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Abstract

In this paper, we analyze the denoising loss used by key denoising models and identify an
inefficiency that stems from the random pairing which they employ between samples from
the source and target distributions. Regressing the denoiser under these non-deterministic
conditions causes its predictions to collapse toward the mean of the source or target dis-
tributions. We show that this degeneracy creates false basins of attraction, distorting the
denoising trajectories and ultimately increasing the number of steps required to sample these
models.
We also analyze the alternative strategy of deriving the pairing from an Optimal Trans-
port between the two distributions, and show that while this approach can alleviate this
degeneracy, it suffers from a curse of dimensionality, where the pairing set size must scale
exponentially with the signal’s dimension.
In order to empirically validate and utilize these theoretical observations, we design a new
training approach that circumvents these pitfalls by leveraging the deterministic ODE-based
samplers, offered by certain denoising diffusion and score-matching models. These deter-
ministic samplers establish a well-defined change-of-variables between the source and target
distributions. We use this correspondence to construct a new probability flow model, the
Lines Matching Model (LMM), which matches globally straight lines interpolating between
the two distributions. We show that the flow fields produced by the LMM exhibit notable
temporal consistency, resulting in trajectories with excellent straightness scores, and allow
us to exceed the quality of distilling the input correspondence.
The LMM flow formulation allows us to further enhance the fidelity of the generated sam-
ples beyond the input correspondence by integrating domain-specific reconstruction and
adversarial losses. Overall, the LMM achieves state-of-the-art FID scores with minimal
NFEs on established benchmark datasets: 1.57/1.39 (NFE=1/2) on CIFAR-10, 1.47/1.17
on ImageNet 64×64, and 2.68/1.54 on AFHQ 64×64.

1 Introduction

Diffusion models are the core engine behind many recent state-of-the-art generative models across various
domains, e.g., image generation (Song et al., 2021b; Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach
et al., 2022), text-to-image generation (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al., 2024), audio
synthesis (Kong et al., 2021; Kim et al., 2021; Chen et al., 2020; Popov et al., 2021), and video generation (Ho
et al., 2022; Singer et al., 2023; Liu et al., 2024b).

This gain in popularity of the underlying denoising diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and
score-matching (Song et al., 2019; Song & Ermon, 2020; 2019) models over GANs (Goodfellow et al., 2014)
is often attributed to their improved distribution reproduction (Dhariwal & Nichol, 2021), and immunity to
various optimization hurdles that plague GAN training (mode collapse and forgetting (Thanh-Tung & Tran,
2020)). Nevertheless, unlike the single-step sampling of GAN and VAE (Kingma & Welling, 2014) models,
the noise removal process follows non-trivial probability flow trajectories, requiring fine quadrature steps and
resulting in non-negligible computational effort during inference. This ranges between hundreds of sampling
steps in early methods (Ho et al., 2020) and tens in more recent ones (Karras et al., 2022).
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Distilling pre-trained denoising models allows reducing the Number of Function Evaluations (NFEs) during
sampling. This approach can be carried out in different ways; learning the end-to-end sampling opera-
tor (Luhman & Luhman, 2021), or reducing its number of steps progressively (Salimans & Ho, 2022) even
during teacher training (Frans et al., 2025). More recently, the denoising trajectories are learned either by
ensuring consistency along successive steps (Song et al., 2023), or along arbitrary segments (Kim et al.,
2024). These methods offer a significant speedup over their teacher models, nevertheless, they also inherit
inefficiencies inherent to the trajectories that they replicate.

As an alternative, the probability flow matching techniques in (Lipman et al., 2023; Albergo & Vanden-
Eijnden, 2023b) incorporate Optimal Transport (OT) considerations in order to produce more constant
flow trajectories, requiring fewer sampling steps. Additional improvement in straightness is achieved by
an iterative rectification scheme in (Liu et al., 2023; 2024a), as well as by replacing the random pairing
between the source and data examples with an OT pairing (Pooladian et al., 2023; Tong et al., 2024). While
improving upon traditional denoising losses, the flow fields produced by these approaches still contain false
attraction basins, causing the trajectories to curve.

In this paper, we present a theoretical analysis showing that the ambiguous pairing between latent source
noise and target data samples leads to an ill-posed regression problem, compromising the performance of key
denoising models, including denoising diffusion, score and flow-matching. At low signal-to-noise ratios, this
indeterminacy in the denoising loss becomes worse and causes the denoiser’s predictions to collapse toward
the mean of either the source or target distributions. This acts as a false basin of attraction that curves the
denoising trajectories, ultimately increases the number of steps needed for sampling.

We make a second theoretical contribution, showing that while the OT-based pairing in (Pooladian et al.,
2023; Tong et al., 2024) is a valid approach for reducing this indeterminacy and the attraction to the false
basins, due to a fundamental course-of-dimensionality, the batch size required scales exponentially as a
function of the signal dimension. Given that the latter is fairly high in various practical scenarios and the
former is typically constrained by memory and compute limitations, the effectiveness of this approach is
limited, as demonstrated in Table 1.

We leverage the fact that certain denoising diffusion (Song et al., 2021a) and score-matching (Song & Ermon,
2019; Karras et al., 2022) models define deterministic ODE-based flows, which also induce correspondence
between source and target distributions for several purposes: (i) validate the sufficiency of our theoretical
insights, i.e., evaluate the extent of inefficiency that the random pairing inflicts, (ii) assess whether it is
better to model the induced correspondence or model their flow, and (iii) to explore how to achieve the
latter while avoiding the inefficient features in the flows.

This study leads us to a new strategy: unlike existing approaches that distill the full (and potentially
inefficient) probability flow field, we utilize only the induced correspondence between distributions. To this
end, we introduce a new probability flow model, the Lines Matching Model (LMM), trained to match globally
straight lines interpolating between the distributions. As demonstrated in Table 1, the flow fields produced
by LMM exhibit strong temporal consistency, resulting in trajectories with excellent straightness scores.

Beyond its sampling efficiency, and unlike other flow matching formulations, the LMM’s training formulation
in signal space allows us to exceed the sampling fidelity set by its input correspondence by incorporating
domain-specific reconstruction and adversarial losses, as well as optimizing its training for the sampling
procedure used. Overall, the LMM achieves state-of-the-art Fréchet Inception Distance (FID) scores using
minimal NFEs on established benchmarks, specifically, 1.57/1.39 (NFE=1/2) for CIFAR-10, 1.47/1.17 for
ImageNet 64×64, and 2.8/1.61 for AFHQ 64×64.

While outlined in the paper, the two core theoretical contributions are presented in full in Appendix A
and B, and we encourage readers to consult these sections for further details.

2 Denoising Efficiency Analysis

Our first investigation aims to shed light on the implications of minimizing the denoising loss over indepen-
dently sampled pairs of source (noisy) and data points. Prior work Pooladian et al. (2023) argues that this
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practice leads to nonzero gradient variance at convergence, slower training, and degraded straightness of the
resulting probability paths. However, these claims are either shown empirically, primarily through subopti-
mal performance at low NFE, or under theoretical scenarios (infinite batch size in OT-based pairing). We
complement this with an analysis offering a mechanistic explanation of how this loss, in its general use case,
drives the trajectories toward singular basins of attraction, and thus undermines their sampling efficiency.

