
Discovering and Overcoming Limitations of
Noise-engineered Data-free Knowledge Distillation

Piyush Raikwar∗
ABV-IIITM, Gwalior, India
imt_2017062@iiitm.ac.in

Deepak Mishra
IIT Jodhpur, India

dmishra@iitj.ac.in

Abstract

Distillation in neural networks using only the samples randomly drawn from a
Gaussian distribution is possibly the most straightforward solution one can think of
for the complex problem of knowledge transfer from one network (teacher) to the
other (student). If successfully done, it can eliminate the requirement of teacher’s
training data for knowledge distillation and avoid often arising privacy concerns in
sensitive applications such as healthcare. There have been some recent attempts
at Gaussian noise-based data-free knowledge distillation, however, none of them
offer a consistent or reliable solution. We identify the shift in the distribution of
hidden layer activation as the key limiting factor, which occurs when Gaussian
noise is fed to the teacher network instead of the accustomed training data. We
propose a simple solution to mitigate this shift and show that for vision tasks, such
as classification, it is possible to achieve a performance close to the teacher by just
using the samples randomly drawn from a Gaussian distribution. We validate our
approach on CIFAR10, CIFAR100, SVHN, and Food101 datasets. We further show
that in situations of sparsely available original data for distillation, the proposed
Gaussian noise-based knowledge distillation method can outperform the distillation
using the available data with a large margin. Our work lays the foundation for
further research in the direction of noise-engineered knowledge distillation using
random samples.

1 Introduction

Deep neural networks are an excellent choice for various real-world computer vision tasks. However,
their high computational and space complexity becomes a bottleneck when it comes to deployment
on resource-constrained devices. To address this issue, the idea of Knowledge Distillation (KD),
proposed by [1], has recently gained significant attention. It enables the transfer of knowledge from a
large neural network to a comparatively smaller one. The lightweight small neural network, often
referred to as student, gains the information learned by the over-parameterized large model, referred
to as teacher, and delivers a similar or sometimes even better performance [2].

Traditionally, in KD, original data is passed through the accurate teacher model to collect soft
labels, and subsequently, these soft labels are used to supervise the student [3]. However, in certain
applications such as medical, it often becomes impossible to release the original data due to security
concerns, sensitive information, or storage restrictions. In contrast, a trained model (teacher) usually
does not hold a specific record or specific piece of information thus, no certainty or validity of the
information extracted through a neural network can be guaranteed, thereby making them safer for
public release. However, these models certainly contain information in the parameterized form for
performing the downstream tasks, such as classification or object detection.

∗Work done during an internship at IIT Jodhpur. Presently at CERN, Geneva, CH (piyush.raikwar@cern.ch)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(a) (b)

Figure 1: (a) Illustration of the effect of BatchNorm state in a teacher network. Each curve represents
the distribution of average activations of neurons belonging to some intermediate layer in a pretrained
teacher network. These are obtained when a specific type of input (original data or Gaussian noise) is
fed to the teacher network under different states of BatchNorm layers. The red curve is the oracle
representing activation distribution when original data is fed to the teacher. The other two curves are
obtained when Gaussian noise is fed as the input, and when BatchNorm layers use the statistics of
the original data (blue), and when it uses the current mini-batch statistics (black). (b) Distribution of
average activation values of all neurons in ‘avgpool’ layer of ResNet-34 teacher observed in case of
CIFAR10 experiments.

