DIVINE : Coordinating Multimodal Disentangled Representations for
Oro-Facial Neurological Disorder Assessment

Anonymous ACL submission

Abstract

In this study, we present a multimodal frame-
work for predicting neuro-facial disorders by
capturing both vocal and facial cues. We hy-
pothesize that explicitly disentangling shared
and modality-specific representations within
multimodal foundation model embeddings can
enhance clinical interpretability and generaliza-
tion. To validate this hypothesis, we propose
DIVINE (DIsentangled Variational INforma-
tion NEtwork), a fully disentangled multimodal
framework that operates on representations ex-
tracted from state-of-the-art (SOTA) audio and
video foundation models, incorporating hierar-
chical variational bottlenecks, sparse gated fu-
sion, and learnable symptom tokens. DIVINE
operates in a multitask learning setup to jointly
predict diagnostic categories (Healthy Control,
ALS, Stroke) and severity levels (Mild, Mod-
erate, Severe). The model is trained using syn-
chronized audio and video inputs and evaluated
on the Toronto NeuroFace dataset under full
(audio-video) as well as single-modality (audio-
only and video-only) test conditions. Our pro-
posed approach achieves SOTA results, with
the DeepSeek-VL2 and TRILLsson combina-
tion reaching 98.26% accuracy and 97.51% F1-
score. Under modality-constrained scenarios,
the framework performs well, showing strong
generalization when tested with video-only or
audio-only inputs. It consistently yields supe-
rior performance compared to unimodal models
and baseline fusion techniques. To the best of
our knowledge, this is the first framework that
combines cross-modal disentanglement, adap-
tive fusion, and multitask learning to compre-
hensively assess neurological disorders using
synchronized speech and facial video. Code
and model weights will be released upon the
completion of the double-blind review process .

1 Introduction

Neurodegenerative and neurovascular conditions
such as Amyotrophic Lateral Sclerosis (ALS) and
stroke often arise with impairments in facial motor
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Figure 1: Overview of the DIVINE pipeline for clin-
ical diagnosis (HC, ALS, Stroke) and severity predic-
tion(Mild, Moderate, Severe) by encoding synchronized
video and audio inputs.

control and speech articulation—symptoms that are
not only diagnostic indicators but also indicative of
disease progression (Bandini et al., 2020; Naeini
et al., 2022). Current clinical evaluations of these
symptoms rely heavily on subjective expert assess-
ments, which are labor-intensive, variable across
raters, and difficult to scale for longitudinal mon-
itoring. Recent computer vision and speech pro-
cessing advances have demonstrated promising ca-
pabilities in analyzing facial kinematics and vocal
patterns for clinical inference. In particular, lever-
aging facial landmarks (Gomes et al., 2023) and
acoustic modeling (Migliorelli et al., 2023) have
enabled more objective quantification of motor dys-
function in neuro-facial disorders. However, these
efforts often treat each modality in isolation, ne-
glecting the complementary nature of audiovisual
cues and their temporal co-dynamics in patholog-
ical speech and gestures. In contrast, multimodal
architectures provide a more robust and holistic
solution by jointly leveraging visual and acoustic
information. Nevertheless, earlier fusion strategies
frequently struggle to separate modality-specific
patterns from shared cross-modal representations.
This limitation hampers both interpretability and
generalizability, key requirements for ensuring clin-
ical reliability.



To address the limitations of prior multimodal
approaches, we propose DIVINE (DIsentangled
Variational INformation NEtwork), a fully dis-
entangled, multitask audio-visual framework for
the assessment of neuro-facial disorders. DIVINE
integrates pretrained foundation models for both
audio and video modalities and employs a hierar-
chical variational bottleneck to disentangle private
(modality-specific) and shared (cross-modal) latent
representations. It introduces a sparse gated fu-
sion mechanism that dynamically modulates the
influence of each modality and a symptom-guided
tokenisation module that directs attention to clin-
ically salient oro-motor features. We hypothesise
that explicitly disentangling shared and modality-
specific latent information enhances both disorder
classification and severity estimation, while improv-
ing generalisation across diverse clinical tasks and
input types. To test this, we conduct extensive eval-
uations on three clinical populations—HC, ALS,
and stroke survivors—across speech, non-speech,
and mixed-task conditions. Our model performs
multitask learning to jointly predict disorder type
and five clinician-rated perceptual severity scores.
Through systematic ablations and modality dropout
experiments, we demonstrate that DIVINE main-
tains top performance under unimodal (audio-only,
video-only) and multimodal conditions, establish-
ing a new benchmark in multimodal neuro-facial
assessment.

To summarize, the main contributions of
our study are: (i) We introduced DIVINE
(DIsentangled Variational INformation NEtwork),
a fully disentangled audio—visual variational frame-
work that employs hierarchical variational bottle-
necks, cross-modal alignment, gated fusion blocks,
and symptom-token modules to extract and inte-
grate complementary speech and facial represen-
tations for joint diagnosis and continuous sever-
ity estimation of neuro-facial disorders. (ii) We
validate our framework on the Toronto Neuro-
Face dataset under three evaluation settings—full-
modality (both audio and video inputs), partial-
modality (speech-only or non-speech-only seg-
ments), and missing-modality (audio-only or video-
only inputs)—and also benchmark over 40 com-
binations of SOTA audio and vision foundation
models. (iii) To the best of our knowledge, DI-
VINE is the first unified framework to combine
hierarchical disentangled latent learning, cross-
modal alignment losses, and multitask objec-
tives—simultaneously addressing categorical clas-

sification (Healthy Control, ALS, Stroke) and
regression-style severity prediction—in a single,
end-to-end pipeline.

