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Abstract001

Fine-tuning large language models (LLMs)002
is computationally expensive, and Low-Rank003
Adaptation (LoRA) offers a cost-effective al-004
ternative by approximating weight updates005
with low-rank matrices. In multi-task learn-006
ing (MTL) scenarios, while recent works have007
introduced multi-head LoRA variants to cap-008
ture task-specific knowledge across different009
tasks, we observe a high degree of similarity010
among head matrices, questioning the neces-011
sity of such structural complexity for multi-012
task generalization. In this work, we pro-013
pose R-LoRA+, a simplified but competitive014
multi-head LoRA. We highlight that increas-015
ing the rank of standard LoRA suffices to016
match or even surpass the performance of meth-017
ods with multi-adapter or multi-head, suggest-018
ing that structural diversification may not be019
necessary for multi-task generalization. Fur-020
thermore, we find that explicitly encouraging021
shared representation learning leads to more022
effective adaptation under parameter-efficient023
fine-tuning. Experimental results confirm that024
focusing on shared knowledge across tasks im-025
proves multi-task generalization while preserv-026
ing the deployment-friendly nature of LoRA.027

1 Introduction028

In recent years, large language models (LLMs)029

have demonstrated unprecedented performance030

across a wide range of natural language process-031

ing (NLP) tasks (Brown, 2020; Zhao et al., 2023;032

Chang et al., 2024b). Their remarkable capabilities033

in language understanding and generation have at-034

tracted widespread attention from both academia035

and industry. Despite their strong generalization036

abilities, LLMs often require further adaptation to037

align with domain-specific requirements or to in-038

corporate updated knowledge (Agiza et al., 2024;039

Xin et al., 2024).040

Supervised fine-tuning (SFT) plays a critical role041

in aligning LLMs with human instructions by train-042

ing the model on a small but high-quality set of 043

labeled examples (Hu et al., 2021; Xia et al., 2024). 044

However, full fine-tuning (FT), which involves up- 045

dating all model parameters, poses significant chal- 046

lenges in terms of computational efficiency and 047

memory consumption due to the enormous scale of 048

modern LLMs (Mao et al., 2025). 049

To address the high hardware demands of adapt- 050

ing LLMs, parameter-efficient fine-tuning (PEFT) 051

methods have been proposed (Han et al., 2024; 052

Chang et al., 2024a). These approaches signifi- 053

cantly reduce VRAM consumption, especially for 054

optimizer states, by updating only a small subset 055

of parameters while keeping the majority of the 056

model weights frozen. A variety of PEFT tech- 057

niques have been extensively studied, including 058

prefix tuning (Li and Liang, 2021), prompt tun- 059

ing(Liu et al., 2024c), adapter-based methods (Liu 060

et al., 2022), and low-rank adaptation (LoRA) (Hu 061

et al., 2021), among others. 062

Among various parameter-efficient methods, 063

LoRA has emerged as the most widely adopted 064

alternative to full fine-tuning. Instead of directly 065

updating the original weight matrices, LoRA in- 066

troduces low-rank matrices to approximate the pa- 067

rameter updates via matrix decomposition. During 068

inference, the original weights and adapted matri- 069

ces are combined to produce the final model out- 070

puts. In practice, LLMs are often fine-tuned on 071

data from multiple domains to perform a diverse 072

set of tasks, naturally aligning with the multi-task 073

learning (MTL) paradigm. 074

Recent advances in LoRA have introduced 075

multi-adapter architectures to enhance multi-task 076

learning, with notable variants including Multi- 077

LoRA (Wang et al., 2023), LoRA-MoE (Dou et al., 078

2023), and MoeLoRA (Liu et al., 2024a). Liu 079

et al. (2025) refers to this general framework as 080

the Multi-Adapter LoRA architecture, which con- 081

sists of multiple down-projection matrices A and 082

their corresponding head matrices B. This design 083
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Figure 1: Training architecture comparison. (a) Full parameter fine-tuning; (b) Vanilla LoRA; (c) Multi-Adapter
architecture; (d) Multi-Head/Asymmetric architecture.