Due to these reasons, recently there has been an interest in data-free distillation - that is, distilling
knowledge from one neural network to the other without using any data. Majority of methods in this
direction aim to create synthetic images either by optimizing the randomly generated samples [4, 5,
6, 7, 8] or by training a generative network [9, 10], which often is computationally expensive. This
motivates the research community to ask the question Can distillation be done by using the samples
randomly drawn from a known distribution such as standard normal distribution? To best of our
knowledge, we for the first time provide a satisfactory answer to the question and show that yes, it
is possible to do data-free KD by only using images that are randomly sampled from a Gaussian
distribution. Our experiments show that a considerably better performance is possible using only the
Gaussian noise as the input, in contrast to what prior works ([9], [10]) have shown for this particular
setting. We identify that the key limitation, which the prior works failed to identify is the covariate
shift in the distribution of hidden layer activations of the teacher network caused by feeding Gaussian
noise instead of the expected original data. As shown in Figure 1a, the activation distribution when
input is Gaussian noise (blue) is shifted, thus no longer aligns with the activation distribution when
input is original data (red). We propose a simple yet surprisingly effective solution to reduce this
shift by using the current statistics instead of using statistics of the original data (running statistics) in
the teacher’s batch normalization (BatchNorm) layers and thus distill the knowledge from teacher
into student network using just the Gaussian noise. Our main contributions are as follows:

• We explain how covariate shift in the teacher network interferes with Gaussian noise-based
KD and propose a simple solution to eliminate it, thus enable knowledge transfer using
Gaussian noise.

• We show how this phenomena of covariate shift occurs in the student network as well and
mitigate it in a similar way.

• We obtain student performance close to the teacher without using any original or synthetic
data. We further show that in the presence of limited data, the proposed approach
outperforms the traditional distillation method with a large margin.

2

• Our work counters the commonly accepted notion of requiring realistic training data for
data-free KD. Thus, we lay the foundation for noise-based data-free KD.

2 Related work

Knowledge Distillation: KD is the transfer of knowledge from one neural network to the other.
First successful implementation of knowledge transfer was shown by [11] for the purpose of model
compression. Later, the term knowledge distillation was popularized by [1], where the authors
explored so called "dark knowledge" of a teacher model which is transferred to a student model
with the help of soft labels. Since then, the domain of KD has witnessed many interested ideas
related to improved distillation strategies such as teacher assistant [12] and self-distillation [13].
KD approaches for performing various downstream tasks such as object detection [14], semantic
segmentation [15], and also the applications in different modalities, including speech [16] and graph
[17] have been explored. A detailed survey on KD is recently reported by [2].

Data-free Knowledge Distillation: The problem of data-free KD, i.e., the constraint that the original
dataset, which was used to train and supervise the teacher, is unavailable for distillation makes the
tasks naturally challenging. This often is encountered in privacy-sensitive settings, where the original
dataset cannot be shared. There are various prior works with a similar context in mind. Most of
these methods first construct a set of synthetic images that resembles original data, then distill the
knowledge of the teacher network into the student network using that synthetic data [4, 5, 6, 8, 9, 10].
Some approaches synthesize images one-by-one or batch-by-batch, whereas some train a generator
model to gain access to limitless synthetic data. For example, [4] stored activation records of the
teacher model when original data is feed-forwarded through it, and then later used it to create synthetic
images by optimizing random noise using gradient descent. [5] introduced DeepInversion intending
to create realistic images, which makes use of feature map and BatchNorm statistics to optimize
random images into high-fidelity images. [18] takes a different approach to simultaneously generate
images, as well as train the student. They introduced Zero-shot knowledge transfer, which utilized
adversarial learning between the generator model and the student model. Their intuition was to search
for images on which the student poorly matches the teacher and then train the student with those.

Gaussian Noise-based Knowledge Distillation: KD using Gaussian noise has been presented as
a baseline numerous times in prior works, which resulted in a student accuracy slightly better than
random chance. Although a decent accuracy was reported on MNIST (88% [9], 75% [19]), probably
due to smaller networks and less complex dataset, on more challenging datasets like CIFAR10, a
poor performance (14% [5], 15% [9], 11% [10], 10% [19]) was observed. Apart from these, [6]
presented an interesting, although a highly constrained scenario where the student had an identical
architecture to the teacher and student’s weights were initialized as quantized values of teacher’s
weights. Further when the BatchNorm layer parameters from teacher are copied to student and kept
frozen, Gaussian noise based distillation resulted in good performance. Moreover, instead of training
the student network end-to-end as in traditional KD, [6] partitioned the student and teacher networks
across BatchNorm layers resulting in multiple teacher-student pairs of blocks and distilled each pair
of blocks separately. Although this approach works, it cannot be used for a pair of architectures not
having similar block structures and is unnecessarily complex.