2 Related Work

Early work in oro-facial neurological assessment
relied solely on video or images. Researchers
used handcrafted spatio-temporal features, such
as Improved Dense Trajectories with Fisher Vector
encoding, to capture broad facial movements in
natural settings (Wang and Schmid, 2013; Afshar
and Ali Salah, 2016). (Bandini et al., 2020) in-
troduced the NeuroFace benchmark, showing that
standard face-alignment tools can struggle with
pathological motion. More recent methods ap-
ply deep models: maximisation—differentiation net-
works for depression screening (de Melo et al.,
2021), multiscale CNNs for expression analysis
(De Melo et al., 2024), and landmark-aware trans-
formers for estimating expression intensity (Chen
et al., 2024). Graph neural networks have also
been used to model facial asymmetry and rigidity
in ALS patients by treating landmarks as nodes in
a facial graph (Gomes et al., 2023). To address
video’s limitations (occlusion, lighting), simple fu-
sion approaches combine visual and acoustic cues.
(Duan et al., 2023) proposes a two-stream system
that fuses landmark heat-map volumes with RGB
frames via a cross-fusion decoder, improving mo-
tion capture. (Neumann et al., 2024) builds a re-
mote dialog system that extracts facial, linguistic,
and acoustic biomarkers from ALS patients to track
bulbar decline over time. While these methods
combine modalities, they treat all features as a sin-
gle block without separating what each modality
contributes. More recent research aims to learn sep-
arate, meaningful factors and tackle multiple tasks
simultaneously (Duan et al., 2023; Neumann et al.,
2024). (Shi et al., 2019) further explores Varia-
tional Mixture-of-Experts Autoencoder (MM VAE),
which factorises the joint posterior as a mixture of
unimodal experts to disentangle shared and private
latents and support coherent multi-modal inference.
Our work departs from these by introducing a fully
disentangled multimodal framework that separates
private (audio- or video-specific) and shared repre-
sentations, and supports joint diagnosis and sever-
ity estimation. This approach allows us to quantify
each modality’s contribution and handle missing
or noisy inputs more robustly than previous fusion
strategies.



3 Pre-trained Models

Speech Models Our speech encoders include
monolingual models—Wav2Vec2.0 (Baevski et al.,
2020) and WavLM (Chen et al., 2022)—trained
on large-scale English corpora using contrastive
and masked prediction objectives. We also lever-
age HuBERT (Hsu et al., 2021), which predicts
latent acoustic units via masked prediction, cap-
turing long-range dependencies in speech. We
also include multilingual models such as Whis-
per (Radford et al., 2023), trained on 680k hours of
cross-lingual data, trained on 128 languages. For
prosodic variation and speaker-dependent cues, we
use TRILLsson (Shor and Venugopalan, 2022) and
x-vector (Snyder et al., 2018), both known for their
robustness in paralinguistic speech tasks.

Vision Models For facial video modeling, we uti-
lize transformer-based models including Video-
MAE (Tong et al., 2022), VideoMAE-V2 (Wang
et al., 2023), and ViViT (Arnab et al., 2021), all em-
ploying spatiotemporal encoding strategies. We fur-
ther use DeepSeek-VL2 (Wu et al., 2024), a vision-
language model with a dynamic tiling and token ag-
gregation mechanism. As structured baselines, we
include handcrafted kinematic features from Open-
Face (Baltrusaitis et al., 2018) and temporal atten-
tion features extracted using a ResNet18+TANN
pipeline. Additional details regarding the above
PTMs are provided in Appendix A.1.

4 Modeling

We consider two downstream networks, i.e., a fully
connected network (FCN) and a CNN with indi-
vidual PTM representations applied independently
to each audio and video foundation model repre-
sentation. The FCN model consists of three dense
layers with 256, 128, and 64 neurons, followed by
the output layer. The CNN model comprises two
convolution blocks, each containing a 1D convolu-
tional layer followed by batch normalization and a
max-pooling operation, then a flattening step and
a dense FCN block with the same configuration as
above. Detailed hyperparameter settings and model
configurations are described in Appendix A.4.

DIVINE: We propose DIVINE, a novel multi-
modal learning framework tailored for neuro-facial
disorder assessment. It is built upon a fully disen-
tangled pipeline that incorporates hierarchical la-
tent modeling, gated cross-modal fusion, and clini-
cal token-aware dense reasoning over synchronized
audio and video inputs. The overall architecture of

the proposed framework is illustrated in Figure 2.
We extract foundational audio and video represen-
tations from raw inputs using frozen pretrained
models. Let the raw video and audio inputs be
denoted as

UERTUXHXW><C7 aERTa.

We extract frozen representations using pretrained
foundation models:

X, = VFM(v) € RTvxdv,
X, = SFM(a) € RTaxde,

Local Temporal Refinement We first refine the
local temporal structure for each modality us-
ing CNN-based feature transformation. For each
modality m € {v,a}, we apply a temporal refine-
ment stage:

X!, = CNN,,(X,,) € RTm>dm, (1)

where CNN,,, consists of a 1D Convolution, Batch
Normalization, ReL.U activation, and Max Pooling.

Local VAE (VAE_window) We apply a local
VAE over temporally refined segments. For each
temporal index t = 1,...,7” and modality m €
{v, a}, the local variational encoding and decoding
steps are:

(o (t), Jog o (1)) = fene(Xu[t]),

Zg(t) = 1y (t) + exp (3 log o}l (1)) @,

e ~N(0,1),
X;n[t] - f(qiltjec(zgilg(t))'
()
The local VAE loss is defined as:
1 Tll 2
m X' — X[t H
cr T,,;H GRS G| .

+KL (W (pay (8), 03 (1)) | (0, 1))

Global Average Pooling We summarize local
latent variables across time via global average pool-
ing to obtain fixed-length utterance-level embed-
dings.

Tl/
1
= Y A e R @
t=1
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Figure 2: Proposed modeling architecture : DIVINE

Utterance-Level VAE (VAE_utterance) We dis-
entangle modality-invariant (shared) and modality-
specific (private) representations at the utterance
level using two parallel variational autoencoders
(VAESs). For each modality m € {v,a}, the shared
encoder is weight-tied across modalities and maps
the global latent representation zZ"* to the parame-
ters of a Gaussian distribution, producing a mean
w1 and log-variance log o*. A shared latent vari-
able is sampled using the reparameterization trick
as

e ~N(0,1).

Zsmhared = Mgn—{—exp (% log O_;n)®6’

In parallel, a modality-specific private encoder
Tie’, which is unique to each modality, generates

the private latent repr.esentatlol.l by produ01.ng Hp

and log ¢, from which the private vector is sam-

pled as

m

Zpriv = My +€Xp (3 log o)) Oe.

To regularize shared and private encodings, we
define the utterance-level VAE loss as the sum of a
reconstruction term and KL divergence penalties.
The total loss is represented as:

L0 = L7+ B KL (N (™, o) | N(0,1))

+ By KL (N (o) [ (0, 1)),

&)
where 3, and 3, are hyperparameters controlling
the relative importance of the shared and private
KL divergence terms.