enables task-specific adaptation by allowing each084

task to utilize a distinct set of adapter parameters.085

Among these methods, LoRA-MoE and086

MoeLoRA further improve performance by incor-087

porating a Mixture-of-Experts (MoE) mechanism088

to dynamically aggregate outputs from different089

adapters. Tian et al. (2024) observes that in the090

LoRA framework, the down-projection matrices091

A tend to be highly similar across tasks, whereas092

the head matrices B exhibit greater variation, indi-093

cating that they are more responsible for capturing094

task-specific knowledge. Motivated by this obser-095

vation, HydraLoRA (Tian et al., 2024) proposes an096

asymmetric architecture that shares a single down-097

projection matrix A across all tasks while maintain-098

ing multiple task-specific B matrices. In addition,099

HydraLoRA employs an MoE-based routing mech-100

anism to combine the outputs of the head matrices.101

Building on this line of work, R-LoRA (Liu102

et al., 2025) explicitly interprets the asymmetric103

architecture as a Multi-Head LoRA structure and104

reveals that head matrices often exhibit high sim-105

ilarity, leading to redundancy across heads. To106

mitigate this issue, R-LoRA introduces multi-head107

randomization, encouraging each head to learn di-108

verse and task-specific representations, further im-109

proving model expressiveness while reducing GPU110

memory consumption and computational cost. The111

mathematical formulation of the multi-head struc-112

ture is detailed in Section 2.2, and the architectural113

differences among the aforementioned approaches114

are illustrated in Figure 1.115

However, multi-head LoRA architectures such116

as HydraLoRA rely on dynamic routing mech-117

anisms that prevent adapter weights from being118

merged into the base model, resulting in additional119

inference overhead. In this work, we propose R-120

LoRA+, a simplified but competitive multi-head 121

LoRA. Our analysis reveals that the Multi-Adapter 122

and Multi-Head structure may not be essential for 123

effective adaptation, as a simplified design can 124

yield superior or comparable results to advanced 125

multi-head variants. Moreover, we highlight that 126

increasing the rank of standard LoRA suffices to 127

match or even surpass the performance of meth- 128

ods with multi-adapter or multi-head. This obser- 129

vation motivates a shift in focus toward learning 130

task-shared knowledge, rather than enforcing ex- 131

plicit task-specific specialization. Building on this 132

insight, we propose Align-LoRA, which further 133

improves multi-task generalization by aligning the 134

representations of the down-projection matrix A 135

through MK-MMD (Sejdinovic et al., 2013; Gret- 136

ton et al., 2012) regularization. 137

Our key contributions are: 138

- We propose R-LoRA+, a simplified but com- 139

petitive multi-head LoRA, challenging the need for 140

complex routing mechanisms. 141

- We highlight that increasing the rank of stan- 142

dard LoRA suffices to match or exceed the per- 143

formance of multi-head variants, suggesting that 144

structural complexity is not essential. 145

- We introduce Align-LoRA, which improves 146

multi-task generalization by aligning task-shared 147

representations without introducing additional pa- 148

rameters. 149

2 Related Works 150

2.1 LoRA 151

Current LLMs typically adopt a decoder-only 152

architecture, consisting of stacked transformer 153

blocks (Zhao et al., 2023). Each block contains 154

two core components with residual connections: a 155
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multi-head self-attention (MHA) layer and a feed-156