In contrast to all above, our aim is to design a simple approach for Gaussian noise-based data free
distillation. This would not only relax the constraints of approaches such as [6] but also save the
efforts required in creating synthetic dataset.

3 Methodology

3.1 Preliminaries

Knowledge Distillation: KD is achieved by training the student network using the output of the
teacher network as soft labels instead of using the ground truth labels [3]. This results in matching of
the output probability distributions of both the networks for a given input data. Formally, for a k-class
classification, given a dataset D that consists of data samples x, a teacher network T trained on D,
and a student network S with randomly initialized weights, the following cost function is optimized:

LKD = LXE(S(x), T (x)), (1)

3

where LXE(., .) is the standard cross-entropy term.

Batch Normalization: BatchNorm was introduced by [20] that made the training of deep neural
networks more stable and allowed to use larger learning rates, hence faster convergence. Further,
it makes neural networks more robust to initialization schemes and changes in the learning rate.
BatchNorm first normalizes the output of the hidden layer (input to BatchNorm layer) using the first
(mean) and the second (variance) statistical moments of the current batch. Then, these normalized
outputs are shifted and scaled according to the two trainable parameters γ and β, respectively. These
parameters are tuned as any other neural network parameters, and they help in choosing the optimum
distribution as the input for the next layer, thus regaining expressiveness lost in the normalization
step.

Formally, let h be the activations of a neuron in the previous layer (input to the BatchNorm layer), m
be the batch-size, and ϵ be a small constant used for numerical stability. Then,

hi =
hi − µB√
σ2
B + ϵ

(2)

ĥi = γ × hi + β (3)

where µB = 1
m

∑
i hi and σ2

B = 1
m

∑
i(hi−µB)

2. The hi and ĥi show normalized and subsequently
shifted values of hi. Above mentioned activation normalization using mini-batch or current statistics
results in improved training. During evaluation or inference, the batch statistics µB and σB are
replaced with running or population statistics, µr = EB[µB] and σr = m

m−1EB[σ
2
B], where EB[.]

denotes expectation over training mini-batches. Accordingly, the normalization steps are modified as
follows:

hi =
hi − µr√
σ2
r + ϵ

(4)

where µr = αµr + (1− α)µB and σr = ασr + (1− α)σB . Here α is a smoothing factor, which is
there to prioritize statistics of the current batch.

3.2 Distillation using Gaussian Noise

We consider the most straightforward approach for KD in the absence of original data, just using
random images sampled from a Gaussian distribution as an input to teacher and student network.
This precondition to use Gaussian noise for KD might seem to make the task of distillation almost
impossible since the input Gaussian distribution is notably different from the original data distribution,
and does not contain any structural properties or representation as the original data. We hypothesize
that, for successful KD, across two input data: first using which the teacher is trained, and second
using which student is trained, having similar output distributions throughout the teacher network’s
hidden layers is more important than having the same structural or representation properties at
the input; thus, leading to the extraction of meaningful information from the teacher network. To
understand this better let us consider a trivial case where samples drawn from a standard Gaussian
distribution (N (0, 1)) are passed through a BatchNorm layer optimized for some real data D. As
during distillation only student network is trained, BatchNorm performs normalization of input
according to (4). Consider the following statistics of the normalized signal.

