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Abstract001

In this study, we present a multimodal frame-002
work for predicting neuro-facial disorders by003
capturing both vocal and facial cues. We hy-004
pothesize that explicitly disentangling shared005
and modality-specific representations within006
multimodal foundation model embeddings can007
enhance clinical interpretability and generaliza-008
tion. To validate this hypothesis, we propose009
DIVINE (DIsentangled Variational INforma-010
tion NEtwork), a fully disentangled multimodal011
framework that operates on representations ex-012
tracted from state-of-the-art (SOTA) audio and013
video foundation models, incorporating hierar-014
chical variational bottlenecks, sparse gated fu-015
sion, and learnable symptom tokens. DIVINE016
operates in a multitask learning setup to jointly017
predict diagnostic categories (Healthy Control,018
ALS, Stroke) and severity levels (Mild, Mod-019
erate, Severe). The model is trained using syn-020
chronized audio and video inputs and evaluated021
on the Toronto NeuroFace dataset under full022
(audio-video) as well as single-modality (audio-023
only and video-only) test conditions. Our pro-024
posed approach achieves SOTA results, with025
the DeepSeek-VL2 and TRILLsson combina-026
tion reaching 98.26% accuracy and 97.51% F1-027
score. Under modality-constrained scenarios,028
the framework performs well, showing strong029
generalization when tested with video-only or030
audio-only inputs. It consistently yields supe-031
rior performance compared to unimodal models032
and baseline fusion techniques. To the best of033
our knowledge, this is the first framework that034
combines cross-modal disentanglement, adap-035
tive fusion, and multitask learning to compre-036
hensively assess neurological disorders using037
synchronized speech and facial video. Code038
and model weights will be released upon the039
completion of the double-blind review process .040

1 Introduction041

Neurodegenerative and neurovascular conditions042

such as Amyotrophic Lateral Sclerosis (ALS) and043

stroke often arise with impairments in facial motor044
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Figure 1: Overview of the DIVINE pipeline for clin-
ical diagnosis (HC, ALS, Stroke) and severity predic-
tion(Mild, Moderate, Severe) by encoding synchronized
video and audio inputs.

control and speech articulation—symptoms that are 045

not only diagnostic indicators but also indicative of 046

disease progression (Bandini et al., 2020; Naeini 047

et al., 2022). Current clinical evaluations of these 048

symptoms rely heavily on subjective expert assess- 049

ments, which are labor-intensive, variable across 050

raters, and difficult to scale for longitudinal mon- 051

itoring. Recent computer vision and speech pro- 052

cessing advances have demonstrated promising ca- 053

pabilities in analyzing facial kinematics and vocal 054

patterns for clinical inference. In particular, lever- 055

aging facial landmarks (Gomes et al., 2023) and 056

acoustic modeling (Migliorelli et al., 2023) have 057

enabled more objective quantification of motor dys- 058

function in neuro-facial disorders. However, these 059

efforts often treat each modality in isolation, ne- 060

glecting the complementary nature of audiovisual 061

cues and their temporal co-dynamics in patholog- 062

ical speech and gestures. In contrast, multimodal 063

architectures provide a more robust and holistic 064

solution by jointly leveraging visual and acoustic 065

information. Nevertheless, earlier fusion strategies 066

frequently struggle to separate modality-specific 067

patterns from shared cross-modal representations. 068

This limitation hampers both interpretability and 069

generalizability, key requirements for ensuring clin- 070

ical reliability. 071
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To address the limitations of prior multimodal072

