with R hidden
layers with ReLU activation and K nodes per hidden layer. Let d denote the total parameters with the vector
of all model parameters ∥ω∥1 ≤ Ω. Under Assumption 1, the following holds with probability at least 1 − δ

max{εlogNSW(fRPFω , L), εexp,i(fRPFω , L)} ≤ O
(
ψN

√
Rd log(LNΩΦ max{K,MN})

L
+N

√
log(1/δ)

L

)
.

The result provides that the generalization error decays at rate O(L−1/2) where L is the training sample size.
In auction design with payment, RegretNet, the state-of-the-art learned mechanism proposed in Dütting et al.
(2023), also achieves a O(L−1/2) rate, which we match in the non-payment setting. The proof of Theorem 2
is inspired by Dütting et al. (2023), but extended to handle: i) the fairness objective (NSW) in the absence of
payment; ii) the special activation function in RPF-Net. The arguments in the proof can be used to obtain a
similar order on the generalization error for the ExS-Net architecture of Zeng et al. (2024) as well.

5.2 Robustness to Distribution Mismatch

Let ω⋆(F ) denote an optimizer of (10) under samples {(vl, xl, bl)}l drawn from the distribution F . Next, we
establish that the performance of fω⋆(F ′) on samples from distribution F when trained on samples from a
different distribution F ′ in terms of the worst-case exploitability is controlled by the degree of mismatch.
Theorem 3. Suppose the mechanism fRPFω with parameter ω is ϵ-incentive compatible over distribution F ′.
We have for any i = 1, · · · , N

E(v,x,b)∼F [expli(f, v, x, b)] ≤ ϵ+ 2M v xdTV (F, F ′),

where dTV denotes the total variation (TV) distance.
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As an implication of Theorem 3, we can train RPF-Net with samples from distribution F ′ and expect them
to perform well under distribution F , provided that the mismatch between F and F ′ is not arbitrarily large.
Later in Sec. 6.2, we will verify this result through numerical simulations. The proof of Theorem 3 is presented
in Appendix G.

6 Experiments

We numerically evaluate RPF-Net i) as the number of agents and resources changes; and ii) when the
mechanisms are tested on a distribution different from that observed during training. We also visualize the
decision boundary of RPF-Net in contrast to the PF mechanism to provide more insight on how RPF-Net
deviates from the PF mechanism which it is designed to approximate and enhance. The final subsection
discusses the computational time required for training and performing inference with RPF-Net.

Figure 3: Mechanism performance in 2x2 and 10x3 systems (normalized with respect to PF mechanism)

Evaluation Metrics: Mechanisms are evaluated on NSW (2), exploitability

expl(f, v, x, b) = (1/N)
N∑
i=1

expli(f, v, x, b),

and efficiency

efficiency(f, v, x, b) =
∑M
m=1

∑N
i=1 fi,m(v, x, b)∑M
m=1 bm

.

Efficiency quantifies the averaged utilization of resources. Mechanisms should preferably have a high efficiency,
although efficiency is merely a byproduct of NSW in the training objective. As the total demand for a
resource may be smaller than the budget, the maximum efficiency can be smaller than 1. The PF mechanism
is fully efficient (i.e., all available resources are allocated if the demand is sufficiently large), and hence serves
as a benchmark.

Baselines: Besides the PF mechanism introduced in (4), we evaluate against the PA mechanism (Cole et al.,
2013), denoted by fPA, which achieves state-of-the-art NSW among IC mechanisms. A probabilistic mixture
of PA and PF provides a strong trade-off between NSW and exploitability. Given ρ ∈ [0, 1], we consider a
new mechanism fmixture:

r ∼ Bern(ρ), fmixture(v, x, b) =
{
fPF (v, x, b), if r = 1
fPA(v, x, b), if r = 0

Varying ρ between [0, 1] linearly interpolates PF and PA in expectation. We set ρ = 1/2 in the experiments.

Another important baseline is the ExS-Net mechanism proposed in Zeng et al. (2024) which shares the same
training objective as RPF-Net and is different in the neural network activation function.

We also compare against a standard neural network, which has the same architecture as RPF-Net and ExS-Net
except that the activation function of its last layer is a standard softmax function and is trained on the
same objective for the same amount of iterations. Any performance gain of RPF-Net over ExS-Net and this
standard network can be attributed to the architectural innovation.

Data Generation: In all experiments, the true values and demands follow uniform and Bernoulli uniform
distributions, respectively, within the range [0.1, 1]. Specifically, we generate the test samples according to

vi,m ∼ Unif(0.1, 1) , x̃i,m ∼ Unif(0.1, 1) , (17)
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x̂i,m ∼ Bern(0.5) , xi,m = x̃i,mx̂i,m.

Unless noted otherwise in Sec. 6.1, the budget for each resource is set to N
2 , where N is the number of agents.

This creates moderate competition for the resources in expectation. Training data is sampled from the same
distributions as test data according to (17) except in Sec. 6.2 which studies distribution mismatch. All agent
weights are set to 1.

