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ABSTRACT

Diffusion models trained on different, non-overlapping subsets of a dataset often
produce strikingly similar outputs when given the same noise seed. We trace this
consistency to a simple linear effect: the shared Gaussian statistics across splits
already predict much of the generated images. To formalize this, we develop a
random matrix theory (RMT) framework that quantifies how finite datasets shape
the expectation and variance of the learned denoiser and sampling map in the linear
setting. For expectations, sampling variability acts as a renormalization of the
noise level through a self-consistent relation o® — r(o?), explaining why limited
data overshrink low-variance directions and pull samples toward the dataset mean.
For fluctuations, our variance formulas reveal three key factors behind cross-split
disagreement: anisotropy across eigenmodes, inhomogeneity across inputs, and
overall scaling with dataset size. Extending deterministic-equivalence tools to
fractional matrix powers further allows us to analyze entire sampling trajectories.
The theory sharply predicts the behavior of linear diffusion models, and we validate
its predictions on UNet and DiT architectures in their non-memorization regime,
identifying where and how samples deviates across training data split. This provides
a principled baseline for reproducibility in diffusion training, linking spectral
properties of data to the stability of generative outputs.

1 INTRODUCTION

Diffusion models and their relatives such as flow matching have become the dominant generative
modeling paradigm across diverse domains, including images, video, and proteins. By learning a
time-dependent vector field, these models transform Gaussian noise into structured samples through
an ordinary differential equation (ODE) or its stochastic variants (Song et al., 2021; Albergo et al.,
2023).

A distinctive feature of diffusion models is their striking consistency across training runs (Figure 1).
When trained on the same distribution, even with disjoint datasets, different architectures, or repeated
initializations, diffusion models often map the same noise seed to highly similar outputs under the
deterministic probability flow (Kadkhodaie et al., 2024; Zhang et al., 2024). This phenomenon
contrasts with other generative modeling frameworks including GANs and VAEs, where the isotropic
Gaussian latent space admits arbitrary rotations, leading to run-to-run variability in the mapping from
latent codes to data (Martinez & Pearson, 2022).

Why does consistency matter? Consistency across non-overlapping data splits suggests that
diffusion models recover aspects of the underlying data manifold that are insensitive to the specific
training set. This raises fundamental questions about how such models generalize beyond their
training samples, to what extent they memorize idiosyncratic data, and whether their outputs reflect
universal statistical regularities of the distribution. These issues connect to emerging theoretical
and empirical debates on generalization, memorization, and creativity in diffusion models (Kamb &
Ganguli, 2024; Niedoba et al., 2024; Kadkhodaie et al., 2024; Chen, 2025; Vastola, 2025; Bonnaire
et al., 2025); see also further discussion in App. A.

Our approach. We analyze this phenomenon through the lens of random matrix theory (RMT),
beginning with the observation that the consistency effect can already be predicted by a linear
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Figure 1: Motivating observation and the linear theory. A. Diffusion models trained on non-
overlapping data splits generate similar images from the same initial noise, even with different
neural network architectures, consistent with results in Kadkhodaie et al. (2024); Zhang et al. (2024).
Notably, generated samples from both splits are visually similar to the prediction from the Gaussian
linear theory (Wang & Vastola, 2024b). B. Quantification of A by paired image distances (MSE)
averaging from 512 initial noises. The low-MSE block structure of the four DNNs and linear solution
emphasize that this consistency effect is related to the linear structure. CNN1 denotes the CNN
trained on splitl, similar for CNN2, DiT1, DiT2; CNN1 nearest denotes the set of closest training
set sample for the 512 generated image. We hide results for linear predictor of two splits since their
samples are nearly identical with the linear predictor for the full dataset. Similar analysis for FFHQ64
is showed in Fig. 6.

Gaussian model (Fig. 1). Building on the linear denoiser framework, we develop a precise RMT
analysis of how finite-sample variability in the empirical covariance affects both the expectation and
fluctuation of denoisers and sampling maps. We then validate these theoretical predictions against
deep diffusion models (CNNs and DiTs), showing that the same RMT principles still govern their
inhomogeneity of consistency across data splits. Our main contributions are as follows:

* Linear origin of consistency: show that shared Gaussian statistics i.e. linear denoiser already
predict cross-split agreement.

+ Finite-sample RMT: prove that randomness enters through a renormalized noise scale o2
#(c?), explaining overshrinkage of low-variance modes.

* Variance law: derive a factorized form for cross-split fluctuations—anisotropy across eigenmodes,
inhomogeneity across inputs, and global scaling with n.

* Fractional-power DE: extend deterministic equivalence to fractional matrix powers, enabling
analysis of full sampling trajectories.

» Deep-net validation: qualitatively confirm overshrinkage, anisotropy, and inhomogeneity phe-
nomenon in UNet and DiT models beyond the linear regime.

2 NOTATION AND SET UP

Score-based Diffusion Models Let p(x) be the target data distribution For each noise scale
o > 0, define the noised distribution as p(x; o) = (po*N(0,0%1))(x) = [ po(y) N (x | y,o?T) dy.
The corresponding score function is V log p(x; o), i.e. the gradient of the log—den31ty. In the EDM
formulation (Karras et al., 2022), the probability flow ODE (PF-ODE) reads,

d
X _ s Vi logp(x;0) (PF)
do

This ODE transports samples from p(-;o2) to p(-;01) when integrating o from o3 to o;. In

particular, by starting from Gaussian noise NV'(0, 0%1) and integrating the PF-ODE from a sufficiently
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large o7 down to o = 0, one recovers clean samples from py. We adopt the EDM parametrization for
its notational simplicity; other common diffusion formalisms are equivalent up to simple rescalings
of time and space (Karras et al., 2022).