approaches, we propose DIVINE (DIsentangled073

Variational INformation NEtwork), a fully dis-074

entangled, multitask audio-visual framework for075

the assessment of neuro-facial disorders. DIVINE076

integrates pretrained foundation models for both077

audio and video modalities and employs a hierar-078

chical variational bottleneck to disentangle private079

(modality-specific) and shared (cross-modal) latent080

representations. It introduces a sparse gated fu-081

sion mechanism that dynamically modulates the082

influence of each modality and a symptom-guided083

tokenisation module that directs attention to clin-084

ically salient oro-motor features. We hypothesise085

that explicitly disentangling shared and modality-086

specific latent information enhances both disorder087

classification and severity estimation, while improv-088

ing generalisation across diverse clinical tasks and089

input types. To test this, we conduct extensive eval-090

uations on three clinical populations—HC, ALS,091

and stroke survivors—across speech, non-speech,092

and mixed-task conditions. Our model performs093

multitask learning to jointly predict disorder type094

and five clinician-rated perceptual severity scores.095

Through systematic ablations and modality dropout096

experiments, we demonstrate that DIVINE main-097

tains top performance under unimodal (audio-only,098

video-only) and multimodal conditions, establish-099

ing a new benchmark in multimodal neuro-facial100

assessment.101

To summarize, the main contributions of102

our study are: (i) We introduced DIVINE103

(DIsentangled Variational INformation NEtwork),104

a fully disentangled audio–visual variational frame-105

work that employs hierarchical variational bottle-106

necks, cross-modal alignment, gated fusion blocks,107

and symptom-token modules to extract and inte-108

grate complementary speech and facial represen-109

tations for joint diagnosis and continuous sever-110

ity estimation of neuro-facial disorders. (ii) We111

validate our framework on the Toronto Neuro-112

Face dataset under three evaluation settings—full-113

modality (both audio and video inputs), partial-114

modality (speech-only or non-speech-only seg-115

ments), and missing-modality (audio-only or video-116

only inputs)—and also benchmark over 40 com-117

binations of SOTA audio and vision foundation118

models. (iii) To the best of our knowledge, DI-119

VINE is the first unified framework to combine120

hierarchical disentangled latent learning, cross-121

modal alignment losses, and multitask objec-122

tives—simultaneously addressing categorical clas-123

sification (Healthy Control, ALS, Stroke) and 124

regression-style severity prediction—in a single, 125

end-to-end pipeline. 126

2 Related Work 127

Early work in oro-facial neurological assessment 128

relied solely on video or images. Researchers 129

used handcrafted spatio-temporal features, such 130

as Improved Dense Trajectories with Fisher Vector 131

encoding, to capture broad facial movements in 132

natural settings (Wang and Schmid, 2013; Afshar 133

and Ali Salah, 2016). (Bandini et al., 2020) in- 134

troduced the NeuroFace benchmark, showing that 135

standard face-alignment tools can struggle with 136

pathological motion. More recent methods ap- 137

ply deep models: maximisation–differentiation net- 138

works for depression screening (de Melo et al., 139

2021), multiscale CNNs for expression analysis 140

(De Melo et al., 2024), and landmark-aware trans- 141

formers for estimating expression intensity (Chen 142

et al., 2024). Graph neural networks have also 143

been used to model facial asymmetry and rigidity 144

in ALS patients by treating landmarks as nodes in 145

a facial graph (Gomes et al., 2023). To address 146

video’s limitations (occlusion, lighting), simple fu- 147

sion approaches combine visual and acoustic cues. 148

(Duan et al., 2023) proposes a two-stream system 149

that fuses landmark heat-map volumes with RGB 150

frames via a cross-fusion decoder, improving mo- 151

tion capture. (Neumann et al., 2024) builds a re- 152

mote dialog system that extracts facial, linguistic, 153

and acoustic biomarkers from ALS patients to track 154

bulbar decline over time. While these methods 155

combine modalities, they treat all features as a sin- 156

gle block without separating what each modality 157

contributes. More recent research aims to learn sep- 158

arate, meaningful factors and tackle multiple tasks 159

simultaneously (Duan et al., 2023; Neumann et al., 160

2024). (Shi et al., 2019) further explores Varia- 161

tional Mixture-of-Experts Autoencoder (MMVAE), 162

which factorises the joint posterior as a mixture of 163

unimodal experts to disentangle shared and private 164

latents and support coherent multi-modal inference. 165

Our work departs from these by introducing a fully 166

disentangled multimodal framework that separates 167

private (audio- or video-specific) and shared repre- 168

sentations, and supports joint diagnosis and sever- 169

ity estimation. This approach allows us to quantify 170

each modality’s contribution and handle missing 171

or noisy inputs more robustly than previous fusion 172

strategies. 173
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3 Pre-trained Models174

Speech Models Our speech encoders include175

monolingual models—Wav2Vec2.0 (Baevski et al.,176

2020) and WavLM (Chen et al., 2022)—trained177

on large-scale English corpora using contrastive178

and masked prediction objectives. We also lever-179

age HuBERT (Hsu et al., 2021), which predicts180

latent acoustic units via masked prediction, cap-181

turing long-range dependencies in speech. We182

also include multilingual models such as Whis-183

per (Radford et al., 2023), trained on 680k hours of184

cross-lingual data, trained on 128 languages. For185

prosodic variation and speaker-dependent cues, we186

use TRILLsson (Shor and Venugopalan, 2022) and187

x-vector (Snyder et al., 2018), both known for their188

robustness in paralinguistic speech tasks.189

Vision Models For facial video modeling, we uti-190

lize transformer-based models including Video-191

MAE (Tong et al., 2022), VideoMAE-V2 (Wang192

et al., 2023), and ViViT (Arnab et al., 2021), all em-193

ploying spatiotemporal encoding strategies. We fur-194

ther use DeepSeek-VL2 (Wu et al., 2024), a vision-195

language model with a dynamic tiling and token ag-196

gregation mechanism. As structured baselines, we197

include handcrafted kinematic features from Open-198

Face (Baltrusaitis et al., 2018) and temporal atten-199

tion features extracted using a ResNet18+TANN200

pipeline. Additional details regarding the above201

PTMs are provided in Appendix A.1.202

4 Modeling203

We consider two downstream networks, i.e., a fully204

connected network (FCN) and a CNN with indi-205

vidual PTM representations applied independently206

to each audio and video foundation model repre-207

sentation. The FCN model consists of three dense208

layers with 256, 128, and 64 neurons, followed by209

the output layer. The CNN model comprises two210

convolution blocks, each containing a 1D convolu-211

tional layer followed by batch normalization and a212

max-pooling operation, then a flattening step and213

a dense FCN block with the same configuration as214

above. Detailed hyperparameter settings and model215

configurations are described in Appendix A.4.216

DIVINE: We propose DIVINE, a novel multi-217

modal learning framework tailored for neuro-facial218

disorder assessment. It is built upon a fully disen-219

tangled pipeline that incorporates hierarchical la-220

tent modeling, gated cross-modal fusion, and clini-221

cal token-aware dense reasoning over synchronized222

audio and video inputs. The overall architecture of223

the proposed framework is illustrated in Figure 2. 224

We extract foundational audio and video represen- 225

tations from raw inputs using frozen pretrained 226

models. Let the raw video and audio inputs be 227

denoted as 228

v ∈ RTv×H×W×C , a ∈ RTa . 229

We extract frozen representations using pretrained 230

foundation models: 231

Xv = VFM(v) ∈ RTv×dv ,

Xa = SFM(a) ∈ RTa×da .
232

Local Temporal Refinement We first refine the 233

local temporal structure for each modality us- 234

ing CNN-based feature transformation. For each 235

modality m ∈ {v, a}, we apply a temporal refine- 236

ment stage: 237

X ′
m = CNNm(Xm) ∈ RT ′

m×d′m , (1) 238

where CNNm consists of a 1D Convolution, Batch 239

Normalization, ReLU activation, and Max Pooling. 240

Local VAE (VAE_window) We apply a local 241

VAE over temporally refined segments. For each 242

temporal index t = 1, . . . , T ′′ and modality m ∈ 243

{v, a}, the local variational encoding and decoding 244

steps are: 245

(µm
w (t), log σm

w (t)) = fw
enc(X

′
m[t]),

zmsig(t) = µm
w (t) + exp

(
1
2 log σ

m
w (t)

)
⊙ ϵ,

ϵ ∼ N (0, I),

X̂ ′
m[t] = fw

dec(z
m
sig(t)).

(2) 246

The local VAE loss is defined as: 247

Lm
w =

1

T ′′

T ′′∑
t=1

∥∥∥X ′
m[t]− X̂ ′

m[t]
∥∥∥2

+KL
(
N (µm

w (t), σm
w (t)2) ∥N (0, I)

) (3) 248

Global Average Pooling We summarize local 249

latent variables across time via global average pool- 250

ing to obtain fixed-length utterance-level embed- 251

dings. 252

z̄m =
1

T ′′

T ′′∑
t=1

zmsig(t) ∈ Rdw . (4) 253
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Figure 2: Proposed modeling architecture : DIVINE

Utterance-Level VAE (VAE_utterance) We dis-254

entangle modality-invariant (shared) and modality-255

specific (private) representations at the utterance256

level using two parallel variational autoencoders257

(VAEs). For each modality m ∈ {v, a}, the shared258

encoder is weight-tied across modalities and maps259

the global latent representation z̄m to the parame-260

ters of a Gaussian distribution, producing a mean261

µm
s and log-variance log σm

s . A shared latent vari-262

able is sampled using the reparameterization trick263

as264

zmshared = µm
s +exp

(
1
2 log σ

m
s

)
⊙ϵ, ϵ ∼ N (0, I).265

In parallel, a modality-specific private encoder266

fp,m
enc , which is unique to each modality, generates267

the private latent representation by producing µm
p268

and log σm
p , from which the private vector is sam-269

pled as270

zmpriv = µm
p + exp

(
1
2 log σ

m
p

)
⊙ ϵ.271

To regularize shared and private encodings, we272

define the utterance-level VAE loss as the sum of a273

reconstruction term and KL divergence penalties.274

The total loss is represented as:275

Lm
u = Lm

rec + βsKL
(
N (µm

s , σm2
s ) ∥N (0, I)