Ehi∼N (0,1)[hi] =
Ehi∼N (0,1)[hi]− µr√

σ2
r + ϵ

=
0− µr√
σ2
r + ϵ

(5)

Var[hi] =
Var[hi]

σ2
r + ϵ

=
1

σ2
r + ϵ

(6)

Equation (5) and (6) clearly show the deviation or covariate shift in the output of BatchNorm when
Gaussian noise is passed instead of the original data. This suggest that output of BatchNorm should
be shifted by µr√

σ2
r+ϵ

and scaled by σ2
r + ϵ before feeding it to the subsequent layers. However,

this is not trivial for intermediate hidden layers of the teacher network as the activation statistics
are unknown. Alternatively, as explained below, we may allow BatchNorm to simply use current
statistics instead of running statistics as the corrections required are nothing but the factors of running
statistics.

4

Figure 2: Inside the BatchNorm layer. The figure depicts an expanded view of a BatchNorm layer
when each of original data and Gaussian noise is fed to it. Initially, the activation distribution of the
hidden layer (input to BatchNorm) is very different in the case of Gaussian noise (black) compared to
original data (red). We use the current statistics derived from Gaussian noise instead of data derived
running statistics in the normalization step to mitigate the covariate shift. The rest of the shifting and
scaling follows as usual2. Our method ensures that keeping γ and β constant will yield similar P (ĥ)
irrespective of the input distribution P (h).

3.2.1 Mitigating the Shift

The solution to mitigate the observed shift and successfully perform distillation using Gaussian noise
is to effectively make use of the BatchNorm layers. Our goal is to align the activation distribution
of hidden layers throughout the teacher network when Gaussian noise is used as an input to that
when original data is used as an input. We consider the case of a BatchNorm layer placed after a
hidden layerH within a teacher network. Let B represent a batch of images sampled from original
dataset D, G be a batch of random samples sampled from a Gaussian distribution, h be the vector of
activations for some neuron n belonging to the hidden layerH when inputs are fed to the teacher with
a batch size m, and P (h) be the activation distribution of that nth neuron over the batch. Due to the
covariate shift, we observe that: P (h|G) ̸= P (h|B). Generally, during KD, the BatchNorm layers
in the teacher network are setup for inference, hence use running statistics (µr, σr), i.e., Equation (4)
to calculate the normalized activations h. This leads to:

P (h|G,µr,σr) ̸= P (h|B,µr,σr)

Thus, P (ĥ|G,µr, σr,γ,β) ̸= P (ĥ|B,µr,σr,γ,β)

Here, ĥ is the scaled and shifted activation vector, which is the output of the BatchNorm layer for
the nth neuron, as defined in Equation (4). This drifted ĥ propagates to the next hidden layer and
eventually to the output layer without any meaningful information being passed from the hidden
layer H. Therefore, for KD using Gaussian noise, we propose to use current batch statistics (µB ,
σB) for the normalization step, i.e., Equation (2) in all BatchNorm layers of the teacher network.
The intuition is to align the two drifted distributions at the normalization step. This makes sense
only because γ and β have the inherent information about the distribution that the next layer expects
and are designed to shift a standard normal distribution. Therefore, even though P (h|G) ̸= P (h|B)
holds true:

P (h|G,µB ,σB) = P (h|B,µB ,σB)

≈ N (0, 1)

Hence, P (ĥ|G,µB , σB ,γ,β) = P (ĥ|B,µB ,σB ,γ,β)

This reduces the covariate shift due to a different input distribution from the expected one at every
stage (BatchNorm layer) in the teacher network. It obtains P (ĥ) similar to that of using original
data irrespective of P (h), and hence leads to the transfer of meaningful information. Our approach
is visually explained in Figure 2, where we show an expanded view of a BatchNorm layer for three
neurons. It shows how our proposed method effectively uses the normalization step to align the two
activation distributions: (i) when Gaussian noise is fed as inputs (ii) when original data is fed as

2To understand this further, consider a toy example presented in the Appendix A.1.

