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Abstract

Generating graph-structured data is crucial in various domains but remains challenging
due to the complex interdependencies between nodes and edges. To enhance generation
performance, we propose GGFlow, a discrete flow matching generative model with an
efficient optimal transport for graph structures and it incorporates an edge-augmented graph
transformer. Additionally, GGFlow introduces a novel goal-guided generation framework
to control the generative trajectory of our model towards desired properties. GGFlow
demonstrates superior performance on both unconditional and conditional generation tasks,
outperforming existing baselines and underscoring its effectiveness and potential for wider
application. Code: https://github.com/Xiaoyang878/GGFlow

1 Introduction

Graph structural data generation has become critically important across various domains, including social
networks (Grover et all) 2019), drug design (Bilodeau et al., [2022), and neural architecture search (NAS)
(Lee et al., 2020)). Effective modeling of the intrinsic joint distribution and accurate description of topological
structures of graphs are essential for these applications. Deep generative models have increasingly demonstrated
success in graph generation by effectively modeling the complex structural properties of graphs. These models
are typically categorized into autoregressive and one-shot types. Autoregressive models, such as GraphRNN
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(You et all [2018]), generate graphs sequentially, often overlooking the interdependencies among all graph
components. In contrast, one-shot methods generate entire graphs in a single step, more effectively capturing
the joint distribution (Ma et al [2018} |Luo et al., 2023} [Niu et al., [2020).

Diffusion models have shown great promise and achieved significant performance in various domains
let al., 2020; Song et al., [2020; Ho et al. |2022). In the context of graph generation, diffusion models have
been adopted to enhance generative capacity. EDP-GNN and GDSS are among the first to utilize diffusion
models for graph generation, adding continuous Gaussian noise to adjacency matrices and node types, which
may lead to invalid graph structures (Niu et al., 20205 [Jo et al 2022b)). Due to the inherent sparsity and
discreteness of graph structures, GSDM enhances model fidelity by introducing Gaussian noise within a
continuous spectrum space of the graph, DiGress and PPGN apply discrete diffusion models for graphs
let all [2023} |Vignac et al., 2022; Austin et al., 2021; Haefeli et al., 2022; Huang et al., 2023).

Flow matching generative models also offer a compelling alternative. As these methods transform the training
paradigm from SDEs to a more stable interpolation method, they enable more efficient sampling via ordinary
differential equations (ODEs) (Lipman et al., 2022} [Song et al., 2024; Yim et al., 2023)). Furthermore, the
application of optimal transport (OT) has been explored to straighten marginal probability paths, leading
to reduced training variance and accelerated sampling (Bose et al., 2023} Tong et al. 2023} Klein et al.,
[2024} [Pooladian et al.| 2023). Nevertheless, the integration of OT into graph-based systems often encounters
substantial computational hurdles due to the inherent complexity of computing OT metrics for discrete
structures (Chen et all, 2020b} [Petric Maretic et al. [2019)).

In this paper, we introduce GGFlow, a novel generative model that leverages discrete flow matching techniques
with an efficient optimal transport coupling in graph generation. The model preserves graph sparsity and
permutation invariance, which is essential for realistic graph generation. Additionally, GGFlow employs a
goal-guided framework using reinforcement learning for conditional generation. GGFlow achieves state-of-the-
art results in both unconditional and conditional graph and molecule generation tasks and surpasses existing
methods. Its effectiveness in conditional generation tasks underscores the practical impact of our approach.

Our contribution can be summarized as:

e GGFlow introduces the first discrete flow matching generative model with an efficient optimal
transport for graph data, and it also incorporates an edge-augmented graph transformer to enhance
generation tasks further.

¢ GGFlow proposes a novel guidance framework using reinforcement learning to control probability
flow during graph generation, targeting specific properties.

o GGFlow demonstrates state-of-the-art performance in various unconditional and conditional graph
generation tasks, consistently outperforming existing methods across diverse graph types and com-
plexities.

2 Related Work

2.1 Flow Matching and Diffusion Models

Diffusion models have gained widespread popularity in various fields, including computer vision, natural
language processing, and biological sciences, demonstrating notable success in generative tasks (Ho et al.
[2020; [Song et alll, 2020} [Watson et all [2023; [ngraham et all [2023; [Liu et all] [2024a; [Ren et all, 2024
Zhu et al., 2024). Recently, flow matching generative models have emerged as a more efficient and stable
alternative (details in Appendix [A.1)), improving generative performance (Lipman et all 2022} [Song et al.
[2024; |Campbell et all [2024). Some approaches further enhance performance by incorporating optimal
transport. The generative processes of these models are summarized in Figure [I]

Previous works (Campbell et al.| [2024} |Gat et al., [2024)) extended flow matching to discrete spaces, while
[Eijkelboom et al.| (2024) applied variational flow matching to graphs, but without adequately addressing key
graph-specific properties such as adjacency matrix sparsity. GGFlow tackles these challenges by introducing
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a discrete flow matching model with an efficient optimal transport tailored for graph data. Furthermore, we
propose a novel framework for guiding the generative process, enhancing its practical applicability.

Diffusion Flow Matching Flow Matching
+ Optimal Transport

/. / Y’
v v

Figure 1: Illustration of generative trajectories using different methods. The generative trajectories are
learned by the diffusion model (left), flow matching model (center), and flow matching model with optimal
transport (right).

2.2 Graph Generative Models

Graph generative models are typically categorized into two main types: autoregressive and one-shot models.
Autoregressive models generate graphs sequentially (Wang et al.| [2018; [You et al.l [2018; [Jin et al., 2018}
let all |2019; Luo et all 2021; Kong et all 2023). While effective, these models are often computationally
expensive and fail to account for permutation invariance, a crucial property for graph data, resulting in
potential inefficiencies. In contrast, one-shot models aim to capture the distribution of all graph components
simultaneously (De Cao & Kipf| [2018; Ma et al., 2018; |Zang & Wang, [2020)), better reflecting the inherent
interactions within graphs. Despite the advantages, diffusion-based one-shot models (Niu et al.l 2020} |Jo et al.
[2022b} [Vignac et all, 2022} [Chen et all 2023} [Bergmeister et al.l [2023; [Luo et al.l, 2023} [Haefeli et al. [2022
[Yan et al.| 2023; [Jang et al 2023} Madeira et al., 2024; Bergmeister et al.l [2024} [Chen et al.] [2023} [Minello|
et al., |2024; Zhao et al., 2024} Xu et al., 2024) show promising results in downstream tasks. GGFlow employs
a discrete flow-matching generative model, achieving superior generative performance. More comparisons
with recent works are presented in Appendix

3 Background

Discrete Flow Matching (DFM) generative models extend the flow matching paradigm to generate data
samples within a discrete domain. We consider a discrete variable x; taking values in a finite state space
denoted by N/ = {1,..., N}. The marginal distribution of z; is represented by the probability vector p;,
satisfying sz\; pt(x¢ = i) = 1. The process interpolates between a predefined noise prior pg = prer (typically

a uniform distribution or mask distribution) and the target data distribution p; = pgata (Campbell et al.|
[2022} |Gat et all, [2024). The marginal probability path is defined as:

pi(w) = > pilalrr, wo)m(ar, xo), (1)

:Eo,évleN

where the training pairs are sampled from the joint distribution m(z1,20). In the simplest scenario, 7 is
modeled as an independent coupling, i.e., 7(Z1,20) = Pdata(Z1)Pret(Z0)-

Following (Campbell et al| (2024), the conditional probability path py(z¢|z1,20) is defined via linear
interpolation. Given a data sample x; and a prior sample zg, the path and independent coupling are given
by:

Pe1 (Te|w1, 20) = t0(24, 1) + (1 — )6 (24, 20), (2)
7(21,20) = Pdata(T1)po(T0), (3)

where ¢ denotes the Kronecker delta function.
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For the sampling procedure, DFM leverages a Continuous-Time Markov Chain (CTMC) formulation. The
CTMC is characterized by an initial distribution py and a time-dependent probability rate matrix (analogous
to a velocity field) us(-,-) € RV*Y. The transition dynamics over a small step At are defined as:

pt+At\t($t+At|ﬂ?t) = (@it Te) + ur (T, Ty ar) At, (4)

where uy (2, Tioa¢) represents the transition rate between states. Intuitively, wu;(xy, x4ony)At yields the
probability that a transition from state z; to state x;ya; will occur in the next infinitesimal time step At.
To ensure proper normalization such that Z:ct+m Peyatft(Teyaelrs) = 1, the diagonal entries are defined
as uy(xy, x) = — Y ) . ug(x, k), while off-diagonal entries are non-negative. Consequently, the marginal

distribution evolves according to the Kolmogorov forward equation:
Opr = uf py (5)

Specifically, DFM relies on a conditional rate matrix (-, -|z1) € R¥*N to govern the denoising process.
Under mild assumptions, (Campbell et al.[(2024) derive a closed-form solution for this valid conditional rate
matrix. For off-diagonal entries (x; # xt1a¢), this is defined as:

ReLU[atpt\l(xt-&-Atml) — Ogpej1(ze]21)]
Zipy)1 (w¢|71)

: (6)

uy (4, Teyatlr1) =

where Z; = [{z : py1(2|x1) > 0}] is a normalization constant. The marginal velocity field is then obtained
via expectations, u; (¢, Ty1ar) = Epl‘t(xlm)[uf(xﬂm, x¢|x1)], which can be substituted into Equation |i for
generation.

The discrete flow matching formulation introduced by |Campbell et al.|(2024) was recently adapted for discrete
graph generation in DeFoG (Qin et al., |2024). DeFoG leverages discrete flow matching with independent
coupling to model the generation of each node and edge independently, successfully demonstrating the
benefits of training-sampling disentanglement in the graph domain. However, the utility of incorporating
Optimal Transport (OT) coupling into this discrete graph flow matching framework—specifically concerning
its impact on sample quality, and the smoothness of the learned flow—remains a critical, underexplored
avenue. To address this critical gap and fully harness the theoretical advantages of OT, we introduce our
method, GGFlow.

4 Methods

In this section, we present our methodology, GGFlow. Section outlines the discrete flow matching method
for graph generation. Section [£.2] covers an efficient optimal transport for graph flow matching. Section
[4:3] introduces GraphEvo, our neural network for graph generation. Section [I.4] examines the permutation
properties of GGFlow, and Section [£.5] discusses goal-guided graph generation using reinforcement learning.

4.1 Discrete Flow Matching for Graph Generation

A graph G = (V| E), where V and E denote the sets of nodes and edges, has a distribution denoted by
p(G) = (p¥(V),pP(E)). The attribute spaces for nodes and edges are V and &, with cardinalities n and m,
respectively. The attributes of node i and edge ij are denoted by v; € V and e;; € £, so the node and edge
probability mass functions (PMF') are p(v; = a) and p(e;; =b) where a € {1,...,n} and b€ {1,...,m}.

