Increasing the Rank:
Revisiting the LoRA Architechture in Multi-Task Learning

Anonymous ACL submission

Abstract

Fine-tuning large language models (LLMs)
is computationally expensive, and Low-Rank
Adaptation (LoRA) offers a cost-effective al-
ternative by approximating weight updates
with low-rank matrices. In multi-task learn-
ing (MTL) scenarios, while recent works have
introduced multi-head LoRA variants to cap-
ture task-specific knowledge across different
tasks, we observe a high degree of similarity
among head matrices, questioning the neces-
sity of such structural complexity for multi-
task generalization. In this work, we pro-
pose R-LoRA+, a simplified but competitive
multi-head LoRA. We highlight that increas-
ing the rank of standard LoRA suffices to
match or even surpass the performance of meth-
ods with multi-adapter or multi-head, suggest-
ing that structural diversification may not be
necessary for multi-task generalization. Fur-
thermore, we find that explicitly encouraging
shared representation learning leads to more
effective adaptation under parameter-efficient
fine-tuning. Experimental results confirm that
focusing on shared knowledge across tasks im-
proves multi-task generalization while preserv-
ing the deployment-friendly nature of LoRA.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated unprecedented performance
across a wide range of natural language process-
ing (NLP) tasks (Brown, 2020; Zhao et al., 2023;
Chang et al., 2024b). Their remarkable capabilities
in language understanding and generation have at-
tracted widespread attention from both academia
and industry. Despite their strong generalization
abilities, LLMs often require further adaptation to
align with domain-specific requirements or to in-
corporate updated knowledge (Agiza et al., 2024;
Xin et al., 2024).

Supervised fine-tuning (SFT) plays a critical role
in aligning LLMs with human instructions by train-

ing the model on a small but high-quality set of
labeled examples (Hu et al., 2021; Xia et al., 2024).
However, full fine-tuning (FT), which involves up-
dating all model parameters, poses significant chal-
lenges in terms of computational efficiency and
memory consumption due to the enormous scale of
modern LLMs (Mao et al., 2025).

To address the high hardware demands of adapt-
ing LLMs, parameter-efficient fine-tuning (PEFT)
methods have been proposed (Han et al., 2024;
Chang et al., 2024a). These approaches signifi-
cantly reduce VRAM consumption, especially for
optimizer states, by updating only a small subset
of parameters while keeping the majority of the
model weights frozen. A variety of PEFT tech-
niques have been extensively studied, including
prefix tuning (Li and Liang, 2021), prompt tun-
ing(Liu et al., 2024c¢), adapter-based methods (Liu
et al., 2022), and low-rank adaptation (LoRA) (Hu
et al., 2021), among others.

Among various parameter-efficient methods,
LoRA has emerged as the most widely adopted
alternative to full fine-tuning. Instead of directly
updating the original weight matrices, LoRA in-
troduces low-rank matrices to approximate the pa-
rameter updates via matrix decomposition. During
inference, the original weights and adapted matri-
ces are combined to produce the final model out-
puts. In practice, LLMs are often fine-tuned on
data from multiple domains to perform a diverse
set of tasks, naturally aligning with the multi-task
learning (MTL) paradigm.

Recent advances in LoRA have introduced
multi-adapter architectures to enhance multi-task
learning, with notable variants including Multi-
LoRA (Wang et al., 2023), LoRA-MoE (Dou et al.,
2023), and MoeLoRA (Liu et al., 2024a). Liu
et al. (2025) refers to this general framework as
the Multi-Adapter LoRA architecture, which con-
sists of multiple down-projection matrices A and
their corresponding head matrices B. This design

|

(a)

s W e
h

I

(d)

Figure 1: Training architecture comparison. (a) Full parameter fine-tuning; (b) Vanilla LoRA; (c) Multi-Adapter

architecture; (d) Multi-Head/Asymmetric architecture.

enables task-specific adaptation by allowing each
task to utilize a distinct set of adapter parameters.

Among these methods, LoRA-MoE and
MoeLoRA further improve performance by incor-
porating a Mixture-of-Experts (MoE) mechanism
to dynamically aggregate outputs from different
adapters. Tian et al. (2024) observes that in the
LoRA framework, the down-projection matrices
A tend to be highly similar across tasks, whereas
the head matrices B exhibit greater variation, indi-
cating that they are more responsible for capturing
task-specific knowledge. Motivated by this obser-
vation, HydralLoRA (Tian et al., 2024) proposes an
asymmetric architecture that shares a single down-
projection matrix A across all tasks while maintain-
ing multiple task-specific B matrices. In addition,
HydralLoRA employs an MoE-based routing mech-
anism to combine the outputs of the head matrices.

Building on this line of work, R-LoRA (Liu
et al., 2025) explicitly interprets the asymmetric
architecture as a Multi-Head LoRA structure and
reveals that head matrices often exhibit high sim-
ilarity, leading to redundancy across heads. To
mitigate this issue, R-LoRA introduces multi-head
randomization, encouraging each head to learn di-
verse and task-specific representations, further im-
proving model expressiveness while reducing GPU
memory consumption and computational cost. The
mathematical formulation of the multi-head struc-
ture is detailed in Section 2.2, and the architectural
differences among the aforementioned approaches
are illustrated in Figure 1.