6.1 Varying System Parameters

We test the proposed mechanism as the problem dimension varies. We start with two small-scale problems
with 2 agents, 2 resources, and 10 agents, 3 resources. The 2x2 system is the smallest non-trivial case, and
the 10x3 system is the largest considered in a line of recent works (Dütting et al., 2023; Ivanov et al., 2022) on
auction design with payment. All reported numbers are normalized by that of the PF mechanism. As shown
in Figure 3, RPF-Net achieves an advantageous trade-off between PF and PA: it consistently reduces the
exploitability of PF by over at least 80% while achieving similar NSW. Compared with PA, RPF-Net improves
the efficiency and NSW. For larger numbers of agents, the NSW of PA mechanism decreases drastically
being the product of agents’ utilities, while RPF-Net still exhibits a favorable NSW. In addition, RPF-Net
outperforms the interpolated mixture of PF and PA and ExS-Net under all three metrics. The performance of
the standard neural network is unstable (mechanism 4 in orange) – while it performs well in the 2x2 system,
it fails to achieve a meaningful NSW with 10 agents present.

6.2 Distribution Mismatch

It can be difficult in practical problems to know and sample from the true distribution of values, demands,
and budgets in the test set. In this section, we show that RPF-Net is still effective when the distribution on
which they are expected to perform is slightly different from the training distribution. Such distribution
mismatch may occur due to measurement error or more pernicious sources such as strategically misrepresenting
preferences.

Recall that F denotes the true distribution of utility function parameters and F ′ the distribution of the
training samples. We denote by ω⋆(F ′) the optimal solution to (10) under samples {(vl, xl, bl) ∼ F ′}.
The performance of ω⋆(F ′) under the true distribution F , measured by EF [NSW(ω⋆(F ′), v, x, b)] and
EF [expl(ω⋆(F ′), v, x, b)], can in theory be sub-optimal by a factor of dTV (F, F ′), which is non-ideal under a
large discrepancy between F and F ′. Nonetheless, empirically we observe robustness: we study two sources of
distribution mismatch and see in the experiments that EF [NSW(ω⋆(F ′), v, x, b)] and EF [expl(ω⋆(F ′), v, x, b)]
closely match EF [NSW(ω⋆(F ), v, x, b)] and EF [expl(ω⋆(F ), v, x, b)].

Randomly perturbed training samples. In a 2 × 2 system we suppose that the distribution F follows
(17) while each training sample {(vl, xl)}l is generated according to

v̄li,m ∼ Unif(0.1, 1), x̄li,m ∼ Unif(0.1, 1).
ṽli,m ∼ Cauchy(0, 0.01), x̃li,m ∼ Cauchy(0, 0.01),
vli,m = [v̄li,m + ṽli,m][0.1,1],

x̂i,m∼Bern(0.5), xli,m = x̂i,m[x̄li,m + x̃li,m][0.1,1].

(18)

Here [·][a,b] for scalar a, b denotes the element-wise projection to the interval [a, b]. In other words, F ′ has a
perturbed uniform distribution. We would like to draw the perturbation from a heavy-tailed distribution
to increase the likelihood of generating extreme values. The Cauchy distribution has been used to explain
extreme events like Flash Crash (Parker, 2016) and to describe price fluctuations (Casault et al., 2011), which
motivates our selection.
Adversarially generated training samples. Again, we consider a 2 × 2 system where the true distribution
F is described in (17). Suppose that the training dataset is composed of historical valuations and demands
collected through past interactions of the agents with the supplier. If the agents believe that the supplier
runs the PF mechanism in these past interactions, they may have reported strategically to “trick” the PF
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Figure 4: Performance of RPF-Net trained under
data containing untruthful report. Numbers nor-
malized by NSW/exploitability/efficiency of PF
mechanism.

Figure 5: Allocations from PF (top) and RPF-Net
(bottom).

mechanism. The training samples {(vl, xl)}l will then take the following form:

v̄li,m ∼ Unif(0.1, 1), x̄li,m ∼ Unif(0.1, 1).
vli, x

l
i = arg max

v′
i
,x′

i

ui(fPF ((v′
i, v̄

l
−i), (x′

i, x̄
l
−i), b), v̄l, x̄l).

(19)

In Table 1 and Figure 4 we present the NSW, exploitability, and efficiency of RPF-Net trained under
contaminated samples (18) and (19). We observe that under contaminated training samples the metrics
of RPF-Net closely track those under truthful training data. Notably, the NSW and efficiency are almost
unaffected, while the exploitability only mildly increases. The proposed mechanism still achieves near-optimal
NSW and efficiency while maintaining a low exploitability (not exceeding 20% of that of the PF mechanism).
This demonstrates the robustness of the proposed mechanism to mismatch between training and inference
distribution and supports the theoretical results in Sec. 5.2.