We formulate the noising and generation trajectory by treating the attributes of each node and edge as
independent random variables. Let x be a generic variable z € YV U E. Under the assumption of independence
across all components, the distribution of the noisy graph G* at time ¢ is defined as the product of the
individual component probabilities:

p(GY) & (o (V') pf (EY)) Hp Hp )= [ r (7)

zeVUE
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where G denotes the set of all node and edge variables, and p;(x?) is the PMF of a single variable x at time ¢.

The node and edge embeddings in the graph are given by matrices V.€ RNX% and E € RN*XNXde regpectively,
where N is the number of nodes, d,, is the hidden dim of node embeddings and d. is the hidden dim of edge
embeddings. We denote the transpose of matrix A as A* and A! represents the state of matrix A at time ¢.
We use discrete flow matching to model the graph generation process.

Source and target distribution GGFlow aims to transform prior distribution G° ~ p.t to target
data distribution G! ~ pgata. The training data (G°, G') are sampled from a joint distribution 7(G°, G1),
satisfying the marginals constraints pref = > o1 7(GY, G1), Pdata = Yo T(G?, G1).

To account for graph sparsity, the prior distribution pyer = (pyef, pfef) is designed to approximate the true
data distribution closely. To ensure the permutation invariance of the model, the priors are structured as
products of single distributions for all nodes and edges: [], v; x [, j €ij (Vignac et al.l [2022). Further details
on the prior can be found in Appendix

Probability path and coupling We define a probability path p;(G?) that interpolates between source
distribution p.o¢ and target distribution pgata i.. Po = Pref and P1 = Pdata. The marginal probability path is
given by:

p(GY = > pp(GG°, GG, GY), (8)
(GO,G1)~mr

where
pi (GIG°,GY) 2 t6{G, G} + (1 — t)6{G, G}
(té{V, VI 4 (1= )8{V, Vo), t6{ B, E'} + (1 — t)6{E, EO})
I {2} + (1 = t)6{z,2"})

zeVUE

1>

(>

0 is the Kronecker delta, indicating equality of the indices, the sampling procedure is independent for each
node and edge. Given the sparsity of both the prior and data distributions, we can infer that the intermediate
distribution is similarly sparse, aiding model training.

Critically, we employ the Optimal Transport (OT) map as the coupling between the marginals. Compared to
the independent coupling used in previous works (Campbell et al., [2024} |Qin et al., [2024)), OT provides a
generalized and more structured coupling that enhances the quality of conditional samples (Tong et al., 2023;
Gat et all, [2024)) (detailed in Section [1.2).

We define a probability velocity field:

ut(Gth) £ (UY(Vt7V)7uf(Et7E)) £ H ut(mt’x)
zeVUE

for GGFlow, which generates the probability path from Equation |8 The probability velocity field us(G?, G)
is derived from the conditional probability velocity field u¢(G?, G|G°, G'), and can be expressed as:

w(GLG) = Y w(GGIG°,GMp(G°,GG), (9)
(G°,GY)
(G GO, GH7 (G, GY)

0 )t 1)t A0
G'|GYH = G . 1
(G GG = P GIE )E fecNe p+(Gt|GO, GN )7 (GY, G1) (10)
GGFlow chooses the conditional marginal probability u,(G*, G|G?, G!) as:
u (G GG, G & | I ug(xt, z)2®, 2t) = I | (75{93)5’%0} (1+ 6{z,2'} — 6{x 330})> (11)
t ) ) t ) ) Zt(l t) ) ’ )

TEVUE reEVUE
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where Z; = [{z : pi(z[2°,2') > 0,2 € VU E}|. More details about the choice of the conditional vector field
are provided in Appendix

Training objective Given the intractability of the posterior distribution p;j,(G|G?, GY), we approximate
it as ﬁ1|t(G1|Gt, G") using neural network, GraphEvo, as detailed in Section The training objective is
formulated as:

L=Ep,. (GUE0,1)7(GO,GNpi 1 (G 60,1 [l0g Prye (GG, GO, (12)
where U(t;0, 1) is a uniform distribution on [0, 1].

Sampling Procedure In the absence of the data distribution G' during sampling, we can simplify the
generative process pa¢ (GG, G°) without the calculation of the full expectation over the conditional
vector field us(G*, G4 GO, G1):

pt+At|t(Gt+At|Gt, GO) = Eﬁ“t(Gl‘Gt,GO) [(5(Gt+At7 Gt) + Ut(Gt, Gt+At‘GO7 Gl)At]
= Prram (GG G GO)py (GG, GO). (13)

G1

This expectation can be sampled efficiently using a two-step procedure (Algorithm : (1) first, we sample
the endpoint G ~ p1;(G*|G", G") using the approximate posterior, and (2) then, we sample the next state
G2t conditioned on G. The conditional sampling transition is given by:

Gt+At ~ pt+At\t(Gt+At|Gt7 Glu GO) = 5{Gt+At7 Gt} + Ut (Gtv Gt+At|GO7 Gl)At7

where the term u,(G?, GIt2H GO, GY) At represents the conditional probability of a transition from G* to
G'TAt in the infinitesimal time step At, given the initial condition G° and the sampled endpoint G'. Further
details on the sampling and training procedures are provided in Algorithms [I] and [3]

Algorithm 1 Sampling Procedure of GGFlow

Require: ¢ = 0,G° ~ (p55F, pisH), u: (GF, G|GO, GY), Nateps
1: At = 1/Nsteps
2: for n € {0,..., Neteps — 1} do
3. pi(GHGY, G°) = GraphEvo(G', t)
) G«l ~ ﬁl‘t(GAl|Gt7G0)

4

5 // Sampling from the conditional velocity field
6: Gt+At ~ pt+At|t(Gt+At|Gt7 Gl7 GO) — (S{Gt+At7 Gt} + Ut(Gt, GtJrAthO’ Gl)At
7 t=1t+ At
8: end for

9: return G' = (V! E')

4.2 Efficient Optimal transport for graph flow matching

Optimal transport (OT) has been effectively applied to flow matching generative models in continuous
variable spaces, to improve generative performance (Tong et al.,2023; Bose et al.| 2023; [Song et al., 2024)). To
generalize this for graphs, we set the joint distribution 7(G?, G') as a coupling to the 2-Wasserstein OT map,
which minimizes the 2-Wasserstein distance between p,er and pgata. Let G denote the space of graphs. The
optimal transport plan 7*(G°, G') is defined as the minimizer of the expected cost (Bookstein et al., 2002):

(G, G') = arg inf H(G,GYHdn(G°,GY), (14)
T€®(po,p1) JGgxg

where

H(G,GY) = 6(v),0}) + XY d(ed; ely). (15)
i i,
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where ®(pg, p1) represents the set of all joint probability measures (couplings) on G X G whose marginals are
po and py, respectively, where GX = (VX = {of}, EX = {ef§};;), K =0, 1.

The practical application of OT to large datasets is computationally intensive, often requiring cubic time
complexity and quadratic memory (Tong et al., [2020; [Villani, |2009). To address these challenges, we use a
minibatch approximation of OT (Fatras et all|2021)). A detailed analysis of optimal transport during the
training procedure is provided in Appendix [E]

4.3 GraphEvo: Edge-augmented Graph Transformer

Our neural network, GraphEvo, is tasked with predicting the necessary factorized posterior distribution,
p1):(G'|G*,G?). Given the intermediate graph state G* = {V*, E'} and the time step ¢, GraphEvo outputs
the predicted distribution for the final state G':

Prp(GYGY) = (01, (VHV?), by, (BT [E")).

For theoretical consistency with the flow matching framework, the full posterior is denoted as ﬁl‘t(Gl |G, GY),
acknowledging the implicit dependency on the initial noise state G° via the time-dependent path. The model
itself, however, primarily operates on G* and t¢.

Since structural information and edge relations are as critical as node attributes for capturing complex
graph topologies and are known to enhance link generation tasks (Hussain et al., |2024; [Hou et al.| |2024;
Jumper et al., |2021)), GraphEvo is built upon a specialized Transformer architecture. To effectively capture
non-local dependencies and higher-order structural motifs, we extend the transformer with a triangle attention
mechanism for dynamic edge updates. Furthermore, we augment the input features of the graph, represented
by node and edge embedding matrices V € R¥*% and E € RV*V>de (where N is the number of nodes,
d, is the hidden dim of node embeddings and d. is the hidden dim of edge embeddings.), with rich global
auxiliary graph features y € R1*" such as cycles and the number of connected components (Vignac et al.,
2022)). Here, h is the dimension of the auxiliary features. This comprehensive approach enables GraphEvo to
efficiently and accurately model the joint distribution of all graph components, as detailed in Algorithm

4.4 Permutation Property Analysis

Graphs are invariant to random node permutations, and GGFlow preserves this property. To ensure
permutation invariance, we analyze the permutation properties of our neural network, training objectives, and
conditional probabilities path. First, we analyze the permutation invariance of the training objectives (Vignac
et al.l [2022)). Since the source and target distributions are permutation invariant, the independent coupling
also exhibits this invariance. Our optimal transport map, derived from Equation [I4] similarly demonstrates
invariance to identical permutations. Further clarifications regarding optimal transport can be found in

Appendix

Theorem 1. If the distributions p(G°) and p(G*) are permutation invariant, and the cost function maintains
invariance under identical permutations, i.e., H(G°,G') = H(cG° oG') for any permutation o, then
the optimal transport map © also exhibits invariance under identical permutations, such that w(G°,G1) =
7(cGY, 0GY).

Proof of this theorem can be found in Appendix [C-4] To ensure that the generated graph retains its identity
under random permutations, the generated distribution must remain exchangeable, and GraphEvo must be
permutation equivariant.

Proposition 1. The distribution generated by the conditional flow is exchangeable with respect to nodes and
graphs, i.e. p(G) = (p¥(V),p?(E)) = (p (c*V),pF(c*Ec)), where o is a permutation operator.

Proposition 2. GraphFEvo is permutation equivariant.