We begin by reviewing several key denoising-based generative models, with an intent to bring them to a
common ground in order to highlight the source of a sampling inefficiency that they share. The Denoising
Diffusion Probability Models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020), as well as Denoising
Score Matching (DSM) approaches, specifically the Noise Conditional Score Network (NCSN) (Song &
Ermon, 2019) minimize the following form of denoising loss,

Ldenoise= Et,q(x1),p(x|x1,t)

[
∥Nθ(x, st) − ∇x log p(x|x1, t)∥2

]
, (1)

where q(x1) is the target data distribution which we are given empirically. In case of DDPM, p(x|x1, t) =
N (√αtx1, (1 − αt)I) and st = t, where 1 ≤ t ≤ T is a noise scheduling index weighted by probabilities
∝ (1 − αt), and αt =

∏t
i=1(1 − βi) and 0 < βi < 1 are a pre-defined sequence of noise scales1. In this

framework the network Nθ models the mean of the reverse Gaussian kernels by p(xt−1|xt) = N ((xt +
βtNθ(xt, t))/

√
1 − βt, βtI), which are designed to start their operation from a source distribution, xT ∼ p0 =

N (0, I). In the NCSN, p(x|x1, t) = N (x1, σ
2
t I) and st = σt, where {σt}Tt=1 are positive noise scales, weighted

∝ σ2
t . In this approach, the network Nθ models the score field of noised data densities p(x, σt) = q∗N (0, σ2

t I),
which is used for gradually denoising samples, starting from xT ∼ p0 = N (0, σ2

T I), where σ2
T >> V[x1].

Much has been discussed about the close relation of these approaches (Vincent, 2011; Song et al., 2021b;
Karras et al., 2022). This formalism can be further generalized to cover continuous-time Stochastic Diffusion
Equations (SDEs), where the DDPM results in a Variance Preserving (VP) process, and the NCSN in a
Variance Exploding (VE) process, see (Song et al., 2021b).

The Conditional Flow Matching (CFM) method in (Lipman et al., 2023), constructs conditional maps
ψx1(x, t) = (1 − t)x+ tx1 that map p0 (a normalized Gaussian), towards a small Gaussian2 centered around
each x1 as a function of t ∈ [0, 1]. The flow fields induced by these maps, ∂ψx1/∂t, are shown to result in
straight paths and map the endpoint distributions correctly. However, in order to extend this flow to the
full data distribution q, the network N is trained to match an aggregated velocity flow field by marginalizing
over all the data points x1 by solving,

argminθEt,q(x1),p(x0)

[
∥Nθ

(
tx1 + (1 − t)x0, t

)
− (x1 − x0)∥2

]
, (2)

which appears sufficiency close to Eq. 1 for our purpose.

The following proposition simplifies the denoising losses, in Eq. 1 and Eq. 2, and allows us to understand
how they shapes the sampling trajectories in the learned model Nθ. At t = T in Eq. 1 (and t = 0 in Eq. 2)
the noised-to-clean signal problem solved in these equations boils down to the following regression problem,

argminθEq(x1),x0∼p0

[
∥Nθ(x0, σt) − ∇x log p(x0|x1, T )∥2

]
, (3)

with p(x0) ∝ e−∥x0−x1∥2/2 in case of Eq. 2. The solution to this problem is given by

Nθ(x0, σT ) = Eq(x1)
[
∇x log p(x0|x1, T )

]
. (4)

We provide the derivation of this proposition and the explicit calculation of ∇x log p for DDPM, NCSN, and
CFM in Appendix A. While this analysis applies to the very early stage of the flow, it is rather consequential,
as we discuss next.

Implications. The noised-to-clean signal regression problem solved in Eq. 3 is fairly general and is known
to underestimate the true regression (Kendall & Stuart, 1973; Clarke & Gorder, 2013), due to averaging

1The αt defined here correspond to the ᾱt in the derivation of Ho et al. (2020).
2To simplify derivation we assume a zero width target Gaussian around each data point, i.e., σmin = 0 in the formalism

of (Lipman et al., 2023)
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caused by the noise present in p(x|x1, t) at t = T (and t = 0 in CFM). Indeed, at this extreme limit of
low Signal-to-Noise Ratio (SNR), where p(x|x1, t) ≈ p0(x), the source and target samples are randomly
paired in Eq. 3. As we show in Appendix A, the regressed model in Eq. 4 collapses to a constant prediction,
specifically, N(x, T ) ≈ Ep0 [x] = µ0 − x in the case of DDPM, and N(x, σT ) ≈ Eq[x1] ∝ µ1 − x in the cases
of NCSN and CFM.

This implies that the randomly-paired denoising loss, used by these models, creates flows that start by
uniformly directing all the source samples x0 towards a fixed point, µ0 in the case of DDPM and µ1 in
the NCSN and CFM, rather than towards diverse instances x1 in the target distribution q. This effect is
highlighted in Table 1 by the green arrows. At later times t, which correspond to higher SNR, the trajectories
recover from the effect of these false basins, and redirect towards specific samples. This shift in direction,
also visible in the paths shown in Table 1, is the reason behind the undermined straightness that reduces the
sampling efficiency by requiring finer integration steps to accurately trace the resulting curved trajectories.

In this context, let us mention several related works. An alternative derivation to the CFM in (Albergo
& Vanden-Eijnden, 2023a) discusses the option of optimizing the transport of their maps and proposes an
initial direction to shorten their path length. Training this model to take larger step sizes results in improved
performance at lower NFEs in Frans et al. (2025).

The flow rectification process described in (Liu et al., 2023) also matches the flow using Eq. 2, however it
operates iteratively; at each step k it trains Nk over a different set of source Zk0 and target Zk1 examples. The
process starts with the random pairing at k = 0, but in the following steps, Zk+1

0 and Zk+1
1 are produced by

generating new samples using Nk starting from p0 and q (by integrating −Nk). This results in a deterministic
pairing and this process is shown to monotonically increase the straightness of the trajectories in Nk. It is
shown in (Wang et al., 2025) that extending the loss in Eq. 2, from lines (between x0 and x1) to a wider
class of first-order paths, improves the training efficiency and performance.

As shown in Table 1, the resulting flow trajectories at k=1 share a similar gravitation towards µ1 as in the
CFM. At k=2 they become significantly more straight and easier to integrate. However, as k increases errors
in the estimated flow field Nk accumulate and cause Zk0 and Zk1 to drift from p0 and q respectively. 2-Rect-
Flow (k= 2) is said to be found optimal in (Liu et al., 2023). In Section 3 we also utilize deterministically
generated pairing, but suggest a way to avoid this drift.

2.1 Optimal Transport Pairing Asymptotic Analysis

The non-negligible association between every pair of samples x0 ∼ p0 and x1 ∼ q when marginalizing the
denoising losses over an independent distribution p0(x0)q(x1), is a common thread shared by all the key
models mentioned above, undermining their sampling efficiency. By linking the flow’s transport optimality
to the straightness of the trajectories, both (Pooladian et al., 2023) and (Tong et al., 2024) derive their
pairing between p0 and q from an Optimal Transport (OT) objective. Due to the cubic complexity of this
problem (Flamary et al., 2021) (or a quadratic approximation (Altschuler et al., 2017)) the pairing, or plan
ji, is computed within batches of samples {xi0}ni=1 ∼ p0 and {xi1}ni=1 ∼ q of moderate sizes (n = 50/256
in (Pooladian et al., 2023)), and Eq. 2 is minimized over these permuted pairs. As shown in Table 1 this
approach, called Batch OT CFM (BOT-CFM), results in flows that are less curved than those produced
by (Lipman et al., 2023). Indeed, a 30% to 60% reduction in sampling cost is reported in (Pooladian et al.,
2023).

In a well-known manifestation of the curse-of-dimensionality, the ratio between the farthest and closest
points converges to a constant as the space dimension increases (Beyer et al., 1999). This suggests that
large batches may be required for finding meaningful plans πij , as shown empirically in Kim et al. (2023).
In order to analyze this relation, we consider the problem of transporting a high-dimensional unit Gaussian
distribution to itself. While the solution to this problem is trivial—an identity mapping resulting from a
null flow field minimizing the OT objective—we formally show the prohibitive computational requirements
involved in attaining it using OT-based pairing.