Mechanism NSW Exploitability Efficiency (%)

Proportional Fairness Mechanism 8.00e-2±1.5e-2 3.70e-3±1.2e-3 56.6±3.9
Partial Allocation Mechanism 2.22e-2±2.1e-3 0±0 26.2±2.5

PF-PA Mixture 5.11e-2±6.6e-3 1.85e-3±6.2e-4 41.4±3.6
RPF-Net (Trained on Truthful Data) 7.97e-2±1.4e-2 3.99e-4±1.2e-4 56.5±4.0

RPF-Net (Trained on Randomly Perturbed Data) 7.99e-2±1.5e-2 5.3e-4±2.4e-4 56.5±4.0
RPF-Net (Trained on Adversarial Data) 7.98e-2±1.5e-2 7.4e-4±8.0e-5 56.5±3.9

Table 1: Performance of RPF-Net trained under data containing untruthful report. Mean and standard
deviation reported.

6.3 Visualizing Allocation Under RPF-Net

To shed more light on RPF-Net, we visualize and compare the allocation vectors generated by PF and
well-trained RPF-Net on a 2-agent 2-resource allocation problem. Under a specific profile of preferences and
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with the reporting of agent 2 fixed, Figure 5 plots the allocation to agent 1 as v1,1 and v1,2 vary at the
same time. PF has clear and sharp decision boundaries. As an interesting observation, the learned RPF-Net
mechanism closely tracks the boundary of PF but determines allocations in a smoother way.

6.4 Complexity of Proposed Mechanism in Training and Inference Phase

In this section, we provide more light on the amount of computation required to train RPF-Net and use it
for inference. For this purpose, it is worth comparing with the existing mechanism ExS-Net proposed in
Zeng et al. (2024) which considers the same training objective as ours but parameterizes the mechanism with
a much simpler regular neural network architecture. The main difference between RPF-Net and ExS-Net
(Zeng et al., 2024) lies in the activation function. In the case of ExS-Net, the activation involves standard
scalar/vector operation and a softmax function. Both forward and backward passes through the activation
can be completed in time O(NM), which means that ExS-Net is fast in both training and inference phases.
For RPF-Net, forward pass requires solving the convex optimization program (9). We use an interior-point
solver for this program, which is guaranteed to converge within polynomial time, i.e., the time to obtain an
solution up to precision ε is no more than some polynomial function of ε, N , and M . However, the exact
complexity is unknown but should be expected to be worse than O((NM)3) (Renegar, 1988) (as O((NM)3)
is the time it would take for the interior-point method to converge if (9) were a linear program). In the
backward pass, RPF-Net needs to invert solve a system of equations of dimension (3NM +M) × (3NM +M),
which requires O((NM)3) computation. To summarize, we organize the complexity results in Table 2.

We also show in Table 2 the training and inference time on a ten-agent three-resource allocation problem. Note
that both PF and PA are hand-designed mechanisms that do not require training, but are time-consuming
during inference since they solve optimization programs. The amount of computation required by RPF-Net
during inference is on the same order as that of PF and PA mechanisms.

Mechanism Training Time
(Theory)

Inference Time
(Theory)

Training Time
(Simulation)

Inference Time
(Simulation)

Proportional Fairness 0 At least O((MN)3) 0 40.1
Partial Allocation 0 At least O((MN)3) 0 310.0

ExS-Net O(MN) O(MN) 1 1
RPF-Net (Proposed) At least O((MN)3) At least O((MN)3) 380.2 114.5

Table 2: Training and inference time for a ten-agent three-resource problem with samples generated according
to (17). Reported training time and inference time of all mechanisms are normalized with respect to those of
ExS-Net.

7 Conclusion

This paper studied the important problem of fair and incentive compatible resource allocation without
the use of monetary payment. Identifying that hand-designing mechanisms that achieve the exact IC and
maximum NSW is impossible, we considered learning an approximate mechanism that desirably trades off
the two competing objectives. As a key contribution, we innovated the neural network architecture used to
parameterize the mechanism – we proposed RPF-Net, a learned variant of the standard PF mechanism with
an optimization-based activation function in the output layer. We established a way of differentiating through
the activation function to enable efficient training. On the theoretical side, we showed that the proposed
mechanism is consistent (learns better with more training data) and is robust to distributional changes in the
data, two properties that make the mechanism useful in practice. We showed through numerical simulations
that RPF-Net outperforms the existing methods on a range of evaluation criteria. In particular, compared
to the state-of-the-art architecture (Zeng et al., 2024), RPF-Net significantly increases the NSW without
incurring a higher exploitability, thereby improving the Pareto frontier.

It is worth noting the limitation of RPF-Net in its computational complexity. The optimization-based
activation function requires significant amount of computation to evaluate in the forward direction and to
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differentiate through in the backward direction. Enhancing the computational complexity of the architecture
while not compromising performance is an important future work.

Disclaimer

This paper was prepared for informational purposes [“in part” if the work is collaborative with external
partners] by the Artificial Intelligence Research group of JPMorgan Chase & Co. and its affiliates ("JP
Morgan”) and is not a product of the Research Department of JP Morgan. JP Morgan makes no representation
and warranty whatsoever and disclaims all liability, for the completeness, accuracy or reliability of the
information contained herein. This document is not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or sale of any security, financial instrument, financial
product or service, or to be used in any way for evaluating the merits of participating in any transaction,
and shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under such
jurisdiction or to such person would be unlawful.
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A Partial Allocation Mechanism

The partial allocation mechanism, proposed in Cole et al. (2013), is built upon the PF mechanism and
withholds resources according to an externality ratio. Specifically, given reported valuations v ∈ RN×M and
demands d ∈ RN×M across all agents and resources and budgets b ∈ RM , let a⋆ ≜ fPF (v, x, b) denote the
allocation made by the PF mechanism.