The proofs of Proposition [I] and [2] are provided in Appendix [C.3]and Appendix respectively.
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Algorithm 2 Architecture of GraphEvo

Require: G',t, Njayer

1: // Initialization Phase
2: Vt Et « Gt
3: y + ExtractFeature(G"), t + TimeEmbedding(t)
4: y+—y+t
5. V,E,y < Linear(V"), Linear(E!), Linear(y)
6: // Triangle Attention Phase
7: for 1 =0,1,..., Niayer do
8: // Definition: Triangle-attention Mechanism Computation
9:  // 1. Node Attention
10:  Qv,Ky, V, « Linear(V)
11 Yy Q‘:/%{
12:  // 2. Incorporate edge features to self-attention scores
13: Yy « FILM(Y.,E)
14: BEgmp <+ Yy
5. // 8. Edge Triangle Attention
16:  Qe,Ke, Ve, b, g < Lincar(E¢mp)
17 Yo« QfEe g b
18:  E' + Yo * V, *sigmoid(g)
19:  E’ < Linear (FILM(E/ , y)) // Incorporate global to edge
20:  // 4. Update Node and Global features
21: V' «Y,*xV,
22: V' + Linear (FiLM(V’, y)) // Incorporate global to node

23: y' + Linear (Linear(y) +PNA(V) + PNA(E))
24:  // Feed-Forward & Residual Connections
25: 'V < ReLU (LayerNorm(V + Dropout(V’)))

26: E < ReLU (LayerNorm(E + Dropout(E')))

27:  y < RelLU (LayerNorm(y + Dropout(y’)))

28: end for

29: // Prediction Phase

30: pllt(Vl\Vt Vo), ;ﬁﬁt(EHEt EY),y « Linear(V), Linear(E), Linear(y)
31: i (GHGE GY) = (pl‘t(V1|V75 V), ﬁﬁt(E1|Et,E0))

32: return pi (GG, GY)




Published in Transactions on Machine Learning Research (12/2025)

4.5 Goal-Guided Framework for Conditional Generation

For practical applications such as drug discovery, we propose a goal-guided framework for discrete flow
matching, employing reinforcement learning (RL) to guide graph flow matching models for non-differentiable
objectives. The goal of the guidance method is to map the noise distribution py to a preference data
distribution p} using a reward function R(G",t).

Formulation We cast the diffusion process as a Markov Decision Process (MDP). Concretely, our formulation
builds upon prior work (Wallace et al. 2024]). We adopt and extend this trajectory-level RL formulation to
discrete flow-matching. The state at decision epoch ¢ is the flow-matching representation s; = (G, t), and
the action space a; comprises all realizable successor states G'T™2" at the next time ¢ + At. pyyag: (G2 GY)
is the transition dynamics and policy network i(as|st).

Reward function To align with practical scenarios where only the final outcome can be evaluated, we
employ a sparse reward structure. The per-step reward function R(G?,#) is zero for all intermediate steps,
and the final reward is defined solely on the generated sample G':

R(G,t) = r(GHI]t = 1]. (16)

where r(G') is the objective function (e.g., predicted molecular property). The RL agent seeks to maximize
the total cumulative reward R =3,y ) R(G!,t), which simplifies to R = r(G?!).

Exploration To enable exploration, we additionally introduce a temperature parameter 7 for the policy
network during sampling, allowing the model to explore a broader space at higher temperatures:

plalse) = P s (GTFAGY) = (60, G} + el G, a7)

As detailed in Section this transition probability py, At|t(Gt+At\Gt) is efficiently sampled using a two-step

procedure: first sampling the G! endpoint, and then sampling the next state G**4* conditioned on the
endpoint. Meanwhile, we demonstrate in the 2-D Gaussian case that this approach is able to explore a
significantly larger region of the space (Appendix .

Training The goal of RL training is to maximize the reward function. To prevent overfitting to the reward
preference distribution, we add a Kullback—Leibler (KL) divergence term between the Reinforcement learning
fine-tuned model pj¥(-) and pre-trained model py(-) (Ouyang et al., [2022).

We adapt the policy gradient method established in [Wallace et al.| (2024) to fine-tune our network parameters
0 for goal-guided generation. The policy u(a|s;) is implicitly defined by the model’s prediction of the final
state pi- (GG, GO).

Similar to previous work (Liu et al., |2024b)), under our definitions of reinforcement learning, the training
objective can be written as:

1 1
Lrr = —Ep,qoeny[aR(G", 1) Y logpg (GG, G°) = 8 KL(pg (GG, G°)||po(GG",G°))]  (18)
t=0 t=0

where pg(G1) represents paata (G)U(t;0,1)m(G°, G1p (GG, GY).

Using this optimization objective, we fine-tune the pre-trained flow matching model to generate data following
the preference distribution. By integrating optimal transport, we optimize the pairing of prior data and
high-reward training data (Chen et alJ 2020al). The pseudo-code for the guided GGFlow training is provided
in Algorithm [4] and a toy example is shown in Appendix [F]

5 Experiments

To validate the performance of our method, we compare GGFlow with state-of-the-art graph generative
baselines on generic graph generation and molecule generation, over several benchmarks in Section [5.1] and
Section [5.2} respectively. The ability of GGFlow to perform conditional generation is analyzed in Section [5.3
Finally, we conduct detailed ablation studies presented in Section [5.4]
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5.1 Generic Graph Generation

We evaluated GGFlow on five generic graph generation benchmarks of varying sizes: Ego-small, Community-
small, Grid, Planar and Enzymes. We employ the same train/test split as GraphRNN (You et al., [2018)),
utilizing 80% of each dataset for training and the remaining for testing. We compared GGFlow’s performance
against well-known autoregressive models: DeepGMG (Li et al., |2018), GraphRNN (You et al., [2018)),
GraphAF (Shi et all|2019), and GraphDF (Luo et al.l |2021)) and one-shot models: GraphVAE (Simonovsky|
& Komodakis), 2018]), GNF (Liu et al., [2019), EDP-GNN (Niu et al., 2020), GDSS (Jo et al.| [2022a), DiGress
(Vignac et al [2022), GRASP (Minello et al, 2024), GSDM (Luo et al., [2023)), GruM (Jo et al., [2024), and
SwinGNN (Yan et al., 2023). Consistent with previous studies, we generated an equal number of graphs
as the test set to compare distributions of graph statistics, including degree distribution (Deg.), clustering
coefficient (Clus.), and the frequency of 4 node orbits (Orbit). Detailed descriptions of datasets, baselines,
and metrics are provided in Appendix

Table [1] presents our results, showing that GGFlow achieves superior performance across most metrics.
Additionally, GGFlow demonstrates comparable performance compared to state-of-the-art models in generating
large graphs on the Grid dataset. These findings underscore the effectiveness of GGFlow at capturing the
local characteristics and data distributions of graphs. Additional metrics and dataset experimental results
are included in Appendix [G] and we visualize the generated graphs in Appendix

Table 1: Generation results on the generic graph datasets. Results are the means of 3 different runs. The
best results and the second-best results are marked bold and bold.

Ego-small Community-small Grid
Deg. Clus. Orbit  Avg. Deg.  Clus. Orbit Avg. Deg. Clus. Orbit  Avg.
Training Set  0.014  0.022 0.004 0.013 0.003 0.009 0.001 0.005 0.000 0.000 0.000 0.000 -

DeepGMG 0.040  0.100 0.020 0.053 0.220 0.950  0.400  0.523 - - - -
GraphRNN  0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.064 0.043 0.021  0.043 -
GraphAF 0.031 0.107 0.001 0.046 0.178 0.204 0.022 0.135 - - - - -
GraphDF 0.039 0.128 0.012 0.046 0.060 0.116  0.030  0.069 - - - - -
GNF 0.030  0.100 0.001 0.044 0.200 0.200 0.110 0.170 - - - -

GraphVAE 0.137 0.166 0.051 0.118 0.358 0969 0.551 0.626 1.594 0.000 0.904 0.833 -
EDP-GNN 0.0564 0.092 0.007 0.051 0.050 0.159 0.027 0.079 0.460 0.243 0.316 0.340 1000

Method Step

GDSS 0.027 0.033 0.008 0.022 0.044 0.098 0.009 0.058 0.133 0.009 0.123 0.088 1000
GSDM - - - - 0.020  0.050  0.005 0.053 0.002 0.000 0.000 0.001 1000
DiGress 0.028 0.046 0.008 0.027 0.032 0.047 0.009 0.025 0.037 0.046 0.069 0.051 500
SwinGNN 0.017  0.060 0.003 0.027 0.006 0.125 0.018 0.050 0.000 0.000 0.000 0.000 500
GGFlow 0.005 0.033 0.004 0.014 0.011 0.030 0.002 0.014 0.030 0.000 0.016 0.015 500

5.2 Molecule Graph Generation

We evaluated GGFlow on two standard molecular datasets, QM9 (Ramakrishnan et al.| [2014) and ZINC250k
(Irwin et al., |2012), using several metrics: Validity, Validity without correction, Neighborhood Subgraph
Pairwise Distance Kernel (NSPDK) Maximum Mean Discrepancy (MMD), and Frechet ChemNet Distance
(FCD). To calculate these metrics, we sampled 10,000 molecules. We compared GGFlow against various
molecule generation models, including GraphAF, GraphDF, MolFlow (Zang & Wang, 2020), EDP-GNN,
GraphEBM (Liu et al., [2021)), GDSS, PS-VAE (Kong et al., [2022)), MolHF (Zhu et al.|2023), GruM, SwinGNN|,
DiGress, and GSDM. Detailed descriptions of the datasets, baselines and metrics are provided in Appendix

The results, presented in Table [2] indicate that GGFlow effectively captures the distribution of molecular
data, showing significant improvements over the baselines. The high Validity without correction suggests
that GGFlow successfully learns chemical valency rules. Additionally, GGFlow achieves superior NSPDK
and FCD scores on both datasets, demonstrating its ability to generate molecules with distributions closely
resembling those of natural molecules. Visualizations of molecules generated by different models are shown in
Figure [2] with additional results on GGFlow provided in Appendix [J|
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Table 2: Generation results on the QM9 and ZINC250k datasets. Results are the means of 3 different runs.
The best results and the second-best results are marked bold and bold.

QM9 ZINC250k

Method Step
Val. Val. w/o corr. NSPDK FCD  Val. Val. w/ocorr. NSPDK  FCD
Training Set 100 100 0.0001 0.040 100 100 0.0001 0.062 -
GraphAF 100 67.14 0.0218 5.246 100 67.92 0.0432 16.128 -
GraphDF 100 83.14 0.0647 10.451 100 89.72 0.1737  33.899 -
MolFlow 100 92.03 0.0169 4.536 100 63.76 0.0468  20.875 -
GraphEBM 100 8.78 0.0287  6.402 100 5.29 0.2089  35.467 -
PS-VAE - - 0.0077 1.259 - - 0.0112 6.320 -
MolHF - - - - 100 93.62 0.0387  23.940 -
EDP-GNN 100 47.69 0.0052 2.683 100 83.16 0.0483  16.819 1000
GDSS 100 96.17 0.0033 2.565 100 97.12 0.0192 14.032 1000
GSDM 100 99.90 0.0034 2.614 100 92.57 0.0168  12.435 1000
GruM 100 99.69 0.0002 0.108 100 98.32 0.0023  2.235 1000
SwinGNN 100 99.66 0.0003 0.118 100 86.16 0.0047  4.398 500
DiGress 100 98.29 0.0003  0.095 100 94.98 0.0021 3.482 500
GGFlow 100 99.91 0.0002 0.148 100 99.63 0.0010 1.455 500

ZINC250k . Qé— Vé:(() oM oo 0w é@\r R

ao QT Troo <DEh P

GFlow DiGress GruM GDSS

Figure 2: Visualization of generated samples of different models in different molecular datasets

5.3 Conditional Generation

To further evaluate the performance of our model, we conducted conditional generation experiments on the
QM9 dataset, focusing on generating molecules with molecular properties p that closely match a target value
w*. In the experiment, we set the target value as 1, i.e. u* = 1.