Cross-Modal Alignment We decode the video-
shared representation into the audio-shared latent
space:

Zo = Da(zghared)v

ﬁcycle = Héa - Z;Ihareng : (6)

(Optionally, add the reverse term |2, — 25 . 4113.)

Sparse Gated Fusion We compute a sparse,
learnable fusion of modality-specific and shared
embeddings to dynamically weigh audio and video
cues.

Gv = U(szgriv + by),
9o = c(Wazpyiy + ba). @)
The fused latent representation is computed as:

h’fUSEd =gv© Z;)hared +9a© Z:hared € Rds- (8)

Sparsity penalty:
Esparse = ”90”1 + ”gaHl- (9)
Token Injection and Dense Layer Let
T1,...,Tx € R% be learnable clinical symptom
tokens. Concatenate and input to dense layer:
S=[T1,..., Tk, htusea) € RETD*:,

Hout = Dense(s)v Hoy € R(K+1)de (10)
Add token specialization regularization term
‘Ctoken-

Output Heads Finally, we derive diagnosis and
severity predictions from the fused representation
using softmax or linear heads. Let h = Ho[K +
1] denote the fused output. The classification and
severity predictions are:
Yels = SOftmaX(Wclsh + bClS)7
Usev = softmax(Wgeyh + bgev ). (11)

All non-frozen parameters are optimized end-to-
end using the Adam optimizer with early stopping.

Joint Loss Function The function combines clas-
sification, severity, reconstruction, and regulariza-
tion terms:

ﬁtotal = ﬁcls + « £sev +e€ (‘Ccycle + ['sparse + A Etoken)

+ Y (Lm+ L.
me{v,a}

(12)



FCN CNN FCN CNN CNN
At F1t | AT F11 | M| | ML R, | At F1+ | M| R}
c R M
VFM
Vi 80.54 7857 | 8378 8135 | 1082 899 | 976 728 | 8289 8262 | 1025  8.64
V2 | 8216 8165 | 8569 8358 | 929 738 | 873 684 | 8538 8481 | 945 765
VvV | 7916 7728 | 8259 8127 | 1126 952 | 1022 863 | 8153 8006 | 1186 932
DS | 8523 8461 | 8894 8657 | 922 726 | 858 681 | 8833 8615 | 938 758
KI | 7229 7161 | 7616 7451 | 11.82 958 | 1050 889 | 7545 7398 | 1155  9.88
TA | 7831 7718 | 7956 7706 | 1058 897 | 996 805 | 7811 7665 | 11.09 9.
SFM
WV | 7829 7719 | 8083 7937 | 838 970 | 761 851 | 8209 8035 | 688  7.60
W2 | 7402 7377 | 7637 7432 | 854 989 | 766 838 | 8213 8198 | 638 755
WR | 8061 7949 | 8234 8106 | 847 936 | 718 816 | 8594 8356 | 622 729
XV | 8585 8396 | 8629 8581 | 816 859 | 694 761 | 8927 8764 | 615 714
HT | 7739 7628 | 7962 7809 | 972 1012 | 868 987 | 8011 7951 | 685 774
TR | 8606 8464 | 8758 8664 | 750 788 | 683 725 | 9051 8869 | 612 70

Table 1: Performance of individual Video Foundation Models (VFMs) and Speech Foundation Models (SFMs)
across classification, regression, and multitask tasks on speech-video samples using FCN and CNN backbones.;
Abbreviations: VFMs — Vi (VideoMAE), V2 (VideoMAE V2), VV (ViViT), DS (DeepSeek-VL2), KI (Kinematic),
TA (Temporal); SFMs — WV (WavLM), W2 (Wav2Vec2), WR (Whisper), XV (X-vector), HT (HuBERT), TR
(TRILLsson). Note: The abbreviations used in Table 1 are consistent across Tables 2, 3,7,8 and 9.

5 Experiments

Benchmark Dataset: We conduct our experiments
on the Toronto NeuroFace (TNF) dataset (Ban-
dini et al., 2020), which contains synchronized au-
dio and video recordings from cognitively intact
adults across three clinical groups: ALS, stroke,
and healthy controls. We follow a 5-fold cross-
validation protocol across all experimental set-
tings. Detailed information on the dataset, task
design, and annotation procedures is provided in
Appendix A.2,A.3.

Training Details: We use softmax activation in
the output layers for both classification and sever-
ity prediction heads to produce probability distri-
butions. All models are trained using the Adam
optimizer with a learning rate of 10~3, a batch size
32, and categorical cross-entropy loss. Training is
performed for 50 epochs with early stopping and
dropout regularization to mitigate overfitting. For
all DIVINE experiments, we fix the hyperparame-
ters: o = 2, € = 0.1, and A = 0.4, selected based
on preliminary validation performance. These val-
ues are kept consistent across all fusion and abla-
tion experiments.

Experimental Results: Table 1 shows how each
Video Foundation Model (VFM) and Speech
Foundation Model (SFM) performs on the TNF
speech—video samples, using both FCN and CNN
backbones. Among the VFEMs, DeepSeek-VL2
(DS) leads with a CNN accuracy of 88.94% and
F1 of 86.57%, and achieves the lowest regression
errors (MAE = 8.58, RMSE = 6.81) as well as the

lowest multitask errors (MAE = 7.58, RMSE =
9.38). VideoMAE V2 follows closely (85.69 %
accuracy, 83.58 % F1; MAE = 8.73, RMSE = 6.84).
Handcrafted kinematic and temporal features lag
behind (76-79 % accuracy with CNN), highlight-
ing the value of pretrained vision encoders. In the
audio domain, TRILLsson (TR) is top: it records
90.51 % accuracy and 88.69 % F1 in the multi-
task setting, with MAE = 6.12 and RMSE = 7.01.
Wav2Vec 2.0 and Whisper also perform well (e.g.
Wav2Vec 2.0 reaches 89.27 % accuracy, 87.64 %
F1), while WavLM and X-vector show weaker re-
gression consistency. Overall, CNN backbones
outperform FCNs, confirming their strength at cap-
turing local temporal patterns. Next, we fuse VFMs
and SFMs using a simple embedding concatenation
(Table 2). Here, DS + TR achieves 94.65 % accu-
racy and 93.87 % F1 on full speech—video inputs,
while still holding 86.33 % accuracy when only
video is available and 82.01 % when only audio is
available. VideoMAE V2 + X-vector also performs
strongly (93.22 % accuracy, 92.55 % F1). These
results show that even a straightforward fusion
of embeddings leverages complementary modal-
ity information and degrades gracefully when one
modality is unavailable. Finally, Table 3 reports
our DIVINE disentangled fusion. The best pair, DS
+ TR, reaches 98.26 % accuracy and 97.51 % F1
when both audio and video embeddings are pro-
vided. When evaluated with only video embed-
dings, DS + TR still scores 89.27 % accuracy (F1 =
88.23), and when evaluated with only audio embed-