The solution for the BOT-CFM objective at t = 0 is given by

Nθ
(
x0, 0

)
= EpB(x∗

1 |x0)
[
x∗

1 − x0
]
, (5)
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source distribution target distribution
model straightness
EDM 0.0397
OT-CFM 0.0417
BOT-CFM 0.030
1/2-RF 0.043/0.00135
LMM 0.00183

initial flow mid-step flow sampling trajectories
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Table 1: Flow fields and sampling trajectories of different models. Top row shows the source and target
distributions along their first two dimensions. The source (blue dots) is a normal distribution in 128 space
dimension. The target (orange dots) is a mixture of two Gaussians located in (−1,−1, 0⃗) and (1, 1, 0⃗) with
STDs of (0, 1, 0.1, 1⃗), i.e., two separate Gaussians in the first two dimensions shown in the figure, and a normal
Gaussian in the remaining 126 dimensions. The following three rows show results of the optimized DSM
approach of EDM (Karras et al., 2022), the OT-CFM (Lipman et al., 2023) and its mini-batch optimized
BOT-CFM (Pooladian et al., 2023) which all appear to produce curved trajectories, with an improvement
observed in the BOT-CFM when pairing batches of size 256. Nearly identical results are obtained using
a batch size of 128, differing in straightness by only 0.0017. The trajectories of the 1-Rect-Flow (Liu
et al., 2023), shown in gray in the next row, also appear curved. The 2-Rect-Flow trajectories (black) are
considerably straighter than any of the above. However, a discrepancy between these two iterations can
be seen in their (target) endpoints (orange and cyan dots). This may indicate a drift from the original
distribution q. Our LMM produces straight curves and flow Fields which are close to being constant in time.
Note that excluding 2-Rect-Flow and LMM, the initial flow fields of all the methods show a clear basin of
attraction at (0, 0, 0⃗) responsible for an undesired drift at the beginning of the trajectories towards this point.
This effect is illustrated in the EDM, where the green arrows represent the tangent vectors to the curves at
their initial step. Top-right table reports the average trajectory straightness score,

∫ 1
0 ∥ẋ(t) − (x1 − x0)∥dt,

of each method where both 2-Rect-Flow and LMM standout.
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where pB(x∗
1, x0) is the joint distribution induced by finding the optimal pairing between source xi0 and

target xji

1 (denoted by x∗
1) within batches B of size n. We note that the particular time t = 0 is of

particular interest following the finding discussed in the previous section, where the effect of the attraction
basins peaks. While ideally this solution (velocity) should vanish, the following proposition presents a fairly
stringent lower bound. The expected maximal similarity between two Gaussian samples xi, xj ∼ N (0, I),
and xi, xj ∈ Rd, found within a mini-batch B of size n is bounded by

EpB(x∗
1 |x0)

[
x∗

1 − x0
]

≥ ∥x0∥2 − 2EpB(x∗
1 |x0)

[
⟨x∗

1, x0⟩
]

≈ 1 − 2
√

2 logn
d

. (6)

Essentially, this lower bound results from the fact that the dot-product between two random vectors, xi0 and
xj1, concentrates around zero as d increases, and the batch-size n offers a weak competition in increasing the
search repertoire. The proof of both propositions is given in Appendix B.

To conclude, the exponential dependency found between the batch size n and the space dimension d, which
tends to be fairly large in practical settings, undermines the prospect of achieving additional substantial
improvement beyond the one reported in (Pooladian et al., 2023) by increasing the batch size and relying
solely on the BOT strategy. Table 1 shows that while at d = 128 the BOT-CFM shows a moderate reduction
in the average trajectory straightness compared to the CFM when using batch sizes of n = 128, the use of
n = 256 offers a negligible improvement.

3 Lines Matching Model

Utilizing pre-computed deterministic ODE-based flows, e.g. (Song et al., 2021a; Song & Ermon, 2019; Karras
et al., 2022), offers an alternative to the use of random or OT-based pairing. In this empirical experimentation
section, we would like to answer the following questions: Q1. what is the impact of the false basins over the
sampling efficiency, Q2. should we simply distill the endpoints of the flow with a single feedforward model,
or should we model the flow and operate iteratively (similarly to the teacher model’s application), and Q3.
can we avoid distilling the inefficient, curved trajectories in the teacher model, which current distillation
methods inherit?

We answer these questions empirically, starting with Q3 by deriving a flow model that ignores the teacher
flow paths, which existing models distill (Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2024). By
contrast, we use only the pairing they induce between the source and target distributions to construct globally
straight flow lines to connect the distributions. Specifically, our Lines Matching Model (LMM) Nθ is derived
in accordance with the VE probability flow ODE formulation used in (Karras et al., 2022), and it is trained
to minimize

Llines = Eσ,δ(x1,ψ∗(x0)),p0(x0)

[
∥Nθ

(
x1 + σx0, σ

)
− x1∥P

]
, (7)

The pairing function ψ∗ is inferred from a deterministic ODE-based sampling procedure x1 = N∗
Sampler(x0)

given a pre-trained denoising network N∗. In our implementation we use the DSM described in (Karras et al.,
2022), commonly known as Elucidating Diffusion Models (EDM), along with its multi-stepped deterministic
sampling procedure N∗

Sampler that gradually reduces the noise level σ in x1 + σmaxx0 ≈ σmaxx0, down to a
negligible level where x1 + σminx0 ≈ x1 (details in the Appendix E). Let us discuss the desirable properties
of the LMM, further develop it, and address the questions raised above.

Unambiguous Pairing. As elaborated in the previous section, training that ties every x0 ∼ p0 with every
x1 ∼ q by conditioning the models on x1 and marginalizing over this variable leads to unwanted detours in the
flow map trajectories. The deterministic pairing we use, x1 = N∗

Sampler(x0) for every x0 ∼ p0, corresponds to
example pairs x0, x1 that sample an implicit change-of-variable function x1 = ψ∗(x0) induced by N∗

Sampler(x0)
and N∗. Thus, given a state-of-the-art N∗ generating samples of superior quality, the mapped distribution
can be considered as a good approximation, pN∗

Sampler
≈ q, in this respect. Consequently, Eq. 7 regresses Nθ

under a well-defined and unambiguous pairing between the source and target distributions regardless of the
severity of the noise level σ.

By training this vanilla LMM we answer Q1 conclusively based on the results reported in Tables 3, 4 and
5, where it achieves FID 3.3 using NFE=3 on CIFAR-10 compared to DDPM that achieves 3.17 using
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NFE=1000, and OT-CFM that achieves FID 6.35 using NFE=142. Similarly, the LMM achieves FID 4.7
using NEF=3 over ImageNet 64×64while DDPM obtains FID 11 using NE=250, and OT-CFM an FID of
14.45 using NFE=138. We note that the teacher model EDM achieves lower FID scores for reasons that we
discuss below. The LMM however improves on these scores by further augmenting its training as we explain
below.

Globally Straight Trajectories. Assuming Nθ is sufficiently expressive, and satisfies Eq. 7 sufficiently
well, then the lines x1 +σtx0 corresponds to its iso-contours. Thus, Nθ encodes globally straight probability
flow lines connecting the source and target distributions. As noted above, while certain constructions of
conditional flow maps may consist of globally straight flows Lipman et al. (2023), this property is lost once
they are marginalized over x1.

The validity of such linear fitting raises two important concerns. First, it is not clear that the provided
pairing admits linear interpolation, more specifically, the availability of training pairs x0, N

∗
Sampler(x0) and

x′
0, N

∗
Sampler(x′

0) whose connecting segments intersect in both time and space, i.e., (1−t)x0 +tN∗
Sampler(x0) =

(1−t)x′
0 +tN∗

Sampler(x′
0). In this case the regression in Eq. 7 is likely to result in a compromised intermediate

solution, hinting that the preferable answer to Q2 above is distilling the end-to-end pairing relation without
modeling any flow field.

However, the second concern relates to the fact that the input pairing is produced by a recursive application
of the teacher model, and distilling this combined operator by a single feed forward model will be undermined
by a mismatch in the functional space spanned by these different operators. This concern suggests that the
answer to Q2 above is a construction of a flow field, that will allow multiple executions of the models to
better mimic the way the input data was produced.