For the experiment, we employed a reinforcement learning-based guidance method and compared it to
the guided version of DiGress, which also proposes an effective approach for discrete diffusion models in
conditional generation tasks. The reward function was defined as |u — p*|, and the model was trained
over 10,000 steps using the training settings detailed in Section 5.2 To evaluate the effectiveness of our
guidance method, we compared it against three baselines: (1) Guidance for DiGress (Vignac et al.| [2022). (2)
Direct supervised training (ST) (3) Supervised fine-tuning (SFT). Additionally, we calculated the mean and
variance of |u — p*|for samples generated unconditionally by both DiGress and GGFlow to provide a baseline
comparison. Further details of the experiment are provided in Appendix

The results, detailed in Table[3] demonstrate the superiority of our reinforcement learning-based conditional
generation method over both ST and SFT approaches. Notably, our method surpasses the guidance techniques
used in diffusion models, showcasing its enhanced ability to steer the generative process toward desired
outcomes. Additionally, our approach achieves higher validity in conditional generated tasks, highlighting its
robustness and superior performance in goal-directed generation.
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Table 3: Mean absolute error of molecular property p on conditional generation on the QM9 dataset.

DiGress GGFlow
Methods
Uncondition +Guidance Unconditition Supervised Training +SFT +RL
Mean 1.562 1.092 1.569 1.184 1.223 0.672
Variance 1.641 0.894 1.987 1.579 1.893 0.647
Val. w/o corr. 96.54 74.2 98.93 86.1 87.0 92.2

5.4 Ablation studies

To thoroughly assess the individual contributions of the proposed components to GGFlow’s performance, we
conducted a comprehensive series of ablation experiments. These studies utilized both the Community-small
and ZINC250k datasets. Our investigation focused on isolating the impact of: (1) the full GGFlow model,
(2) the model performance without the integration of Optimal Transport (OT), denoted as GGFlow (w/o
OT), (3) the model performance without the GraphEvo module, denoted as GGFlow (w/o Evo), and (4)
the baseline GGFlow framework without either the GraphEvo module or Optimal Transport, designated
as GGFlow (w/o both). The specific configurations for each ablated model are summarized in Table
The empirical results of these studies are presented in detail in Table Further specifics regarding the
experimental setup are provided in Appendix

Table 4: Ablated model configurations used in the study.

Method ‘ Flow Matching Framework Optimal Transport GraphEvo Module

DiGress ‘ X X X
GGFlow (w/o both) v X X
GGFlow (w/o OT) v X v
GGFlow (w/o Evo) v v X

GGFlow v v v

As demonstrated in Table |5}, a comparative analysis of GGFlow (w/o OT) and GGFlow reveals that the
integration of Optimal Transport consistently improves generation performance. Notably, even in the absence
of both GraphEvo and Optimal Transport, GGFlow (w/o both) consistently outperforms DiGress, thereby
underscoring the inherent advantages of our flow matching framework over traditional diffusion models in
graph generation tasks.

Furthermore, the GraphEvo module, particularly its triangle attention mechanism for edges, effectively
captures more intricate node and edge features, leading to substantial performance enhancements. To
investigate GraphEvo’s ability to extract edge information, we calculated the cross-entropy of edges on the
validation set for each epoch in Figure [S4, We observed that after incorporating GraphEvo, the edge cross-
entropy decreased more rapidly, indicating the model’s enhanced capability in capturing edge information.

To evaluate the benefits of Optimal Transport on sampling efficiency, we conducted experiments with varying
inference steps, as presented in Figure [3[ (More detailed comparison on Community-small datasets in Figure
. Our findings indicate that GGFlow achieves superior performance compared to other diffusion-based
models with significantly fewer inference steps, particularly at 100 and 200 steps. This highlights GGFlow’s
enhanced sampling efficiency. Furthermore, the integration of Optimal Transport demonstrably boosts
sampling efficiency and enhances generative performance across both generic and molecular graph generation
tasks, as evidenced by the performance gains observed.

To demonstrate the enhanced training stability conferred by Optimal Transport and the Flow Matching
framework, we performed a detailed analysis of evaluation metrics during the training phase. We compared
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Table 5: Ablation studies on the OT and GraphEvo on the Commuinty-small and ZINC250k datasets. Results
are the means of 3 different runs. The best results are marked bold.

Community-small ZINC250k

Method Step
Deg. Clus.  Orbit Val. w/o corr. NSPDK  FCD
DiGress 0.032 0.047  0.009 94.98 0.0021 3.482 500
GGFlow (w/o both) 0.028  0.076  0.007 99.07 0.0022 2.104 500
GGFlow (w/o OT) 0.018 0.027 0.004 99.58 0.0015 1.503 500
GGFlow (w/o Evo) 0.015 0.055  0.005 99.12 0.0025 1.891 500
GGFlow 0.011 0.030 0.002 99.63 0.0010 1.455 500
040 —— DiGress — DiGress
— GDsS 25 — GDss
035 —— GGFlow (w/o OT) —— GGFlow w/o OT
—— GGFlow —— GGFlow

20

200 400 600 800 1000 0 200 400 600 800 1000
Inference Step Inference Step

(a) Community-small (b) ZINC250k

Figure 3: Ablation studies on the impact of varying inference steps across Community-small and ZINC250k
datasets. Performance of the ZINC250k dataset is evaluated using 1,000 generated molecules due to the
computational cost of generating larger sets for metric calculation.

the average values on the Community-small dataset and FCD values on the ZINC250k dataset against DiGress,
which shares similar training objectives. For a fair comparison and to highlight the distinct contributions, we
specifically focused on GGFlow (w/o both) and GGFlow (w/o Evo). Test set average values and FCD were
computed as described in Section [5.1} utilizing checkpoints saved every 100 training steps.

To quantitatively assess training stability, we calculated the Mean Absolute Difference (MAD) of evaluation
metric values between adjacent epochs and averaged these differences. As depicted in Figure [d] the presence
of Optimal Transport (comparing GGFlow (w/o Evo) to GGFlow (w/o both)) improved model stability,
leading to more consistent performance during training.

Figure {] further illustrates that both GGFlow (w/o both) and GGFlow (w/o Evo) achieve faster and more
effective convergence than DiGress. Importantly, GGFlow (w/o Evo) consistently outperforms GGFlow (w/o
both) in terms of both average metrics and FCD, clearly demonstrating the benefits derived from Optimal
Transport. These findings collectively indicate that both the Optimal Transport module and the underlying
Flow Matching framework significantly contribute to greater training stability.

6 Conclusion

In this paper, we introduced GGFlow, a discrete flow matching generative model for graphs that incorporates
optimal transport and an innovative graph transformer network. GGFlow achieves state-of-the-art perfor-
mance in unconditional graph generation tasks. Additionally, we presented a novel guidance method using
reinforcement learning to control the generative trajectory toward a preferred distribution. Furthermore,
our model demonstrates the ability to achieve the best performance across various tasks compared to other
baselines, which highlights the practical impact of our guidance method. Despite these advancements, GGFlow
has a primary limitation in its scalability to large graphs (with more than 500 nodes). This is primarily
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DiGress (MAD: 0.037) —— GGFlow w/o both (MAD: 0.404)
0.5 — GGFlow w/o both (MAD: 0.029) —— GGFlow w/o Evo (MAD: 0.413)
—— GGFlow w/o Evo (MAD: 0.021)
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Figure 4: Analysis of training stability for the Flow Matching framework and Optimal Transport on the
Community-small and ZINC250k datasets. Test metrics of ZINC250k are calculated using 1,000 generated
molecules.

due to the computational complexity of the triangle attention updates and spectral feature computations.
Generation times for different graph scales are provided in Appendix Another area for future work
is to improve the theoretical guarantees of our optimal transport method, as its current formulation only
provides invariance to identical permutations rather than full permutation equivariance. Future research will
focus on enhancing the scalability of GGFlow to larger graphs. We will also explore more generalized and
efficient optimal transport methods that are fully permutation-invariant to strengthen the model’s theoretical
foundation and broaden its applicability.
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Appendix
A Background

A.1 Continuous Flow Matching Generative Model

The generative model aims to establish a mapping f : R — R? that transforms a noise distribution ¢g into
a target data distribution ¢;. This transformation is dependent on a density function py over R?, and an
integration map 1, which induces a pushforward transformation p; = [1](po). This denotes the density of
points z ~ pg transported from time 0 to time ¢ along a vector field u : [0,1] x R? — R

The vector field u is formulated as:
dz = u(z)dt.

The solution ¢ (x) to this ODE, with the initial condition 1g(z) = z, represents the trajectory of the point x
governed by u from time 0 to time ¢.

The evolution of the density p;, viewed as a function p : [0,1] x R? — R, is encapsulated by the continuity

equation:
op
— ==V (pawy),
ot (pt t)

with the initial condition given by py. Here, u is the probability flow ODE for the path of marginal probabilities
p, generated over time.

In practical applications, if the probability path p;(z) and the generating vector field us(z) are known
and py(7) is tractably sampled, we leverage a time-dependent neural network vy (-,-) : [0,1] x R? — R9 to
approximate u. The neural network is trained using the flow matching objective:

Lrni(0) = Evort(0,1).0mpi (o) 6 (t, 2) — we(@)]1%, (19)

which enhances the model’s capability to simulate the target dynamics accurately. Avoiding the explicit
construction of the intractable vector field, recent works express the probability path as a marginal over a
joint involving a latent variable z: p(x;) = fp(z)pt‘z(xﬂz)‘ (Lipman et al.; [2022; |Tong et al.| |2023) and the
P2 (7¢]2) is a conditional probability path, satisfying some boundary conditions at t = 0 and ¢ = 1.