)
+ βpKL

(
N (µm

p , σm2
p ) ∥N (0, I)

)
,

(5)276

where βs and βp are hyperparameters controlling277

the relative importance of the shared and private278

KL divergence terms.279

Cross-Modal Alignment We decode the video-280

shared representation into the audio-shared latent281

space:282

ẑa = Da(z
v
shared),283

Lcycle = ∥ẑa − zashared∥
2
2 . (6)284

(Optionally, add the reverse term ∥ẑv − zvshared∥22.)285

Sparse Gated Fusion We compute a sparse, 286

learnable fusion of modality-specific and shared 287

embeddings to dynamically weigh audio and video 288

cues. 289

gv = σ(Wvz
v
priv + bv), 290

ga = σ(Waz
a
priv + ba). (7) 291

The fused latent representation is computed as: 292

hfused = gv ⊙ zvshared + ga ⊙ zashared ∈ Rds . (8) 293

Sparsity penalty: 294

Lsparse = ∥gv∥1 + ∥ga∥1. (9) 295

Token Injection and Dense Layer Let 296

T1, . . . , TK ∈ Rds be learnable clinical symptom 297

tokens. Concatenate and input to dense layer: 298

S = [T1, . . . , TK , hfused] ∈ R(K+1)×ds , 299
300

Hout = Dense(S), Hout ∈ R(K+1)×ds (10) 301

Add token specialization regularization term 302

Ltoken. 303

Output Heads Finally, we derive diagnosis and 304

severity predictions from the fused representation 305

using softmax or linear heads. Let h = Hout[K + 306

1] denote the fused output. The classification and 307

severity predictions are: 308

ŷcls = softmax(Wclsh+ bcls), 309

ŷsev = softmax(Wsevh+ bsev). (11) 310

All non-frozen parameters are optimized end-to- 311

end using the Adam optimizer with early stopping. 312

Joint Loss Function The function combines clas- 313

sification, severity, reconstruction, and regulariza- 314

tion terms: 315

Ltotal = Lcls + αLsev + ϵ (Lcycle + Lsparse + λLtoken)

+
∑

m∈{v,a}

(Lm
w + Lm

u ) .

(12) 316
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FCN CNN FCN CNN CNN

A ↑ F1 ↑ A ↑ F1 ↑ M ↓ R ↓ M ↓ R ↓ A ↑ F1 ↑ M ↓ R ↓

C R M

VFM

Vi 80.54 78.57 83.78 81.35 10.82 8.99 9.76 7.28 82.89 82.62 10.25 8.64
V2 82.16 81.65 85.69 83.58 9.29 7.38 8.73 6.84 85.38 84.81 9.45 7.65
VV 79.16 77.28 82.59 81.27 11.26 9.52 10.22 8.63 81.53 80.16 11.86 9.32
DS 85.23 84.61 88.94 86.57 9.22 7.26 8.58 6.81 88.33 86.15 9.38 7.58
KI 72.29 71.61 76.16 74.51 11.82 9.58 10.50 8.89 75.45 73.98 11.55 9.88
TA 78.31 77.18 79.56 77.06 10.58 8.97 9.96 8.05 78.11 76.65 11.09 9.11

SFM

WV 78.29 77.19 80.83 79.37 8.38 9.70 7.61 8.51 82.09 80.35 6.88 7.60
W2 74.02 73.77 76.37 74.32 8.54 9.89 7.66 8.38 82.13 81.98 6.38 7.55
WR 80.61 79.49 82.34 81.06 8.47 9.36 7.18 8.16 85.94 83.56 6.22 7.29
XV 85.85 83.96 86.29 85.81 8.16 8.59 6.94 7.61 89.27 87.64 6.15 7.14
HT 77.39 76.28 79.62 78.09 9.72 10.12 8.68 9.87 80.11 79.51 6.85 7.74
TR 86.06 84.64 87.58 86.64 7.50 7.88 6.83 7.25 90.51 88.69 6.12 7.01

Table 1: Performance of individual Video Foundation Models (VFMs) and Speech Foundation Models (SFMs)
across classification, regression, and multitask tasks on speech-video samples using FCN and CNN backbones.;
Abbreviations: VFMs – Vi (VideoMAE), V2 (VideoMAE V2), VV (ViViT), DS (DeepSeek-VL2), KI (Kinematic),
TA (Temporal); SFMs – WV (WavLM), W2 (Wav2Vec2), WR (Whisper), XV (X-vector), HT (HuBERT), TR
(TRILLsson). Note: The abbreviations used in Table 1 are consistent across Tables 2, 3,7,8 and 9.