Combinations | Speech Videos | Testing Only Video | Testing Only Audio

| A+ FI+ Ry M| | At F1+ R, M| | At FIt Ry M|

Concatenation

Vi+ WV 84.55 83.64 4.82 3.96 79.25 79.11 11.72 10.27 74.46 73.61 11.66 10.29
Vi+ W2 83.41 82.61 4.86 3.74 78.73 77.79 12.25 9.69 72.31 71.55 12.13 9.65
Vi + WR 87.25 86.23 4.75 3.87 79.22 78.75 11.55 9.91 78.20 77.42 11.68 10.04
Vi + XV 91.64 90.85 4.68 391 80.68 79.68 12.13 9.52 81.16 80.29 12.31 10.55
Vi+HT 85.32 84.64 4.80 3.98 78.41 77.79 12.20 9.60 74.66 73.90 12.10 10.55
Vi+ TR 92.65 91.11 4.29 3.52 80.65 79.23 11.61 9.88 82.27 81.44 10.52 8.78
V2 + WV 86.36 85.29 4.86 3.49 83.08 82.17 11.96 10.59 72.61 71.81 11.89 9.71
V2 + W2 85.27 84.56 4.81 3.45 82.18 81.16 11.72 9.74 73.28 72.27 11.86 9.62
V2 +WR 87.21 86.21 4.67 3.38 83.52 82.39 11.70 10.46 74.63 73.80 11.84 9.39
V2 +XV 93.22 92.55 372 2.75 83.34 82.51 11.09 10.03 80.04 79.21 10.09 8.15
V2 +HT 87.65 86.08 4.78 342 83.21 82.65 11.65 8.39 74.95 74.10 11.82 9.35
V2+ TR 90.99 89.24 3.76 2.69 83.54 82.08 11.65 9.87 81.88 81.01 10.31 9.61
VV + WV 82.19 81.65 6.29 5.16 77.69 79.11 13.44 10.81 72.09 71.38 13.52 11.43
VV + W2 81.54 79.69 6.23 4.77 76.82 75.17 13.19 10.58 71.22 70.11 13.66 11.59
VV + WR 85.47 84.43 6.39 5.23 78.23 76.86 13.39 10.73 76.21 75.09 13.99 11.71
VV + XV 89.36 88.14 6.38 4.29 79.28 78.35 13.25 10.59 79.14 78.16 13.52 11.29
VV +HT 83.17 82.64 6.85 4.12 77.15 76.38 13.11 10.34 72.68 71.24 13.25 11.05
VV +TR 90.35 89.15 6.16 4.85 78.61 77.29 12.05 10.27 81.53 80.17 11.23 9.28
DS + WV 91.58 90.09 4.59 3.36 86.08 85.23 11.03 9.15 74.28 73.46 10.93 8.20
DS + W2 89.25 88.34 4.52 3.23 85.56 84.27 11.49 9.04 72.44 71.66 11.42 10.23
DS + WR 92.66 91.01 4.36 3.08 86.09 85.37 11.31 10.70 78.34 77.51 11.40 10.64
DS + XV 92.69 91.14 3.89 2.77 84.53 83.20 10.01 9.70 80.10 79.29 10.07 9.32
DS + HT 90.27 89.64 4.47 3.15 85.88 85.17 11.27 9.99 74.83 74.03 11.37 10.11
DS + TR 94.65 93.87 3.73 2.61 86.33 85.27 12.06 10.10 82.01 81.15 10.12 9.19
KI + WV 81.63 80.52 5.98 4.78 72.07 70.61 14.70 12.37 72.58 71.76 14.84 13.44
KI + W2 79.64 78.11 591 4.70 71.96 70.55 14.35 12.01 74.89 74.09 14.25 12.92
KI + WR 84.25 83.64 592 4.69 72.25 70.55 14.64 12.10 74.71 73.88 14.52 13.04
KI + XV 85.66 84.29 5.24 4.16 74.20 72.92 12.88 10.14 82.05 81.22 13.01 12.09
KI+HT 80.56 79.65 5.85 4.62 71.48 70.76 14.76 11.98 80.13 79.30 14.71 13.12
KI+ TR 86.19 85.35 5.17 4.04 85.34 84.28 12.85 10.14 75.39 74.25 12.94 11.14
TA + WV 82.26 81.93 5.66 4.38 74.35 73.62 14.25 10.55 72.36 71.54 14.44 13.55
TA + W2 80.52 79.67 543 4.27 74.55 73.64 13.59 10.42 74.72 73.89 13.78 12.53
TA + WR 83.15 82.65 5.76 4.51 74.56 73.62 13.88 11.12 74.54 73.73 14.07 13.08
TA + XV 86.74 85.51 5.11 4.01 76.77 75.91 13.07 10.36 81.96 81.12 13.17 12.51
TA + HT 82.12 81.68 5.49 4.23 75.39 75.25 13.40 10.23 80.07 79.24 13.56 12.33
TA + TR 90.52 89.58 5.05 3.86 77.15 75.84 12.58 10.73 78.15 77.33 12.57 9.75

Table 2: Performance on combinations of VFM and SFM on simple concatenation combinations across three
settings: speech videos, video-only, and audio-only. All scores are reported in percentage (%) and averaged over

5-fold cross-validation.

dings, it achieves 84.34 % accuracy (F1 = 83.20).
Other strong pairs include VideoMAE V2 + X-
vector (96.41 % accuracy, 95.68 % F1) and ViViT
+ TR (over 90 % accuracy).