The conditional probability path also satisfies the transport equation with the conditional vector field u:(z|x1):

Ope(z|xy)

Pl (ue(z]21)pe (2] 21)). (20)

We can construct the marginal vector field u;(z) via the conditional probability path py (2¢|z1) as:
u(z) = Eoypy, [ur (2]21)]. (21)

We can replace the flow matching loss Ly with an equivalent loss regressing the conditional vector field
u¢(z|21) and marginalizing x; instead:

‘CCFM(Q) = Eu(t;0,1)7x1~q,mt~pt(mlxl)[ue(ta CL‘) - ut(*ﬂml)]
VoLrn(0) = VoLorm(6).

So we can use Lcrm () instead to train the parametric vector field ug.
B Related Works

B.1 Comparison with Discrete Flow Matching

Campbell et al.| (2024)) first introduced flow matching in discrete spaces using a continuous-time Markov chain.
Building on this, |Gat et al.| (2024) expanded the framework to encompass general source and target couplings,
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including U-coupling and C-coupling. GGFlow advances discrete flow matching and its source-target coupling
to suit graph-structured data. Our approach innovatively incorporates efficient optimal transport for graphs
within the flow matching framework. To address the inherent sparsity and permutation invariance of graphs,
we employ a tailored prior distribution. Additionally, we implement an edge-augmented graph transformer
to enhance generative performance and adopt a goal-guided framework for conditional generation. These
advancements collectively enhance the practical applicability of GGFlow.

B.2 Comparison with Graph Discrete Diffusion Model

DiGress (Vignac et al., 2022) and PPGN (Haefeli et al., 2022) were among the first to apply discrete diffusion
models to graph generation, highlighting the advantages of discrete state spaces. DiGress further introduced
an optimal prior distribution and global structural features specifically designed to enhance graph generation.
Their forward and generative processes are expressed as:

q(G*|GP) = Cat(G?,p = G°Q;), with Q; = Q1Q2...Qs, (22)
q(G*|GT1,G)q(G1|GY) _GQl o GOQt_l) (23)
q(Gt|G9) - GOQ, Gt )

q(G" G G) = = Cat(G"';p

where G represents the noisy graph at time ¢, and @y is the time-dependent transition matrix. These
methods require maintaining convergence properties of the transition matrix and cumulative matrix products,
constraining the choice of prior distributions and destabilizing training. In contrast, GGFlow employs a
simpler interpolation between the prior and data distributions during training, avoiding cumulative products
and improving both training stability and the ease of selecting appropriate priors.

B.3 Comparison with Graph Discrete Flow Model

GraphDF (Luo et al., [2021]) uses a discrete flow model to generate molecular graphs by sequentially sampling
discrete latent variables and mapping them to nodes and edges via invertible modulo-shift transforms. GGFlow
simplifies this by transforming the invertible modulo-shift into a conditional vector field that interpolates
between the prior and data distributions, bypassing the need for complex invertible mappings. Furthermore,
while GraphDF adopts an autoregressive process for graph generation, GGFlow generates the entire graph in
a one-shot manner, capturing holistic relationships among nodes and edges more efficiently.

B.4 Comparison with Graph Flow Matching Models

CatFlow (Eijkelboom et al.,|2024) employs variational inference to apply flow matching to categorical data,
but it only considers the conditional vector field under the assumption of independent coupling in the joint
distribution 7(G°, G') and fails to consider the inherent sparsity of graph structures. and DeFoG (Qin et al.,
2024) also applies the discrete flow matching to establish the generation process of the graph, while they
don’t consider the generalization of the joint distribution. GGFlow extends this by generalizing 7(G?, G') as
an efficient 2-Wasserstein optimal transport map and incorporating an optimal prior distribution tailored
for graph structures, improving performance in generation tasks. Additionally, GGFlow introduces a novel
goal-directed approach for discrete flow matching in conditional generation tasks, enhancing its practical
applicability.

B.5 Relationship to DiGress

DiGress and GGFlow are both generative models that share similar training objectives, specifically denoiser
prediction. In contrast, their mathematical derivations and conceptual starting points differ.

DiGress, a diffusion model, is trained to predict the original data point (G°) from a noisy version (G?). Its
training objective, Lpigress, is derived from the evidence lower bound (ELBO) of the data likelihood, which
is gradually loosened to a permutation-invariant loss, as detailed in Lemma 3.2 of [Vignac et al.| (2022)). The
objective is defined as:
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EDiGress :Epdam(GO)qt‘o(Gt |GY) (IOg Do <G|Gt>)
T

Epguin(60) (—10820(G%) < Lot <Y By, (c0)au0(clco) (— log po(GIGY)).
k=1

Lor(0) =Ep,,..(Go) [KL(QK\o(GKWO)\|pref(GK)) —Eq, 0(c1160) 10gp2|1(GO\G1)}

K-1
+ 3 Egpi0(@r1la0) [KL(Qk|k+1,o(Gk|Gk+1vGO)HP%k+1(Gk|GkH))H
k=1

The full derivation of the training objective and inequality, detailed in Proposition 9 in |Campbell et al.| (2022)),
shows how the ELBO is manipulated to arrive at this loss function.

GGFlow, a flow-matching model, also uses a denoiser prediction objective, but its derivation is rooted in
different principles. The training objective, LogFlow, s derived from an ELBO of the flow-matching process,
as detailed in Section C.2 of |(Campbell et al.| (2024):

LacFlow =Eopy,. (61U (:0,1)7(G0,61)pi (G606 10g P11 (GTG', G)]
Epaon(c)(—logpa(G")) < —LeLpo = —(LacFiow + Lk + Lx1 + C) < —(Laariow + L + C).
Lr =By (0,1)p.(c1) [~ R (G') + Ep, (61160 [Re(GY|G1)] log RY (GY)]

Unlike DiGress, the GGFlow ELBO includes an additional term, L. As argued in Section C.2 of |(Campbell
et al.[(2024), this term is often deemed unnecessary as it encourages the generative rate to match a chosen
jump rate, simplifying the final training objective to just Lggriow. Fortunately, this simplified training
objective also satisfies permutation invariance, a shared desirable property with DiGress.

C Proofs

C.1 Optimal Prior Distribution

This prior is structured as a product of a single distribution v for all nodes and a single distribution e for all
edges, []; v x HZ ; € to ensure exchangeability across the graph components.

Theorem 2 (Optimal prior distribution). Consider the class C = {[[;u x []; ; v, (u,v) € P(V) x P(E)} of
distributions over graphs, which factorize as the product of a uniform distribution v over node attribute space
V and a uniform distribution e over edge attribute space £. Given any arbitrary distribution P over graphs
(viewed as a tensor of order n+n?), with gy and qg as its marginal distributions for node and edge attributes
respectively, then the orthogonal projection of P onto C is defined as ¢© = ILav x H” qg- This projection
minimizes the Euclidean distance:

G : | | I | 2
¢~ € arg min ||P — v X €ll9-
g(v,e)EC” ||2

1<i<n 1<i,j<n
The details and proof of Theorem [2| are extensively discussed in DiGress (Vignac et al., [2022).

C.2 Choice of conditional velocity field

The subsequent theoretical discussion is structured into three parts, each establishing a fundamental result
necessary for our proposed framework:

1. Lemma (1| demonstrates that the vector field u:(G?, G), defined as an expectation over the conditional
vector field u; (G, G|G°, G') (Equation , satisfies the Kolmogorov forward equation, provided
the conditional rate adheres to the conditional Kolmogorov equation. This finding establishes the
fundamental consistency of the vector field and extends Proposition 3.1 in |[Campbell et al.| (2024]).
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2. We then introduce a specific functional form for the conditional vector field. Proposition [3] proves that
this proposed formulation satisfies the conditional Kolmogorov equation. This result is an extension
of Proposition 3.2 found in |Campbell et al.| (2024)).

3. Finally, for practical implementation and computational efficiency, Corollary [I] presents a simplified,
implementable expression for the conditional vector field, derived directly from Proposition

The specific points of departure between our proof techniques and the original proofs by [Campbell et al.

(2024)) are indicated using blue text for ease of reference and comparison.
A

Lemma 1. If w;(G',G|G",G") = [l cpue ut(at, z|a® at) is a conditional vector field that satisfies the
conditional Kolmogorov equation

8tpt\1(mt‘x17x0) = Z ut(xtaw‘xovl’l)pt|1($|xl7m0) - Z ut(xtaw‘moaxl)pﬂl(‘rtlxl’$O)7 (24)
rFxt rFxt

for each single generic random variable x € YV UE, then the vector field

ut(G Gt) £ pl“(Gl’G0|G)(ut(Gt,G|GO,G1)): H Epm(zl,zo\z)(ut(xta$|-7507331)) (25)
zeVUE

also satisfies the Kolmogorov equation 9ypy(') = 3,0 we(@', 2)pyn (@) — D2, e wr (2’ 2)pyp (2).

Proof. We assume the graph generation process can be modeled by a time-inhomogeneous Markov Chain,
where the component-wise transition is defined by the conditional vector field u;(z?, x|z%, z1). Our goal is
to derive the marginal vector field u;(x?, z) and confirm that the marginal distribution p,(z') satisfies the
Kolmogorov forward equation. We use the fact u;(zf, 2t|2°, 21) = — D wte, we(, x|x0, 21) for compactness.
We denote the joint distribution of the initial state G° and the terminal state G' as 7(G°, G1), which implies

7(20, 2) for a generic variable x € VUE.

a15pt|1(1't|x17‘(£0) = Zut(xt,$|£ﬂ0, xl)pt|1($|l‘l7:)’;0)

x

Eﬂ(wl’wO)[atptll(qul,I’O)] = Er(s1,20) Zut (', x|z, 2" )pyr (22!, 2°)]

atE‘/r(ml,w“)[pt|1('rt|x17x Z Z .I I’ utx I|l’ € )pt\l( |£L‘1,£E0)

z (29,21)

0 1

Using the identity m(x ,Jcl)pm(ﬂxl, 1Y) = Pe(2)py)e( ,2%|z) (derived from Bayes’ Rule where p1|t(a:1, 20|x)
is the posterior distribution of the endpoints given the intermediate state x):

Ope(x Z Z pre(z', 20 |2)us (!, z|2°, 2" )pe(z) based on Bayes Rule
G (29,21)

Opir (') = Z[ Z Pl\t(ﬂfla$0|$)Ut($ta$|$07$1)]Pt($)

v (@)

atpt Zut zt y L pt

The intermediate steps demonstrate the specific algebraic transformation required for our modified coupling,
which represents a key point of departure from |Campbell et al.| (2024). Since the overall graph transition is
assumed to be component-wise independent, the vector field u; (G, G) also satisfies the Kolmogorov forward
equation. O

Proposition 3. We then prove that the proposed conditional vector field,

H ReLU(atptu(x\iUl’xo) - 3tpt\1($t|$17x0))

t 0 1y t 0 .1\ _
Ut(G ,G|G 7G )* H ut(x ,SC‘LE y )* Zt'pt|1($t|xl7x0)

TEVUE TEVUE

(26)
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satisfies the conditional Kolmogorov equation. where ReLU(a) = max(a,0) and Z; = |{z' : p;(z*|2°, 2') > 0}].
ug(zt, 220, 2t) = 0 when py(x|at,2°) = 0 and py(at|2zt,2°) = 0. When 2! = x, the conditional vector field
ug (2t 2?20, 2t) = —Zwt#m ug(zt, 2|2, xt). We assume that ifpm(x|x1,x0) =0, then atpt|1(a:|x1,a:0) =0.