5 Experiments317

Benchmark Dataset: We conduct our experiments318

on the Toronto NeuroFace (TNF) dataset (Ban-319

dini et al., 2020), which contains synchronized au-320

dio and video recordings from cognitively intact321

adults across three clinical groups: ALS, stroke,322

and healthy controls. We follow a 5-fold cross-323

validation protocol across all experimental set-324

tings. Detailed information on the dataset, task325

design, and annotation procedures is provided in326

Appendix A.2,A.3.327

Training Details: We use softmax activation in328

the output layers for both classification and sever-329

ity prediction heads to produce probability distri-330

butions. All models are trained using the Adam331

optimizer with a learning rate of 10−3, a batch size332

32, and categorical cross-entropy loss. Training is333

performed for 50 epochs with early stopping and334

dropout regularization to mitigate overfitting. For335

all DIVINE experiments, we fix the hyperparame-336

ters: α = 2, ϵ = 0.1, and λ = 0.4, selected based337

on preliminary validation performance. These val-338

ues are kept consistent across all fusion and abla-339

tion experiments.340

Experimental Results: Table 1 shows how each341

Video Foundation Model (VFM) and Speech342

Foundation Model (SFM) performs on the TNF343

speech–video samples, using both FCN and CNN344

backbones. Among the VFMs, DeepSeek-VL2345

(DS) leads with a CNN accuracy of 88.94% and346

F1 of 86.57%, and achieves the lowest regression347

errors (MAE = 8.58, RMSE = 6.81) as well as the348

lowest multitask errors (MAE = 7.58, RMSE = 349

9.38). VideoMAE V2 follows closely (85.69 % 350

accuracy, 83.58 % F1; MAE = 8.73, RMSE = 6.84). 351

Handcrafted kinematic and temporal features lag 352

behind (76–79 % accuracy with CNN), highlight- 353

ing the value of pretrained vision encoders. In the 354

audio domain, TRILLsson (TR) is top: it records 355

90.51 % accuracy and 88.69 % F1 in the multi- 356

task setting, with MAE = 6.12 and RMSE = 7.01. 357

Wav2Vec 2.0 and Whisper also perform well (e.g. 358

Wav2Vec 2.0 reaches 89.27 % accuracy, 87.64 % 359

F1), while WavLM and X-vector show weaker re- 360

gression consistency. Overall, CNN backbones 361

outperform FCNs, confirming their strength at cap- 362

turing local temporal patterns. Next, we fuse VFMs 363

and SFMs using a simple embedding concatenation 364

(Table 2). Here, DS + TR achieves 94.65 % accu- 365

racy and 93.87 % F1 on full speech–video inputs, 366

while still holding 86.33 % accuracy when only 367

video is available and 82.01 % when only audio is 368

available. VideoMAE V2 + X-vector also performs 369

strongly (93.22 % accuracy, 92.55 % F1). These 370

results show that even a straightforward fusion 371

of embeddings leverages complementary modal- 372

ity information and degrades gracefully when one 373

modality is unavailable. Finally, Table 3 reports 374

our DIVINE disentangled fusion. The best pair, DS 375

+ TR, reaches 98.26 % accuracy and 97.51 % F1 376

when both audio and video embeddings are pro- 377

vided. When evaluated with only video embed- 378

dings, DS + TR still scores 89.27 % accuracy (F1 = 379

88.23), and when evaluated with only audio embed- 380
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Combinations Speech Videos Testing Only Video Testing Only Audio

A ↑ F1 ↑ R ↓ M ↓ A ↑ F1 ↑ R ↓ M ↓ A ↑ F1 ↑ R ↓ M ↓

Concatenation

Vi + WV 84.55 83.64 4.82 3.96 79.25 79.11 11.72 10.27 74.46 73.61 11.66 10.29
Vi + W2 83.41 82.61 4.86 3.74 78.73 77.79 12.25 9.69 72.31 71.55 12.13 9.65
Vi + WR 87.25 86.23 4.75 3.87 79.22 78.75 11.55 9.91 78.20 77.42 11.68 10.04
Vi + XV 91.64 90.85 4.68 3.91 80.68 79.68 12.13 9.52 81.16 80.29 12.31 10.55
Vi + HT 85.32 84.64 4.80 3.98 78.41 77.79 12.20 9.60 74.66 73.90 12.10 10.55
Vi + TR 92.65 91.11 4.29 3.52 80.65 79.23 11.61 9.88 82.27 81.44 10.52 8.78

V2 + WV 86.36 85.29 4.86 3.49 83.08 82.17 11.96 10.59 72.61 71.81 11.89 9.71
V2 + W2 85.27 84.56 4.81 3.45 82.18 81.16 11.72 9.74 73.28 72.27 11.86 9.62
V2 + WR 87.21 86.21 4.67 3.38 83.52 82.39 11.70 10.46 74.63 73.80 11.84 9.39
V2 + XV 93.22 92.55 3.72 2.75 83.34 82.51 11.09 10.03 80.04 79.21 10.09 8.15
V2 + HT 87.65 86.08 4.78 3.42 83.21 82.65 11.65 8.39 74.95 74.10 11.82 9.35
V2 + TR 90.99 89.24 3.76 2.69 83.54 82.08 11.65 9.87 81.88 81.01 10.31 9.61

VV + WV 82.19 81.65 6.29 5.16 77.69 79.11 13.44 10.81 72.09 71.38 13.52 11.43
VV + W2 81.54 79.69 6.23 4.77 76.82 75.17 13.19 10.58 71.22 70.11 13.66 11.59
VV + WR 85.47 84.43 6.39 5.23 78.23 76.86 13.39 10.73 76.21 75.09 13.99 11.71
VV + XV 89.36 88.14 6.38 4.29 79.28 78.35 13.25 10.59 79.14 78.16 13.52 11.29
VV + HT 83.17 82.64 6.85 4.12 77.15 76.38 13.11 10.34 72.68 71.24 13.25 11.05
VV + TR 90.35 89.15 6.16 4.85 78.61 77.29 12.05 10.27 81.53 80.17 11.23 9.28

DS + WV 91.58 90.09 4.59 3.36 86.08 85.23 11.03 9.15 74.28 73.46 10.93 8.20
DS + W2 89.25 88.34 4.52 3.23 85.56 84.27 11.49 9.04 72.44 71.66 11.42 10.23
DS + WR 92.66 91.01 4.36 3.08 86.09 85.37 11.31 10.70 78.34 77.51 11.40 10.64
DS + XV 92.69 91.14 3.89 2.77 84.53 83.20 10.01 9.70 80.10 79.29 10.07 9.32
DS + HT 90.27 89.64 4.47 3.15 85.88 85.17 11.27 9.99 74.83 74.03 11.37 10.11
DS + TR 94.65 93.87 3.73 2.61 86.33 85.27 12.06 10.10 82.01 81.15 10.12 9.19

KI + WV 81.63 80.52 5.98 4.78 72.07 70.61 14.70 12.37 72.58 71.76 14.84 13.44
KI + W2 79.64 78.11 5.91 4.70 71.96 70.55 14.35 12.01 74.89 74.09 14.25 12.92
KI + WR 84.25 83.64 5.92 4.69 72.25 70.55 14.64 12.10 74.71 73.88 14.52 13.04
KI + XV 85.66 84.29 5.24 4.16 74.20 72.92 12.88 10.14 82.05 81.22 13.01 12.09
KI + HT 80.56 79.65 5.85 4.62 71.48 70.76 14.76 11.98 80.13 79.30 14.71 13.12
KI + TR 86.19 85.35 5.17 4.04 85.34 84.28 12.85 10.14 75.39 74.25 12.94 11.14

TA + WV 82.26 81.93 5.66 4.38 74.35 73.62 14.25 10.55 72.36 71.54 14.44 13.55
TA + W2 80.52 79.67 5.43 4.27 74.55 73.64 13.59 10.42 74.72 73.89 13.78 12.53
TA + WR 83.15 82.65 5.76 4.51 74.56 73.62 13.88 11.12 74.54 73.73 14.07 13.08
TA + XV 86.74 85.51 5.11 4.01 76.77 75.91 13.07 10.36 81.96 81.12 13.17 12.51
TA + HT 82.12 81.68 5.49 4.23 75.39 75.25 13.40 10.23 80.07 79.24 13.56 12.33
TA + TR 90.52 89.58 5.05 3.86 77.15 75.84 12.58 10.73 78.15 77.33 12.57 9.75