5

inputs. Note that the covariate shift discussed throughout this paper is not the same as the internal
covariate shift hypothesized by [20], even though ours might be happening in the hidden layers of
the neural network as well. The internal covariate shift occurs due to constantly changing network
parameters in the preceding layer, thus affecting the input distribution for the following layer. On the
other hand, we consider the shift due to change in the input that is being fed to the network, which in
turn affects the input distribution of hidden layers as well.

3.3 Inference

Similar to how a teacher network trained using original data distribution cannot directly handle the
Gaussian noise, the student network trained using Gaussian noise will also not be able to provide
correct output during test time, as the running statistics of BatchNorm layers in the student expect
Gaussian noise activation patterns. The inference is, therefore, done using current statistics. Moreover,
each mini-batch needs to be independent and identically distributed, and large enough to approximate
the test data distribution. Usually, it should not matter how the input is arranged during the inference,
therefore, a simple workaround to this problem is to first adjust the running statistics of the student
network catering to the test data by feed-forwarding some amount of shuffled test data before
evaluating the student network. Note that no back-propagation or optimization steps are required as
only the running statistics need to be adjusted. We summarize the training and evaluation phases of
our approach in Algorithm 1 and Algorithm 2 respectively.

Algorithm 1 Training - KD

Requires: pretrained teacher T (.)
Initialize: student S(.; θ) with parameters θ
for B in 1, 2, ...,B1 do
G ∼ N (0, 1)
yT ← T (G|µB , σB)
yS ← S(G|θ, µB , σB)
θ ← θ − η ∂LKD

∂θ
end for

Algorithm 2 Evaluation

Requires: pretrained student S(.; θ)
for B in 1, 2, ...,B2 do
X ∼ D
yS ← S(X|θ, µB , σB)

ylabel ← argmax(yS)
end for

4 Experiments

In this section, we discuss the experiments we performed on various datasets in combination with
different standard neural network architectures to demonstrate the working of our proposed method.
We use CIFAR10 [21] as a proof of concept to establish the validity of our method, and for certain
ablations. We further test our proposed approach on SVHN [22], CIFAR100, and Food101 [23].
Note that, in all the experiments, for Gaussian noise, we generate the image pixels from Gaussian
distribution having mean, µ = 0 and variance, σ2 = 1.

4.1 State of BatchNorm

In this experiment, we discuss the effect of using the BatchNorm layer in two different states, i.e.,
compare between using running statistics and current statistics. Note that we do this change only in
the case of the teacher network. In contrast, the student network always uses current statistics, even
at the time of evaluation on the validation set. We do this experiment on CIFAR10 by considering
two independent parameters: (i) the state of BatchNorm layers in the teacher network, and (ii) the
input that is being fed to both the networks.

We distill a ResNet-34 teacher network pretrained on CIFAR10 into student networks of varying
architectures, which are: ResNet-34, ResNet-18, and MobileNetV2. In case of original data, we use
standard data augmentations like random crop after padding, random horizontal flip, and normaliza-
tion. Whereas, while using Gaussian noise, we independently sample pixels for creating a 32 × 32 ×
3 image from a standard Gaussian distribution. In both cases, the batch size is 256, and an Adam
optimizer with a learning rate of 10−3 for tuning the parameters of the student network is used3.

3Code is available at: https://github.com/Piyush-555/GaussianDistillation

6

https://github.com/Piyush-555/GaussianDistillation

Table 1: CIFAR10 distillation in different cases (input fed to the networks and state of BatchNorm in
teacher network) across various Student network architectures. The numbers are accuracies obtained
on the test data (mean± standard deviation from three runs). The teacher network here is a ResNet-34,
which has an accuracy of 93.29%. The BatchNorm layers in the student model use current statistics
during evaluation. Note that RS is running statistics and CS is current statistics.