Let x−i ∈ RN×M denote a modified demand matrix where

x−i
j =

{
xj ∈ RM , i ̸= j

0 ∈ RM , i = j

For each agent i, we calculate
a−i,⋆ ≜ fPF (v, x−i, b),

which is the PF allocation outcome that would arise in the absence of agent i. We further compute the
externality ratio ri ∈ R+ for agent i as

ri =
( ∏

j ̸=i uj(a⋆, v, x)wj∏
j ̸=i uj(a−i,⋆, v, x)wj

)1/wi

,

where ui is the utility function defined in (1).

The PA mechanism allocates to agent i according to the following rule

fPAi (v, x, b) = ria
⋆
i .

It is easy to verify that ri ∈ [0, 1]. Therefore, the PA mechanism is always feasible. Cole et al. (2013)[Theorem
3.2] proves that it is also perfectly incentive compatible for any v, x, b.

B Proof of Theorem 1

To show the invertibility of M when at least NM −N constraints are tight, it is equivalent to show that the
following system of equations has a unique solution [da⊤, dµ⊤, dν⊤, dλ⊤]⊤ for any vector [α⊤, β⊤, γ⊤, ζ⊤]⊤

M


da

dµ

dν

dλ

 =


α

β

γ

ζ

 .
We define Iµ ≜ {(i,m) ∈ [1, · · · , N ] × [1, · · · ,M ] | µ⋆i,m > 0} = {(i,m) ∈ [1, · · · , N ] × [1, · · · ,M ] |
a⋆i,m = 0}, where the second equality is due to strict complementary slackness. Similarly, we define
Iν ≜ {(i,m) ∈ [1, · · · , N ] × [1, · · · ,M ] | ν⋆i,m > 0} = {(i,m) ∈ [1, · · · , N ] × [1, · · · ,M ] | a⋆i,m = xi,m}, and
Iλ = {m ∈ [1, · · · ,M ] : λm > 0} = {m ∈ [1, · · · ,M ] :

∑
i a
⋆
i,m = bm}. We use Icµ, Icν , Icλ to denote their

complement sets.

Note that for any (i,m) /∈ Iµ, its corresponding row in the second row block of M only has one non-zero entry
a⋆i,m in the second column block of M . This implies the solution dµi,m = βi,m

a⋆
i,m

. Similarly, for any (i,m) /∈ Iν
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and m /∈ Iλ, we are able to immediately write the solutions dνi,m and dλm and remove them from the system
of equations. Eventually, the system to be solved reduces to

M1 (M2):,Iµ
−(M2):,Iν

−(M3):,Iλ

diag(µ⋆Iµ
) diag(a⋆Iµ

) 0 0
diag(ν⋆Iν

) 0 diag((a⋆ − x)Iµ
) 0

diag(λ⋆Iλ
)DIλ

0 0 diag((Da⋆ − b)Iλ
)




da

dµIµ

dνIν

dλIλ



=


α−(M2):,Ic

µ
dµIc

µ
+(M2):,Ic

ν
dµIc

ν
+(M3):,Ic

λ
dµIc

λ

βIµ

γIν

ζIλ

 .
As a⋆i,m = 0 for any (i,m) ∈ Iµ (and similarly, a⋆i,m = xi,m for any (i,m) ∈ Iν ,

∑
i a
⋆
i,m = bm for any m ∈ Iλ),

this can be further simplified as
M1 (M2):,Iµ −(M2):,Iν −(M3):,Iλ

diag(µ⋆Iµ
) 0 0 0

diag(ν⋆Iν
) 0 0 0

diag(λ⋆Iλ
)DIλ

0 0 0


︸ ︷︷ ︸

MI


da

dµIµ

dνIν

dλIλ



=


α− (M2):,Ic

µ
dµIc

µ
+ (M2):,Ic

ν
dµIc

ν
+ (M3):,Ic

λ
dµIc

λ

βIµ

γIν

ζIλ

 .
Note that |Iµ| + |Iν | + |Iλ| ≥ NM − N when at least NM − N constraints are tight. Since x > 0, the
total number of linearly independent constraints on da is therefore N(from M1) + (NM −M) = NM , which
uniquely determines da. Due to the diagonal structure of M2, the block diagonal structure of M3, and
the fact that the optimal allocation a⋆ needs to satisfy v⊤

i a
⋆
i > 0 for all i to avoid making the objective

function infinitely negatively large, it is not hard to see that we can determine the remaining variables
dµIµ

, dνIµ
, and dλIµ

from the first row block of MI . The invertibility of M leads to the uniqueness of
M−⊤[

(
∂ℓ
∂a

)⊤
,0⊤,0⊤,0⊤]⊤, which obviously implies the differentiability of the mapping from (v, x) to a⋆.

When less than NM −N constraints are tight, the number of linear constraints on da is at most NM − 1,
which cannot uniquely determine the NM -dimensional vector da.