forward network (FFN) (Vaswani, 2017). Both157

layers rely on dense learnable weight matrices W158

for feature transformation.159

To efficiently adapt LLMs to specific tasks or160

domains under resource constraints, LoRA (Hu161

et al., 2021) offers an effective solution. Inspired162

by the hypothesis that the intrinsic dimensional-163

ity of parameter updates in LLMs is low, LoRA164

approximates the weight update ∆W using two165

low-rank matrices A ∈ Rr×n and B ∈ Rm×r,166

where W ∈ Rm×n is the original weight matrix.167

The rank r is chosen to be significantly smaller168

than min(m,n), reducing the number of trainable169

parameters from O(mn) to O(r(m+ n)). This re-170

sults in the updated weight matrix being expressed171

as W +BA. Given an input x, the corresponding172

output h becomes:173

h = (W +∆W)x = Wx+BAx, (1)174

where ∆W = BA denotes the low-rank update.175

In practice, matrix B is initialized with zeros to176

ensure that no random perturbations are introduced177

at the beginning of training, while A is initialized178

using Kaiming Uniform (He et al., 2015). This179

initialization strategy ensures that the initial outputs180

remain consistent with the pre-trained model.181

Following the original LoRA framework, sev-182

eral works have proposed improvements to enhance183

adaptability and efficiency. AdaLoRA (Zhang et al.,184

2023) dynamically adjusts the rank during training185

for layer-wise optimization. DeltaLoRA (Zi et al.,186

2023) and DoRA (Liu et al., 2024b) refine model187

updates by decomposing weight changes into mag-188

nitude or direction components. PiSSA (Meng189

et al., 2025) and LoRA-GA (Wang et al., 2024)190

improve convergence through better initialization191

strategies. NLoRA (Guo et al., 2025) further en-192

hances expressiveness and stability by decompos-193

ing the parameter matrix into three components ini-194

tialized via the Nyström method. These approaches195

highlight the importance of structural design and196

initialization in improving LoRA’s performance197

within parameter-efficient fine-tuning frameworks.198

2.2 Multi-Head Architecture199

MTL-LoRA (Yang et al., 2024) and Hy-200

draLoRA (Tian et al., 2024) are among the first201

to introduce the multi-head architecture into LoRA-202

based parameter-efficient fine-tuning. This archi-203

tecture consists of a shared down-projection matrix204

A and multiple distinct head matrices Bi, enabling 205

both task-specific adaptation and knowledge shar- 206

ing across tasks. 207

As illustrated in Figure 1, this design effectively 208

separates task-specific components while preserv- 209

ing shared representations across different tasks. 210

The overall weight update in the Multi-Head archi- 211

tecture can be expressed as: 212

W +∆W = W +
N∑
i=1

ωi ·BiA, (2) 213

where N is the number of heads, and ωi denotes 214

the weight assigned to the i-th adapter output. 215

In MTL-LoRA and HydraLoRA, the weights ωi 216

are computed using a routing mechanism based 217

on the input representation. Specifically, they em- 218

ploy a learnable routing matrix Wr followed by a 219

softmax function: 220

ω = Softmax(Wrx), (3) 221

where x is the input token representation and ω 222

represents the normalized weights assigned to each 223

head. 224

Liu et al. (2025) observe that head matrices 225

in multi-head LoRA often exhibit high similarity, 226

leading to redundancy. To address this, R-LoRA 227

introduces multi-head randomization to encourage 228

diverse task-specific learning, achieving better per- 229

formance with reduced computational and memory 230

overhead. 231

2.3 Maximum Mean Discrepancy (MMD) 232

Maximum Mean Discrepancy (MMD)(Sejdinovic 233

et al., 2013) is a kernel-based statistical measure for 234

quantifying the difference between two probability 235

distributions. Given a reproducing kernel Hilbert 236

space (RKHS) Hk with a characteristic kernel k, 237

the squared MMD between representation p and q 238

is defined as: 239

MMD2(p, q) = ∥µk(p)− µk(q)∥2Hk
, (4) 240

where µk(p) = Ex∼p[ϕ(x)] and µk(q) = 241

Ey∼q[ϕ(y)] are the mean embeddings of p and q in 242

Hk, and ϕ(·) denotes the feature mapping induced 243

by kernel k. 244

A key advantage of MMD is its ability to capture 245

distributional differences in feature spaces without 246

requiring explicit density estimation. However, its 247

performance heavily depends on the choice of ker- 248

nel. To address this limitation, the Multiple Kernel 249
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MMD (MK-MMD)(Gretton et al., 2012) extends250

MMD by combining multiple kernels adaptively:251

MK-MMD2(p, q) =
∑
k∈K

∥µk(p)− µk(q)∥2Hk
,

(5)252

where K is a predefined set of kernels. This variant253

enhances robustness by combining multiple ker-254

nels, allowing the metric to capture multi-scale dis-255

tributional discrepancies in the reproducing kernel256

Hilbert space (RKHS).257

In the context of transfer learning and domain258

adaptation, MMD has been widely used as a cri-259

terion for aligning feature distributions between260

source and target domains(Ben-David et al., 2006;261

Pan et al., 2010). The core idea is to minimize the262

MMD distance between activations from different263

domains, encouraging the model to learn domain-264

invariant representations that generalize well across265

tasks.266

For example, in unsupervised domain adaptation267

(UDA), MMD is often applied to match the feature268

distributions of labeled source data and unlabeled269

target data, reducing domain shift and improving270

generalization performance. Specifically, given271

features from the source domain Ds = {xs
i}

ns
i=1272

and the target domain Dt = {xt
j}

nt
j=1, the MMD273

loss is defined as:274

LMMD =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

ϕ(xs
i )−

1

nt

nt∑
j=1

ϕ(xt
j)

∥∥∥∥∥∥
2

, (6)275

where ϕ(·) denotes the feature embedding function,276

and the objective is to minimize the distributional277

discrepancy between the two domains in the shared278

feature space.279

In the context of neural networks for image clas-280

sification, this MMD loss can be incorporated into281

the overall training objective alongside the standard282

classification loss (Long et al., 2015). The total loss283

function is typically formulated as:284

Ltotal = Lcls + λ · LMMD, (7)285

where Lcls is the cross-entropy loss on the labeled286

source data, and λ is a hyperparameter that bal-287

ances the contribution of the MMD regularization.288

Building on this principle, we propose to incor-289

porate MMD into LoRA for multi-task learning,290

with a focus on its multiple kernel extension, MK-291

MMD. Unlike traditional applications that focus on292

Figure 2: Overview of the R-LoRA+ framework. Our
simplified variant of R-LoRA removes the dynamic rout-
ing (Router) module and instead applies a fixed average
fusion mechanism to combine the outputs of all head
matrices during inference.

aligning input or hidden-layer features, we apply 293

MK-MMD to the output of the low-rank down- 294

projection matrix A in LoRA, encouraging the 295

model to learn shared, task-agnostic representa- 296

tions. This design improves multi-task general- 297

ization by reducing distributional discrepancies in 298

the representation space, without introducing addi- 299

tional parameters. 300

3 Observations 301

3.1 Head Matrices in Multi-Head LoRA 302

In this section, we analyze the parameter similarity 303

between different head matrices in the Multi-Head 304

LoRA architecture. To achieve our objectives, we 305

focus on HydraLoRA (Tian et al., 2024) and R- 306

LoRA (Liu et al., 2025) and use cosine similarity 307

to observe the parameters of the head matrices. 308

In this work, we propose a simplified variant of 309

R-LoRA, which we denote as R-LoRA+, by re- 310

moving its dynamic routing (Router) module. In R- 311

LoRA+, the outputs of the head matrices are simply 312

averaged during training, without input-dependent 313

weighting. An overview of the R-LoRA+ frame- 314

work is illustrated in Figure 2, highlighting its struc- 315

tural simplicity and efficient adaptation mechanism. 316

We fine-tune Qwen2.5-3B (Qwen Team, 2024) with 317

HydraLoRA (Tian et al., 2024) and R-LoRA+ on 318

five different tasks. All experimental setups for 319

this work, including dataset descriptions, training 320

procedures, and hyperparameter configurations, are 321

comprehensively documented in Appendix B. To 322
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Figure 3: Cosine similarity among head matrices for HydraLoRA (left) and R-LoRA+ (right). The left plot shows
that HydraLoRA maintains moderate similarity across heads, while the right plot reveals that removing the router in
R-LoRA (R-LoRA+) leads to higher similarity among head matrices. "Overall mean" denotes the average similarity
across all model layers.