Student ResNet34 ResNet18 MobileNetV2

Supervised 93.29 93.22 91.61

Original data + RS (Oracle) 92.74 ± 0.21 92.44 ± 0.05 90.57 ± 0.22
Original data + CS 92.77 ± 0.22 92.20 ± 0.1 91.44 ± 0.13
Gaussian noise + RS [5, 9, 10, 19] 13.18 ± 0.21 13.49 ± 0.08 12.43 ± 0.3
Gaussian noise + CS (Ours) 87.11 ± 0.23 85.98 ± 0.12 82.47 ± 0.26

Table 2: Results on SVHN, CIFAR100, and Food101 datasets. We see a similar performance of the
proposed method as in the previous experiment. Although the gain for CIFAR100 and Food101 is
slightly lower, which may be due to the complexity of datasets as the supervised teacher also shows a
lower accuracy.

Dataset SVHN CIFAR100 Food101

Teacher ResNet18 WideResNet-28-10 ResNet101
Student MobileNetV2 WideResNet-16-8 ResNet18

Teacher supervised 94.48 80.6 73.4

Original data + RS (Oracle) 95.75 74.1 67.6
Gaussian noise + RS 45.03 1.2 0.9
Gaussian noise + CS (Ours) 92.93 65.7 54.16

The results are shown in Table 1. As expected, the conventional setting of using the original data as
input and the teacher with the running statistics computed from the original data is the ideal case,
which results in the best performance. Using current statistics does not hinder the learning of the
student network either, that is, in the case of original data. However, while using Gaussian noise
with running statistics, the activation distribution gets mismatched. On the other hand, using current
statistics results in the mitigation of this mismatch. Hence, in the former, the student network is
unable to learn at all, whereas in the latter, it achieves an accuracy close to the ideal case, considering
that we rely on the random noise4.

The distribution shifts observed in this experiment are shown in Figure 1b. We use activations
of ‘avgpool’ layer in the teacher network (ResNet-34) to obtain these plots. The figure shows the
distribution of average activations across all neurons with respect to different settings discussed above.
We observe that while using Gaussian noise, current statistics result in a distribution similar to that of
using original data. Also, in the case of Gaussian noise with BatchNorm layers using the running
statistics, most neurons have close to zero average activations, implying that they are rarely fired.
Their information is, therefore, never used in deciding the outcome, hence that particular information
is never learned by the student network. These plots are consistent with the results in Table 1.

4.2 Results on Other Datasets

We perform experiments similar to that of CIFAR10 on SVHN, CIFAR100 and Food101 to show the
applicability of our method on various datasets and neural network architectures. Since we did not
find a considerable variance in the case of CIFAR10, here we report the results on single runs.

The teacher-student pairs are mentioned in Table 2. We use standard data augmentation and a similar
setup of hyperparameters, i.e., batches of 256 samples, and optimization by Adam optimizer with a
learning rate of 10−3.

4An ablation study where we consider some percentage of BatchNorm layers is presented in Appendix A.2.

7

Table 2 shows the obtained results. We see similar trends as before, except that the Gaussian noise is
not at random chance even with running statistics in the case of SVHN. We believe that this is due to
relatively lower covariate shift of activation distribution compared to other more sophisticate datasets.
For CIFAR100 and Food101 datsets we try out teacher-student architectures which are different from
the previous experiments to introduce more variability. Table 2 shows that a large amount of gap
between real data-based distillation and data-free distillation is reduced by Gaussian noise and as we
see in the next section, the remaining gap can be filled by other mechanisms.

4.3 Limited Data

In this experiment, we try to find out the amount of additional data needed for extra efforts after
Gaussian noise-based KD. It would be interesting to use the synthetic data for this, however, we
rely on samples from the training dataset as proxy due to a large variation in the nature of synthetic
data generation approaches. We first pretrain our student model using Gaussian distillation and then
finetune it using original data. First, we show how the performance varies with respect to the amount
of data used for finetuning, then we briefly show the same for different configurations. We compare
our case of pretraining using Gaussian noise against traditional KD using the same fractional amount
of data (baseline).