However, multi-head LoRA architectures such
as HydraLoRA rely on dynamic routing mech-
anisms that prevent adapter weights from being
merged into the base model, resulting in additional
inference overhead. In this work, we propose R-

LoRA+, a simplified but competitive multi-head
LoRA. Our analysis reveals that the Multi-Adapter
and Multi-Head structure may not be essential for
effective adaptation, as a simplified design can
yield superior or comparable results to advanced
multi-head variants. Moreover, we highlight that
increasing the rank of standard LoRA suffices to
match or even surpass the performance of meth-
ods with multi-adapter or multi-head. This obser-
vation motivates a shift in focus toward learning
task-shared knowledge, rather than enforcing ex-
plicit task-specific specialization. Building on this
insight, we propose Align-LoRA, which further
improves multi-task generalization by aligning the
representations of the down-projection matrix A
through MK-MMD (Sejdinovic et al., 2013; Gret-
ton et al., 2012) regularization.

Our key contributions are:

- We propose R-LoRA+, a simplified but com-
petitive multi-head LoRA, challenging the need for
complex routing mechanisms.

- We highlight that increasing the rank of stan-
dard LoRA suffices to match or exceed the per-
formance of multi-head variants, suggesting that
structural complexity is not essential.

- We introduce Align-LoRA, which improves
multi-task generalization by aligning task-shared
representations without introducing additional pa-
rameters.

2 Related Works

2.1 LoRA

Current LLMs typically adopt a decoder-only
architecture, consisting of stacked transformer
blocks (Zhao et al., 2023). Each block contains
two core components with residual connections: a

multi-head self-attention (MHA) layer and a feed-
forward network (FFN) (Vaswani, 2017). Both
layers rely on dense learnable weight matrices W
for feature transformation.

To efficiently adapt LLMs to specific tasks or
domains under resource constraints, LoRA (Hu
et al., 2021) offers an effective solution. Inspired
by the hypothesis that the intrinsic dimensional-
ity of parameter updates in LLMs is low, LoRA
approximates the weight update AW using two
low-rank matrices A € R"™ ™ and B € R™*",
where W € R™*" is the original weight matrix.
The rank r is chosen to be significantly smaller
than min(m, n), reducing the number of trainable
parameters from O(mn) to O(r(m + n)). This re-
sults in the updated weight matrix being expressed
as W + BA. Given an input z, the corresponding
output h becomes:

h=(W+AW)z =Wz +BAz, (1)

where AW = BA denotes the low-rank update.
In practice, matrix B is initialized with zeros to
ensure that no random perturbations are introduced
at the beginning of training, while A is initialized
using Kaiming Uniform (He et al., 2015). This
initialization strategy ensures that the initial outputs
remain consistent with the pre-trained model.
Following the original LoRA framework, sev-
eral works have proposed improvements to enhance
adaptability and efficiency. AdaLLoRA (Zhang et al.,
2023) dynamically adjusts the rank during training
for layer-wise optimization. DeltaLoRA (Zi et al.,
2023) and DoRA (Liu et al., 2024b) refine model
updates by decomposing weight changes into mag-
nitude or direction components. PiSSA (Meng
et al., 2025) and LoRA-GA (Wang et al., 2024)
improve convergence through better initialization
strategies. NLoRA (Guo et al., 2025) further en-
hances expressiveness and stability by decompos-
ing the parameter matrix into three components ini-
tialized via the Nystrom method. These approaches
highlight the importance of structural design and
initialization in improving LoRA’s performance
within parameter-efficient fine-tuning frameworks.

2.2 Multi-Head Architecture

MTL-LoRA (Yang et al, 2024) and Hy-
dralLoRA (Tian et al., 2024) are among the first
to introduce the multi-head architecture into LoRA-
based parameter-efficient fine-tuning. This archi-
tecture consists of a shared down-projection matrix

A and multiple distinct head matrices B;, enabling
both task-specific adaptation and knowledge shar-
ing across tasks.

As illustrated in Figure 1, this design effectively
separates task-specific components while preserv-
ing shared representations across different tasks.
The overall weight update in the Multi-Head archi-
tecture can be expressed as:

N
WH+AW =W+ w;-BA, (2
i=1
where IV is the number of heads, and w; denotes
the weight assigned to the i-th adapter output.

In MTL-LoRA and HydralLoRA, the weights w;
are computed using a routing mechanism based
on the input representation. Specifically, they em-
ploy a learnable routing matrix W . followed by a
softmax function:

w = Softmax(W,x), 3)

where x is the input token representation and w
represents the normalized weights assigned to each
head.

Liu et al. (2025) observe that head matrices
in multi-head LoRA often exhibit high similarity,
leading to redundancy. To address this, R-LoRA
introduces multi-head randomization to encourage
diverse task-specific learning, achieving better per-
formance with reduced computational and memory
overhead.

2.3 Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD)(Sejdinovic
et al., 2013) is a kernel-based statistical measure for
quantifying the difference between two probability
distributions. Given a reproducing kernel Hilbert
space (RKHS) H; with a characteristic kernel k,
the squared MMD between representation p and ¢
is defined as:

MMD?(p, q) = || (p) — (D)7, . @)

where fi(p) = Ex~pld(x)] and pi(q) =
Ey~q[¢(y)] are the mean embeddings of p and ¢ in
Hp, and ¢(+) denotes the feature mapping induced
by kernel k.