Schemes QNLI PiQA Winogrande ARC GSM8K Avg %Para
HydraLoRA 81.90 84.21 70.90 87.21 45.95 74.03 0.45
R-LoRA 82.00 85.55 71.80 87.69 46.25 74.66 0.45
R-LoRA+ 82.30 86.76 72.90 88.03 46.85 75.34 0.41

Table 1: Comparative study of several multi-head LoRA variants across five tasks.

evaluate the parameter similarity among head ma-323

trices, we first flatten each matrix into a vector and324

then compute pairwise cosine similarities to con-325

struct a similarity matrix. The average value of326

this matrix is used as an overall measure of head327

matrix similarity. Additionally, we perform T-SNE328

analysis on all the head matrices of HydraLoRA in329

Figure 5 of Appendix A.330

As illustrated in the left plot of Figure 3, Hy-331

draLoRA, which is a typical example of multi-head332

LoRA, still exhibits over 70% similarity among its333

head matrices. This suggests that, despite its multi-334

head design, HydraLoRA still learns substantial335

shared knowledge across heads, limiting its ability336

to capture task-specific features. To address this337

limitation, R-LoRA introduces multi-head random-338

ization to encourage diverse knowledge learning339

across tasks, thereby improving multi-task perfor-340

mance. The analysis of R-LoRA can be refered to341

Figure 4 in Appendix A.342

Although R-LoRA was originally designed to343

improve multi-task learning by reducing redun-344

dancy among head matrices, as shown in Figure 4,345

the right plot of Figure 3 reveals that removing its346

Router module leads to an even higher similarity347

among these matrices in R-LoRA+, suggesting that348

the Router plays a key role in maintaining diver-349

sity across heads. Across all adapter modules, the350

parameter similarity exceeds 75%, with an aver- 351

age of over 85%. This observation raises a natural 352

question: 353

RQ 1: How does head matrix similarity affect 354

multi-task learning performance? In particular, 355

can high similarity among head matrices coexist 356

with strong generalization across tasks? 357

3.2 Multi-Task Performance Comparison 358

To assess the impact of head matrix similarity on 359

multi-task performance, we conduct a comparative 360

study of several multi-head LoRA variants, includ- 361

ing HydraLoRA, R-LoRA, and its simplified vari- 362

ant R-LoRA+. As shown in Table 1, we find that al- 363

though R-LoRA improves multi-task performance 364

by encouraging the model to learn diverse task- 365

specific knowledge, R-LoRA+, which removes the 366

Router module and shows the highest head ma- 367

trix similarity among the three variants, achieves 368

even better results. This finding goes against in- 369

tuition. Notably, R-LoRA introduces multi-head 370

randomization to promote diversity, and compared 371

to HydraLoRA, it reduces memory consumption 372

and computational cost despite having the iden- 373

tical number of trainable parameters. By further 374

removing the Router in R-LoRA+, the number of 375

trainable parameters is reduced even more, leading 376

to additional gains in efficiency in terms of both 377
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Metrics LoRA LoRAHub* LoRA MoE* HydraLoRA R-LoRA LoRA†

7B 37.1 39.7 40.3 41.5 42.2 42.2
13B 40.8 41.9 43.7 44.2 45.1 44.9
% Param 0.06 1.24 2.98 0.34 0.34 0.34

Table 2: Comparison of different training schemes on Llama2. LoRA† denotes the variant where the LoRA rank is
increased to match the number of trainable parameters in multi-head variants. * indicates results from (Tian et al.,
2024).

Metrics LoRA4 LoRA8 LoRA9 LoRA10 HydraLoRA R-LoRA R-LoRA+
7B 43.21 46.66 48.18 49.48 49.12 49.51 49.48
Rank 4 8 9 10 4 4 4
% Param 0.10 0.20 0.22 0.25 0.25 0.25 0.22

Table 3: Comparison of different training schemes on Qwen2.5. The superscript in "LoRA" (e.g., 4, 8, etc.) indicates
the rank value used for each variant.