Table 2: Performance on combinations of VFM and SFM on simple concatenation combinations across three
settings: speech videos, video-only, and audio-only. All scores are reported in percentage (%) and averaged over
5-fold cross-validation.

dings, it achieves 84.34 % accuracy (F1 = 83.20).381

Other strong pairs include VideoMAE V2 + X-382

vector (96.41 % accuracy, 95.68 % F1) and ViViT383

+ TR (over 90 % accuracy).384

To assess DIVINE’s ability to handle purely vi-385

sual input, we test on non-speech videos (Detailed386

results for these experiments are presented in (Ap-387

pendix A.5, Tables 7–9). Table 7, DS individually388

achieves 89.26 % accuracy and 88.29 % F1 (MAE389

= 6.02, RMSE = 8.06). When we simply concate-390

nate VFM and SFM embeddings (Table 8), DS +391

X-vector still reaches 87.24 % accuracy and 86.01392

% F1, showing that pre-computed audio features393

can aid video-only inference. With our DIVINE394

framework fusion (Table 9), DS + TR climbs to395

92.58 % accuracy and 91.63 % F1 (MAE = 3.84,396

RMSE = 5.55), confirming that the model main-397

tains strong performance using only visual infor-398

mation. Refer to (Appendix A.5) for more detail.399

Additionally, we also present confusion matrices of400

key configurations in Figure 3 (Appendix A.6.1). 401

5.1 Ablation Study 402

To assess the contribution of key components in 403

the proposed framework, we conduct a detailed 404

ablation study along three axes: 405

5.1.1 Role of Modalities 406

While unimodal performance was previously dis- 407

cussed in Section 5. We revisit these results here to 408

isolate the individual contribution of each modality. 409

We retain the full model but remove the audio or 410

video input at inference time. 411

5.1.2 Role of Regularization 412

We compare the three regularization components in 413

DIVINE: Cycle-consistency (CC) loss, sparse gat- 414

ing (SG), and token reconstruction (TR) loss. Each 415

component is removed independently to evaluate 416

its influence on performance. 417
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Combinations Speech Videos Testing Only Video Testing Only Audio

A ↑ F1 ↑ R ↓ M ↓ A ↑ F1 ↑ R ↓ M ↓ A ↑ F1 ↑ R ↓ M ↓

DIVINE

Vi + WV 86.99 86.11 2.60 2.10 81.69 82.26 6.32 5.31 76.54 75.43 6.13 5.09
Vi + W2 85.23 84.39 2.89 1.92 81.20 80.75 6.64 4.92 74.79 73.90 6.08 4.73
Vi + WR 89.45 88.55 2.84 1.95 81.75 81.42 6.25 5.19 80.55 79.54 6.06 5.02
Vi + XV 93.06 92.17 2.47 2.11 83.77 82.35 6.08 5.20 83.67 82.65 5.90 4.89
Vi + HT 87.25 86.42 2.81 2.33 80.98 80.55 6.37 5.23 76.63 75.76 6.04 5.13
Vi + TR 94.51 93.63 2.41 1.78 83.38 81.82 5.69 4.26 83.61 82.06 5.51 4.43

V2 + WV 88.04 87.23 2.88 1.76 85.89 84.87 6.47 4.67 74.75 73.97 6.31 4.47
V2 + W2 88.54 84.68 2.59 2.01 84.95 83.99 6.27 4.53 75.30 74.36 6.22 4.21
V2 + WR 89.48 88.59 2.35 1.75 86.51 85.64 6.19 4.54 76.98 75.91 5.86 4.31
V2 + XV 96.41 95.68 2.16 1.51 86.59 85.48 4.95 3.71 83.71 82.27 4.68 3.45
V2 + HT 89.85 88.97 2.58 2.04 86.26 85.91 6.36 4.51 77.07 76.22 6.06 4.29
V2 + TR 95.16 94.68 2.08 1.39 86.93 84.83 5.06 3.50 84.03 83.08 4.84 3.41

VV + WV 85.48 84.60 2.71 2.21 79.94 80.61 8.43 6.90 74.22 73.46 8.11 6.60
VV + W2 83.72 82.81 3.09 2.03 79.62 78.57 8.27 6.32 73.21 72.08 7.85 6.14
VV + WR 87.89 87.04 3.03 2.06 79.62 78.88 8.46 6.95 78.29 77.14 8.30 6.58
VV + XV 91.35 90.32 2.64 2.24 81.33 79.88 8.33 5.64 81.44 80.32 8.03 5.38
VV + HT 86.11 85.27 2.99 2.46 78.73 78.13 8.97 5.53 74.66 73.06 8.61 5.25
VV + TR 93.47 92.49 2.50 1.86 81.75 79.99 8.02 6.53 82.24 81.31 7.90 6.23

DS + WV 93.83 92.91 2.47 1.97 88.64 87.49 6.14 4.37 76.45 75.47 5.75 4.22
DS + W2 91.11 90.28 2.52 1.84 88.55 87.45 6.05 4.21 74.72 73.78 5.70 4.05
DS + WR 95.48 94.55 2.49 1.74 89.01 88.66 5.74 4.02 80.71 79.78 5.57 3.89
DS + XV 95.56 94.63 2.26 1.61 88.85 88.02 5.25 3.61 82.24 81.29 5.06 3.49
DS + HT 92.99 92.11 2.55 1.72 87.89 86.53 5.88 4.49 76.97 76.13 5.81 4.32
DS + TR 98.26 97.51 1.93 1.12 89.27 88.23 5.02 3.44 84.34 83.20 4.80 3.31

KI + WV 83.26 82.41 3.43 2.55 75.11 73.26 8.02 6.39 74.77 73.91 7.62 6.08
KI + W2 81.22 80.45 3.53 2.39 74.94 72.97 7.94 6.25 77.04 76.21 7.62 5.90
KI + WR 86.07 85.23 3.37 2.57 75.26 73.29 7.80 6.24 76.86 75.90 7.55 5.88
KI + XV 87.19 86.28 2.79 2.31 76.99 75.85 6.30 5.42 82.23 81.36 6.71 5.37
KI + HT 82.14 81.37 3.44 2.54 73.94 73.16 7.77 6.23 82.26 81.33 7.54 5.97
KI + TR 88.39 87.63 2.94 2.38 88.25 87.30 6.82 5.40 77.95 76.56 6.47 5.21

TA + WV 84.97 84.13 3.35 2.54 76.80 76.44 7.40 5.85 74.57 73.63 7.36 5.58
TA + W2 82.88 82.07 2.93 2.17 76.96 76.42 7.07 5.61 76.94 75.98 6.94 5.47
TA + WR 85.99 85.15 3.43 2.56 77.01 76.39 7.76 5.92 76.77 75.85 7.38 5.65
TA + XV 88.63 87.78 2.57 2.10 79.24 78.75 6.72 5.29 82.10 81.22 6.50 5.14
TA + HT 84.35 83.48 2.78 2.16 77.91 78.08 7.41 5.63 81.19 80.30 7.13 5.48
TA + TR 93.20 92.32 2.75 2.24 80.06 78.71 6.75 5.19 80.43 79.48 6.52 4.84

Table 3: Performance on combinations of VFM and SFM on DIVINE framework across three settings: speech videos,
video-only, and audio-only. All values are reported in percentage (%) and averaged over 5-fold cross-validation.