A key advantage of MMD is its ability to capture
distributional differences in feature spaces without
requiring explicit density estimation. However, its
performance heavily depends on the choice of ker-
nel. To address this limitation, the Multiple Kernel

MMD (MK-MMD)(Gretton et al., 2012) extends
MMD by combining multiple kernels adaptively:

MK-MMD?(p, q) = > _ ||tk (p) — 114(a) 3, »

kek
(&)
where K is a predefined set of kernels. This variant
enhances robustness by combining multiple ker-
nels, allowing the metric to capture multi-scale dis-
tributional discrepancies in the reproducing kernel
Hilbert space (RKHS).

In the context of transfer learning and domain
adaptation, MMD has been widely used as a cri-
terion for aligning feature distributions between
source and target domains(Ben-David et al., 2006;
Pan et al., 2010). The core idea is to minimize the
MMD distance between activations from different
domains, encouraging the model to learn domain-
invariant representations that generalize well across
tasks.

For example, in unsupervised domain adaptation
(UDA), MMD is often applied to match the feature
distributions of labeled source data and unlabeled
target data, reducing domain shift and improving
generalization performance. Specifically, given
features from the source domain Dy = {x;}"*

1 Ji=1

and the target domain D; = {x%}"*,, the MMD

1=
loss is defined as:
2
1 & 1 & .
Lymmp = - Z‘b(xf)_njz(b(xj) , (0)
5 i=1 j=1

where ¢(+) denotes the feature embedding function,
and the objective is to minimize the distributional
discrepancy between the two domains in the shared
feature space.

In the context of neural networks for image clas-
sification, this MMD loss can be incorporated into
the overall training objective alongside the standard
classification loss (Long et al., 2015). The total loss
function is typically formulated as:

Liotal = Leis + X - Lymvp, @)

where L is the cross-entropy loss on the labeled
source data, and)\ is a hyperparameter that bal-
ances the contribution of the MMD regularization.

Building on this principle, we propose to incor-
porate MMD into LoRA for multi-task learning,
with a focus on its multiple kernel extension, MK-
MMD. Unlike traditional applications that focus on

NN

:
W

Dropout Dropout

Dropout

B B |

Figure 2: Overview of the R-LoRA+ framework. Our
simplified variant of R-LoRA removes the dynamic rout-
ing (Router) module and instead applies a fixed average
fusion mechanism to combine the outputs of all head
matrices during inference.

aligning input or hidden-layer features, we apply
MK-MMD to the output of the low-rank down-
projection matrix A in LoRA, encouraging the
model to learn shared, task-agnostic representa-
tions. This design improves multi-task general-
ization by reducing distributional discrepancies in
the representation space, without introducing addi-
tional parameters.

3 Observations

3.1 Head Matrices in Multi-Head LoRA

In this section, we analyze the parameter similarity
between different head matrices in the Multi-Head
LoRA architecture. To achieve our objectives, we
focus on HydralLoRA (Tian et al., 2024) and R-
LoRA (Liu et al., 2025) and use cosine similarity
to observe the parameters of the head matrices.

In this work, we propose a simplified variant of
R-LoRA, which we denote as R-LoRA+, by re-
moving its dynamic routing (Router) module. In R-
LoRA+, the outputs of the head matrices are simply
averaged during training, without input-dependent
weighting. An overview of the R-LoRA+ frame-
work is illustrated in Figure 2, highlighting its struc-
tural simplicity and efficient adaptation mechanism.
We fine-tune Qwen2.5-3B (Qwen Team, 2024) with
HydralLoRA (Tian et al., 2024) and R-LoRA+ on
five different tasks. All experimental setups for
this work, including dataset descriptions, training
procedures, and hyperparameter configurations, are
comprehensively documented in Appendix B. To

Cosine Similarity Mean of B Matrices by Layer

10 —— upj

Cosine Similarity Mean of B Matrices by Layer

A N
NN

I

B w0, 0> ~AVAN
YN \/v

NV

Figure 3: Cosine similarity among head matrices for HydraLoRA (left) and R-LoRA+ (right). The left plot shows
that HydraLoRA maintains moderate similarity across heads, while the right plot reveals that removing the router in
R-LoRA (R-LoRA+) leads to higher similarity among head matrices. "Overall mean" denotes the average similarity

across all model layers.

Schemes QNLI PiQA Winogrande ARC GSMS8K Avg %Para
HydralLoRA | 81.90 84.21 70.90 87.21 4595 74.03 045
R-LoRA 82.00 85.55 71.80 87.69 4625 7466 045
R-LoRA+ 82.30 86.76 72.90 88.03 46.85 7534 041

Table 1: Comparative study of several multi-head LoRA variants across five tasks.

evaluate the parameter similarity among head ma-
trices, we first flatten each matrix into a vector and
then compute pairwise cosine similarities to con-
struct a similarity matrix. The average value of
this matrix is used as an overall measure of head
matrix similarity. Additionally, we perform T-SNE
analysis on all the head matrices of HydraLoRA in
Figure 5 of Appendix A.

As illustrated in the left plot of Figure 3, Hy-
dralLoRA, which is a typical example of multi-head
LoRA, still exhibits over 70% similarity among its
head matrices. This suggests that, despite its multi-
head design, HydralLoRA still learns substantial
shared knowledge across heads, limiting its ability
to capture task-specific features. To address this
limitation, R-LoRA introduces multi-head random-
ization to encourage diverse knowledge learning
across tasks, thereby improving multi-task perfor-
mance. The analysis of R-LoRA can be refered to
Figure 4 in Appendix A.