C Proof of Proposition 1

Under the assumptions of the proposition, M is an invertible matrix. The following equations follow from
the fact that the utility function ui does not depend on the dual variables

∂ℓ

∂v′
1,1

= ( ∂ℓ
∂a⋆

)⊤ ∂a⋆

∂v′
1,1

=
[
( ∂ℓ
∂a⋆

)⊤,0⊤,0⊤,0⊤
]

M−1 h(e1,0,0)

= h(e1,0,0)⊤M−⊤
[
(∇a⋆ui)⊤,0⊤,0⊤,0⊤

]⊤
.

The important observation is that the computation of the gradient with respect to any entry in v′
i (and also

x′
i and w) uses the product of M and [ (∇a⋆ui)⊤,0⊤,0⊤,0⊤ ]⊤, and only the vector h is different. Taking

advantage of this fact, it is not hard to see (following a line of analysis similar to derivation of Eq. (8) in
Amos & Kolter (2017)) that once we solve[

g⊤
a , g

⊤
µ , g

⊤
ν , g

⊤
λ

]⊤ = M−⊤
[(

∇a⋆ui
)⊤
,0⊤,0⊤,0⊤

]⊤
.
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the gradients admit the closed-form expressions

∇vi′ui =
(

− wiIM×M − (µ⋆i − ν⋆i − λ⋆)(a⋆i )⊤)ga,iM :(i+1)M ,

∇xi′ui = diag(ν⋆)gν , ∇wi
ui = v⊤

i ga,iM :(i+1)M .

D Derivation of Gradients of Exploitability-Averse Proportional Fairness Mechanism

With values v and demands x, let a⋆ denote the solution of (9), i.e., a⋆ = fRPFω (v, x, b). The aim of this
section is to derive the (sub)gradient of a loss function ℓ with respect to z, v, x, and w when we are given
∇a⋆ℓ. The arguments used here are mostly straightforward extension of the result in Sec. 4.

The equations in the KKT system of (9) include

− wivi
v⊤
i a

⋆
i

+ zi − µ⋆i + ν⋆i + λ⋆ = 0, ∀i = 1, · · · , N

µ⋆i,ma
⋆
i,m = 0, ∀i = 1, · · · , N, m = 1, · · · ,M

ν⋆i,m(a⋆i,m − xi,m) = 0, ∀i = 1, · · · , N, m = 1, · · · ,M
λ⋆m(Da⋆ − b)m = 0, ∀m = 1, · · · ,M.

Since the optimal solution a⋆ need to satisfy v⊤
i a

⋆
i > 0 for every agent i, the first equation can be simplified as

(µ⋆i − ν⋆i − λ⋆)v⊤
i a

⋆
i + wivi − ziv

⊤
i a

⋆
i = 0, ∀i = 1, · · · , N.

Taking the differential,

(dµ⋆i − dν⋆i − dλ⋆ − dzi)v⊤
i a

⋆
i + (µ⋆i − ν⋆i − λ⋆ − zi)dv⊤

i a
⋆
i

+ (µ⋆i − ν⋆i − λ⋆ − zi)v⊤
i da

⋆
i + widvi + dwivi = 0,∀i

dµ⋆i,ma
⋆
i,m + µ⋆i,mda

⋆
i,m = 0, ∀i,m

dν⋆i,m(a⋆i,m − xi,m) + ν⋆i,m(da⋆i,m − dxi,m) = 0, ∀i,m
dλ⋆mDma

⋆ + λ⋆mDmda
⋆ − dλ⋆mbm = 0.

This systems of equations can be written in the concise matrix form

M ′


da

dµ

dν

dλ

 =


c′

0
diag(ν⋆)dx

0

 ,
where the matrix M ′ ∈ R(3NM+M)×(3NM+M) is

M ′ =


M ′

1 M2 −M2 −M3
diag(µ⋆) diag(a⋆) 0 0
diag(ν⋆) 0 diag(a⋆−x) 0

diag(λ⋆)D 0 0 diag(Da⋆−b)

 ,
the vector c′ ∈ RNM is

c′ = c +


v⊤

1 a
⋆
1dz1 + z1(a⋆1)⊤dv1

v⊤
2 a

⋆
2dz2 + z2(a⋆2)⊤dv2

...
v⊤
Na

⋆
NdzN + zN (a⋆N )⊤dvN

 ,
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the matrix M ′
1 ∈ RNM×NM is

M ′
1 =

 (µ⋆1−ν⋆1 −λ⋆−z1)v⊤
1 · · · 0

...
. . .

...
0 · · · (µ⋆N−ν⋆N−λ⋆−zN )v⊤

N

 ,
and the matrices M2,M3 and vector c are defined in Sec. 4.1.

Again, it can be shown that once we pre-compute and save

(M ′)⊤


ga
gµ
gν
gλ

 =


∂ℓ
∂a⋆

0
0
0

 ,
the gradients have the closed-form expressions

∂ℓ

∂vi
=
(

− wiIM×M − (µ⋆i − ν⋆i − λ⋆ − zi)(a⋆i )⊤
)
ga,iM :(i+1)M ,

∂ℓ

∂x
= diag(ν⋆)gν ,

∂ℓ

∂wi
= v⊤

i ga,iM :(i+1)M ,

∂ℓ

∂zi
= v⊤

i a
⋆
i ga,iM :(i+1)M .