Setting A ↑ F1 ↑ M ↓ R ↓

DIVINE (Audio + Video) 98.26 97.51 1.12 1.93
Audio only 89.27 88.23 5.02 3.44
Video only 84.34 83.20 4.80 3.31

Table 4: Performance representing the role of modality.

Configuration A ↑ F1 ↑ M ↓ R ↓

DIVINE 98.26 97.51 1.12 1.93
w/o Cycle Consistency 96.14 94.95 1.68 2.37
w/o Sparse Gating 95.83 94.21 1.84 2.65
w/o Token Reconstruction 95.62 93.89 1.90 2.71

Table 5: Performance representing the role of regular-
ization.

5.1.3 Role of Latent Space Disentanglement418

DIVINE is built on disentangled representations419

using separate modality-invariant and modality-420

specific latent spaces. We compare this design421

against simpler variants: Flat Fusion and Single-422

Level Latent.423

Architecture Variant A ↑ F1 ↑ M ↓ R ↓

DIVINE (2-Level VAE) 98.26 97.51 1.12 1.93
Flat Fusion (No Bottleneck) 93.87 92.10 2.11 2.88
Single-Level Latent Fusion 95.22 93.80 1.85 2.62

Table 6: Performance representing the role of subspace
disentanglement.

6 Conclusion 424

In conclusion, we introduced DIVINE, a disen- 425

tangled multimodal framework for joint classifi- 426

cation and severity estimation of neuro-facial dis- 427

orders. The approach is built upon hierarchical 428

latent modeling, sparse gated fusion, and learnable 429

symptom tokens, enabling effective disentangle- 430

ment and integration of clinical cues from orofacial 431

video and speech modalities. We conduct exten- 432

sive experiments on the Toronto NeuroFace dataset 433

across speech and non-speech tasks, unimodal and 434

multimodal conditions, and scenarios with miss- 435

ing modalities. Performance demonstrates that our 436
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framework consistently outperforms individual au-437

dio/video models and baseline fusion techniques.438

Notably, the concatenation of DeepSeek-VL2 and439

TRILLsson through DIVINE achieves SOTA per-440

formance.441

Limitations and Future Work While our exten-442

sive in-domain evaluation on TNF demonstrates443

DIVINE’s strong performance, full cross-dataset444

validation is contingent on access to suitable ex-445

ternal corpora. In the camera-ready version, we446

plan—subject to data availability—to evaluate our447

audio and video encoders separately on external448

unimodal benchmarks, since no suitable corpus449

provides both synchronized audio–video record-450

ings.451

Ethical Statement This study uses non-public clin-452

ical data accessed with appropriate institutional453

approvals and participant consent. All recordings454

were anonymized to ensure privacy. The proposed455

framework is intended for research purposes and is456

not clinically validated for diagnostic use.457
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A Appendix579

In the Appendix, we provide:580

Section A.1: Detailed Information of Pre-trained581

Models.582

Section A.2: Benchmark Dataset.583

Section A.3: Data Preprocessing.584

Section A.4: Hyperparameters and System585

Configurations.586

Section A.5: Result on Non-Speech Video587

Samples.588

Section A.6: Visualization Analysis.589

590

A.1 Detailed Information of Pre-trained591

Models592

In this section, we detail the pretrained encoders593

used in our study. We employ pretrained speech594

models covering self-supervised, supervised, and595

multilingual training paradigms. All models are596

used in a frozen setting to extract utterance-level 597

acoustic representations. 598

599

Speech Foundation Models 600

601

WavLM (Chen et al., 2022)1: is a self-supervised 602

speech representation model designed to support 603

full-stack speech processing. It is pretrained using 604

a masked prediction and denoising objective over 605

a diverse 94k-hour dataset composed of public 606

English corpora. 607

608

Wav2Vec2.0 (Baevski et al., 2020)2: learns 609

contextualized speech representations via con- 610

trastive prediction in the latent space. It combines 611

a convolutional encoder with a Transformer 612

network, masking parts of the input and optimizing 613

discrimination against negative samples. 614

615

Whisper (Radford et al., 2023)3: is a multilingual 616

encoder-decoder model pretrained on 680k hours 617

of weakly labeled internet audio for transcription, 618

translation, and speech activity detection. We use 619

the encoder features from the base model. 620

621

x-vector (Snyder et al., 2018)4: is a time-delay 622

neural network (TDNN) trained for speaker 623

classification using the VoxCeleb dataset. The 624

extracted vectors are speaker-discriminative and 625

widely adopted in speaker verification and spoof 626

detection tasks. 627

628

HuBERT (Snyder et al., 2018)5: is a self- 629

supervised speech representation model that 630

combines masked prediction with offline k-means 631

clustering. Pretrained on large-scale datasets 632

(e.g., LibriSpeech 960h, Libri-Light 60k), it 633

performs state-of-the-art speech recognition and 634

paralinguistic tasks. It is available in multiple 635

configurations (BASE, LARGE, X-LARGE), and 636

we use the BASE variant in frozen mode for 637

extracting utterance-level embeddings. 638

639

TRILLsson (Shor and Venugopalan, 2022)6: is a 640

1https://huggingface.co/microsoft/wavlm-base
2https://huggingface.co/facebook/

wav2vec2-base
3https://huggingface.co/openai/whisper-base
4https://huggingface.co/speechbrain/

spkrec-xvect-voxceleb
5https://huggingface.co/facebook/

hubert-base-ls960
6https://www.kaggle.com/models/google/
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lightweight self-supervised speech model designed641