Although R-LoRA was originally designed to
improve multi-task learning by reducing redun-
dancy among head matrices, as shown in Figure 4,
the right plot of Figure 3 reveals that removing its
Router module leads to an even higher similarity
among these matrices in R-LoRA+, suggesting that
the Router plays a key role in maintaining diver-
sity across heads. Across all adapter modules, the

parameter similarity exceeds 75%, with an aver-
age of over 85%. This observation raises a natural
question:

RQ 1: How does head matrix similarity affect
multi-task learning performance? In particular,
can high similarity among head matrices coexist
with strong generalization across tasks?

3.2 Multi-Task Performance Comparison

To assess the impact of head matrix similarity on
multi-task performance, we conduct a comparative
study of several multi-head LoRA variants, includ-
ing HydraLoRA, R-LoRA, and its simplified vari-
ant R-LoRA+. As shown in Table 1, we find that al-
though R-LoRA improves multi-task performance
by encouraging the model to learn diverse task-
specific knowledge, R-LoRA+, which removes the
Router module and shows the highest head ma-
trix similarity among the three variants, achieves
even better results. This finding goes against in-
tuition. Notably, R-LoRA introduces multi-head
randomization to promote diversity, and compared
to HydralLoRA, it reduces memory consumption
and computational cost despite having the iden-
tical number of trainable parameters. By further
removing the Router in R-LoRA+, the number of
trainable parameters is reduced even more, leading
to additional gains in efficiency in terms of both

Metrics | LORA LoRAHub* LoRA MoE* HydraLoRA R-LoRA LoRAT
7B 37.1 39.7 40.3 41.5 42.2 42.2
13B 40.8 41.9 43.7 44.2 45.1 44.9
% Param | 0.06 1.24 2.98 0.34 0.34 0.34

Table 2: Comparison of different training schemes on Llama2. LoRAT denotes the variant where the LoRA rank is
increased to match the number of trainable parameters in multi-head variants. * indicates results from (Tian et al.,

2024).
Metrics | LORA? LoRA® LoRA” LoRA! HydraLoRA R-LoRA R-LoRA+
7B 4321 46.66 48.18 49.48 49.12 49.51 49.48
Rank 4 8 9 10 4 4 4
% Param | 0.10 0.20 0.22 0.25 0.25 0.25 0.22

Table 3: Comparison of different training schemes on Qwen2.5. The superscript in "LoRA" (e.g., %, 8, etc.) indicates

the rank value used for each variant.

memory usage and inference speed.

Given the strong performance of R-LoRA+, we
further ask:

RQ 2: What explains the effective multi-task
generalization of R-LoRA+ in the presence of high
head matrix similarity, and what does this reveal
about the principles of multi-task generalization in
LoRA?

3.3 Task-Shared vs. Task-Specific Learning

We discuss why R-LoR A+ achieves superior perfor-
mance despite its high head matrix similarity. We
hypothesize that multi-task learning may benefit
from two complementary directions: (1) enhancing
task-specific knowledge discrimination and spe-
cialization, and (2) focusing on shared knowledge
across tasks. In R-LoRA, the head matrices are ini-
tialized with non-zero values and exhibit large gra-
dient norms during early training, enabling rapid
capture of task-related knowledge. The dynamic
routing mechanism further encourages each head
to specialize in distinct knowledge, promoting task-
specific learning. In contrast, R-LoRA+ removes
the Router and simply averages the outputs of all
heads during training. This forces the head ma-
trices to converge toward shared representations,
emphasizing the acquisition of cross-task gener-
alizable features. The superior performance of R-
LoRA+ suggests that multi-task generalization may
rely more heavily on learning shared knowledge
across tasks than on enforcing task-specific special-
ization.

This observation builds upon findings from pre-
vious studies on HydralLoRA(Tian et al., 2024) and
R-LoRA(Liu et al., 2025), which show that the

down-projection matrix A in LoRA primarily cap-
tures cross-task generalizable knowledge, while
the head matrix B tends to capture task-specific
features. Inspired by this, we pose a new question:

RQ 3: Can increasing the rank of LoRA en-
hance the expressive capacity of matrix A, thereby
improving multi-task generalization by better cap-
turing shared knowledge?

4 Increasing the Rank is All You Need

To evaluate the multi-task generalization ability of
the models, we adopt the experimental setup from
HydralLoRA and fine-tune models on a diverse
subset of the Flanv2 dataset, which includes tasks
spanning commonsense reasoning, language under-
standing, question answering, and so on. Llama2
and Qwen2.5 are used as base models to ensure
compatibility and comparability across architec-
tures. The fine-tuned models are evaluated on the
Big-Bench Hard (BBH) benchmark, a challenging
suite of tasks designed to assess reasoning capa-
bilities in language models. BBH covers a wide
range of domains such as logical reasoning, sym-
bolic manipulation, algorithmic tasks, and multi-
step question answering, all of which require strong
generalization beyond memorization. More details
about the dataset composition are provided in Ap-
pendix B.3.

Our key finding is that, surprisingly, sim-
ply increasing the rank of standard LoRA can
achieve multi-task generalization performance
on par with more sophisticated multi-task vari-
ants such as LoORA MoE and HydralLoRA, with-
out requiring complex architectural modifica-
tions. This is demonstrated in Table 2, where we

observe that when the rank of standard LoRA is
scaled to match the parameter budget of these vari-
ants, its performance becomes highly competitive.
Furthermore, as shown in Table 3, on the more re-
cent Qwen2.5 model, the multi-task generalization
ability of LoRA improves steadily with increasing
rank. Across various experimental settings, LoORA
achieves performance comparable to HydraLoRA
and R-LoRA, reinforcing the conclusion that en-
hancing the rank alone suffices for strong multi-task
adaptation.