E Proportional Fairness Mechanism and Discipline Parameterized Program

Discipline parameterized programs (DPP) are a special class of convex programs introduced in Agrawal et al.
(2019), in which the authors show how (sub)gradients can be derived through the mapping from parameters
of a DPP to its optimal solution. We start the discussion by introducing the DPP, which is an optimization
program of the form

y⋆ = argmin
y

f0(x, θ)

s.t. fi(y, θ) ≤ 0, i = 1, . . . ,mineq

where y ∈ Rn1 is the decision variable, θ ∈ Rn2 is the parameter which we need to derive the gradient for,
and the functions fi are convex. In addition, all functions are required to be affine in a special sense. An
expression is said to be parameter-affine if it is affine in affine in the parameter θ and variable-free (does
not involve variable x). An expression is said to be parameter-free if it does not involve any parameter (it
can involve the variable x). Any expression ϕprod(z1, z2) = z1z2 as the product of z1 ∈ R and z2 ∈ Rp for any
p is affine if at least one of the two conditions is true:

• y1 or y2 is both parameter-free and variable-free

• among y1 and y2, one is parameter-affine and the other is parameter-free

When we try to capture (4) by a DPP, the decision variable y corresponds to allocation a, and the parameter θ
abstracts (v, x, b, w). As part of the objective of (4), a⊤

i vi can be verified to be affine since ai is parameter-free
and vi is parameter-affine. However, the overall objective −

∑N
i=1 wi log(a⊤

i vi) is not affine as wi is not
parameter-free and log(a⊤

i vi) is not variable-free, parameter-affine or parameter-free. While sometimes
re-formulation can be made to transform a non-DPP to an equivalent DPP, such re-formulation is not possible
in this case.
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F Generalization Bound

F.1 Definitions & Preliminaries

Let F denote a class of bounded functions f : Z → [−c, c] defined on an input space Z for some c > 0. Let D
be a distribution over Z and let S = {z1, z2, · · · , zL} be a sample drawn i.i.d from some distribution D over
input space Z.
Definition 4. The capacity of the function class F measured in terms of empirical Rademacher complexity
on sample S is defined as

R̂(F) := 1
L

Eσ

[
sup
f∈F

∑
zi∈S

σif(zi)
]
,

where σ ∈ {−1, 1}L and each σi is drawn from a uniform distribution on {−1, 1}.
Definition 5. The covering number of a set M, denoted as N∞(M, ϵ), is the minimal number of balls of
radius ϵ (measured in the l∞,1 distance) needed to cover the set M.

For example, the l∞,1 distance between mechanisms f, f ′ ∈ M is given as

max
(v,x,b)

N∑
i=1

M∑
j=1

|fij(v, x, b) − f ′
ij(v, x, b)|.

Lemma F.1 ((Shalev-Shwartz & Ben-David, 2014)). Then with probability at least 1 − δ over draw of S
from D, for f ∈ F ,

Ez∼D[f(z)] ≤ 1
L

L∑
l=1

f(zl) + 2R̂L(F) + 4c
√

2 log(4/δ)
L

Lemma F.2 (Massart). Let G be some finite subset of Rm and σ1, σ2, · · · , σm be independent Rademacher
random variables. Then,

E

[
sup
g∈G

1
m

m∑
i=1

σigi

]
≤

√
2
(

supg
∑
i g

2
i

)
log |G|

m
.

Let ϕ : RN 7→ RN represent the activation function of the any layer for input s ∈ RNM , given as

ϕ = [softmax(s1,1, · · · , sN,1), · · · , softmax(s1,m, · · · , sN,M )],

where softmax : RN 7→ [0, 1]N . Note that for any u ∈ RN ,

softmaxi(u) = eui∑N
k=1 e

uk

.

Lemma F.3 ((Dütting et al., 2023)). For any s, s′ ∈ RNM , the activation function for a softmax layer is
1−Lipschitz, i.e.,

∥ϕ(s) − ϕ(s′)∥1 ≤ ∥s− s′∥.
Lemma F.4 ((Dütting et al., 2023)). Let Fk be a class of feed-forward neural networks that maps an input
vector y ∈ Rd0 to an output vector Rdk , with each layer l containing Tl nodes and computing z 7→ ϕl(wlz)
and ϕl : RTl → [−κ, κ]Tl . Further, for each network in Fk, let the parameter matrices ∥wl∥1 ≤ W and
∥ϕl(s) − ϕl(s′)∥ ≤ Φ∥s− s′∥1 for any s, s′ ∈ RTl−1 . The covering number of the network is

N∞(Fk, ϵ) ≤
⌈2κd2W (2ΦW )k

ϵ

⌉d
,

where T = maxl∈[k] Tl and d is the total number of parameters in the network.
Corollary F.4.1. For the same configuration as in Lemma F.4, but having ∥ϕl(s) − ϕl(s′)∥ ≤ ∥s− s′∥1 for
all hidden layer activation functions (l < k), and having ∥ϕo(s) − ϕo(s′)∥ ≤ Φ∥s− s′∥1 for the output layer,
the covering number is given as