To assess DIVINE’s ability to handle purely vi-
sual input, we test on non-speech videos (Detailed
results for these experiments are presented in (Ap-
pendix A.5, Tables 7-9). Table 7, DS individually
achieves 89.26 % accuracy and 88.29 % F1 (MAE
=6.02, RMSE = 8.06). When we simply concate-
nate VFM and SFM embeddings (Table 8), DS +
X-vector still reaches 87.24 % accuracy and 86.01
% F1, showing that pre-computed audio features
can aid video-only inference. With our DIVINE
framework fusion (Table 9), DS + TR climbs to
92.58 % accuracy and 91.63 % F1 (MAE = 3.84,
RMSE = 5.55), confirming that the model main-
tains strong performance using only visual infor-
mation. Refer to (Appendix A.5) for more detail.
Additionally, we also present confusion matrices of

key configurations in Figure 3 (Appendix A.6.1).

5.1 Ablation Study

To assess the contribution of key components in
the proposed framework, we conduct a detailed
ablation study along three axes:

5.1.1 Role of Modalities

While unimodal performance was previously dis-
cussed in Section 5. We revisit these results here to
isolate the individual contribution of each modality.
We retain the full model but remove the audio or
video input at inference time.

5.1.2 Role of Regularization

We compare the three regularization components in
DIVINE: Cycle-consistency (CC) loss, sparse gat-
ing (SG), and token reconstruction (TR) loss. Each
component is removed independently to evaluate
its influence on performance.



Combinations | Speech Videos | Testing Only Video | Testing Only Audio

| A+ F1+ R| M| | A+ F1+ R| M| | A+ F1f R] M|

DIVINE

Vi+ WV 86.99 86.11 2.60 2.10 81.69 82.26 6.32 5.31 76.54 75.43 6.13 5.09
Vi+ W2 85.23 84.39 2.89 1.92 81.20 80.75 6.64 4.92 74.79 73.90 6.08 4.73
Vi + WR 89.45 88.55 2.84 1.95 81.75 81.42 6.25 5.19 80.55 79.54 6.06 5.02
Vi + XV 93.06 92.17 247 2.11 83.77 82.35 6.08 5.20 83.67 82.65 5.90 4.89
Vi+HT 87.25 86.42 2.81 2.33 80.98 80.55 6.37 5.23 76.63 75.76 6.04 5.13
Vi+ TR 94.51 93.63 241 1.78 83.38 81.82 5.69 4.26 83.61 82.06 5.51 443
V2 + WV 88.04 87.23 2.88 1.76 85.89 84.87 6.47 4.67 74.75 73.97 6.31 447
V2 + W2 88.54 84.68 2.59 2.01 84.95 83.99 6.27 4.53 75.30 74.36 6.22 4.21
V2+WR 89.48 88.59 2.35 1.75 86.51 85.64 6.19 4.54 76.98 75.91 5.86 431
V2 +XV 96.41 95.68 2.16 1.51 86.59 85.48 4.95 3.71 83.71 82.27 4.68 345
V2 +HT 89.85 88.97 2.58 2.04 86.26 85.91 6.36 4.51 77.07 76.22 6.06 4.29
V2+TR 95.16 94.68 2.08 1.39 86.93 84.83 5.06 3.50 84.03 83.08 4.84 341
VV + WV 85.48 84.60 2.71 2.21 79.94 80.61 8.43 6.90 74.22 73.46 8.11 6.60
VV + W2 83.72 82.81 3.09 2.03 79.62 78.57 8.27 6.32 73.21 72.08 7.85 6.14
VV + WR 87.89 87.04 3.03 2.06 79.62 78.88 8.46 6.95 78.29 77.14 8.30 6.58
VV + XV 91.35 90.32 2.64 2.24 81.33 79.88 8.33 5.64 81.44 80.32 8.03 5.38
VV + HT 86.11 85.27 2.99 2.46 78.73 78.13 8.97 5.53 74.66 73.06 8.61 5.25
VV +TR 93.47 92.49 2.50 1.86 81.75 79.99 8.02 6.53 82.24 81.31 7.90 6.23
DS + WV 93.83 9291 2.47 1.97 88.64 87.49 6.14 4.37 76.45 75.47 5.75 4.22
DS + W2 91.11 90.28 2.52 1.84 88.55 87.45 6.05 4.21 74.72 73.78 5.70 4.05
DS + WR 95.48 94.55 249 1.74 89.01 88.66 5.74 4.02 80.71 79.78 5.57 3.89
DS + XV 95.56 94.63 2.26 1.61 88.85 88.02 5.25 3.61 82.24 81.29 5.06 3.49
DS + HT 92.99 92.11 2.55 1.72 87.89 86.53 5.88 4.49 76.97 76.13 5.81 4.32
DS + TR 98.26 97.51 1.93 1.12 89.27 88.23 5.02 3.4 84.34 83.20 4.80 3.31
KI + WV 83.26 82.41 343 2.55 75.11 73.26 8.02 6.39 74.77 73.91 7.62 6.08
KI + W2 81.22 80.45 3.53 2.39 74.94 7297 7.94 6.25 77.04 76.21 7.62 5.90
KI + WR 86.07 85.23 3.37 2.57 75.26 73.29 7.80 6.24 76.86 75.90 7.55 5.88
KI + XV 87.19 86.28 2.79 231 76.99 75.85 6.30 542 82.23 81.36 6.71 5.37
KI+HT 82.14 81.37 3.44 2.54 73.94 73.16 7.77 6.23 82.26 81.33 7.54 5.97
KI + TR 88.39 87.63 2.94 2.38 88.25 87.30 6.82 5.40 77.95 76.56 6.47 5.21
TA + WV 84.97 84.13 3.35 2.54 76.80 76.44 7.40 5.85 74.57 73.63 7.36 5.58
TA + W2 82.88 82.07 293 2.17 76.96 76.42 7.07 5.61 76.94 75.98 6.94 5.47
TA + WR 85.99 85.15 343 2.56 77.01 76.39 7.76 592 76.77 75.85 7.38 5.65
TA + XV 88.63 87.78 2.57 2.10 79.24 78.75 6.72 5.29 82.10 81.22 6.50 5.14
TA + HT 84.35 83.48 2.78 2.16 7791 78.08 7.41 5.63 81.19 80.30 7.13 5.48
TA + TR 93.20 92.32 2.75 2.24 80.06 78.71 6.75 5.19 80.43 79.48 6.52 4.84

Table 3: Performance on combinations of VFM and SFM on DIVINE framework across three settings: speech videos,
video-only, and audio-only. All values are reported in percentage (%) and averaged over 5-fold cross-validation.