memory usage and inference speed.378

Given the strong performance of R-LoRA+, we379

further ask:380

RQ 2: What explains the effective multi-task381

generalization of R-LoRA+ in the presence of high382

head matrix similarity, and what does this reveal383

about the principles of multi-task generalization in384

LoRA?385

3.3 Task-Shared vs. Task-Specific Learning386

We discuss why R-LoRA+ achieves superior perfor-387

mance despite its high head matrix similarity. We388

hypothesize that multi-task learning may benefit389

from two complementary directions: (1) enhancing390

task-specific knowledge discrimination and spe-391

cialization, and (2) focusing on shared knowledge392

across tasks. In R-LoRA, the head matrices are ini-393

tialized with non-zero values and exhibit large gra-394

dient norms during early training, enabling rapid395

capture of task-related knowledge. The dynamic396

routing mechanism further encourages each head397

to specialize in distinct knowledge, promoting task-398

specific learning. In contrast, R-LoRA+ removes399

the Router and simply averages the outputs of all400

heads during training. This forces the head ma-401

trices to converge toward shared representations,402

emphasizing the acquisition of cross-task gener-403

alizable features. The superior performance of R-404

LoRA+ suggests that multi-task generalization may405

rely more heavily on learning shared knowledge406

across tasks than on enforcing task-specific special-407

ization.408

This observation builds upon findings from pre-409

vious studies on HydraLoRA(Tian et al., 2024) and410

R-LoRA(Liu et al., 2025), which show that the411

down-projection matrix A in LoRA primarily cap- 412

tures cross-task generalizable knowledge, while 413

the head matrix B tends to capture task-specific 414

features. Inspired by this, we pose a new question: 415

RQ 3: Can increasing the rank of LoRA en- 416

hance the expressive capacity of matrix A, thereby 417

improving multi-task generalization by better cap- 418

turing shared knowledge? 419

4 Increasing the Rank is All You Need 420

To evaluate the multi-task generalization ability of 421

the models, we adopt the experimental setup from 422

HydraLoRA and fine-tune models on a diverse 423

subset of the Flanv2 dataset, which includes tasks 424

spanning commonsense reasoning, language under- 425

standing, question answering, and so on. Llama2 426

and Qwen2.5 are used as base models to ensure 427

compatibility and comparability across architec- 428

tures. The fine-tuned models are evaluated on the 429

Big-Bench Hard (BBH) benchmark, a challenging 430

suite of tasks designed to assess reasoning capa- 431

bilities in language models. BBH covers a wide 432

range of domains such as logical reasoning, sym- 433

bolic manipulation, algorithmic tasks, and multi- 434

step question answering, all of which require strong 435

generalization beyond memorization. More details 436

about the dataset composition are provided in Ap- 437

pendix B.3. 438

Our key finding is that, surprisingly, sim- 439

ply increasing the rank of standard LoRA can 440

achieve multi-task generalization performance 441

on par with more sophisticated multi-task vari- 442

ants such as LoRA MoE and HydraLoRA, with- 443

out requiring complex architectural modifica- 444

tions. This is demonstrated in Table 2, where we 445
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observe that when the rank of standard LoRA is446