The experiments reported in Section 4 and Appendix C show that the LMM achieves excellent FID scores
over a number of benchmark datasets, using a single NFE which indicates that while the second concern
is valid, a single feed-forward execution of a model has a good ability to approximate that of a recursive
application. At the same time, all the experiment reported show an improved performance when using more
NFEs, suggesting that this functional approximation can be made more accurate by deriving a flow model
despite the first concern.

In either case, the sample quality achieved by the LMM falls below its teacher models, arguably due to both
concerns discussed here. This limitation is overcome by the following modifications.

Domain-Specific Loss. Another benefit of matching x1 in Eq. 7, rather than flow vectors, such as x1 −x0
as done in (Lipman et al., 2023; Liu et al., 2023), allows us to exploit the fact that Nθ matches native signals,
and hence domain-specific metrics can be employed. In particular, this allows us to use the perceptual loss
in (Johnson et al., 2016) to define ∥ · ∥P , when q corresponds to a distribution of images. Indeed in the
Appendix C we compare the use of this metric to L2 loss, and show a substantial improvement in sampling
fidelity lowering the FID over the CIFAR-10 dataset from 5.125 to 3.124 (NFE=1), and from 4.289 to 2.796
(NFE=2).

Adversarial Loss. Eq. 7 trains Nθ to replicate samples x1 generated by N∗
Sampler(x0), rather than being

trained directly on authentic (input) samples from q. This sets a limit on the quality at which Nθ approx-
imates q—one which is bounded by the quality of the mediator network N∗ and its sampling procedure,
N∗

Sampler. Training Nθ to produce signals in their original domain, e.g., clean images, in Eq. 7, offers yet
another advantage; we can follow the strategy of (Kim et al., 2024) and bootstrap Nθ to the original training
data using an adversarial loss. Specifically, we train a discriminator network D to discriminate between
authentic training samples x1 ∼ q and ones produced by Nθ, by

Ldisc = Eq(x1)

[
log

(
D(x1)

)]
+

Eσ,δ(x1,ψ∗(x0)),p0(x0)

[
log

(
1 −D

(
Nθ

(
x1 + σx0, σ

)))]
,

(8)

where we use the architecture in (Sauer et al., 2022) and the adaptive weighing λadapt in (Esser et al.,
2021) that Kim et al. use. We finally train Nθ to minimizing λlinesLlines + λadaptLdisc. We provide all the
implementation details in Appendix E.
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As we show in Appendix C, training the LMM without Ldisc achieves fairly satisfying FID scores, namely
3.12 (NFE=1) and 2.79 (NEF=2) on CIFAR-10. By incorporating the latter these scores further improve to
1.67 (NFE=1) and 1.39 (NFE=2). This surpasses the quality of samples generated by N∗

Sampler(x0) which
uses more sampling steps (NFE=35) and achieves FID of 1.79.

Finally, we note that 2-Rect-Flow Liu et al. (2023) also trains on deterministic pairs produced by its previous
step. However, it lacks the ability to use a domain-specific reconstruction loss as it matches the flow vectors,
and similarly, it does not admit a bootstrapping to the original data, which leads to the distributional drift,
shown in Table 1. We attribute these differences to the significantly better scores the LMM achieves in
Section 4. The integration of perceptual loss into Rect-Flow indeed offers the expected improvement, as also
shown in Lee et al. (2024).

Sampling-Optimized Training (SOT). An additional improvement to this scheme is motivated by the
fact that the LMM achieves high-quality samples already at NFE ≤ 3, as reported in the Appendix C. Thus
we explored the option of further improving its performance by restricting the training of Nθ to the specific
steps (noise levels σ) used at sampling time. In Appendix C we report the further quality increase obtained
by this training strategy.

4 Evaluation and Comparison
We trained the LMM on three benchmark datasets, CIFAR-10, ImageNet 64×64, and AFHQ 64×64, which
are commonly used for evaluating generative models. We used the same network architecture and hyper-
parameters as existing models, with all the implementation details provided in Appendix E. We submitted
the code used to produce the results reported here, and will make it available online.

Quantitative Comparison. Table 2 provides a comprehensive comparison of the CIFAR-10 reproduction
quality achieved by different models. The comparison shows that diffusion-based models achieve lower FID
scores, albeit at an increased sampling cost compared to GANs. Flow-matching models demonstrate an
ability to reduce the NFEs, alongside a range of distillation techniques that operate effectively with very low
NFEs—one or two sampling steps.

Among these, the Consistency Trajectory Model (CTM) (Kim et al., 2024), achieves excellent FID scores
of 1.73 (NFE=1) and 1.63 (NFE=2) on conditional CIFAR-10. Our LMM surpasses these scores and sets
new state-of-the-art scores of 1.57 and 1.39 respectively. We note that both methods benefit from the use
of an adversarial loss, but as reported in Appendix E, the LMM’s performance remains better also without
this loss. We attribute this to the fact that the LMM produces favorable line flow trajectories, rather than
relying on the curved EDM trajectories that the CTM distills.

The Rect-Flow in (Liu et al., 2023) achieves an impressive FID score of 4.85 in its second iteration, where it
produces significantly straighter trajectories (seen in Table 1). This second iteration achieves the best trade-
off between straightness and drift that this scheme accumulates. Improved scores are obtained by integrating
LPIPS loss in Lee et al. (2024). We also report CLIP-FID scores for several methods, which show a consistent
trend with FID, addressing the concern that the latter might favor VGG-based training solutions, since both
metrics were trained on ImageNet. As explained in Section 3, the LMM offers additional improvements to
this model, namely, the use of adversarial loss to avoid drifting away from the target distribution, as well as
the sampling optimized training (SOT) strategy that focuses the training on the actual sampling steps used
in practice.

Finally, let us note that by contrast to end-to-end samples distillation methods Luhman & Luhman (2021);
Yin et al. (2024); Zhou et al. (2024), by modeling a probability flow the LMM allows for improving sampling
quality by applying additional sampling steps. Results using NFE > 2 are reported in Appendix C.

Table 2 shows the results obtained on a larger dataset, ImageNet 64×64. Here too, the LMM demonstrates
state-of-the-art performance, with a notable improvement at NFE=2, where it reaches an FID of 1.17. The
SiD (Zhou et al., 2024) trains a single-step generator to agree with a pre-trained EDM, achieving an impressive
score of 1.52. Unlike the LMM, SiD does not rely on the EDM to generate training examples; instead, it uses
it to define the generator’s loss while simultaneously training an additional score-matching network. This
approach poses significantly higher GPU memory requirements and operations during training.
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CIFAR-10

Model NFE uncond. conditioned

FID IS FID

GAN
BigGAN Brock et al. (2019) 1 14.70 9.22 –
StyleGAN2-ADA Karras et al. (2020) 1 2.92 9.83 2.42
StyleGAN-D2D Kang et al. (2024) 1 – – 2.26
StyleGAN-XL Sauer et al. (2022) 1 – – 1.85

Diffusion / Score Matching
DDPM Ho et al. (2020) 1000 3.17 9.46 –
DDIM Song et al. (2021a) 100 4.16 – –
Score SDE Song et al. (2021b) 2000 2.20 9.89 –
EDM Karras et al. (2022) 35 1.97 9.84 1.79
↪→ CLIP-FID 35 0.55 – 0.50

Distillation / Direct Gen.
KD Luhman & Luhman (2021) 1 9.36 8.36 –
PD Salimans & Ho (2022) 1 9.12 – –
CT Song et al. (2023) 1 8.70 8.49 –
CD Song et al. (2023) 1 3.55 9.48 –
↪→ CLIP-FID 1 1.26 – –

CD+GAN Lu et al. (2023) 1 2.65 – –
iCT Song & Dhariwal (2024) 1 2.83 9.54 –
iCT-deep Song & Dhariwal (2024) 1 2.51 9.76 –
CTM Kim et al. (2024) 1 1.98 – 1.73
DMD Yin et al. (2024) 1 3.77 – 2.66
SiD (α = 1) Zhou et al. (2024) 1 2.02 10.02 1.93
SiD (α = 1.2) Zhou et al. (2024) 1 1.92 9.98 1.71
↪→ CLIP-FID 1 0.65 – –