This result highlights that Multi-Adapter and
Multi-Head structure may not be essential for effec-
tive multi-task learning, and that a simple, higher-
rank LoRA module can achieve competitive perfor-
mance while offering better deployment efficiency
due to its mergeable weights.

5 Extended Method

Our analysis shows that high similarity among head
matrices does not necessarily harm multi-task per-
formance. In particular, R-LoRA+, a simplified
variant of multi-head LoRA without dynamic rout-
ing, achieves strong generalization despite having
highly similar heads. This suggests that focusing
on shared, transferable knowledge across tasks may
be more important than enforcing task-specific spe-
cialization.

Following this insight, and consistent with find-
ings in HydraLoRA (Tian et al., 2024) and R-
LoRA (Liu et al., 2025), we confirm that the down-
projection matrix A primarily captures task-shared
features, while the head matrices B; encode task-
specific knowledge. Notably, simply increasing
the rank of standard LoRA can match the perfor-
mance of complex multi-head variants, indicating
that structural complexity is not essential when
model capacity is appropriately scaled.

5.1 Align-LoRA

To further enhance multi-task generalization, we
propose to explicitly encourage the model to
learn task-invariant representations. To this end,
we incorporate the Maximum Mean Discrepancy
(MMD) framework (Sejdinovic et al., 2013) into
LoRA-based parameter-efficient fine-tuning, with a
particular focus on its multi-kernel extension, MK-
MMD (Gretton et al., 2012). To the best of our
knowledge, this work is the first to apply MMD
in multi-task LoRA adaptation. While MMD has
been widely used in domain adaptation and repre-

sentation learning (Pan et al., 2010), its potential
for aligning task-specific features in multi-task set-
tings remains underexplored.

Unlike traditional applications that focus on
input or hidden-layer alignment, we apply MK-
MMD directly to the output representations of
the LoRA down-projection matrix A, promot-
ing shared knowledge across tasks while re-
taining task-specific expressiveness. Let T =
{T1, Ty, ..., Ty} denote a set of M tasks, each
associated with its own input distribution p7;. The
output of the LoRA down-projection matrix for
task T; is defined as:

¢qu (X) =A- XTN)

where X7, represents the contextualized input em-
bedding for task 7;.

To encourage cross-task generalization, we min-
imize the MK-MMD loss between all task pairs
(T3, T}), formulated as:

M M
LMK-MMD = Z Z Z

i=1 j=i+1kek

(IS

~ By, 01, (3]

©)

2

Hy

This loss forces the LoRA module to learn task-
invariant features by reducing distributional shifts
across tasks in the RKHS space. The adaptive
kernel selection mechanism of MK-MMD ensures
that the model retains task-specific expressiveness
while prioritizing shared knowledge.

In the context of LLLM fine-tuning, we incor-
porate this loss as a regularization term into the
standard language modeling objective. Specifically,
the total loss function is defined as:

Liotal = Lim + A - LMK-MMD; (10)

where L, denotes the language modeling (or
sequence-to-sequence) loss for the current task, and
A controls the influence of the MK-MMD regular-
ization.

We denote this approach as Align-LoRA, which
introduces a novel direction for improving multi-
task generalization within the framework of LoRA.
By explicitly aligning task-shared representations
through the MK-MMD loss, Align-LLoRA encour-
ages models to learn shared knowledge across tasks,
enhancing their ability to generalize beyond indi-
vidual task-specific patterns.

Metrics LoRA® LoRA" HydraLoRA R-LoRA Align-LoRA® Align-LoRA ™
Qwen2.5-7B | 4561 4836 47.38 48.32 47.53 49.24
Llama3-8B | 4258 44.89 44.03 45.01 45.42 46.14
Rank 8 9 10 4 4 4
% Param 0.20 0.25 0.25 0.25 0.20 0.25
A/B 1/1 1/1 1/3 1/3 1/1 1/1

Table 4: Multi-task generalization performance of different LoRA variants on Qwen2.5-7B and LLaMA3-8B,

evaluated on Big-Bench Hard (BBH).

A key advantage of Align-LoRA is its compati-
bility with various LoRA-based adaptation strate-
gies. The representation alignment mechanism can
be seamlessly integrated into different initialization
schemes. Importantly, unlike Multi- Adapter/Multi-
Head LoRA variants that rely on dynamic routing
mechanisms during inference, Align-LoRA does
not introduce any additional modules that would
increase computational or memory overhead. As a
result, the trained adapter weights in Align-LoRA
can be merged into the base model’s parameters
at deployment time, eliminating the need for sep-
arate adapter computation during inference. This
property ensures both efficiency and practicality,
making Align-LoRA a lightweight yet effective
solution for multi-task adaptation.

5.2 Experiment

In this section, we evaluate the performance of
Align-LoRA. In this section, we evaluate the perfor-
mance of Align-LoRA in comparison to standard
LoRA and its multi-head variants. To provide a
comprehensive assessment of multi-task generaliza-
tion capabilities. For detailed dataset information,
please refer to the Appendix B.4. For evaluation,
we use the Big-Bench Hard (BBH) benchmark,
which measures the model’s ability to generalize
across complex reasoning tasks rather than sim-
ply memorizing answers. This setup enables us to
assess cross-task generalization.