scaled to match the parameter budget of these vari-447

ants, its performance becomes highly competitive.448

Furthermore, as shown in Table 3, on the more re-449

cent Qwen2.5 model, the multi-task generalization450

ability of LoRA improves steadily with increasing451

rank. Across various experimental settings, LoRA452

achieves performance comparable to HydraLoRA453

and R-LoRA, reinforcing the conclusion that en-454

hancing the rank alone suffices for strong multi-task455

adaptation.456

This result highlights that Multi-Adapter and457

Multi-Head structure may not be essential for effec-458

tive multi-task learning, and that a simple, higher-459

rank LoRA module can achieve competitive perfor-460

mance while offering better deployment efficiency461

due to its mergeable weights.462

5 Extended Method463

Our analysis shows that high similarity among head464

matrices does not necessarily harm multi-task per-465

formance. In particular, R-LoRA+, a simplified466

variant of multi-head LoRA without dynamic rout-467

ing, achieves strong generalization despite having468

highly similar heads. This suggests that focusing469

on shared, transferable knowledge across tasks may470

be more important than enforcing task-specific spe-471

cialization.472

Following this insight, and consistent with find-473

ings in HydraLoRA (Tian et al., 2024) and R-474

LoRA (Liu et al., 2025), we confirm that the down-475

projection matrix A primarily captures task-shared476

features, while the head matrices Bi encode task-477

specific knowledge. Notably, simply increasing478

the rank of standard LoRA can match the perfor-479

mance of complex multi-head variants, indicating480

that structural complexity is not essential when481

model capacity is appropriately scaled.482

5.1 Align-LoRA483

To further enhance multi-task generalization, we484

propose to explicitly encourage the model to485

learn task-invariant representations. To this end,486

we incorporate the Maximum Mean Discrepancy487

(MMD) framework (Sejdinovic et al., 2013) into488

LoRA-based parameter-efficient fine-tuning, with a489

particular focus on its multi-kernel extension, MK-490

MMD (Gretton et al., 2012). To the best of our491

knowledge, this work is the first to apply MMD492

in multi-task LoRA adaptation. While MMD has493

been widely used in domain adaptation and repre-494

sentation learning (Pan et al., 2010), its potential 495

for aligning task-specific features in multi-task set- 496

tings remains underexplored. 497

Unlike traditional applications that focus on 498

input or hidden-layer alignment, we apply MK- 499

MMD directly to the output representations of 500

the LoRA down-projection matrix A, promot- 501

ing shared knowledge across tasks while re- 502

taining task-specific expressiveness. Let T = 503

{T1, T2, . . . , TM} denote a set of M tasks, each 504

associated with its own input distribution pTi . The 505

output of the LoRA down-projection matrix for 506

task Ti is defined as: 507

ϕTi(x) = A ·XTi , (8) 508

where XTi represents the contextualized input em- 509

bedding for task Ti. 510

To encourage cross-task generalization, we min- 511

imize the MK-MMD loss between all task pairs 512

(Ti, Tj), formulated as: 513

LMK-MMD =
M∑
i=1

M∑
j=i+1

∑
k∈K∥∥∥Ex∼pTi

[ϕTi(x)]

− Ey∼pTj
[ϕTj (y)]

∥∥∥2
Hk

.

(9) 514

This loss forces the LoRA module to learn task- 515

invariant features by reducing distributional shifts 516

across tasks in the RKHS space. The adaptive 517

kernel selection mechanism of MK-MMD ensures 518

that the model retains task-specific expressiveness 519

while prioritizing shared knowledge. 520

In the context of LLM fine-tuning, we incor- 521

porate this loss as a regularization term into the 522

standard language modeling objective. Specifically, 523

the total loss function is defined as: 524

Ltotal = Llm + λ · LMK-MMD, (10) 525

where Llm denotes the language modeling (or 526

sequence-to-sequence) loss for the current task, and 527

λ controls the influence of the MK-MMD regular- 528

ization. 529

We denote this approach as Align-LoRA, which 530

introduces a novel direction for improving multi- 531

task generalization within the framework of LoRA. 532

By explicitly aligning task-shared representations 533

through the MK-MMD loss, Align-LoRA encour- 534

ages models to learn shared knowledge across tasks, 535

enhancing their ability to generalize beyond indi- 536

vidual task-specific patterns. 537
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Metrics LoRA8 LoRA10 HydraLoRA R-LoRA Align-LoRA8 Align-LoRA10

Qwen2.5-7B 45.61 48.36 47.38 48.32 47.53 49.24
Llama3-8B 42.58 44.89 44.03 45.01 45.42 46.14
Rank 8 9 10 4 4 4
% Param 0.20 0.25 0.25 0.25 0.20 0.25
A/B 1/1 1/1 1/3 1/3 1/1 1/1

Table 4: Multi-task generalization performance of different LoRA variants on Qwen2.5-7B and LLaMA3-8B,
evaluated on Big-Bench Hard (BBH).