Proof. The proof proceeds by verifying that the conditional Kolmogorov equation is satisfied by the conditional

vector field u;(xt, z|2%, 21) for each single generic random variable z € VU E.

This conditional vector field, inspired by discrete flow matching, is defined as:

ut(mt SC|£E0 [L'l) _ ReLU(atptll(xt‘xlva) - atpt\l(x‘xlv‘ro))

Zy 'pt\1($|$1a$0)

where Z; = |{a! : pi(2!|2°, 2') > 0}| is a normalization constant. We first consider the case where
pep (2f]zt, %) > 0. the Kolmogorov Equation requires: LHS = 9;py1 (22!, 2°). The Right-Hand Side (RHS)
is defined by the flux balance:

RHS = Z

z#xt,py1 (z]zt,29)>0

z#zt ,py1 (z]at,20)>0
1

ReLU(9ypyr (zt]xt, 2%) — Opyp (2!, 20))
Z; 'Pt|1($‘$179€0)

pep ()t z0)

ReLU(9ypypy (z]z!, 2V) — Oypyyr (2|2, 20))
Z; 'Pt|1($t‘1’1’$0)

pp(aflat,2®)

=7 Z ReLU(9ypy1 (z*]2", 2°) = Oypyr (z]2*, 20))
t z#wt,pyp1 (z]zt,29)>0
1
7 Z RGLU(atptu(ﬂxlaxo) - 5tpt|1($t|$17 %))
b astat pyy (al2t,20)>0
1
=7 Z (3tpt|1(xt|il'1»fﬂo) - 8tpt|1(:v|:z1,x°))
b atat po (alat,20)>0
Z; —1 1
= tZt atpt\1($t|$17$0) - Z Z atpt|1($|9517$0)
z#xt py1 (z]2!,20)>0
Z,—1 1
== —py e’z 2°) — =0, (1 = prp (a'|2", )
Z, Z
Z,—1 1
:tiatptu(ﬂ?tkﬂlvifo) + *@Ptu(xt\xlﬁo)
Z, Z,

:3tpt|1 (xt |171a 170) =LHS

In the case that py(zf[z!,2%) = 0 by assumption we have that dpy;(zf|z!,2°) = 0. We have both
ug(2t, |20, 2') = 0 and wy(z, 2'[2%, 2') = 0 because pyj (22!, 2") = 0. Therefore we have LHS = RHS = 0
and thus the Kolmogorov equation is satisfied

O
Corollary 1. We can simplify the conditional vector field in the Proposition[3 as:

ReLU(atpt‘l(x\xl,xo) - 6tpt\1(xt|$17330))
Z; 'pt|1($t|$17$0)

u (G, GIGY,GY) = H ug (2!, z)2°, 2') = H

LEVUE reVUE
5{at, 20 1
_ H (M(l—l—é{x,m}—é{x,xo}))
zeVUE

where ReLU(a) = max(a,0) and Z; = [{z : pi(x]2®,2') > 0,2 € VUE}|. u(at, x|z 2') = 0 when
pe ('l 2%) = 0. When o' = x, the conditional vector field ug(a*, x'|2%, z') = =37 ., ur(a’, x2”, 21).
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Proof. Equation|7|establishes the factorization p,(G*) = [], p(v}) [ 1 ik p(ehy). This implies that the conditional
probability path and the resulting vector field decouple over the graph components. We therefore derive the
rate matrix for a single generic random variable z € YV U £ (representing any specific node or edge).

Consider the conditional probability path py;(z) = té{z, '} + (1 —t)0{z,2°}. We define the time-derivative
vector field v(z) £ dypy1 (). Differentiating with respect to ¢ yields:

1 if x = at,

v(z) = 8z, 2'} — 5{x,2°} = { -1 if z = 2O, (27)
0  otherwise.

We define the numerator of the rate equation as N(z*,2) = ReLU(v(z) — v(z")). We analyze N based on
the value of the current state . Since the probability path py1 () concentrates all probability mass on the
interpolation between noise z° and data !, we restrict our analysis to these two supported cases:

e Case I: 2! = z'. Here v(2?) = 1. Since v(z) <1, N = 0.

o Case II: 2! = 2%, Here v(x!) = —1. The term is ReLU(v(z) + 1).

— If moving to target (z = 2'): N = 2.
— If staying (z = 2°): N =0.

— If moving to noise (z # 2%, z'): N = 1.

This is expressed as: N =1+ 6{z,2'} — §{x,2°}.

Finally, we consider the denominator D(z') = Z; - py1 (z*|x',2°). The flow is non-trivial only in Case II,
where pt‘l(:ﬂt|x1,$0) = 1 —t. Combining the numerator from Case II with this denominator yields the
component-wise rate:

§{at, 20}

t 0 1y _
ug(zt, x|z, ") = Z.(0—1)

(14 0{z,2'} — 6{z,2°}). (28)

Since the noise structure factorizes over the graph components (nodes and edges) as shown in Equation
the generation process is equivalent to solving independent flow matching problems for each component.
Consequently, the vector field for the entire graph G, denoted as u;(G?, G|GY, G1), is not a scalar field but a
collection of independent component-wise rates.

We define the global rate tensor u;(G?, G|G°, G!) element-wise for all elements x in the sets V and &:

ot 0
w(@,GlG% 6N 2 [ wlet ey = [] (M (1+ 6{z, 2} — 6{x,2°}) ) (29)
Z,(1-1)
zEVUE zEVUE
O
C.3 Proof of Proposition [T]
Proof. The Kolmogorov forward equations for discrete flow matching are expressed as:
Oipt = utpt, (30)

If we establish the permutation invariance of the prior distributions p.of and the permutation equivariance of
conditional flow probabilities, then it follows that p(G') is permutation exchangeable.

According to Theorem [2| we deduce the permutation invariance of the prior distribution p..s. Given the
conditional probabilities p(G*+4t|G) = §{G*A, G} + 4:(G*, GITAY) AL, it suffices to demonstrate the
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permutation equivariance of the conditional probabilities. This requires showing the permutation equivariance
of the vector field u;. Consider the case for nodes:

oul (VE, VIHAY = & (JE v il (VL VAV v°)]>

Pyt

LHS = u (Vi1 ), Vi),

put

1% t t+At 1 0
V. 71(1))[% (Val(i)7VU—1(i)Val(i)7Vo—1(1‘))]) ;

= uy(V =1(i)» VtJrA(t)) = LHS.
where o is a permutation operator. This establishes the permutation equivariance of u; and the exchangeability
of the generated distribution. O

C.4 Proof of Theorem 1]

First, we want to clarify the rationale and foundation of our theorem. The goal of optimal transport is to
pair source and target data points with minimal cost during training, which is beneficial for our interpolation
(Bose et al., |2023; |Song et al., 2024). Thus, we design our optimal transport approach from the perspective of
interpolation.

We define the node order of the graph G as the order of the nodes and edges in matrix representation. For
example, if the node set of G is {A, B, C}, the possible node orders include (A, B,C), (B, A,C) or (C, B, A).

In the interpolation process, we transform the graph representation to a matrix representation before
performing interpolation. For example, for source data G° = (V9 E?), V0 € R**" E0 € RaXaX™ and target
data G = (VY EY), V! € RoXn Bl € R¥*aX™ where @ is the number of nodes, n is the class number
of nodes, and m is the class number of edges, the node orders of G° and G' have been fixed. Therefore,
interpolation is performed directly on these fixed node orders.

The optimal transport aims to find pairs with the minimum cost for interpolation, and the interpolation is
conducted on a fixed node order. Additionally, during optimal transport calculations, we also utilize the
matrix representation of these graphs and our prior distribution is permutation invariant. Therefore, we aim
to match source data with the target data G' whose node order is fixed, to achieve minimal transport cost.
Furthermore, we assume that all pairs of source and target data share the same node order during optimal
transport, which also facilitates the identification of pairs with minimal cost.

Regarding the permutation of the intermediate graph G*, we have 0G? = toG° + (1 — t)oG*, where G° and
G' share an identical permutation. Our network p!(G*|GY, G*) needs to maintain permutation equivariance,
such that p*(G|oGY, 0G?) = op' (GG, G?) for any permutation o to approximate cG*. So we prove the
invariance of optimal transport under identical permutations, i.e. 7(G°, G') = 7(¢G°, cG*).

Proof. Building on the foundations established in Theorem [2] and Proposition [I} we confirm the permutation
invariance of both the target and source distributions. The Hamming distance is invariance under identical
permutations 7, as shown by:

H(G,GY) Z(s 09, v}) 25 el el)
_ 0 1
Zé o=t (i) Y 1(i)) + 9 Z 5(6071@)0*1(]')7 eafl(i)afl(j))
2,7

= H(JGO, oGh)

This property of the Hamming distance ensures the invariance of the optimal transport map 7 under identical
permutations. O
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Additionally, the prior distribution is permutation invariant and our GraphEvo is permutation equivariant,
all permutations of graphs are generated with equal probability (Eijkelboom et al., [2024).

Lemma 2. Let po(G) be an exchangeable distribution and our model py.(G'|G", G°) is permutation equivari-
ant. Then, all permutations of the generated graphs are selected with equal probability.

Proof. As the permutation equivariance of our model p;(G*|G*, G"), implies the equivariance of our vector
fields u;. Moreover, the sampling procedure exhibits permutation equivariance, where 7 is a permutation.
ﬁl‘t(Gl\aGt, oG = Uﬁl‘t(Gl|Gt, GY), t=0
Paro(GAoGr,0G%) = {G™, 0GO} + ug(GR, 0G0|0 GO, oG ) At
= o[0{G?", G} + ug (G, GO|G, GM)AL] = apaso(GRYGLGY), t=0
pt+At|t(GAt+t|aé1, oGt oGY) = 5{GAt+t, oG'} + u (GAT 0G0 G, Uél)At
= o[6{GAT G} + u (G GNGY, GYAL] = oprage (GGG GO, t=At,...,1— At

Therefore, since pg assigns equal density to all permutations of G, the resulting distribution p; preserves this
property. [

D Details of GraphEvo

GraphEvo is a novel edge-augmented graph transformer model designed for graph data. To enhance the
generative capabilities of GGFlow, GraphEvo introduces a triangle update mechanism, which significantly
improves the exchange of edge information. We incorporate FiLM and PNA layers into our architecture
(Vignac et al., 2022)):

FiLM(X1, X2) = X;(Linear(X3) + 1) + Linear’(X5»)

PNA(X) = Linear (cat(maX(X), min(X), mean(X), std(X))) .