As shown in Table 4, we evaluate the multi-task
generalization performance of Align-LoRA on two
recent large language models, Qwen2.5-7B and
LLaMA3-8B, under various LoRA configurations.
Despite variations in the training data, the results
consistently demonstrate that increasing the rank
leads to improved performance across tasks. No-
tably, Align-LoRA further strengthens this trend
by explicitly aligning task-specific representations
through MK-MMD, thereby promoting the learn-
ing of shared, task-agnostic knowledge.

Compared to standard LoRA and multi-head

variants with comparable parameter budgets, Align-
LoRA achieves superior performance on BBH
without introducing any additional trainable pa-
rameters. This demonstrates the effectiveness
of representation-level alignment as a means
to improve multi-task generalization within the
parameter-efficient fine-tuning framework. Our
work provides concrete evidence that task-shared
knowledge alignment is a viable direction for effi-
cient multi-task generalization.

6 Conclusion

In this work, we investigate the multi-task general-
ization capabilities of LoRA and propose a simpli-
fied variant, R-LoRA+. Our analysis reveals that
head matrices in multi-head structures often exhibit
high similarity, suggesting that structural complex-
ity may not be essential for effective multi-task
learning.

Our analysis reveals that simply increasing the
rank of LoRA achieves comparable performance
to multi-head variants, suggesting that complex
architectural designs may be unnecessary for multi-
task generalization. Building on this insight, we
propose Align-LoRA, a lightweight yet versatile
method that enhances generalization through MK-
MMD-based alignment of task representations.
Our approach is compatible with different initializa-
tion strategies, introduces no extra trainable param-
eters, and maintains LoRA’s mergeable property
while being more efficient for practical deployment
than multi-head alternatives.

Our work demonstrates that capturing shared
knowledge across tasks is more crucial for multi-
task generalization than pursuing structural diver-
sity. We further validate that representation align-
ment provides an effective pathway to enhance
such generalization capability.

7 Limitation

Despite the promising results of R-LoRA+ and
Align-LoRA, several limitations should be ac-
knowledged. Currently, our validation focuses
on NLP tasks, and extending the method to other
modalities, such as computer vision and multi-
modal settings, represents an exciting avenue for
future research. While we have conducted exten-
sive experiments to validate its effectiveness, the
inherent complexity of multi-task learning high-
lights the importance of further exploration and
broader evaluation.

References

Ahmed Agiza, Marina Neseem, and Sherief Reda. 2024.
Mtlora: Low-rank adaptation approach for efficient
multi-task learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-

nition, pages 16196-16205.

Shai Ben-David, John Blitzer, Koby Crammer, and Fer-
nando Pereira. 2006. Analysis of representations for
domain adaptation. Advances in neural information
processing systems, 19.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-74309.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Yupeng Chang, Yi Chang, and Yuan Wu. 2024a. Ba-
lora: Bias-alleviating low-rank adaptation to mitigate
catastrophic inheritance in large language models.
arXiv preprint arXiv:2408.04556.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024b. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1-45.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, et al. 2023. Loramoe: Revolu-
tionizing mixture of experts for maintaining world
knowledge in language model alignment. arXiv
preprint arXiv:2312.09979, 4(7).

Arthur Gretton, Dino Sejdinovic, Heiko Strathmann,
Sivaraman Balakrishnan, Massimiliano Pontil, Kenji
Fukumizu, and Bharath K Sriperumbudur. 2012. Op-
timal kernel choice for large-scale two-sample tests.
Advances in neural information processing systems,
25.

Chenlu Guo, Yuan Wu, and Yi Chang. 2025. Nilora:
Nystrom-initiated low-rank adaptation for large lan-
guage models. Preprint, arXiv:2502.14482.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
arXiv preprint arXiv:2403.14608.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026—1034.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950-1965.

Jinda Liu, Yi Chang, and Yuan Wu. 2025. R-lora: Ran-
dom initialization of multi-head lora for multi-task
learning. Preprint, arXiv:2502.15455.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2024a.
When moe meets llms: Parameter efficient fine-
tuning for multi-task medical applications. Preprint,
arXiv:2310.18339.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024b. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024c. Gpt
understands, too. Al Open, 5:208-215.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael
Jordan. 2015. Learning transferable features with
deep adaptation networks. In International confer-
ence on machine learning, pages 97-105. PMLR.

https://arxiv.org/abs/2502.14482
https://arxiv.org/abs/2502.14482
https://arxiv.org/abs/2502.14482
https://arxiv.org/abs/2502.14482
https://arxiv.org/abs/2502.14482
https://arxiv.org/abs/2502.15455
https://arxiv.org/abs/2502.15455
https://arxiv.org/abs/2502.15455
https://arxiv.org/abs/2502.15455
https://arxiv.org/abs/2502.15455
https://arxiv.org/abs/2310.18339
https://arxiv.org/abs/2310.18339
https://arxiv.org/abs/2310.18339

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi,
Zhonghao Hu, and Yunjun Gao. 2025. A survey on
lora of large language models. Frontiers of Computer
Science, 19(7):197605.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2025.
Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in
Neural Information Processing Systems, 37:121038-
121072.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and
Qiang Yang. 2010. Domain adaptation via transfer
component analysis. IEEE transactions on neural
networks, 22(2):199-210.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gret-
ton, and Kenji Fukumizu. 2013. Equivalence of
distance-based and rkhs-based statistics in hypothesis
testing. The annals of statistics, pages 2263-2291.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and
Chengzhong Xu. 2024. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. Preprint,
arXiv:2404.19245.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Alex Wang. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461.