A key advantage of Align-LoRA is its compati-538

bility with various LoRA-based adaptation strate-539

gies. The representation alignment mechanism can540

be seamlessly integrated into different initialization541

schemes. Importantly, unlike Multi-Adapter/Multi-542

Head LoRA variants that rely on dynamic routing543

mechanisms during inference, Align-LoRA does544

not introduce any additional modules that would545

increase computational or memory overhead. As a546

result, the trained adapter weights in Align-LoRA547

can be merged into the base model’s parameters548

at deployment time, eliminating the need for sep-549

arate adapter computation during inference. This550

property ensures both efficiency and practicality,551

making Align-LoRA a lightweight yet effective552

solution for multi-task adaptation.553

5.2 Experiment554

In this section, we evaluate the performance of555

Align-LoRA. In this section, we evaluate the perfor-556

mance of Align-LoRA in comparison to standard557

LoRA and its multi-head variants. To provide a558

comprehensive assessment of multi-task generaliza-559

tion capabilities. For detailed dataset information,560

please refer to the Appendix B.4. For evaluation,561

we use the Big-Bench Hard (BBH) benchmark,562

which measures the model’s ability to generalize563

across complex reasoning tasks rather than sim-564

ply memorizing answers. This setup enables us to565

assess cross-task generalization.566

As shown in Table 4, we evaluate the multi-task567

generalization performance of Align-LoRA on two568

recent large language models, Qwen2.5-7B and569

LLaMA3-8B, under various LoRA configurations.570

Despite variations in the training data, the results571

consistently demonstrate that increasing the rank572

leads to improved performance across tasks. No-573

tably, Align-LoRA further strengthens this trend574

by explicitly aligning task-specific representations575

through MK-MMD, thereby promoting the learn-576

ing of shared, task-agnostic knowledge.577

Compared to standard LoRA and multi-head578

variants with comparable parameter budgets, Align- 579

LoRA achieves superior performance on BBH 580

without introducing any additional trainable pa- 581

rameters. This demonstrates the effectiveness 582

of representation-level alignment as a means 583

to improve multi-task generalization within the 584

parameter-efficient fine-tuning framework. Our 585

work provides concrete evidence that task-shared 586

knowledge alignment is a viable direction for effi- 587

cient multi-task generalization. 588

6 Conclusion 589

In this work, we investigate the multi-task general- 590

ization capabilities of LoRA and propose a simpli- 591

fied variant, R-LoRA+. Our analysis reveals that 592

head matrices in multi-head structures often exhibit 593

high similarity, suggesting that structural complex- 594

ity may not be essential for effective multi-task 595

learning. 596

Our analysis reveals that simply increasing the 597

rank of LoRA achieves comparable performance 598

to multi-head variants, suggesting that complex 599

architectural designs may be unnecessary for multi- 600

task generalization. Building on this insight, we 601

propose Align-LoRA, a lightweight yet versatile 602

method that enhances generalization through MK- 603

MMD-based alignment of task representations. 604

Our approach is compatible with different initializa- 605

tion strategies, introduces no extra trainable param- 606

eters, and maintains LoRA’s mergeable property 607

while being more efficient for practical deployment 608

than multi-head alternatives. 609

Our work demonstrates that capturing shared 610

knowledge across tasks is more crucial for multi- 611

task generalization than pursuing structural diver- 612

sity. We further validate that representation align- 613

ment provides an effective pathway to enhance 614

such generalization capability. 615
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7 Limitation616

Despite the promising results of R-LoRA+ and617

Align-LoRA, several limitations should be ac-618

knowledged. Currently, our validation focuses619

on NLP tasks, and extending the method to other620

modalities, such as computer vision and multi-621

modal settings, represents an exciting avenue for622

future research. While we have conducted exten-623

sive experiments to validate its effectiveness, the624

inherent complexity of multi-task learning high-625

lights the importance of further exploration and626

broader evaluation.627
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A More Results 789

A.1 Head matrices analysis of R-LoRA 790

The analysis of head matrices in R-LoRA is pre- 791

sented in Figure 4 792

A.2 T-SNE analysis 793

The T-SNE analysis of head matrices in Hy- 794

draLoRA is shown in Figure 5. 795

B Datasets 796

B.1 Head Matrices in Multi-Head LoRA 797

In the section 3.1, We fine-tune Qwen2.5-3B on 798

five tasks: Paraphrase Detection (QQP), Natural 799

Language Inference (QNLI) (Wang, 2018), Com- 800

monsense Reasoning (SIQA) (Sap et al., 2019), 801

Physical Commonsense Reasoning (PIQA) (Bisk 802

et al., 2020), and Math (GSM8K) (Cobbe et al., 803

2021) 804

B.2 Multi-Task Performance Comparison 805

In the section 3.2, We fine-tune Qwen2.5-3B on 806

five tasks: 807

1. Natural Language Inference: QNLI (Wang, 808

2018) 809

2. Physical Question Answering: PiQA (Bisk 810

et al., 2020) 811

3. Word Relation Reasoning: Winogrande 812

4. Closed-Book Question Answering: ARC 813

5. Mathematical Reasoning: GSM8K 814
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Figure 4: Cosine similarity among head matrices in R-LoRA. "Overall mean" represents the average similarity
across all layers.

Figure 5: T-SNE analysis of head matrices in HydraLoRA

B.3 Increasing the Rank is All You Need815

Following (Tian et al., 2024), for complex mixed816

multi-task/domain, we select a portion of the817

Flanv2 datasets covering Natural Language Under-818

standing (NLU) and Natural Language Generation819

(NLG), which can be grouped into 10 distinct task820

clusters. Then we evaluate it with the Big-Bench821

Hard (BBH) benchmark.822

We summarize the details of the used datasets as823

follows:824

1. Struct-to-Text Conversion: This task eval-825

uates the capability to generate natural lan-826

guage descriptions from structured data inputs.827

We use the following datasets: (1) Common-828

Gen; (2) DART; (3) E2ENLG; (4) WebNLG829

2. Translation: Translation involves convert-830

ing text from one language to another, main-831

taining the original meaning and nuances. 832

We use the following datasets: (1) En-Fr 833

from WMT’14; (2) En-De, En-Tr, En-Ru, En- 834

Fi, En-Ro from WMT’16; (3) En-Es from 835

Paracrawl. 836

3. Commonsense Reasoning: This involves as- 837

sessing the ability to apply physical or scien- 838

tific principles alongside common sense in rea- 839

soning tasks. We use the following datasets: 840

(1) COPA; (2) HellaSwag; (3) PiQA; (4) Sto- 841

ryCloze. 842

4. Sentiment Analysis: A fundamental task in 843

natural language processing (NLP) that de- 844

termines the sentiment polarity (positive or 845

negative) of a given text. We use the follow- 846

ing datasets: (1) IMDB; (2) Sentiment140; (3) 847

SST-2; (4) Yelp. 848
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5. Paraphrase Detection: This task requires849