The time complexity of GraphEvo is O(N?).

GraphEvo integrates global structural features to improve generation performance, including both graph-
theoretic and domain-specific attributes:

Graph-theoretic features: These encompass node-level properties such as the number of k-cycles (k < 5)
containing this point and an estimate of the largest connected component, alongside graph-level metrics like
the total number of k-cycles (k < 6) and connected components.

Molecular features: These account for the current valency of each atom and the molecular weight of the
entire molecule.

D.1 Proof of Proposition [2]

Proof. Let Gt = (V!, E?) is a intermediate graph, and ¢G* = (¢*V, 0*Eo) is the permutation. To prove the
permutation properties of the graph, we need to consider two aspects: additional structural features and the
model architecture.

First, the spectral and structural features are permutation equivariant for node-level features and invariant
for graph-level features. Additionally, the FiLLM blocks and Linear layers are permutation equivariant, while
the PNA pooling function is permutation invariant. Layer normalization is also permutation equivariant.

As GraphEvo is built using permutation equivariant components, we conclude that the overall model is
permutation equivariant.

O
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E Analysis of Optimal Transport

To analyze the time complexity of optimal transport (OT), we compared the training time of OT with that
of DiGress, using identical architectures on an NVIDIA A100 80G GPU. We evaluated the effects of model
size, batch size, and number of nodes by measuring the duration of single training steps across three different
datasets. Our results indicate that the time required for OT accounts for only 5% of the total training time,
highlighting the efficiency of our optimal transport.

Table S1: Time Complexity of Optimal Transport

Dataset Planar Zinc250k Community-small
DiGress Training Time (s) 0.1647  0.1690 0.0456
GGFlow Training Time (s) 0.1264 0.1301 0.0408
Optimal Transport Time (s) 0.0025  0.0070 0.0024
Percentage of OT 1.9% 5.3% 5.6%
Model Size (M) 3.6 4.6 6.4

Batch Size 64 128 80
Number of Nodes 64 [6,38] [12,20]

To further demonstrate the advantages of our proposed distance metric, we conducted a comparative
analysis using Fused-Gromov-Wasserstein (FGW), which is defined in [Vayer et al.| (2018]), as an alternative
permutation-invariant graph distance for model training.

A primary challenge encountered with FGW was its computational overhead. We observed that calculating
the FGW distance on both the Community-small and ZINC250k datasets required several orders of magnitude
more time than our model’s typical training duration. As detailed in Table the computation time for FGW
on ZINC250k was particularly prohibitive, preventing us from completing a full training run for a comparative
model. Consequently, a comprehensive model trained with FGW was only feasible on the Community-small
dataset.

Table S2: Time comparison of Optimal Transport distance computation

Dataset Zinc250k  Community-small
Hamming Distance Training Time (s) 0.0070 0.0024
Fused Gromov-wasserstein Distance Training Time (s)  60.3062 9.0301

Table presents the generative performance comparison on the Community-small dataset. Our model,
utilizing the Hamming distance, outperformed the FGW-based model on the Cluster and Orbit metrics, while
exhibiting a slightly reduced performance on the Degree metric.

Table S3: Generative results with different Optimal Transport distances on Community-small dataset

Method Degree Cluster Orbit

Hamming Distance 0.011 0.030  0.002
Fused Gromov-wasserstein Distance  0.004 0.069 0.006

More critically, our model demonstrated superior training stability compared to the FGW-based model, as
evidenced by the validation KL divergence on the validation set. Figure [S1]illustrates this enhanced stability.
This improved stability is directly attributable to our distance metric being specifically tailored and better
adapted to the Flow Matching training methodology.
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Figure S1: Validation KL Divergence comparison of different Optimal Transport approaches on Community-
small dataset

These findings collectively indicate that, while our proposed optimal transport approach limits invariance to
identical permutations, it does not negatively impact the model’s practical performance and is better suited
and more efficient for our Flow Matching model than Fused-Gromov-Wasserstein.

F Toy example of goal-guided graph generation

We demonstrate the utility of our goal-guided framework of flow matching with a toy example, depicted in
Figure (a) shows a trained unconditional flow matching model mapping noise distribution py to data
distribution p;. (b, c) illustrate the effect of temperature T' on the exploration, with higher temperatures
resulting in broader data point distribution. (d) shows how fine-tuning according to Equation |18| concentrates
data in regions with higher rewards. (e-f) illustrate the corresponding flow matching trajectories.

G Additional Experiments Results

In this section, we present additional metrics including Spectre (Spec.) and Validity&Novelty& Uniquess
(Val.&Nov.&Uni.) across general graph datasets including the Planar and Enzymes datasets, as summarized
in Tables and The MMD kernel in the planar dataset followed the GruM (Jo et al.| 2024). We
also include the standard deviation of our results in Table [S7} illustrating the consistency and superior
performance of our method.

To further compare GGFlow with baseline models, we measured the MMD between the test datasets and
a set of 1,024 generated graphs in the Ego-small and Community-small datasets. The results in Table
demonstrate that GGFlow achieves the highest performance across all metrics, significantly outperforming
other baseline models.
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Figure S2: (a-d) Data distribution of the flow matching model, 7 is the original distribution (orange), m; is
the target data distribution (blue), and the red dots are the data distribution generated by the model. (e-h)
In reinforcement learning, the flow matching model conducts exploration/sampling trajectories

Table S4: Additional generation results on the generic graph datasets. Results are the means of 3 different
runs. The best results are marked bold.

Method Ego-small Community-small Grid Step
Spec. Nov.&Uni. Spec. Nov.&Uni. Spec. Nov.&Uni.

Training Set  0.006 30 0.012 100 0.009 25 -
GDSS 0.034 27.5 0.053 100.0 0.043 100.0 1000
GSDM - - 0.024 0.0 0.015 0.0 1000
DiGress 0.017 30.0 0.055 100.0 0.025 100.0 500
SwinGNN 0.016 52.5 0.025 55.0 0.008 100.0 500
GGFlow 0.006 32.5 0.031 100.0 0.022 100.0 500

Table S5: Generation results on the planar graph datasets. The best results are marked bold. ¢ denotes the
standard deviation.

Method Planar Step
Deg. Clus.  Orbit Spec.  Val.&Nov.&Uni.

Training Set  0.0002  0.0165 0.0002  0.0050 100 -
GDSS 0.0039  0.2593 0.1732 0.0370 0.0 1000
GRASP 0.0022  0.2749 0.0055  0.0098 0.0 200
DiGress 0.0003 0.0372 0.0098  0.0106 75.0 500
GruM 0.0004 0.0382 0.0095 0.0069 87.5 1000
GGFlow 0.0156  0.0196 0.0019 0.0091 97.5 500
o 0.0064 0.0037 0.0006 0.0012 2.5 -
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Table S6: Generation results on the Enzymes graph datasets. The best results are marked bold. o denotes
the standard deviation.

Enzymes
Deg. Clus. Orbit Avg.
Training Set  0.008 0.096 0.012  0.039 -

GraphRNN 0.017 0.043 0.021  0.043 -
GraphAF 1.669 1.283 0.266 1.073 -
GraphDF 1.503 1.061 0.202  0.922 -
GraphVAE 1.369 0.629 0.191  0.730 -
EDP-GNN 0.023 0.268 0.082  0.124 1000

Method Step

GDSS 0.026 0.102 0.009  0.046 1000
GSDM 0.013 0.088 0.010 0.037 1000
DiGress 0.010 0.046 0.002  0.019 500
GGFlow 0.008 0.026 0.002 0.012 500
o 0.0041 0.0106 0.0008 0.0130 -

Table S7: Standard deviation and mean of generation results on the general graph datasets. p and o denote
the mean and standard deviation, respectively

Metric Ego-small Community-small Grid

Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Sepc.
I 0.005 0.033 0.005 0.008 0.011 0.030 0.002 0.031 0.030 0.000 0.016 0.022
o 0.007 0.012 0.003 0.001 0.006 0.012 0.002 0.002 0.008 0.000 0.003 0.001

Table S8: Generation results on the generic graph datasets with 1024 generated graphs. The best results are
marked bold.

Ego-small Community-small

Method Step
Deg. Clus.  Orbit Sepc.  Deg. Clus. Orbit  Spec.

GraphRNN  0.040 0.050  0.060 - 0.030 0.010 0.010 - -
GNF 0.010 0.030  0.001 - 0.120 0.150  0.200 - -
EDP-GNN  0.010 0.025 0.003 - 0.006 0.127  0.018 - 1000
GDSS 0.023 0.020 0.005 0.047 0.029 0.068 0.004 0.151 1000
GSDM - - - - 0.003 0.008 0.0009 0.011 1000
DiGress 0.017 0.038  0.006 0.021  0.013 0.040 0.004 0.055 500

SwinGNN 0.004 0.023  0.003 0.023 0.003 0.088 0.010 0.016 500
GGFlow 0.004 0.004 0.0008 0.009 0.004 0.003 0.0006 0.018 500

H Implementation Details
H.1 Algorithms of GGFlow

Details of the training procedure and guided training procedure are provided in Algorithm [3] and

H.2 Baselines Implementation

To benchmark the performance of GGFlow, we ensure consistency by using identical splits of training and test
sets across all datasets. Below, we provide the implementation details for each baseline model. To guarantee
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Algorithm 3 Training Procedure of GGFlow

Require: Training set Siain = {G = (V, E)}, Pret,
1: for n € {0,..., Niter — 1} do
t € U(0,1), Sample G* from Siyain
G° = (VO,EO) ~ Pref
(G°,GY) ~ (G, GY)
// Sample from conditional probability flow.
Vi~ (t6{VE VY + (1= 6{V?, V) and Ef ~ (t8{E*, E'} + (1 — t)0{E, E°})
p1):(G'G*, G°) = GraphEvo, (G',t)
L= Ep 0 (GHU0,1)7(G0,6Npe (G G061 [10g P11 (GHGY, GO))]
9: 0,41 = optimizer update(f,, L)
10: end for
11: 6* = eNiter

12: return 6*

Algorithm 4 Training Procedure of Guided GGFlow by Reinforcement Learning

Requil‘e= 907 97 avﬂa’ru Nstepsa trajv GO ™~ Pref T7 Ntrain
1: 0« 90
2: for i € {L---yNtrain} do

3: At - I/Nsteps

4:  Collect flow trajectory (Go,t =0,R(G°, 0)) in traj.