specifically for paralinguistic speech tasks, such642

as emotion recognition, speaker identification,643

and synthetic speech detection. It is created using644

knowledge distillation from the CAP12 Conformer645

model, which was trained on 900K hours of646

YouTube speech data. It was trained on 58K647

hours of public speech data from Libri-Light and648

AudioSet.649

650

Vision Foundation Models651

652

Video-MAE (Tong et al., 2022)7: follows a653

masked autoencoding strategy with high masking654

ratios (90–95%) applied to spatiotemporal cubes.655

A vanilla ViT backbone is used as the encoder,656

and the model is trained using reconstruction as a657

self-supervised pretext task.658

659

VideoMAE V2 (Wang et al., 2023)8: is a scalable660

self-supervised video pretraining framework that661

extends VideoMAE with a dual masking strategy,662

masking both encoder and decoder tokens to663

reduce memory and computational load. It adopts664

progressive training, starting with unsupervised665

learning on a million-level unlabeled video corpus,666

followed by post-training on a labeled hybrid667

dataset. We employ the ViT-B variant in a frozen668

setting to extract clip-level facial features.669

670

ViViT (Arnab et al., 2021)9: is a pure-transformer671

architecture that performs factorized self-attention672

over space and time using tubelet embeddings. We673

employ the ViViT-B/16×2 variant initialized from674

ViT image weights.675

676

Deepseek-VL2 (Wu et al., 2024)10: is a Mixture-677

of-Experts (MoE) vision-language model designed678

for advanced multimodal understanding. The679

model is trained across vision-language alignment,680

multimodal pretraining, and supervised fine-tuning681

stages on diverse tasks including visual grounding,682

OCR, and document understanding. Our study683

uses its vision encoder in a frozen mode to extract684

temporally aligned visual embeddings from facial685

trillsson
7https://huggingface.co/docs/transformers/en/

model_doc/videomae
8https://huggingface.co/OpenGVLab/

VideoMAEv2-Base
9https://huggingface.co/docs/transformers/en/

model_doc/vivit
10https://github.com/deepseek-ai/DeepSeek-VL2

video clips. 686

687

Kinematic11: are extracted using the OpenFace 2.0 688

toolkit (Baltrusaitis et al., 2018), which provides 689

3D landmark positions, head pose (yaw, pitch, 690

roll), gaze direction, and facial Action Units (AUs). 691

692

Temporal: use a ResNet18 model pretrained on 693

ImageNet to extract frame-level appearance embed- 694

dings. A Temporal Attention Network (TANN) is 695

employed on top of these features to model inter- 696

frame dependencies. 697

A.2 Benchmark Dataset 698

This study used data from the Toronto NeuroFace 699

(TNF) dataset collected by (Bandini et al., 2020), 700

which brings together meticulously collected, 701

high-quality video recordings of oro-facial ges- 702

tures in healthy adults and individuals living with 703

neurological impairment. Thirty-six cognitively 704

intact volunteers (11 with ALS, 14 post-stroke, 705

11 age-matched controls) each performed a bat- 706

tery of nine speech and non-speech tasks—ranging 707

from rapid syllable repetitions (“/pa/,” “/pa-ta-ka/”) 708

and the tongue-twister “Buy Bobby a Puppy,” 709

to maximum jaw openings, lip puckers, and 710

expressive smiles—under standardized lighting 711

and camera distance (30–60cm, 640 × 480px, 712

∼50fps). Two expert speech-language pathol- 713

ogists rated every trial on symmetry, range of 714

motion, speed, variability, and fatigue using a 715

5-point scale, yielding a robust set of clini- 716

cal scores (total range 5–25; inter-rater κ = 717

0.33–0.61). For over 3300 carefully chosen 718

frames, 68 facial landmarks were hand-annotated 719

(inter-rater nRMSE = 1.36 ± 0.46%), and precise 720

face-bounding boxes were derived. Rich metadata— 721

including subject demographics, task labels, video 722

timing, and clinician ratings—is provided along- 723

side the recordings. By combining controlled ac- 724

quisition protocols with thorough ground-truth an- 725

notations and clinical assessments. Although the 726

dataset is not publicly available, we were granted 727

access. To our knowledge, it is the only known 728

resource containing synchronized, high-quality fa- 729

cial video and audio recordings with expert clinical 730

annotations specific to neuro-facial disorders. 731

11https://github.com/TadasBaltrusaitis/OpenFace
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A.3 Data Preprocessing732