N∞(Fk, ϵ) ≤
⌈Φd2κ(2W )k+1

ϵ

⌉d
.
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F.2 Proof of Theorem 2

Consider a parametric class of mechanisms, fω ∈ M, defined using parameters ω ∈ Rd for d > 0. With a
slight abuse of notation, let uω(v, x, b) := u(fω(v, x, b), v, x) and let y 7→ (v, x, b), y′

i 7→ ((v′
i, v−i), (x′

i, x−i), b).
Consider the following function classes

Ui =
{
uωi :Y 7→ R|uωi (y)=

∑
m

vi,m min{fωi,m(y),xi,m} for some fω∈M
}

NSW ◦ M =
{
f : Y 7→ R | f(y) =

N∑
i=1

log uωi (y) for uωi ∈ Ui
}

exp ◦ Ui=
{
ei : Y 7→ R | ei(y)=max

y
′
i

uωi (y
′

i)−uωi (y) for uωi ∈ Ui
}

exp ◦ U =
{
h : Y 7→ R|h(y)=

N∑
i=1

ei(y) for some (e1, e2, · · · , eN )∈exp ◦ U
}
.

Proposition 2. Suppose Assumption 1 holds. Let M denote the class of mechanisms and fix δ ∈ (0, 1). With
probability at least 1 − δ, over draw of L profiles from F , for any parameterized allocation fω ∈ M,

Ey∼F

[ N∑
i=1

log uωi (y)
]

≥ 1
L

L∑
l=1

N∑
i=1

log uωi (y(l)) − 2N∆L − CN

√
log(1/δ)

L
,

where C is a distribution independent constant and

∆L = inf
ϵ>0

{
ϵ+N(logψ + 1)

√
2 log(N∞(M, ϵψ ))

L

}
.

Proof. Using Lemma F.1, the result follows except the characterization of the empirical Rademacher complexity
that we derive below. By the definition of the covering number, we have that for any h(y) ∈ NSW ◦ M, there
is a ĥ(y) ∈ N̂SW ◦ M such that maxy |h(y) − ĥ(y)| ≤ ϵ. We have the following

R̂L(NSW ◦ M) = 1
L

Eσ
[

sup
u

L∑
l=1

σl

N∑
i=1

log uωi (y(l))
]

= 1
L

Eσ
[

sup
h

L∑
l=1

σlĥ(y(l))
]
+ 1
L

Eσ
[

sup
u

L∑
l=1

σl

{
h(y(l))−ĥ(y(l))

}]
≤ 1
L

Eσ
[

sup
ĥ

L∑
l=1

σlĥ(y(l))
]

+ 1
L

Eσ∥σ∥ϵ

The result follows from the following arguments:

i.) We shall first establish that
N∞(NSW ◦ M) ≤ N∞(M,

ϵ

ψ
).

By definition of the covering number for the mechanism class M, there exists a cover M̂ of
size |M̂| ≤ N∞(M, ϵψ ) such that for any fω ∈ M there is a f̂ω ∈ M̂ such that for all y,∑

i,m

|fωi,m(y) − f̂ωi,m(y)| ≤ ϵ

ψ

For g(y) =
∑N
i=1 log uωi (y), we have∣∣∣g(y) − ĝ(y)

∣∣∣ =
∣∣∣ N∑
i=1

{
log uωi (y) − log ûωi (y)

}∣∣∣
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≤ ψ
∣∣∣ N∑
i=1

uωi (y) − ûωi (y)
∣∣∣

≤ ψ
∣∣∣∑

i

∑
m

vi,m

{
min{fωi,m(y), xi,m} − min{f̂ωi,m(y), xi,m}

}∣∣∣
≤ ψ

∑
i

∑
m

vi,m

∣∣∣min{fωi,m(y), xi,m} − min{f̂ωi,m(y), xi,m}
∣∣∣

≤ ψ
∑
i

∑
m

vi,m

∣∣∣fωi,m(y) − f̂ωi,m(y)
∣∣∣ < ϵ.

ii.) We have from Massart’s lemma (Lemma F.2),

R̂L(NSW ◦ M) ≤
√∑

l

(
ĥ(y(l))

)2
√

2 log(N∞(NSW ◦ M), ϵ)
L

+ ϵ.

iii.) We have the trivial bound,√∑
l

(
ĥ(y(l))

)2
≤
√∑

l

(∑
i

log uωi (v(l)) + nϵ
)2

≤N(logψ + 1)
√
L.

The result follows.

Proposition 3. Suppose Assumption 1 holds. Let expi(ω) := Ey
[

maxy′ uωi (y′

i) − uωi (y)
]

and êxpi(ω) :=
1
L

∑L
l=1

[
maxȳ uωi (ȳ(l)

i )−uωi (y(l))
]
. Under the same assumptions as in Theorem 2, the empirical exploitability

satisfies the following:

1
N

N∑
i=1

expi(ω) ≤ 1
N

N∑
i=1

êxpi(ω) + ∆e
L + C ′

√
log(1/δ)/L,

where C ′ is a distribution independent constant and

∆e
L = inf

ϵ>0

{
ϵ+ (2ψ + 1)N

√
2 log(N∞(M, ϵ

2N ))
L

}
.