PD Salimans & Ho (2022) 2 4.51 – –
CT Song et al. (2023) 2 5.83 8.85 –
CD Song et al. (2023) 2 2.93 9.75 –
iCT Song & Dhariwal (2024) 2 2.46 9.80 –
iCT-deep Song & Dhariwal (2024) 2 2.24 9.89 –
CTM Kim et al. (2024) 2 1.87 – 1.63

Flow Matching
OT-CFM Lipman et al. (2023) 142 6.35 – –
1-Rect-Flow (distill) Liu et al. (2023) 1 6.18 9.08 –
2-Rect-Flow (distill) Liu et al. (2023) 1 4.85 9.01 –
3-Rect-Flow (distill) Liu et al. (2023) 1 5.21 8.79 –
Simple-ReFlow Kim et al. (2025) 9 2.23 – –
2-Rect-Flow++ Lee et al. (2024) 1 3.07 – –
2-Rect-Flow++ Lee et al. (2024) 2 2.40 – –
1-Rect-Flow Liu et al. (2023) 127 2.58 9.60 –
2-Rect-Flow Liu et al. (2023) 110 3.36 9.24 –
2-Rect-Flow Liu et al. (2023) 104 3.96 9.01 –

LMM (NFE=1) 1 1.90 10.16 1.57
↪→ CLIP-FID 1 0.63 – 0.43

LMM (NFE=2) 2 1.55 10.20 1.39
↪→ CLIP-FID 2 0.52 – 0.38

ImageNet64

Model NFE conditional

FID IS

GANs
BigGAN-deep Brock et al. (2019) 1 4.06 –
StyleGAN-XL Sauer et al. (2022) 1 1.51 82.35

Diffusion / Score Matching
RIN Jabri et al. (2023) 1000 1.23 –
EDM Karras et al. (2022) 511 1.36 –
DDPM Ho et al. (2020) 250 11 –
EDM Karras et al. (2022) 79 2.23 48.88

Distillation / Direct Gen.
PD Salimans & Ho (2022) 1 15.39 –
BOOT Gu et al. (2023) 1 16.30 –
CT Song et al. (2023) 1 13.0 –
CD Song et al. (2023) 1 6.20 40.08
iCT Song & Dhariwal (2024) 1 4.02 –
iCT-deep Song & Dhariwal (2024) 1 3.25 –
CTM Kim et al. (2024) 1 1.92 70.38
DMD Yin et al. (2024) 1 2.62 –
SiD (α = 1) Zhou et al. (2024) 1 2.02 –
SiD (α = 1.2) Zhou et al. (2024) 1 1.52 –
PD Salimans & Ho (2022) 2 8.95 –
CT Song et al. (2023) 2 11.1 –
CD Song et al. (2023) 2 4.70 –
iCT Song & Dhariwal (2024) 2 3.20 –
iCT-deep Song & Dhariwal (2024) 2 2.77 –
CTM Kim et al. (2024) 2 1.73 64.29

Flow Matching
OT-CFM Lipman et al. (2023) 138 14.45 –
BOT-CFM Pooladian et al. (2023) 132 11.82 –
2-Rect-Flow++ Lee et al. (2024) 1 4.31 –
2-Rect-Flow++ Lee et al. (2024) 2 3.64 –
Simple-ReFlow Kim et al. (2025) 9 1.74 –

LMM 1 1.47 59.86
LMM 2 1.17 61.18

AFHQ64
Model NFE FID

EDM Karras et al. (2022) 79 1.96
SiD (α = 1.2) Zhou et al. (2024) 1 1.71
SiD (α = 1) Zhou et al. (2024) 1 1.63
Simple-ReFlow Kim et al. (2025) 9 1.91
LMM 1 2.68
LMM 2 1.54

Table 2: One-step generative model performance on CIFAR-10, ImageNet-64, and AFHQ64 (all measured
with FID/IS as shown).
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Finally, Table 2 also reports the results on the AFHQ 64×64 dataset, where the LMM shows lower FID
scores using significantly fewer NFEs compared to the EDM despite the fact that the latter is used to
produce the initial correspondence between p0 and q. This is also the case in CIFAR-10 and ImageNet
64×64. While achieving a state-of-the-art FID of 1.54 at NFE=2, the SiD achieves a better score using a
single step. We note that unlike the CIFAR-10 and ImageNet 64×64 cases, the discriminator architecture
and hyper-parameters we used were not we used were not tailored to this dataset in previous work (e.g.,
StyleGAN-XL (Sauer et al., 2022)). This affected the expected improvements from the SOT strategy, as
discussed in Appendix C, and we therefore believe the LMM has greater potential on this dataset.

In terms of Inception Score (IS), the LMM achieves state-of-the-art results, scoring above 10 for both NFEs on
CIFAR-10, as shown in the table. On ImageNet 64×64, the LMM improves upon its teacher model (EDM),
although StyleGAN-XL attains the highest score. Among diffusion-based models, the LMM receives an IS
of 61.18 using 2 NFEs, which is closely competitive with CTM which scores 64.29. A visual comparison and
ablation of LMM samples can be found in Appendix C and D.

5 Conclusions
We analyzed the impact of random pairing in the denoising loss and identified basins of attraction that curve
the probability flow paths, and thus increase the sampling costs in key denoising models. We also formally
showed that OT-based pairing suffers from unfavorable batch-size scaling with signal dimension, limiting its
practicality in high-dimensional settings.

Motivated by these results, we explored strategies for modeling pre-computed deterministic ODE-based flows
and showed the importance of selectively utilizing this data to avoid inheriting inefficiencies. This led to
the Lines Matching Model (LMM), which matches straight lines between corresponding source and target
flow points. The LMM’s performance is further improved by bootstrapping it to the target distribution and
avoiding distributional shift seen in existing models, as well as by optimizing the training to the particular
sampling scheme used.

Our work leaves one important goal unaddressed that we intend to address in future work: avoid the reliance
on a pre-trained model, and establish or employ “cheaper" pairing in an ab initio manner.

Broader Impact Statement

Given their increasing prevalence, improving the efficiency of generative AI models is likely to result in a
significant reduction in computational costs and energy usage. However, we are fully aware of the risks
associated with these models and wish to express our strong opposition to any unethical use.
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Appendix

A Regression at Low Signal-to-Noise Ratios

In this section we provide the derivation of section 2, and its consequence to DDPM, NCSN and CFM.
Both DDPM (Sohl-Dickstein et al., 2015; Ho et al., 2020) and DSM, e.g., NCSN (Song & Ermon, 2019) and
EDM (Karras et al., 2022), start their sampling process from an easy-to-sample source distribution xN ∼ p0,
typically a Gaussian. Hence their denoising networks Nθ are trained to operate on these distributions. At
t = T , Eq. 1 becomes

argminθEq(x1),p(x|x1,T )

[
∥Nθ(x, sT ) − ∇x log p(x|x1, T )∥2

]
. (9)

In the case of NCSN, sT = σT and p(x|x1, σT ) = N (x1, σ
2
T I) where σ2

T >> V[x1], i.e., a very low SNR,
allowing to approximate this distribution by a pure noise at sampling time, specifically p0 = N (0, σ2

T I).

Noting that ∇x log p(x|x1, T ) = (x1 − x)/σ2
T , Eq. 9 becomes (at t = T ),

argminθEq(x1),x0∼p0

[
∥Nθ(x0, σT ) − (x1 − x0)/σ2

T ∥2
]
, (10)

which corresponds to a regression problem solved by

Nθ(x0, σT ) = Eq(x1)

[
(x1 − x0)/σ2

T

]
. (11)

In principle one may be concerned whether this optimal solution is attainable by Nθ and how the weighting
p0(x0) affect the solution. As we show next, the solution in this context is highly degenerate and corresponds
to an affine function which is expected to lie within the span of any elementary architecture of Nθ.