models to ascertain whether two sentences850

convey the same meaning, indicating seman-851

tic equivalence. We use the following datasets:852

(1) MRPC; (2) QQP; (3) Paws Wiki.853

6. Coreference Resolution: Involves identify-854

ing instances within a text that refer to the855

same entity, demonstrating an understanding856

of textual context. We use the following857

datasets: (1) DPR; (2) WSC273.858

7. Reading Comprehension: Assesses the ca-859

pability to derive answers to questions from860

a provided text containing relevant informa-861

tion. We use the following datasets: (1)862

BoolQ; (2) DROP; (3) MultiRC; (4) OBQA;863

(5) SQuADv1; (6) SQuADv2.864

8. Reading Comprehension with Common-865

sense: Merges traditional reading compre-866

hension skills with commonsense reasoning,867

requiring understanding beyond the explicit868

text. We use the following datasets: (1) Cos-869

mosQA; (2) ReCoRD.870

9. Natural Language Inference: Focuses on871

deducing the relationship between two sen-872

tences, determining if the second sentence873

logically follows from, contradicts, or is unre-874

lated to the first sentence. We use the follow-875

ing datasets: (1) ANLI; (2) CB; (3) MNLI; (4)876

QNLI; (5) SNLI; (6) WNLI; (7) RTE.877

10. Closed-Book Question Answering: This878

task challenges models to answer questions879

about general knowledge without direct ac-880

cess to external information sources. We use881

the following datasets: (1) ARC; (2) NQ; (3)882

TriviaQA.883

B.4 Experiment884

In the section 5.2, We fine-tune Qwen2.5-7B and885

Llama3-8B on five tasks. Then we evaluate it with886

the Big-Bench Hard (BBH) benchmark. We sum-887

marize the details of the used datasets as follows:888

1. Natural Language Inference: QNLI (Wang,889

2018)890

2. Physical Question Answering: PiQA891

3. Word Relation Reasoning: Winogrande892

4. Closed-Book Question Answering: ARC893

5. Mathematical Reasoning: GSM8K894

C Implementation Details 895

The hyperparameters used for training are as fol- 896

lows: a learning rate of 0.0002, lora_alpha=32, 897

and trainable LoRA components limited to q_proj 898

and v_proj. Other modules remain unchanged, fol- 899

lowing the standard LoRA setup. A dropout rate of 900

0.2 was applied to the LoRA layers, with a warmup 901

ratio of 0.03. The λ in Align-LoRA is configured 902

within the range of 0.01 to 0.15. Mixed-precision 903

training was enabled using bfloat16, and the learn- 904

ing rate scheduler was set to cosine annealing. The 905

model was trained on NVIDIA 4090 GPU. 906

D Related Work 907

1. Prompt Tuning: This method adds task- 908

specific prompts to the input. These prompt 909

parameters are updated independently while 910

the pretrained model parameters remain 911

frozen. 912

2. P-Tuning: This method incorporates trainable 913

prompt embeddings into the input, optimized 914

by a prompt encoder to automatically discover 915

effective prompts, removing the need for man- 916

ual design. Prompt tokens can be placed any- 917

where in the input sequence, and anchor to- 918

kens are introduced to enhance performance. 919

3. Prefix Tuning: This method prefixes a series 920

of task-specific vectors to the input sequence. 921

These prefix parameters can be learned while 922

keeping the pretrained model frozen. The pre- 923

fix parameters are inserted into all layers of 924

the model. 925

4. IA3: This method enhances efficiency by in- 926

fusing learned vectors into transformer archi- 927

tectures, drastically reducing the number of 928

trainable parameters. 929

5. AdaLoRA: Unlike LoRA, which distributes 930

parameters evenly across all modules, 931

AdaLoRA optimizes the number of trainable 932

parameters assigned to weight matrices and 933

layers. More parameters are allocated to 934

important weight matrices and layers, while 935

less important ones receive fewer parameters. 936

6. LoraHub randomly aggregates 20 LoRAs for 937

new downstream tasks. It employs a black- 938

box optimization technique to determine the 939

weight of each LoRA, eliminating the need for 940
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gradient calculations of the large model. This941

involves parameter-level weighted averaging.942

7. LoRA MoE. A collection of n parameter-943

ized experts, denoted as E1, . . . , En, is or-944

chestrated by a router network R. Ei = BiAi.945

Router network features a dense layer with946

adjustable weights WR from Rdm×n. A soft-947

max function then processes an intermediate948

token representation x, yielding gating scores949

s1, . . . , sn that determine the weighted contri-950

bution of each expert’s output:951

si = R(x)i = softmax(Top(W T
Rx,K))

(11)952

Subsequently, the overall output y is synthe-953

sized by aggregating the Top-K experts’ out-954

puts, each modulated by its respective gating955

score:956

y =

n∑
i=1

si · Ei(x) (MoE) (12)957

This results in a dynamic allocation of the958

model’s capacity, enabling specialized pro-959

cessing by experts as directed by the router’s960

gating mechanism.961

8. HydraLoRA uses a shared matrix A and mul-962

tiple matrices B1, . . . , Bn. The shared matrix963

A is used to project the input vector x into a964

lower-dimensional space, while each matrix965

Bi is used to modulate the output of the cor-966

responding expert Ei. The overall output y is967

synthesized by aggregating the experts’ out-968

puts, each modulated by its respective gating969

score:970

y =
n∑

i=1

si · (Bi ·A · x) (7)971

This approach allows for efficient parameteri-972

zation and specialization of the model’s ca-973

pacity, leveraging the shared matrix A for974

common transformations and the individual975

matrices Bi for task-specific adjustments.976
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