For finetuning, a subset of training data is sampled randomly and a reduced learning rate of 10−4

is used. Figure 3 (Left) compares the accuracy of the ResNet-18 (student) on CIFAR10 when it
is finetuned using the given fraction of training data to its counterpart that is trained from scratch.
Further, Table 3 shows the student accuracy for other architectures and datasets with 1% of training
data.

We observe a considerable improvement in the student network after finetuning, specifically for
MobileNetV2 on CIFAR10 (about 4%). In addition, pretraining using Gaussian noise outperforms
the baseline by a large margin.

Figure 3: (Left) Varying fractions of data used for finetuning or training from scratch. x-axis denotes
the fraction of the training data used and y-axis denotes the corresponding student accuracy. (Middle)
Effect of batch size during inference. Note that x-axis represents log2(batch_size). (Right) Scatter
plot (clipped to maximum value of 1.0) for average activation for ‘avgpool’ layer in a student network
trained using our approach for CIFAR10.

Table 3: Accuracy of student in various configurations after finetuning using 1% original (training)
data. Accuracies are averaged after 3 runs.

Dataset CIFAR10 CIFAR10 SVHN CIFAR100 Food101
Student ResNet34 MobileNetV2 MobileNetV2 WideResNet-16-8 ResNet18

Limited data 35.46 43.17 29.54 9.28 9.20

Gaussian noise +
Limited data

89.84 86.11 94.29 69.8 61.01

8

4.4 BatchNorm State in Student

Here, we explore how the batch size or inference, in general, affects the student network trained
using our Gaussian noise-based approach. We use the ResNet-18 student network distilled using our
approach from ResNet-34 teacher trained on CIFAR10. We use a sufficient amount of evaluation
data to adjust the running statistics of the student’s BatchNorm layers, which is 20 batches of size 16
each5.

After the student is trained using Gaussian noise, its running statistics are not adjusted for test data
distribution. Therefore, the accuracy using running statistics is almost at random chance (blue),
shown in Figure 3 (Middle). When we use the current statistics and vary the batch size, we see that
the accuracy increases with an increase in batch size due to better estimates of µB and σB (black).
Further, we adjust the running statistics using some amount of original data, while keeping the rest
of the parameters fixed, considering the case in which the student model needs to infer on a single
sample or a batch of non-i.i.d. samples. We observe that the adjusted running statistics yield a
performance similar to that of large batch sizes (red).

5 Discussion

5.1 Limitations

Absence of BatchNorm: If there are no BatchNorm layers present in the teacher-student architecture,
then the proposed method will not work. In that case, one would need to learn the input data
distribution to obtain activation distribution similar to that of original data.

Training: As opposed to traditional KD, the teacher in the proposed method is required to use the
current statistics while distilling the knowledge to student. In order to correctly calculate these
statistics and output correct soft labels, a large enough batch size is required during training period.
Results of study regarding batch size are included in Appendix A.4.

Inference: As explained in Section 3.3, the student model might be limited by how it can be used
during inference. The student network trained using our proposed approach should either be used
with a sufficiently large batch of test samples or its running statistics should be adjusted beforehand
using a small amount of test data. Without doing so, the student model trained using Gaussian noise
does not get adapted to real data distribution, as shown in Figure 3 (Right). The plot shows average
activation values for neurons in the ‘avgpool’ layer of a student network trained using our approach
for CIFAR10. The distribution of points for Gaussian noise (blue) and original data with current
statistics (orange) is similar. Whereas the points for original data with running statistics (red) either
lie close to zero or explode to a very high value (clipped to 1.0).