5. forn €{0,..., Ngeps — 1} do

6: P11t (G|G", G?), = GraphEvo(G", t)

7: Get G'+2t by sampling from Equation

8 (VAL Brdny — it

9: t=t+ At

10: Compute the reward function R(G*TAt ¢ + At).

11: Collect flow trajectory (GH‘N, t+ At R(GHAE ¢+ At)) in traj.

12:  end for

13:  Update network using Equation
14: t=0

15: end for

16: return Guided flow matching model 6*

a fair comparison, most baseline models are retrained three times, and the average results from these runs are
reported as the final outcomes in unconditional generation tasks. The results of the DeepGMG, GraphRNN
and GNF for Ego-small and Community-small dataset are taken from their original papers.

GraphAF (Shi et al||2019) We follow the implementation guidelines provided in the TorchDrug tutorials
(https://torchdrug.ai/docs/tutorials/generation.html)).

GraphDF (Shi et al., [2019) Model scripts are sourced from the DiG repository (https://github.com/
divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF).

GraphVAE (Shi et al., 2019) Scripts are obtained from the GraphVAE section of the GraphRNN repository
(https://github.com/JiaxuanYou/graph-generation/tree/master/baselines/graphvae).

MoFlow (Zang & Wang} 2020) Implementation scripts are taken from the MoFlow repository (https:
//github.com/calvin-zcx/moflow).

GraphEBM (Liu et al., 2021) We use the implementation available in the GraphEBM repository (https:
//github. com/biomed-AI/GraphEBM).
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EDP-GNN (Niu et al., 2020) The model is implemented according to the scripts in the EDP-GNN
repository (https://github.com/ermongroup/GraphScoreMatching).

GDSS (Jo et all [2022b) Implementation details are sourced from the GDSS repository (https://github)
com/harryjo97/GDSS).

GSDM (Luo et al., [2023)) Scripts are implemented from the GSDM repository (https://github.com/
1tz0120/Fast_Graph_Generation_via_Spectral_Diffusion).

PS-VAE (Kong et al., [2022) Implementation details are sourced from the PS-VAE repository (https:
//github. com/THUNLP-MT/PS-VAE).

MolHF (Zhu et al.,2023) The model is implemented according to the scripts in the MolHF repository
(https://github.com/violet-sto/MolHF).

GRASP (Minello et al.,|2024) Implementation details are sourced from the GRASP repository (https:
//github.com/lcosmo/GRASP).

SwinGNN (Yan et al., 2023) Implementation details are sourced from the SwinGNN repository (https:
//github.com/DSL-Lab/SwinGNN). The authors employ the ’gaussian_tv’ MMD kernel, whereas other
methods use ’gaussian__emd’ or 'gaussian’. To ensure a fair comparison, we adopt the same kernel.

GruM (Jo et al| [2024)  Scripts are implemented from the GruM repository (https://github.com/
harryjo97/Grul/).

DiGress (Vignac et al.|[2022) The implementation is based on the DiGress repository (https://github)
com/cvignac/DiGress).

H.3 Details of Generic Datasets
H.3.1 Dataset
Ego-small This dataset consists of 200 small one-hop ego graphs derived from the Citeseer network (Sen

et al., |2008)). Each graph contains between 4 and 18 nodes.

Community-small This dataset includes 100 random community graphs, each formed by two communities
of equal size generated using the E-R model (Erdés et al., [1960) with a probability parameter of p = 0.7.
The graphs range in size from 12 to 20 nodes.

Enzymes The dataset comprises 587 protein graphs, with each graph representing the tertiary structure
of enzymes sourced from the BRENDA database (Schomburg et al., |2004), which have between 10 and 125
nodes.

Grid The dataset consists of 100 standard 2D grid graphs with 100 < |V| < 400.

Planar The dataset consists of 200 planar graphs, each with 64 nodes, generated using Delaunay triangula-
tion on uniformly distributed random points.

Table S9: Statistics of the generic graph datasets

Dataset type Number of graphs Number of nodes
Ego-small Real 200 [4, 18]
Community-small ~ Synthetic 100 [12, 20]
Enzymes Real 587 [10, 125]
Planar Synthetic 200 64

Grid Synthetic 100 [100,400]
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H.4 Details of Molecule Datasets

H.4.1 Dataset

QM9 It is a subset of the GDB-17 database and consists of 134,000 stable organic molecules, each containing
up to 9 heavy atoms: carbon, oxygen, nitrogen, and fluorine (Ramakrishnan et al., 2014). The dataset
includes 12 tasks related to quantum properties. We follow the train/test split from GDSS, using 12,000
molecules for training and the remaining 1,000 for testing.

ZINC250k It contains 250,000 drug-like molecules with a maximum of 38 atoms per molecule (Irwin et al.,
2012)). Tt includes 9 atom types and 3 edge types. For a fair comparison, we use the same train/test split as
previous works, such as GDSS and GSDM.

Table S10: Statistics of the molecular graph datasets

Dataset type Number of graphs Number of nodes Number of node types Number of edge types

QM9 Real 133,885 [1, 9] 4 3
ZINC250k Real 249,455 [6, 38] 9 3
H.4.2 Metrics

For generic graph datasets, we employ Maximum Mean Discrepancy (MMD) to assess the distributions of
graph statistics, specifically degree distribution, clustering coefficient, the number of occurrences of 4-node
orbits, and eigenvalues of the normalized graph Laplacian. In alignment with prior research (Jo et al., |[2022b]),
we utilize specialized kernels for MMD calculations: the Gaussian Earth Mover’s Distance (EMD) kernel
for degree distribution and clustering coefficient, the Gaussian Total Variation (T'V) kernel for eigenvalues
of the normalized graph Laplacian, and a standard Gaussian kernel for the 4-node orbits. To ensure a fair
comparison, the size of the prediction set matches that of the test set.

Validity We permit atoms to exhibit formal charges during valency checks because of the presence of
formal charges in the training molecules. It is the fraction of valid molecules after valency correction or edge
resampling.

Validity w/o correction This metric explicitly evaluates the quality of molecule generation before any
correction phase, providing a baseline for raw generation performance.

FCD FCD quantifies the functional connectivity density within a molecule by computing distances and
connectivity between atoms, based on both structural and chemical features. It describes the three-dimensional
structure, topological features, and chemical properties of molecules, making it valuable in fields such as drug
design, compound screening, and molecular simulations.

NSPDK NSPDK assesses molecular similarity by comparing shortest paths within their graphical structures.
It captures connectivity patterns and chemical environments, effectively describing relationships and similarities
between molecules. For two distributions p and ¢, the MMD using NSPDK is calculated as:

n

MMDRsppk (P 4) =———— 1) ZZkNSPDK A, Xj) + ZZkNSPDK Vi ) (31)
i=1 j#i i=1 j#i

2
- ; ]z:; knsppk (X, V) (32)

Here, knsppk () denotes the NSPDK kernel function. X is the set of molecules from distribution p. ) is the
set of molecules from distribution ¢. n and m represent the number of samples drawn from distributions p
and ¢, respectively. This formula quantifies the difference between the distributions p and ¢ using the NSPDK
kernel.
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H.5 Details of Conditional Generation

We included three guidance baselines in our conditional generation task:

DiGress model with guidance Utilizing the guidance method integrated into the DiGress model (Vignac
et al., 2022).

Direct supervised training (ST) It involved selecting training samples from the dataset that satisfied
| — p*| < 1.0 and retraining them using supervised learning settings identical to those in Section

Supervised fine-tuning (SFT) This method involved fine-tuning a pre-trained GGFlow model on
molecules generated with |p — p*| < 1.0, maintaining the same training settings as in Section

These models were trained over 10,000 steps using the training settings detailed in Section [5.2] We then
generated 1,000 samples to calculate the results for each guidance method and the unconditional method,
with the values of p estimated using Psi4 (Smith et all |[2020). We set the hyperparameters o and 8 as 0.999
and 0.001.

| Experiment Settings

1.1 Hyperparameter Settings

Table presents the hyperparameters employed in our experimental setup. For each dataset, the final
resutls in Table [[l and Table Pl are the means of 5 different runs.

Table S11: Hyperparameter settings of different datasets

Hyperparameter Ego-small  Community-small Grid Planar Enzymes QM9 ZINC250k
Number of layers 5 7 5 4 6 9 9
Hidden dimension of X 256 256 256 256 256 256 128
Hidden dimension of E 128 128 128 128 128 128 64
Hidden dimension of y 128 128 128 128 128 128 64
Optimizer Adamw Adamw Adamw Adamw Adamw Adamw Adamw
Learning rate 2x 1074 2x 1071 2x107*% 2x107* 2x107* 2x107* 2x107*
Batch size 64 128 4 64 8 512 128
Number of epochs 2000 3000 5000 5000 10000 1000 1000
Number of sampling steps 500 500 500 500 500 500 500

.2 Ablation Studies Settings

For the evaluation of varying inference steps, we followed the same experimental settings as outlined in
Sections [5.1] and [5.2] Samples were generated for 10 runs. The results were then visualized using the mean
and variance across these 10 runs. It is important to note that in DiGress, the number of inference steps is
constrained by its predefined diffusion steps (N = 500), so the DiGress curve terminates at 500 inference
steps.

For the ablation studies of GGFlow without Optimal Transport (GGFlow w/o OT), GGFlow without
GraphEvo (GGFlow w/o Evo) and GGFlow without GraphEvo and optimal transport (GGFlow w/o both),
we adhered to the settings described in Sections and The final results were obtained by averaging the
outcomes from five different runs.

Due to the excessive time required to compute metrics for 10,000 generated molecules, we conducted the
experiments on inference steps and model stability using a smaller set of 1,000 generated molecules to calculate
the test metrics on ZINC250k dataset.

To further investigate the advantages of optimal transport, we present generation results with varying inference
steps on the Community-small dataset. As shown in Figure GGFlow demonstrates superior generation
quality compared to GGFlow (w/o OT), exhibiting narrower confidence intervals and comparable performance
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with fewer inference steps, which suggests that optimal transport enhances sampling both efficiency and
stability.
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Figure S3: Ablation studies of varying inference steps on Community-small dataset
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Figure S4: Cross-entropy of edges on the validation set for each epoch on ZINC250k dataset
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1.3 Generation Times with Different Graph Scales

We conducted experiments to evaluate generation times across various graph scales using the Enzymes dataset.
The GraphEvo model was configured with six layers, and generation time was measured for a single graph on
an NVIDIA A100 80G GPU.

Table S12: Generation times with different graph scales.

Number of Nodes 10 50 100 200 400
Time (s) 1.92 424 12.15 4859 235.8

J  Visualization
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Figure S5: Visualization of generated samples of our model in different datasets
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