Setting | At | F1t | M) | R}
DIVINE (Audio + Video) | 98.26 | 97.51 112 | 193
Audio only 89.27 88.23 502 | 344
Video only 8434 | 8320 | 480 | 331

Architecture Variant | At | F1t | My | R}
DIVINE (2-Level VAE) 98.26 97.51 1.12 1.93
Flat Fusion (No Bottleneck) 93.87 92.10 2.11 2.88
Single-Level Latent Fusion 95.22 93.80 1.85 2.62

Table 4: Performance representing the role of modality.

Configuration | At | F1t | My | R}
DIVINE 98.26 97.51 1.12 1.93
w/o Cycle Consistency 96.14 94.95 1.68 2.37
w/o Sparse Gating 95.83 94.21 1.84 2.65
w/o Token Reconstruction 95.62 93.89 1.90 2.71

Table 5: Performance representing the role of regular-
ization.

5.1.3 Role of Latent Space Disentanglement

DIVINE is built on disentangled representations
using separate modality-invariant and modality-
specific latent spaces. We compare this design
against simpler variants: Flat Fusion and Single-
Level Latent.

Table 6: Performance representing the role of subspace
disentanglement.

6 Conclusion

In conclusion, we introduced DIVINE, a disen-
tangled multimodal framework for joint classifi-
cation and severity estimation of neuro-facial dis-
orders. The approach is built upon hierarchical
latent modeling, sparse gated fusion, and learnable
symptom tokens, enabling effective disentangle-
ment and integration of clinical cues from orofacial
video and speech modalities. We conduct exten-
sive experiments on the Toronto NeuroFace dataset
across speech and non-speech tasks, unimodal and
multimodal conditions, and scenarios with miss-
ing modalities. Performance demonstrates that our



framework consistently outperforms individual au-
dio/video models and baseline fusion techniques.
Notably, the concatenation of DeepSeek-VL2 and
TRILLsson through DIVINE achieves SOTA per-
formance.

Limitations and Future Work While our exten-
sive in-domain evaluation on TNF demonstrates
DIVINE’s strong performance, full cross-dataset
validation is contingent on access to suitable ex-
ternal corpora. In the camera-ready version, we
plan—subject to data availability—to evaluate our
audio and video encoders separately on external
unimodal benchmarks, since no suitable corpus
provides both synchronized audio—video record-
ings.

Ethical Statement This study uses non-public clin-
ical data accessed with appropriate institutional
approvals and participant consent. All recordings
were anonymized to ensure privacy. The proposed
framework is intended for research purposes and is
not clinically validated for diagnostic use.
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A Appendix

In the Appendix, we provide:

Section A.1: Detailed Information of Pre-trained
Models.

Section A.2: Benchmark Dataset.

Section A.3: Data Preprocessing.

Section A.4: Hyperparameters and System
Configurations.

Section A.5: Result on Non-Speech Video
Samples.

Section A.6: Visualization Analysis.

A.1 Detailed Information of Pre-trained
Models

In this section, we detail the pretrained encoders
used in our study. We employ pretrained speech
models covering self-supervised, supervised, and
multilingual training paradigms. All models are

used in a frozen setting to extract utterance-level
acoustic representations.

Speech Foundation Models

WavLM (Chen et al., 2022)": is a self-supervised
speech representation model designed to support
full-stack speech processing. It is pretrained using
a masked prediction and denoising objective over
a diverse 94k-hour dataset composed of public
English corpora.

Wav2Vec2.0 (Baevski et al., 2020)%: learns
contextualized speech representations via con-
trastive prediction in the latent space. It combines
a convolutional encoder with a Transformer
network, masking parts of the input and optimizing
discrimination against negative samples.

Whisper (Radford et al., 2023)3: is a multilingual
encoder-decoder model pretrained on 680k hours
of weakly labeled internet audio for transcription,
translation, and speech activity detection. We use
the encoder features from the base model.

x-vector (Snyder et al., 2018)*: is a time-delay
neural network (TDNN) trained for speaker
classification using the VoxCeleb dataset. The
extracted vectors are speaker-discriminative and
widely adopted in speaker verification and spoof
detection tasks.

HuBERT (Snyder et al., 2018)°: is a self-
supervised speech representation model that
combines masked prediction with offline k-means
clustering. Pretrained on large-scale datasets
(e.g., LibriSpeech 960h, Libri-Light 60k), it
performs state-of-the-art speech recognition and
paralinguistic tasks. It is available in multiple
configurations (BASE, LARGE, X-LARGE), and
we use the BASE variant in frozen mode for
extracting utterance-level embeddings.

TRILLsson (Shor and Venugopalan, 2022)°: is a

"https://huggingface.co/microsoft/wavlm-base

2https://huggingface.co/facebook/
wav2vec2-base

3https://huggingface.co/openai/whisper—base

4https://huggingface.co/speechbrain/
spkrec-xvect-voxceleb

Shttps://huggingface.co/facebook/
hubert-base-1s960

Shttps://www.kaggle.com/models/google/


https://huggingface.co/microsoft/wavlm-base
https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/openai/whisper-base
https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
https://huggingface.co/facebook/hubert-base-ls960
https://huggingface.co/facebook/hubert-base-ls960
https://www.kaggle.com/models/google/trillsson

lightweight self-supervised speech model designed
specifically for paralinguistic speech tasks, such
as emotion recognition, speaker identification,
and synthetic speech detection. It is created using
knowledge distillation from the CAP12 Conformer
model, which was trained on 900K hours of
YouTube speech data. It was trained on 58K
hours of public speech data from Libri-Light and
AudioSet.

Vision Foundation Models

Video-MAE (Tong et al., 2022)7: follows a
masked autoencoding strategy with high masking
ratios (90-95%) applied to spatiotemporal cubes.
A vanilla ViT backbone is used as the encoder,
and the model is trained using reconstruction as a
self-supervised pretext task.

VideoMAE V2 (Wang et al., 2023)8: is a scalable
self-supervised video pretraining framework that
extends VideoMAE with a dual masking strategy,
masking both encoder and decoder tokens to
reduce memory and computational load. It adopts
progressive training, starting with unsupervised
learning on a million-level unlabeled video corpus,
followed by post-training on a labeled hybrid
dataset. We employ the ViT-B variant in a frozen
setting to extract clip-level facial features.