Proof. As before, using Lemma F.1, the result follows except the characterization of the empirical Rademacher
complexity of the class R̂(exp ◦ U), which we do below. The proof builds on the following results.

i.) N∞(exp ◦ Ui, ϵ) ≤ N∞(Ui, ϵ2 ).
By the definition of covering number N∞(Ui, ϵ), there exists a cover Ûi with size at most N∞(Ui, ϵ2 )
such that for any uωi ∈ Ui there is a ûωi ∈ Ûi with

max
y

|uωi (y) − ûωi (y)| ≤ ϵ

2 .

We have for the exploitability for each agent i with any y,

| max
y

′
i

uωi (y
′

i) − uωi (y) − max
y

′
i

ûωi (y
′

i) + ûωi (y)|

≤ | max
y

′
i

uωi (y
′

i) − max
y

′
i

ûωi (y
′

i)| + |uωi (y) − ûωi (y)| ≤ ϵ.

where the last inequality follows from the following relation.

max
ȳi

uωi (ȳi) = uωi (y∗)
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≤ ûωi (y∗) + ϵ/2 ≤ ûωi (ȳ∗) + ϵ/2 ≤ max
ȳ

ûωi (ȳ) + ϵ,

max
yi

ûωi (yi) = ûωi (y∗)

≤ uωi (y∗) + ϵ/2 ≤ uωi (ȳ∗) + ϵ/2 = max
ȳ

uωi (ȳ) + ϵ

2 .

ii.) N∞(exp ◦ U , ϵ) ≤ N∞(U , ϵ
2N ). The result following by considering a cover N∞(U , ϵ

2N ) such that

max
y

N∑
i=1

|uωi (y) − ûωi (y)| ≤ ϵ

2N ,

and using the same arguments as above.

iii.) N∞(U , ϵ) ≤ N∞(M, ϵ).
By definition of the covering number for the mechanism class M, there exists a cover M̂ of
size M̂ ≤ N∞(M, ϵ) such that for any fω ∈ M there is a f̂ω ∈ M̂ such that for all y,∑

i,m

|fωi,m(y) − f̂ωi,m(y)| ≤ ϵ.

We have for the class U ,

∣∣∣ N∑
i=1

uωi (y) − ûωi (y)
∣∣∣ ≤

∣∣∣∑
i

∑
m

vi,m

{
min{fωi,m(y), xi,m} − min{f̂ωi,m(y), xi,m}

}∣∣∣
≤
∑
i

∑
m

vi,m

∣∣∣min{fωi,m(y), xi,m} − min{f̂ωi,m(y), xi,m}
∣∣∣

≤
∑
i

∑
m

vi,m

∣∣∣fωi,m(y) − f̂ωi,m(y)
∣∣∣ < ϵ.

The result follows from Lemma F.2 and similar arguments as in Proposition 2.

Note that the activation functions on all hidden layers are ReLU functions, which are 1-Lipschitz. The output
layer of the regularized PF activation is Lipschitz from Assumption 1 with some constant Φ > 0.

Using the definitions of ∆’s with the activation having a Lipschitz constant of Φ, and the hidden layers having
a Lipschitz constant of 1, and with d = max{K,MN} in Corollary F.4.1, we have from Proposition 2 and
Proposition 3 that the following holds with probability at least 1 − δ

max{εlogNSW(fω, L), εexp,i(fω, L)} ≤ O
(
ψN

√
Rd log(LNΩΦ max{K,MN})

L
+N

√
log(1/δ)

L

)
.

G Proof of Theorem 3

It is obvious that the exploitability of any mechanism at agent i cannot exceed the utility of agent i when its
demands are fully satisfied. This means for any mechanism f and v ∈ V, x ∈ D, b ∈ B, we have

expli(f, v, x, b) ≤
M∑
m=1

vi,mxi,m ≤ M v x, (20)

where the second inequality is due to the boundedness of values and demands.

Let pF and pF ′ denote the probability density function associated with F and F ′. We have for any i

E(v,x,b)∼F [expli(f, v, x, b)]
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= E(v,x,b)∼F ′ [expli(f, v, x, b)] +
(
E(v,x,b)∼F [expli(f, v, x, b)] − E(v,x,b)∼F ′ [expli(f, v, x, b)]

)
≤ ϵ+

∫
expli(f, v, x, b) (pF ′(v, x, b) − pF (v, x, b)) dv dx db

≤ ϵ+
∫

| expli(f, v, x, b)| |pF (v, x, b) − pF ′(v, x, b)| dv dx db

≤ ϵ+M v x

∫
|pF (v, x, b) − pF ′(v, x, b)| dv dx db

= ϵ+ 2M v xdTV (F, F ′),

where the third inequality applies (20) and the final equation comes from the definition of TV distance, i.e.,
for any distribution F1, F2 over X

dTV (F1, F2) = 1
2

∫
X

|pF (x) − pF ′(x)| dx.
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