Specifically, Eq. 10 trains the network Nθ to map every x0 ∼ p0 to every x1 ∼ q. Regressing under such
indeterminacy is poised, according to Eq. 11, to result in the degenerate averaged prediction Nθ(x, σT ) =
(µ1 − x)σ−2

T . This topic is discussed in (Kendall & Stuart, 1973; Clarke & Gorder, 2013). Finally, we note
that at sampling stage the factor σ−2

T is typically canceled by using time steps proportional to σ2
T , see for

example (Song & Ermon, 2019) and (Karras et al., 2022). Thus, the sampling trajectories are drawn towards
µ1, up to some implementation-dependent speed factors, during their first steps. This effect is highlighted
by the green arrows in Table 1.

Analogously, the DDPM noise scheduling is set such that αT is small, e.g., αT = 6×10−3 in (Ho et al., 2020)
and αT = 5 × 10−5 in (Nichol & Dhariwal, 2021). Therefore p(x|x1, T ) = N (√αTx1, (1 − αT )I) ≈ N (0, I)
which, here as well, can be replaced with the source distribution p0 during sampling. In this case, Eq. 9
becomes (again, at t = T ),

argminθEq(x1),x0∼p0

[
∥Nθ(x0, T ) − (√αTx1 − x0)/(1 − αT )∥2

]
, (12)

resulting in Nθ(x, T ) = (√αTµ1 − x)/(1 − αT ). Recall that the DDPM noising process p(x|x1, T ) =
N (√αtx1, (1 − αt)I) gradually replaces every data sample x1 with a normal Gaussian by shifting the mean
from x1 towards µ0 (chosen to be 0 for convenience) and by increasing the variance from (1 − α1) ≈ 0 to
V[x0] = 1. Thus, this term can be more generally interpreted as Nθ(x, T ) = (√αTµ1 +

√
(1 − αT )µ0 −

x)/(1 − αT ) ≈ µ0 − x, since αT << 1.

Thus, at the T -th step of the DDPM sampling step, the denoiser collapses to the mean of the source
distribution. Consequently, its flow trajectories gravitate toward µ0 = 0 during their earlier steps. This
affects only the magnitude of initial (full noise) states, and the sample’s shape evolves only in later steps,
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thus the DDPM sampling process is often described as stagnant during its early stages (e.g., in Figure 6
in (Lipman et al., 2023)).

Finally, the flow models in (Lipman et al., 2023), and (Liu et al., 2023) at 1-Rect-Flow, regress arbitrary
samples from p0 to the data points x1 at time t = 0, where its training loss, Eq. 13, becomes

argminθEq(x1),p(x0)

[
∥Nθ

(
x0, 0

)
− (x1 − x0)∥2

]
, (13)

Similarly to Eq. 10, also Eq. 13 regresses points x0 with direction towards arbitrary data points, x1 − x0.
This leads again to a degenerate solution where Nθ(x0, 0) = µ1 − x0, which similarly to the score-matching
approach, biases the sampling trajectories towards µ1 at their earlier stages. This effect is also observed in
Table 1.

B Batch Optimal Transport - Batch Size Analysis

We assess here the asymptotic dependence in the Batch OT CFM (BOT-CFM) methods described in (Poola-
dian et al., 2023) and (Tong et al., 2024) over the batch size n as a function of space dimension d, and
prove Proposition 2.1. In these works, following the notations of the former, the independent distribu-
tion p0(x0)q(x1) in Eq 2 is replaced by a joint distribution q(x0, x1) induced by a batch-optimized coupling,
{xi0}ni=1 ∼ p0 and {xji

1 }ni=1 ∼ q, where the permutation ji optimizes the transport cost ∥xi0−xji

1 ∥2 within each
batch. Combining this with the OT conditional flow map ψx1(x, t) in (Lipman et al., 2023), the BOT-CFM
training loss is given by

argminθEt,{xi
0}n

i=1∼p0,{xi
1}n

i=1∼q

[ n∑
i=1

∥Nθ
(
(1 − t)xi0 + txji

1 , t
)

−
(
xji

1 − xi0
)
∥2

]
, (14)

To simplify the analysis we consider a fairly naive problem of finding a mapping from a normal Gaussian in
Rd to itself, where the optimal solution is given by the identity mapping. In the context of matching the
velocity field, as done in (Pooladian et al., 2023; Tong et al., 2024), the optimal field is given by Nθ(x, t) = 0.
As shown in Appendix A, in case of independent distribution p0(x0)q(x1) (the solution of Eq. 13)) the
resulting vector field at t = 0 is Nθ(x0, 0) = µ1 − x0 = −x0 ̸= 0 which is clearly far from the optimum.

In the BOT-CFM (at t = 0) closer and closer xji

1 will be found to each xi0 as the batch size increases, and
hence by training Nθ(xi0, 0) to match xji

1 −xi0, in Eq. 14, a reduced velocity vector is expected. The question
of how fast this decrease takes place as a function of d is critical, as only moderately sized batches can be
used in practice.

We address this question at t = 0, where Eq. 14 simplifies to a simple regression problem over x0,

argminθE{xi
0}n

j=1∼p0,{xi
1}n

i=1∼q

[ n∑
i=1

∥Nθ
(
xi0, 0

)
−

(
xji

1 − xi0
)
∥2

]
, (15)

which is solved by,
Nθ

(
x0, 0

)
= E

p
Bn

1 (x∗
1 |x0)

[
x∗

1 − x0
]
, (16)

where pBn
1 (x0, x

∗
1) is the joint distribution induced by finding the optimal pairing between source xi0 and

target xji

1 within each batch Bn1 of size n.

The case n=1 (equivalent to random pairing), we get pB1
1 (x∗

1|x0) = p0(x0)q(x1) which was discussed above
and results in a velocity Nθ(x0, 0) = −x0 attracting sampling trajectories towards µ1 = 0 at t= 0, instead
of remaining stationary, thus producing the unnecessarily curved trajectories. As n increases, however, the
chances to regress x0 to closer x∗

1 increases and thus a shift in E
p

Bn
1 (x∗

1 |x0)

[
x∗

1
]

toward x0 is expected. In
order to analyze the magnitude of this shift as a function of both n and d, let us review basic properties of
random vectors in Rd.
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Let x and y be two independent normal scalars drawn from N (0, 1). Their product xy is a random variable
with the following moments

E[xy] = E[x]E[y] = 0 (17)

and,
V[xy] = E

[
(xy)2]

= E
[
x2]

E
[
y2]

= V[x]V[y] = 1 < ∞, (18)

both follow from the normality and independence of x, y. Let us consider now two independent normal
vectors x, y ∈ Rd, drawn from N (0, I), and their dot-product, defined by

⟨x, y⟩ = 1
d

d∑
i=1

xiyi. (19)

Being an average of independent random variables, at large space dimension d the central limit theorem
becomes applicable and provides us its limit distribution by,

⟨x, y⟩ d→ N (0, d−1), (20)

which is calculated from the scalar moments in Eq. 17 and Eq. 18. This implies that as the space dimension d
increases, this distribution gets more concentrated around 0, meaning that the vectors x and y are becoming
less likely to be related to one another by becoming increasingly orthogonal. As we shall now show, this
makes the task of finding x1 ∈ Bn1 close to x0 within finite batches increasingly difficult as d grows. This
relates to a well-known phenomenon where the ratio between the farthest and closest points converges to a
constant, as the space dimension increases (Beyer et al., 1999).