Shaowen Wang, Linxi Yu, and Jian Li. 2024. Lora-ga:
Low-rank adaptation with gradient approximation.
Preprint, arXiv:2407.05000.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guan-
nan Zhang. 2023. Multilora: Democratizing lora
for better multi-task learning. arXiv preprint
arXiv:2311.11501.

Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan
Wu, Yuan Tian, Yi Chang, and Junyang Lin. 2024.
Rethinking data selection at scale: Random se-
lection is almost all you need. arXiv preprint
arXiv:2410.09335.

Chunlei Xin, Yaojie Lu, Hongyu Lin, Shuheng Zhou,
Huijia Zhu, Weiqiang Wang, Zhongyi Liu, Xianpei
Han, and Le Sun. 2024. Beyond full fine-tuning:
Harnessing the power of lora for multi-task instruc-
tion tuning. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 2307-2317.

10

Yaming Yang, Dilxat Muhtar, Yelong Shen, Yuefeng
Zhan, Jianfeng Liu, Yujing Wang, Hao Sun, Denvy
Deng, Feng Sun, Qi Zhang, Weizhu Chen, and Yun-
hai Tong. 2024. Mtl-lora: Low-rank adaptation for
multi-task learning. Preprint, arXiv:2410.09437.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang,
Kam-Fai Wong, and Lei Zhang. 2023. Delta-lora:
Fine-tuning high-rank parameters with the delta of
low-rank matrices. arXiv preprint arXiv:2309.02411.

A More Results
A.1 Head matrices analysis of R-LoRA

The analysis of head matrices in R-LoRA is pre-
sented in Figure 4
A.2 T-SNE analysis

The T-SNE analysis of head matrices in Hy-
dralLoRA is shown in Figure 5.

B Datasets

B.1 Head Matrices in Multi-Head LoRA

In the section 3.1, We fine-tune Qwen2.5-3B on
five tasks: Paraphrase Detection (QQP), Natural
Language Inference (QNLI) (Wang, 2018), Com-
monsense Reasoning (SIQA) (Sap et al., 2019),
Physical Commonsense Reasoning (PIQA) (Bisk
et al., 2020), and Math (GSM8K) (Cobbe et al.,
2021)

B.2 Multi-Task Performance Comparison

In the section 3.2, We fine-tune Qwen2.5-3B on
five tasks:

1. Natural Language Inference: QNLI (Wang,

2018)

. Physical Question Answering: PiQA (Bisk
et al., 2020)

. Word Relation Reasoning: Winogrande
. Closed-Book Question Answering: ARC

. Mathematical Reasoning: GSM8K

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2404.19245
https://arxiv.org/abs/2404.19245
https://arxiv.org/abs/2404.19245
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2407.05000
https://arxiv.org/abs/2410.09437
https://arxiv.org/abs/2410.09437
https://arxiv.org/abs/2410.09437

Cosine Similarity Mean

0.8 §

0.7 4

o
o

o
o

0.4 4

0.3+

Cosine Similarity Mean of B Matrices by Layer

—e— up_proj Cosine Similarity Mean
—=—- up_proj Overall Mean
—8— down_proj Cosine Similarity Mean
—-- down_proj Overall Mean
—&— gate_proj Cosine Similarity Mean
—=- gate_proj Overall Mean

0 5 10 15

20
Layer

25 30 35

Figure 4: Cosine similarity among head matrices in R-LoRA. "Overall mean" represents the average similarity

across all layers.

3

Figure 5: T-SNE analysis of head matrices in HydraLoRA

B.3 Increasing the Rank is All You Need

Following (Tian et al., 2024), for complex mixed
multi-task/domain, we select a portion of the
Flanv?2 datasets covering Natural Language Under-
standing (NLU) and Natural Language Generation
(NLG), which can be grouped into 10 distinct task
clusters. Then we evaluate it with the Big-Bench
Hard (BBH) benchmark.

We summarize the details of the used datasets as
follows:

1. Struct-to-Text Conversion: This task eval-
uates the capability to generate natural lan-
guage descriptions from structured data inputs.
We use the following datasets: (1) Common-
Gen; (2) DART; (3) E2ENLG; (4) WebNLG

2. Translation: Translation involves convert-
ing text from one language to another, main-

11

taining the original meaning and nuances.
We use the following datasets: (1) En-Fr
from WMT’14; (2) En-De, En-Tr, En-Ru, En-
Fi, En-Ro from WMT’16; (3) En-Es from
Paracrawl.

. Commonsense Reasoning: This involves as-

sessing the ability to apply physical or scien-
tific principles alongside common sense in rea-
soning tasks. We use the following datasets:
(1) COPA; (2) HellaSwag; (3) PiQA; (4) Sto-
ryCloze.

Sentiment Analysis: A fundamental task in
natural language processing (NLP) that de-
termines the sentiment polarity (positive or
negative) of a given text. We use the follow-
ing datasets: (1) IMDB; (2) Sentiment140; (3)
SST-2; (4) Yelp.

5. Paraphrase Detection: This task requires
models to ascertain whether two sentences
convey the same meaning, indicating seman-
tic equivalence. We use the following datasets:
(1) MRPC; (2) QQP; (3) Paws Wiki.

6. Coreference Resolution: Involves identify-
ing instances within a text that refer to the
same entity, demonstrating an understanding
of textual context. We use the following
datasets: (1) DPR; (2) WSC273.