5.2 Rethinking Knowledge Transfer

Recently, [24] explored different types of structured noise (which proves to be far better than Gaussian
noise) as a way to learn representations using a specific contrastive loss and questioned the necessity
of huge data-driven vision systems. [18] also observed that low-level features are sufficient for
performing KD. This paper shows that using just the Gaussian noise (not even low-level features) we
can successfully transfer knowledge from one neural network to the other to a large extent. We have
not yet explored the possibility of using structured noise, which could prove to be more effective6.
This challenges the generally accepted notion of requiring synthetic data with representations similar
to original data and provides motivation to explore methods similar to ours for tasks such as domain
adaptation, transfer learning, etc.

6 Conclusions

In this paper, we explore KD solely based on Gaussian noise. We do this by mitigating the covariate
shift in the hidden layers of the teacher network, which is caused due to the change in the input data
distribution. Further, we show how similar phenomena can occur in the student network, and how

5Additional results in Appendix A.3.
6Preliminary experiments with Dead leaves can be found in Appendix A.5.

9

we can use a similar approach there as well. The experiments show that student network trained
using our approach can achieve a greater performance, in contrast to what prior works have shown
for Gaussian noise setting, and more so in the presence of limited data. Future work could be to try
Gaussian noise-based distillation with lower input dimensions such that it feed-forwards through
both teacher and student network since the Gaussian noise does not contain structural information
anyway. Further future work could involve comparing how our approach fares to using unrelated data
for KD, trying our approach on structured noise, and extending our findings to other domains such as
domain adaptation.

References
[1] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.

arXiv preprint arXiv:1503.02531, 2015.

[2] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

[3] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? Advances in neural
information processing systems, 27, 2014.

[4] Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for
deep neural networks. arXiv preprint arXiv:1710.07535, 2017.

[5] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem,
Niraj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8715–8724, 2020.

[6] Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods
for data-free model compression. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8494–8502, 2020.

[7] Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan,
and Anirban Chakraborty. Zero-shot knowledge distillation in deep networks. In International
Conference on Machine Learning, pages 4743–4751. PMLR, 2019.

[8] Zi Wang. Data-free knowledge distillation with soft targeted transfer set synthesis. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 10245–10253,
2021.

[9] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
Chao Xu, and Qi Tian. Data-free learning of student networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3514–3522, 2019.

[10] Liangchen Luo, Mark Sandler, Zi Lin, Andrey Zhmoginov, and Andrew Howard. Large-scale
generative data-free distillation. arXiv preprint arXiv:2012.05578, 2020.

[11] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 535–541, 2006.

[12] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and
Hassan Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 5191–5198, 2020.

[13] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma.
Be your own teacher: Improve the performance of convolutional neural networks via self
distillation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3713–3722, 2019.

[14] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning
efficient object detection models with knowledge distillation. Advances in neural information
processing systems, 30, 2017.

10

[15] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, and Jingdong Wang. Structured
knowledge distillation for semantic segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2604–2613, 2019.

[16] Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun Zhang, Hua Wu, Haifeng Wang, and
Chengqing Zong. End-to-end speech translation with knowledge distillation. arXiv preprint
arXiv:1904.08075, 2019.

[17] Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming Hu, Yangxi Li, and Yunqiang
Duan. Knowledge distillation via instance relationship graph. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7096–7104, 2019.

[18] Paul Micaelli and Amos Storkey. Zero-shot knowledge transfer via adversarial belief matching.
arXiv preprint arXiv:1905.09768, 2019.

[19] Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free
adversarial distillation. arXiv preprint arXiv:1912.11006, 2019.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[22] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[23] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative
components with random forests. In European Conference on Computer Vision, 2014.

[24] Manel Baradad, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Torralba. Learning to
see by looking at noise. arXiv preprint arXiv:2106.05963, 2021.

11

	Introduction
	Related work
	Methodology
	Preliminaries
	Distillation using Gaussian Noise
	Mitigating the Shift

	Inference

	Experiments
	State of BatchNorm
	Results on Other Datasets
	Limited Data
	BatchNorm State in Student

	Discussion
	Limitations
	Rethinking Knowledge Transfer

	Conclusions