Indeed, by considering the magnitude of the regressed flow velocity in Eq. 16,∥∥E
p

Bn
1 (x∗

1 |x0)

[
x∗

1
]

− x0
∥∥2 =

∥∥E
p

Bn
1 (x∗

1 |x0)

[
x∗

1
]∥∥2 + ∥x0∥2 − 2

〈
E
p

Bn
1 (x∗

1 |x0)

[
x∗

1
]
, x0

〉
≥ ∥x0∥2 − 2

〈
E
p

Bn
1 (x∗

1 |x0)

[
x∗

1
]
, x0

〉
= ∥x0∥2 − 2E

p
Bn

1 (x∗
1 |x0)

[
⟨x∗

1, x0⟩
]
,

(21)

we clearly see the need for increased dot-product similarity within the batches Bn1 in order to reduce the mag-
nitude of the learned target flow velocity—ideally zero in this problem. In this derivation ∥E

p
Bn

1 (x∗
1 |x0)

[
x∗

1
]
∥2

is neglected as we are in a process of deriving a lower bound for the flow velocity field, ∥E
p

Bn
1 (x∗

1 |x0)

[
x∗

1
]
−x0∥2.

We also note that the last equality follows from the linearity of the dot-product operator.

As an upper bound for ⟨E
p

Bn
1 (x∗

1 |x0)

[
x∗

1
]
, x0⟩ we assume that this similarity is computed by pairing x0 with

its closest x∗
1 ∈ Bn1 without considering trade-offs that arise when pairing a complete batch of source points

{xi0}nj=1 ∼ p0 with the batch of target points, in Bn1 , as done in practice in BOT-CFM, in Eq. 14.

In this scenario, ⟨x∗
1, x0⟩ = maxi⟨xi1, x0⟩, where ⟨xi1, x0⟩ are independent variables and, as shown above,

⟨xi1, x0⟩ ∼ N (0, d−1). Using Jensen’s inequality, we get that

exp
(
tE
p

Bn
1 (x∗

1 |x0)[⟨x
∗
1, x0⟩]

)
≤ E

p
Bn

1 (x∗
1 |x0)

[
exp(t⟨x∗

1, x0⟩)
]

= EN (0,d−1)
[

max
i

exp(t⟨xi1, x0⟩)
]

≤
n∑
i=1

EN (0,d−1)
[

exp(t⟨xi1, x0⟩)
]

= n exp
(
t2

2d

)
,

(22)

where the last equality follows from the calculation of the moment generating function of the Gaussian
distribution, N (0, d−1). Thus, by taking the logarithm of Eq. 22 and dividing by t we get

E
p

Bn
1 (x∗

1 |x0)[⟨x
∗
1, x0⟩] ≤ log(n)/t+ t

2d . (23)

Finally, by setting t =
√

2d logn, we get

E
p

Bn
1 (x∗

1 |x0)[⟨x
∗
1, x0⟩] ≤

√
2 logn
d

. (24)
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According to Eq. 21, in order for the flow to vanish, E
p

Bn
1 (x∗

1 |x0)[⟨x
∗
1, x0⟩] should cancel ∥x0∥2. For similar

arguments as the ones behind Eq.19 and Eq.20, it follows that ∥x0∥2 = ⟨x0, x0⟩ d→ N (1, d−1). Hence, by
plugging Eq. 24 into Eq. 21 and approximating ∥x0∥2 ≈ 1 (at high d), we get the following requirement for
the flow to vanish

2
√

2 logn
d

≈ 1,=⇒ n ≈ ed/8. (25)

Conclusion. This relation implies that in order to obtain a proper (zero) target velocity field in Eq. 21, the
batch size n must grow exponentially as a function of the space dimension d, which tends to be fairly large
in practical settings. As noted in Section 2, this finding undermines the prospect of accelerating sampling
by increasing the batch size and relying solely on OT pairing. Indeed, in the example shown in Table 1, a
negligible difference in trajectory straightness is found between n = 128 and n = 256.

Several notes on the scope of our analysis which considered a simple problem of mapping two Gaussians and
considered the affairs at t = 0. First, it shows that even over an arguably simple problem the effectiveness
of the BOT-CFM is limited by its asymptotic. Second, as discussed at great length in Section 2 a major
source of sampling inefficiency, shared by multiple key approaches, takes place at the vicinity of t = 0, and
hence the focus of our analysis to this time should not necessarily be considered as a limitation. Finally,
most of the arguments made above remain valid when real-world target data distribution q is used. Namely,
the limiting orthogonal distribution in Eq. 20 and hence the exponential batch size requirement for finding
real-world data point x∗

1 sufficiently close to a random latent vector x0 ∼ N (0, d−1). Our restriction to
a target Gaussian distribution is made specifically for the purpose of being able to consider the analytical
results with respect to a known optimal flow field.

C Ablation Studies

We report here the results of several empirical experiments that assess the impact of different components
related to LMM’s training, described in Section 3, on its sampling performance and quality.

Domain-Specific versus L2 Loss. Training the LMM to reproduce the end-points of the probability
flow lines, i.e., noise-free images, allows us employ perceptual metrics, specifically (Johnson et al., 2016), for
training. This loss is known to provide visually-preferable optimization trade-offs in various applications,
see (Zhang et al., 2018). Table 3 shows that training the LMM using a VGG-based perceptual loss (VGG)
achieves lower FID scores compared to that of L2 loss at all NFEs tested. The ability to use this reconstruction
loss is inherent to the design of the LMM, and is not shared by all flow-based approaches, e.g., (Lipman
et al., 2023; Liu et al., 2023).

Number of Sampling Steps. Tables 3, 4, and 5 report the FID scores on different datasets using
different NFEs and sampling steps. Specifically, we used subsets of the sampling steps from the sampling
scheme in (Karras et al., 2022). While the number of steps provides some amount of ability to trade-off
between quality and efficiency, it is clear from these tables that increasing the NFEs suffers from a diminishing
return. This finding aligns with the explanation that the probability flow lines generated by the LMM are
fairly straight, and that the sampling errors are primarily due to the accuracy of their endpoints, i.e., the
quality at which the target samples x1 ∼ q can be reproduced by exact integration. This further motivated
us in Section 3 to focus on improving the sample reproduction, as we evaluate next.

Adversarial Loss. Indeed, Tables 3, 4, and 5, show that the incorporation of an adversarial loss (ADL)
provides an additional significant improvement to the image quality produced by the LMM. Indeed, this
addition also helped the CTM in (Kim et al., 2024) to improve their baseline, specifically, FID of 2.28 using
a discriminator and 5.19 without it, using NFE=1 on CIFAR-10. We attribute the lower FID scores achieved
by the LMM, in both scenarios, to the fact that it models favorable line flow trajectories, rather than the
original curved EDM’s trajectories, which are distilled in (Kim et al., 2024).

Sampling-Optimized Training. Motivated by limited improvement higher NFEs produce, in Section 3
we proposed another strategy to improve sample quality by restricting the training to the specific time steps
used at the sampling stage. Tables 3 and 4 show that this training strategy also has the ability to contribute
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significantly despite the fact that it adds no cost. Table 5 an opposite trend which appears to be related to
a saturation (over-fitting) due to two factors: (i) to limited data available in this dataset, and (ii) the SOT
focuses on high noise levels, which makes it easier to discriminate between generated and real samples. We
conclude that a more fine-tuned discriminator setting is needed to achieve optimal results.

CIFAR-10 (conditional)
L2 VGG VGG+ADL VGG+ADL+SOT

NFE Steps FID ± std FID ± std FID ± std FID ± std
1 0 5.125 ± 0.050 3.124 ± 0.024 1.672 ± 0.018 1.575 ± 0.016
2 0, 1 4.289 ± 0.032 2.796 ± 0.020 1.394 ± 0.010 1.389 ± 0.011
3 0, 1, 2 4.019 ± 0.026 2.761 ± 0.021 1.386 ± 0.009 -
3 0, 3, 5 3.337 ± 0.042 2.601 ± 0.019 1.381 ± 0.015 -
4 0, 1, 3, 5 3.315 ± 0.023 2.625 ± 0.025 1.383 ± 0.012 -

Table 3: Selected step indices t from the original EDM schedule σt consisting of 18 steps for this dataset.