ViViT (Arnab et al., 2021)°: is a pure-transformer
architecture that performs factorized self-attention
over space and time using tubelet embeddings. We
employ the ViViT-B/16x2 variant initialized from
ViT image weights.

Deepseek-VL2 (Wu et al., 2024)': is a Mixture-
of-Experts (MoE) vision-language model designed
for advanced multimodal understanding. The
model is trained across vision-language alignment,
multimodal pretraining, and supervised fine-tuning
stages on diverse tasks including visual grounding,
OCR, and document understanding. Our study
uses its vision encoder in a frozen mode to extract
temporally aligned visual embeddings from facial

trillsson
"https://huggingface.co/docs/transformers/en/
model_doc/videomae
8https://huggingface.co/OpenGVLab/
VideoMAEv2-Base
’https://huggingface.co/docs/transformers/en/
model_doc/vivit
10https://github.com/deepseek—ai/DeepSeek—VLZ
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video clips.

Kinematic'': are extracted using the OpenFace 2.0
toolkit (Baltrusaitis et al., 2018), which provides
3D landmark positions, head pose (yaw, pitch,
roll), gaze direction, and facial Action Units (AUs).

Temporal: use a ResNet18 model pretrained on
ImageNet to extract frame-level appearance embed-
dings. A Temporal Attention Network (TANN) is
employed on top of these features to model inter-
frame dependencies.

A.2 Benchmark Dataset

This study used data from the Toronto NeuroFace
(TNF) dataset collected by (Bandini et al., 2020),
which brings together meticulously collected,
high-quality video recordings of oro-facial ges-
tures in healthy adults and individuals living with
neurological impairment. Thirty-six cognitively
intact volunteers (11 with ALS, 14 post-stroke,
11 age-matched controls) each performed a bat-
tery of nine speech and non-speech tasks—ranging
from rapid syllable repetitions (“/pa/,” “/pa-ta-ka/”’)
and the tongue-twister “Buy Bobby a Puppy,”
to maximum jaw openings, lip puckers, and
expressive smiles—under standardized lighting
and camera distance (30—60cm, 640 x 480px,
~50fps). Two expert speech-language pathol-
ogists rated every trial on symmetry, range of
motion, speed, variability, and fatigue using a
5-point scale, yielding a robust set of clini-
cal scores (total range 5-25; inter-rater
0.33-0.61). For over 3300 carefully chosen

frames, 68 facial landmarks were hand-annotated

(inter-rater nRMSE = 1.36 + 0.46%), and precise

face-bounding boxes were derived. Rich metadata—
including subject demographics, task labels, video

timing, and clinician ratings—is provided along-

side the recordings. By combining controlled ac-

quisition protocols with thorough ground-truth an-

notations and clinical assessments. Although the

dataset is not publicly available, we were granted

access. To our knowledge, it is the only known

resource containing synchronized, high-quality fa-

cial video and audio recordings with expert clinical

annotations specific to neuro-facial disorders.

"https://github.com/TadasBaltrusaitis/OpenFace
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A.3 Data Preprocessing

We perform preprocessing steps to ensure data qual-
ity, consistency, and alignment across audio and
video streams. For facial videos, we use the 2D
Face Alignment Network (2D-FAN) 12 to detect
68 landmarks on each frame. This helps identify
the face clearly, which is visible and centrally po-
sitioned. For audio, we apply amplitude normal-
ization and forced alignment at the utterance level
using segment-level timestamps, implemented via
librosa(McFee, 2025) for preprocessing.

A.4 Hyperparameters and System
Configurations

The CNN architecture used for unimodal model-
ing begins with two 1D convolutional blocks. The
first convolutional block uses 256 filters with a ker-
nel size of 3, followed by batch normalization and
max pooling (pool size = 2). The second block
applies 128 filters, again with a kernel size of 3,
followed by batch normalization and max pooling
(pool size = 2). The flattened outputs are passed
to an FCN comprising three dense layers with 256,
128, and 64 neurons, respectively, and a final task-
specific output layer (either softmax or regression
head). The trainable parameters for CNN models
using individual pretrained representations range
from 0.8 to 1.2 million, depending on the dimen-
sionality of the extracted embeddings. This in-
creases to 3.5-6.5 million parameters for fusion
experiments due to additional transformers and fu-
sion layers. We implement all models using the
TensorFlow framework and conduct training and
evaluation on an NVIDIA RTX 4050 GPU. Code
and model weights will be made publicly available
upon acceptance.

A.5 Result on Non-Speech Video Samples

We present the complete evaluation of all
VFM+SFM combinations on non-speech video
samples from the TNF dataset. Table 7 reports the
classification and regression metrics for each Video
Foundation Model using both FCN and CNN back-
bones, where DeepSeek-VL2 achieves the highest
accuracy (89.26 %) and F1 (88.29 %). Table 8
shows the results of simple embedding concate-
nation between VFMs and pre-computed SFMs
on video-only inputs, demonstrating that DS + X-
vector attains 87.24 % accuracy and 86.01 % F1
even without an audio track. Finally, Table 9 pro-

Zhttps://github.com/1adrianb/face-alignment
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vides the full results of our DIVINE fusion frame-
work across all model pairings, with DS + TR lead-
ing at 92.58 % accuracy and 91.63 % F1 (MAE =
3.84, RMSE = 5.55). These tables offer a detailed
view of model performance under purely visual
conditions, complementing the concise summary
in the main text.