7. Reading Comprehension: Assesses the ca-
pability to derive answers to questions from
a provided text containing relevant informa-
tion. We use the following datasets: (1)
BoolQ; (2) DROP; (3) MultiRC; (4) OBQA;
(5) SQuADv1; (6) SQuADV2.

8. Reading Comprehension with Common-
sense: Merges traditional reading compre-
hension skills with commonsense reasoning,
requiring understanding beyond the explicit
text. We use the following datasets: (1) Cos-
mosQA; (2) ReCoRD.

9. Natural Language Inference: Focuses on
deducing the relationship between two sen-
tences, determining if the second sentence
logically follows from, contradicts, or is unre-
lated to the first sentence. We use the follow-
ing datasets: (1) ANLI; (2) CB; (3) MNLI; (4)
QNLI; (5) SNLI; (6) WNLI; (7) RTE.

10. Closed-Book Question Answering: This
task challenges models to answer questions
about general knowledge without direct ac-
cess to external information sources. We use
the following datasets: (1) ARC; (2) NQ; (3)
TriviaQA.

B.4 Experiment

In the section 5.2, We fine-tune Qwen2.5-7B and
Llama3-8B on five tasks. Then we evaluate it with
the Big-Bench Hard (BBH) benchmark. We sum-
marize the details of the used datasets as follows:

1. Natural Language Inference: QNLI (Wang,
2018)

Physical Question Answering: PiQA
Word Relation Reasoning: Winogrande

Closed-Book Question Answering: ARC

A

Mathematical Reasoning: GSMSK

C Implementation Details

The hyperparameters used for training are as fol-
lows: a learning rate of 0.0002, lora_alpha=32,
and trainable LoORA components limited to q_proj
and v_proj. Other modules remain unchanged, fol-
lowing the standard LoRA setup. A dropout rate of
0.2 was applied to the LoRA layers, with a warmup
ratio of 0.03. The X in Align-LoRA is configured
within the range of 0.01 to 0.15. Mixed-precision
training was enabled using bfloat16, and the learn-
ing rate scheduler was set to cosine annealing. The
model was trained on NVIDIA 4090 GPU.

D Related Work

1. Prompt Tuning: This method adds task-
specific prompts to the input. These prompt
parameters are updated independently while
the pretrained model parameters remain
frozen.

2. P-Tuning: This method incorporates trainable
prompt embeddings into the input, optimized
by a prompt encoder to automatically discover
effective prompts, removing the need for man-
ual design. Prompt tokens can be placed any-
where in the input sequence, and anchor to-
kens are introduced to enhance performance.

3. Prefix Tuning: This method prefixes a series
of task-specific vectors to the input sequence.
These prefix parameters can be learned while
keeping the pretrained model frozen. The pre-
fix parameters are inserted into all layers of
the model.

4. I A3: This method enhances efficiency by in-
fusing learned vectors into transformer archi-
tectures, drastically reducing the number of
trainable parameters.

5. AdaLoRA: Unlike LoRA, which distributes
parameters evenly across all modules,
AdaLoRA optimizes the number of trainable
parameters assigned to weight matrices and
layers. More parameters are allocated to
important weight matrices and layers, while
less important ones receive fewer parameters.

6. LoraHub randomly aggregates 20 LoRAs for
new downstream tasks. It employs a black-
box optimization technique to determine the
weight of each LoRA, eliminating the need for

gradient calculations of the large model. This
involves parameter-level weighted averaging.

. LoRA MOoE. A collection of n parameter-
ized experts, denoted as E1,..., F,, is or-
chestrated by a router network R. E; = B; A;.
Router network features a dense layer with
adjustable weights W from R%*"_ A soft-
max function then processes an intermediate
token representation z, yielding gating scores
S1, - - -, Sp, that determine the weighted contri-
bution of each expert’s output:

s;i = R(z); = softmax(Top(Whz, K))
11
Subsequently, the overall output y is synthe-
sized by aggregating the Top-K experts’ out-
puts, each modulated by its respective gating
score:

y= si-Ei(x) (MoE) (12)
=1

This results in a dynamic allocation of the
model’s capacity, enabling specialized pro-
cessing by experts as directed by the router’s
gating mechanism.

. HydraLoRA uses a shared matrix A and mul-
tiple matrices By, . .., B;,. The shared matrix
A is used to project the input vector x into a
lower-dimensional space, while each matrix
B; is used to modulate the output of the cor-
responding expert F;. The overall output y is
synthesized by aggregating the experts’ out-
puts, each modulated by its respective gating
score:

n

y=> si-(Bi-A-x) @)

=1

This approach allows for efficient parameteri-
zation and specialization of the model’s ca-
pacity, leveraging the shared matrix A for
common transformations and the individual
matrices B; for task-specific adjustments.

13

	Introduction
	Related Works
	LoRA
	Multi-Head Architecture
	Maximum Mean Discrepancy (MMD)

	Observations
	Head Matrices in Multi-Head LoRA
	Multi-Task Performance Comparison
	Task-Shared vs. Task-Specific Learning

	Increasing the Rank is All You Need
	Extended Method
	Align-LoRA
	Experiment

	Conclusion
	Limitation
	More Results
	Head matrices analysis of R-LoRA
	T-SNE analysis

	Datasets
	Head Matrices in Multi-Head LoRA
	Multi-Task Performance Comparison
	Increasing the Rank is All You Need
	Experiment

	Implementation Details
	Related Work