We perform preprocessing steps to ensure data qual-733

ity, consistency, and alignment across audio and734

video streams. For facial videos, we use the 2D735

Face Alignment Network (2D-FAN) 12 to detect736

68 landmarks on each frame. This helps identify737

the face clearly, which is visible and centrally po-738

sitioned. For audio, we apply amplitude normal-739

ization and forced alignment at the utterance level740

using segment-level timestamps, implemented via741

librosa(McFee, 2025) for preprocessing.742

A.4 Hyperparameters and System743

Configurations744

The CNN architecture used for unimodal model-745

ing begins with two 1D convolutional blocks. The746

first convolutional block uses 256 filters with a ker-747

nel size of 3, followed by batch normalization and748

max pooling (pool size = 2). The second block749

applies 128 filters, again with a kernel size of 3,750

followed by batch normalization and max pooling751

(pool size = 2). The flattened outputs are passed752

to an FCN comprising three dense layers with 256,753

128, and 64 neurons, respectively, and a final task-754

specific output layer (either softmax or regression755

head). The trainable parameters for CNN models756

using individual pretrained representations range757

from 0.8 to 1.2 million, depending on the dimen-758

sionality of the extracted embeddings. This in-759

creases to 3.5–6.5 million parameters for fusion760

experiments due to additional transformers and fu-761

sion layers. We implement all models using the762

TensorFlow framework and conduct training and763

evaluation on an NVIDIA RTX 4050 GPU. Code764

and model weights will be made publicly available765

upon acceptance.766

A.5 Result on Non-Speech Video Samples767

We present the complete evaluation of all768

VFM+SFM combinations on non-speech video769

samples from the TNF dataset. Table 7 reports the770

classification and regression metrics for each Video771

Foundation Model using both FCN and CNN back-772

bones, where DeepSeek-VL2 achieves the highest773

accuracy (89.26 %) and F1 (88.29 %). Table 8774

shows the results of simple embedding concate-775

nation between VFMs and pre-computed SFMs776

on video-only inputs, demonstrating that DS + X-777

vector attains 87.24 % accuracy and 86.01 % F1778

even without an audio track. Finally, Table 9 pro-779

12https://github.com/1adrianb/face-alignment

vides the full results of our DIVINE fusion frame- 780

work across all model pairings, with DS + TR lead- 781

ing at 92.58 % accuracy and 91.63 % F1 (MAE = 782

3.84, RMSE = 5.55). These tables offer a detailed 783

view of model performance under purely visual 784

conditions, complementing the concise summary 785

in the main text. 786

A.6 Visualization Analysis 787

A.6.1 Confusion Matrices 788

Figure 3 presents confusion matrices for eight 789

representative DIVINE configurations evaluated 790

across our TNF test scenarios: (a) DeepSeek-VL2 791

+ TRILLsson; (b) DeepSeek-VL2 + X-vector; (c) 792

VideoMAE-V2 + TRILLsson; (d) VideoMAE-V2 793

+ X-vector; (e) ViViT + TRILLsson; (f) ViViT + 794

X-vector; (g) DeepSeek-VL2 + Wav2Vec 2.0; and 795

(h) DeepSeek-VL2 + WavLM. These matrices illus- 796

trate classification consistency and error patterns 797

across our key model pairings. 798

11

https://github.com/1adrianb/face-alignment


FCN CNN FCN CNN CNN

A ↑ F1 ↑ A ↑ F1 ↑ M ↓ R ↓ M ↓ R ↓ A ↑ F1 ↑ M ↓ R ↓

C R M

VFM

Vi 81.69 80.25 83.71 82.05 7.86 9.84 7.05 9.12 84.26 83.31 8.10 9.38
V2 82.08 81.67 86.04 85.22 6.98 8.82 6.26 7.59 87.47 86.09 7.13 8.62
VV 79.65 78.16 81.54 80.46 9.43 11.29 8.29 10.65 83.37 82.09 9.17 10.99
DS 86.85 85.98 89.26 88.29 6.86 8.35 6.02 8.06 90.05 89.84 6.97 8.76
KI 73.84 72.26 75.65 74.57 8.81 10.57 7.99 9.73 76.95 75.21 8.39 10.51
TA 78.26 77.23 80.69 78.08 7.24 9.83 7.11 9.29 80.33 79.62 7.69 10.03

Table 7: Performance on video-foundation models (VFMs) on non-speech video samples. All values are reported in
percentage (%) and averaged over 5-fold cross-validation.

Combinations Non-speech Testing Videos

A ↑ F1 ↑ R ↓ M ↓

VFM + SFM

Vi + WV 81.49 80.08 13.23 11.56
Vi + W2 80.84 79.31 14.02 11.77
Vi + WR 80.65 79.44 13.63 10.89
Vi + XV 81.22 79.97 14.51 11.58
Vi + HT 82.39 81.14 14.77 11.98
Vi + TR 81.87 80.48 13.94 10.89

V2 + WV 84.52 83.17 13.55 11.73
V2 + W2 82.65 81.24 13.01 10.97
V2 + WR 83.12 81.96 13.34 11.67
V2 + XV 84.88 83.64 12.67 11.31
V2 + HT 83.99 82.71 12.58 9.56
V2 + TR 84.16 82.99 13.35 10.96

VV + WV 80.13 78.58 15.32 12.36
VV + W2 78.24 77.05 15.15 12.27
VV + WR 79.05 77.29 16.34 12.21
VV + XV 80.26 79.35 15.08 12.60
VV + HT 81.18 79.31 16.86 12.85
VV + TR 79.36 78.62 13.89 11.44

DS + WV 85.84 84.71 12.27 10.16
DS + W2 87.89 86.53 13.25 11.13
DS + WR 86.99 85.62 13.65 11.91
DS + XV 87.24 86.01 11.09 10.71
DS + HT 86.19 84.92 12.49 11.46
DS + TR 86.64 85.29 13.44 11.47

KI + WV 73.79 72.63 16.58 14.03
KI + W2 74.56 73.32 15.40 13.68
KI + WR 74.38 73.11 15.88 13.61
KI + XV 74.12 72.96 14.52 11.67
KI + HT 73.76 72.54 16.65 13.26
KI + TR 83.05 82.58 14.55 11.68

TA + WV 76.94 75.58 15.78 12.29
TA + W2 76.31 74.92 16.66 12.93
TA + WR 77.26 75.88 15.26 12.54
TA + XV 76.64 75.28 14.79 11.43
TA + HT 77.04 75.84 15.13 11.61
TA + TR 74.06 72.89 14.13 12.92

Table 8: Simple concatenation performance on non-
speech testing videos for all VFM+SFM combinations.
All values are reported in percentage (%) and averaged
over 5-fold cross-validation.

Combinations Non-speech Testing Videos

A ↑ F1 ↑ R ↓ M ↓

VFM + SFM

Vi + WV 86.46 85.59 7.01 5.88
Vi + W2 85.94 85.11 7.33 5.50
Vi + WR 87.12 86.25 6.91 5.79
Vi + XV 86.29 85.44 6.70 5.64
Vi + HT 87.05 86.18 7.11 5.58
Vi + TR 85.78 84.95 6.35 4.72

V2 + WV 88.89 88.04 7.26 5.25
V2 + W2 88.21 87.93 7.26 5.32
V2 + WR 89.26 88.38 6.85 5.09
V2 + XV 88.74 87.89 5.51 4.12
V2 + HT 89.55 88.64 7.10 5.07
V2 + TR 89.12 88.24 5.63 3.91

VV + WV 86.46 85.59 9.37 7.55
VV + W2 85.94 85.11 9.19 7.09
VV + WR 87.12 86.25 9.41 7.61
VV + XV 86.29 85.44 9.26 6.32
VV + HT 87.05 86.18 9.96 7.27
VV + TR 85.78 84.95 8.97 7.19

DS + WV 91.89 91.02 6.80 4.91
DS + W2 91.63 90.77 6.70 4.72
DS + WR 92.18 91.23 6.34 4.48
DS + XV 92.41 91.47 5.80 4.06
DS + HT 91.76 90.91 6.53 5.13
DS + TR 92.58 91.63 5.55 3.84

KI + WV 77.81 76.98 8.92 7.16
KI + W2 78.63 77.79 8.84 7.01
KI + WR 78.27 77.41 8.69 6.99
KI + XV 78.45 77.66 7.03 6.04
KI + HT 77.92 77.09 8.67 6.98
KI + TR 88.15 87.08 7.53 6.01

TA + WV 80.88 80.03 8.27 6.56
TA + W2 81.66 80.81 7.92 6.29
TA + WR 81.44 80.59 8.64 6.63
TA + XV 81.39 80.52 7.52 5.90
TA + HT 80.97 80.12 8.35 6.32
TA + TR 78.52 77.65 7.54 5.83

Table 9: Performance on combinations of the proposed
DIVINE framework across non-speech testing videos
for VFM+SFM. All values are reported in percentage
(%) and averaged over 5-fold cross-validation.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Representing DIVINE configurations. Each
displays true versus predicted class distributions across
the combined diagnosis and severity categories: (a)
DeepSeek-VL2+TRILLsson; (b) DeepSeek-VL2+X-
vector; (c) DeepSeek-VL2+X-vector (testing only
video); (d) DeepSeek-VL2+TRILLsson (testing only
audio); (e) ViViT (Multitask); (f) WavLM; (g) Kine-
matic (Multitask); and (h) Kinematic (Classification).
These matrices highlight classification consistency and
error patterns for each fusion pairing.
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