ImageNet 64×64 (conditional)
VGG VGG+ADLVGG+ADL+SOT

NFESteps FID ± std FID ± std FID ± std
1 0 6.968 ± 0.0511.731 ± 0.013 1.473 ± 0.016
2 0, 1 5.472 ± 0.0421.318 ± 0.013 1.167 ± 0.016
3 0, 1, 25.004 ± 0.0571.301 ± 0.012 -
3 0, 3, 54.694 ± 0.0471.284 ± 0.016 -

Table 4: Selected step indices t from the original EDM schedule σt consisting of 40 steps for this dataset.

AFHQ 64×64
VGG VGG+ADLVGG+ADL+SOT

NFESteps FID ± std FID ± std FID ± std
1 0 5.458 ± 0.0532.687 ± 0.046 2.767 ± 0.056
2 0, 1 4.254 ± 0.0391.545 ± 0.023 1.776 ± 0.022
3 0, 1, 24.165 ± 0.0451.462 ± 0.016 -
3 0, 3, 53.919 ± 0.0351.447 ± 0.023 -

Table 5: Selected step indices t from the original EDM schedule σt consisting of 40 steps for this dataset.

D Visual Evaluation

Table 1 compares samples produced by the EDM and LMM with and without an Adversarial Loss (ADL),
and using 1 or 2 sampling steps. The ADL contributes to richness and resolvedness of fine image details (e.g.,
the fish background, lettuce leaves, bird feathers, and man’s face). The second sampling iteration (NFE=2
in the table) has a larger scale impact, improving the correctness of the objects’ shape and consistency
between different objects. This effect is seen in the clerk’s body and face, the bird’s body, the shape of the
bread/cake, and the matching red shoes.

E Implementation Details

We implemented the LMM in PyTorch and trained it on four GeForce RTX 2080 Ti GPUs on three commonly
used benchmark datasets: CIFAR-10, ImageNet 64×64, and AFHQ 64×64(aka. AFHQ-v2 64×64). We
employed the network architectures and hyper-parameters listed in Table 6, which were previously used
in (Karras et al., 2022; Song et al., 2023; Kim et al., 2024; Lipman et al., 2023) over these datasets.

Training Losses. As noted above, we used the VGG-based perceptual loss in (Johnson et al., 2016) as
our image reconstruction loss term in Eq. 7, and resized the images to 224-by-224 pixels before evaluating
it.

We use a similar adversarial loss as the one used in (Kim et al., 2024), namely, we adopted the discriminator
architecture from (Sauer et al., 2022) and used its conditional version when training on labeled datasets.
We used the same feature extraction networks they use, as well as the adaptive weighing from (Esser et al.,
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Table 6: Network architectures and hyper-parameters used for different datasets.

Hyper-Parameter CIFAR-10 AFHQ 64×64 ImageNet 64×64

Generator architecture DDPM++ DDPM++ ADM
Channels 128 128 192
Channels multipliers 2, 2, 2 1, 2, 2, 2 1, 2, 3, 4
Residual blocks 4 4 3
Attention resolutions 16 16 32, 16, 8
Attention heads 1 1 6, 9, 12
Attention blocks in encoder 4 4 9
Attention blocks in decoder 2 2 13
Generator optimizer RAdam RAdam RAdam
Discriminator optimizer RAdam RAdam RAdam
Generator learning rate 0.0004 0.0001 0.000008
Discriminator learning rate 0.002 0.002 0.002
Generator β1, β2 0.9, 0.999 0.9, 0.999 0.9, 0.999
Discriminator β1, β2 0.5, 0.9 0.5, 0.9 0.5, 0.9
Batch size 512 512 512
EMA 0.999 0.999 0.999
Training images 1M 2M 4M
Training iterations 80k+20k w/ADL. 80k+25k w/ADL 80k+30k w/ADL
λlines 0.5 0.5 0.5

EDM LMM

wo/ADL w/ADL

NFE 79 NFE 1 NFE 2 NFE 1 NFE 2

Figure 1: ImageNet 64×64 Samples Comparison.

2021), given by λadapt = ∥∇θL
Llines∥/∥∇θL

Ldisc∥, where θL denotes the weights of the last layer of Nθ. We
also used their augmentation strategy, taken from (Zhao et al., 2020), we resized the images to 224-by-224
pixels before applying this loss as well.

Denoising ODE. As noted in Section 3, we use the EDM denoising score-matching model N∗ in (Karras
et al., 2022) in order to produce our training pairs x0, N

∗
Sampler(x0). We use their deterministic sampler

(second-order Heun) in order to establish a well-defined change-of-variable, N∗
Sampler(x), between the source

and target distributions. This scheme uses a source distribution p0 = N (0, σmax) and noise scheduling
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σt =
(
σ

1/ρ
max + t/(N − 1)(σ1/ρ

min − σ
1/ρ
max)

)ρ, where ρ = 7 and σmin = 0.002 which corresponds to a negligible
noise level when reaching the target distribution, q, assuming V[x1] of order around 1. This method uses
N=18 (NFE=35) steps to draw samples from the CIFAR-10 dataset, and N=40 (NFE=79) for ImageNet
64×64 and AFHQ 64×64.

Sampling the LMM. We use the sampling scheme used in (Song et al., 2023; Kim et al., 2024) to sample
the LMM. This consists of the following iterations, xt+1 = Nθ(xt, σt)+σt+1η, where x0 ∼ p0 and η ∼ N (0, I).
We report the noise scheduling we use in each step, σt, in terms of the ones used in (Karras et al., 2022), in
Tables 3, 4, and 5.

Training Cost. The number of iterations used for training the LMM is listed in Table 6. The first 80k
pre-training iterations were executed without the ADL as well as by evaluating the VGG-perceptual loss
over 64-by-64 pixel images. This made each training iteration x6 faster than the following full-resolution and
using the ADL. These numbers are lower than the ones reported in (Song et al., 2023), 800k for CIFAR-10
and 2400k for ImageNet 64×64, and in (Kim et al., 2024), 100k for CIFAR-10 and 120k for ImageNet 64×64.
We note that these methods rely on having a pre-training DSM as in our case. Training the CFM (Lipman
et al., 2023) does not require a pre-existing model, and uses 195k iterations for CIFAR-10 and 628k for
ImageNet 64×64. The numbers of iterations quoted here are normalized to a batch size of 512.

EDM LMM EDM LMM

wo/ADL w/ADL wo/ADL w/ADL

NFE 35 NFE 1 NFE 2 NFE 1 NFE 2 NFE 79 NFE 1 NFE 2 NFE 1 NFE 2

Table 7: CIFAR-10 (left) and AFHQ 64×64 (right) Samples Comparison.

Unlike the rest of these methods, the training data of the LMM must be first generated. As noted above,
it consists of pairs of the form x0, N

∗
Sampler(x0) which are sampled from the EDM model N∗, in (Karras

et al., 2022). The number of training examples we use for each dataset are listed in Table 6. On one hand
this sampling process uses fairly high NFEs (35 for CIFAR-10, and 79 for ImageNet 64×64 and AFHQ
64×64), but on the other hand it consists of feed-forward executions with no back-propagation calculations.
Moreover, this process can be executed on single GPUs and be trivially parallelized across multiple machines.
In terms of wall-clock time this pre-processing did not take long, namely, half a day for CIFAR-10 compared
to the 4 days of LMM training, and six days for ImageNet 64×64 compared to 20 days of training, and two
days for AFHQ 64×64 compared to 6 training days. We remind that these training sessions were conducted
on four GeForce RTX 2080 Ti GPUs.

21



Under review as submission to TMLR

Figure 2: LMM Generated CIFAR-10 Samples. Class unconditional on the left, and conditional on the right.
Rows correspond to different classes.

Figure 3: LMM Generated Conditional ImageNet 64×64 Samples. Rows correspond to different classes.
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Figure 4: LMM Generated AFHQ 64×64 Samples.
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