A.6 Visualization Analysis

A.6.1 Confusion Matrices

Figure 3 presents confusion matrices for eight
representative DIVINE configurations evaluated
across our TNF test scenarios: (a) DeepSeek-VL2
+ TRILLsson; (b) DeepSeek-VL2 + X-vector; (c)
VideoMAE-V2 + TRILLsson; (d) VideoMAE-V2
+ X-vector; (e) ViViT + TRILLsson; (f) ViViT +
X-vector; (g) DeepSeek-VL2 + Wav2Vec 2.0; and
(h) DeepSeek-VL2 + WavLM. These matrices illus-
trate classification consistency and error patterns
across our key model pairings.


https://github.com/1adrianb/face-alignment

FCN CNN FCN CNN CNN

At FIt | At FIt | M R, | M| R, | A7 FI1 | MJ R
c R M
VFM
Vi 81.69 80.25 83.71 82.05 7.86 9.84 7.05 9.12 84.26 8331 8.10 9.38
V2 82.08 81.67 86.04 85.22 6.98 8.82 6.26 7.59 87.47 86.09 7.13 8.62
vV 79.65 78.16 81.54 80.46 9.43 11.29 8.29 10.65 83.37 82.09 9.17 10.99
DS 86.85 85.98 89.26 88.29 6.86 8.35 6.02 8.06 90.05 89.84 6.97 8.76
KI 73.84 72.26 75.65 74.57 8.81 10.57 7.99 9.73 76.95 75.21 8.39 10.51
TA 78.26 77.23 80.69 78.08 7.24 9.83 7.11 9.29 80.33 79.62 7.69 10.03

Table 7: Performance on video-foundation models (VFMs) on non-speech video samples. All values are reported in
percentage (%) and averaged over 5-fold cross-validation.

Combinations \ Non-speech Testing Videos Combinations \ Non-speech Testing Videos

| A7 F11 | RJ M | A7 F11 | R| M

VFM + SFM VFM + SFM

Vi+ WV 81.49 80.08 13.23 11.56 Vi+ WV 86.46 85.59 7.01 5.88
Vi + W2 80.84 79.31 14.02 11.77 Vi+ W2 85.94 85.11 7.33 5.50
Vi+ WR 80.65 79.44 13.63 10.89 Vi+ WR 87.12 86.25 6.91 5.79
Vi+ XV 81.22 79.97 14.51 11.58 Vi+ XV 86.29 85.44 6.70 5.64
Vi+HT 82.39 81.14 14.77 11.98 Vi + HT 87.05 86.18 7.11 5.58
Vi+ TR 81.87 80.48 13.94 10.89 Vi+ TR 85.78 84.95 6.35 4.72
V2 + WV 84.52 83.17 13.55 11.73 V2 +WV 88.89 88.04 7.26 5.25
V2 + W2 82.65 81.24 13.01 10.97 V2 + W2 88.21 87.93 7.26 5.32
V2+WR 83.12 81.96 13.34 11.67 V2 +WR 89.26 88.38 6.85 5.09
V2 +XV 84.88 83.64 12.67 11.31 V2 + XV 88.74 87.89 5.51 4.12
V2 +HT 83.99 82.71 12.58 9.56 V2 +HT 89.55 88.64 7.10 5.07
V2 +TR 84.16 82.99 13.35 10.96 V2+TR 89.12 88.24 5.63 3.91
VV + WV 80.13 78.58 15.32 12.36 VV + WV 86.46 85.59 9.37 7.55
VV + W2 78.24 77.05 15.15 12.27 VV + W2 85.94 85.11 9.19 7.09
VV +WR 79.05 77.29 16.34 12.21 VV + WR 87.12 86.25 9.41 7.61
VV +XV 80.26 79.35 15.08 12.60 VV + XV 86.29 85.44 9.26 6.32
VV + HT 81.18 79.31 16.86 12.85 VV + HT 87.05 86.18 9.96 7.27
VV +TR 79.36 78.62 13.89 11.44 VV + TR 85.78 84.95 8.97 7.19
DS + WV 85.84 84.71 12.27 10.16 DS + WV 91.89 91.02 6.80 491
DS + W2 87.89 86.53 13.25 11.13 DS + W2 91.63 90.77 6.70 4.72
DS + WR 86.99 85.62 13.65 11.91 DS + WR 92.18 91.23 6.34 4.48
DS + XV 87.24 86.01 11.09 10.71 DS + XV 92.41 91.47 5.80 4.06
DS + HT 86.19 84.92 12.49 11.46 DS + HT 91.76 90.91 6.53 5.13
DS + TR 86.64 85.29 13.44 11.47 DS + TR 92.58 91.63 5.55 3.84
KI + WV 73.79 72.63 16.58 14.03 KI+ WV 77.81 76.98 8.92 7.16
KI + W2 74.56 73.32 15.40 13.68 KI + W2 78.63 77.79 8.84 7.01
KI + WR 74.38 73.11 15.88 13.61 KI + WR 78.27 77.41 8.69 6.99
KI + XV 74.12 72.96 14.52 11.67 KI + XV 78.45 77.66 7.03 6.04
KI + HT 73.76 72.54 16.65 13.26 KI + HT 77.92 77.09 8.67 6.98
KI+TR 83.05 82.58 14.55 11.68 KI+TR 88.15 87.08 7.53 6.01
TA + WV 76.94 75.58 15.78 12.29 TA + WV 80.88 80.03 8.27 6.56
TA + W2 76.31 74.92 16.66 12.93 TA + W2 81.66 80.81 7.92 6.29
TA + WR 77.26 75.88 15.26 12.54 TA + WR 81.44 80.59 8.64 6.63
TA + XV 76.64 75.28 14.79 11.43 TA + XV 81.39 80.52 7.52 5.90
TA + HT 717.04 75.84 15.13 11.61 TA + HT 80.97 80.12 8.35 6.32
TA + TR 74.06 72.89 14.13 12.92 TA + TR 78.52 77.65 7.54 5.83

Table 8: Simple concatenation performance on non-  Table 9: Performance on combinations of the proposed
speech testing videos for all VFM+SFM combinations. =~ DIVINE framework across non-speech testing videos
All values are reported in percentage (%) and averaged  for VFM+SFM. All values are reported in percentage
over 5-fold cross-validation. (%) and averaged over 5-fold cross-validation.
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ALS{ 100.0% 0.0% 0.0% ALS!  100.0% 0.0% 0.0%

HC{ o0% 93.8% 6.2% HCi 125% 81.2% 62%
STROKE 0.0% 0.0% 100.0% STROKE: 00% 0.0% 100.0%
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Figure 3: Representing DIVINE configurations. Each
displays true versus predicted class distributions across
the combined diagnosis and severity categories: (a)
DeepSeek-VL2+TRILLsson; (b) DeepSeek-VL2+X-
vector; (c) DeepSeek-VL2+X-vector (testing only
video); (d) DeepSeek-VL2+TRILLsson (testing only
audio); (e) ViViT (Multitask); (f) WavLM; (g) Kine-
matic (Multitask); and (h) Kinematic (Classification).
These matrices highlight classification consistency and
error patterns for each fusion pairing.
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