To estimate the score function of distribution po(x), we minimize the denoising score matching
(DSM) objective (Vincent, 2011) with a function approximator. We reparametrize the score function
via a ‘denoiser’ sg(x,0) = (Dy(x,0) — x)/0?, then at noise level o the DSM objective becomes

2
Lo = ]EXONPO’ZNANO,I)HDQ(XQ—‘rO’Z;O’) — x0H2. (DSM)

In practice (Karras et al., 2022), diffusion models balance these scale-specific objectives with a
weighting function w(c ), yielding the overall training loss £ = [ do w(o) L,.

Data distribution. Consider a ground truth data distribution py(x), x € R¢, with population mean
p and covariance X. From this ground truth distribution, we construct an empirical distribution {x;}

with n samples, stacked as X € R™*4_ then we denote the empirical mean [ and covariance X.

Here we are interested in the effect of the number of samples n, and different realizations of X on
the expectation (mean) and fluctuation (variance) of learned diffusion model. More specifically, we
will study how randomness in the empirical covariance 3 drives variability in the denoiser, relative
to the population covariance X.

Linear Denoiser A tractable setting for analytical study is the linear denoiser
D(x;0) = W, x + by, (1)

which is an affine function of the noised state, independent across noise scales. As in linear regression,
the training data enters the learned denoiser only through their first two moments (Wang & Pehlevan,
2025; Hastie et al., 2019). More explicitly, minimizing DSM L,, for the empirical dataset py = {x;}'
yields the optimal empirical linear denoiser, depending on [, 3.

D} (x;0) = fi+ (2 +0°T) ' B(x — ) 2)

For simplicity, we will later set (1 = p to isolate the effect of the empirical covariance 3.

Sampling trajectory and sampling map. Given an initial noise pattern x,,. ~ N (0, 0%1), the
PF -ODE evolves it to a final sample xo. We refer to this mapping from x,,. to x¢ as the sampling
map; the phenomenon of consistency is precisely about the stability of this mapping across different
realizations of training data. When the denoiser is linear and optimal at each noise scale, the PF-ODE
can be solved in closed-form by projecting onto the eigenbasis of the data, yielding the analytic
sampling trajectory (Wang & Vastola, 2024b; Pierret & Galerne, 2024).

X5 (X7 0) = o+ (B + 0 DVA(E + 07 1) V2 (x0p — 1) 3

Taking o — 0 recovers the Wiener filter with Gaussian prior (Wiener, 1964), which has been shown
to be a strong predictor of the sampling map of the learned diffusion networks (Wang & Vastola,
2024b; Lukoianov et al., 2025). In the linear case, the mapping remains affine in the initial state, with

the matrix 3%/ 2(2 + o021 )~1/2 emerging as the central object of analysis.

3 MOTIVATING EMPIRICAL OBSERVATION

We begin with a simple experiment illustrating the consistency phenomenon. We train UNet-
CNN (Song & Ermon, 2019) and DiT (Peebles & Xie, 2023) diffusion models under the EDM
framework (Karras et al., 2022), each on two non-overlapping splits of FFHQ32 (30k images each;
details in App. D.3). When sampling from the same noise seed with a deterministic solver, the outputs
are visually similar across both splits and architectures (Fig. 1 A). Quantification via pixel MSE
confirms this effect: generated images are more similar across splits than to their nearest neighbors in
the training set (Fig. 1B), ruling out memorization (Kadkhodaie et al., 2024; Zhang et al., 2024).

'With n samples, we average over infinite noise draws, so each sample is reused infinitely.
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Strikingly, the linear Gaussian predictor (Wiener filter) (Wang & Vastola, 2024b) already accounts

for much of this behavior. Using the empirical mean and covariance (fx, ﬁ)) of each split in Eq. 3,
the linear predictor yields nearly identical outputs across splits, also sharing visual similarities with
CNN and DiT results (Fig. 1A,B). This suggests that consistency arises because different data splits
share nearly identical Gaussian statistics, the only feature the linear diffusion can absorb (Wang
& Pehlevan, 2025). Pointwise, samples nearer to the Gaussian solution are also more consistent
across splits (Pearson r = 0.244,p = 5 x 107!%), suggesting convergence toward the Gaussian
predictor underlies consistency. More visual examples and quantitative comparisons for other datasets
(CIFAR10, CIFAR100, FFHQ at 32 and 64 pixels, LSUN church and bedroom dataset at 32 and 64
pixels) are provided in Appendix B.1.

In summary, (i) diffusion models trained on independent splits converge to nearly identical sampling
maps, (ii) this property holds across architectures, and (iii) a simple Gaussian predictor already
captures much of the effect. While linear diffusion is more consistent than deep networks—which
can exploit higher-order statistics—it provides a necessary baseline: if Gaussian statistics differ, deep
models may not yield consistent samples. These observations motivate our random matrix theory
analysis of finite-sample effects.

4 THEORY OF DIFFUSION CONSISTENCY ACROSS INDEPENDENT DATA

The goal of the study is to calculate the expectation and covariance of various quantities in diffusion
model under independent instantiation of dataset.

4.1 SELF CONSISTENCY EQUATION AND RENORMALIZED NOISE SCALE

Deterministic equivalence of sample covariance Our central technical tool is deterministic
equivalence (Potters & Bouchaud, 2020; Bun et al., 2015), which allows random matrices to be
replaced by deterministic surrogates—an approximation that becomes exact in the large-dimensional
limit. In particular, we rely on the deterministic equivalence relation for the empirical covariance

matrix 3 (Atanasov et al., 2024b; Bach, 2024),
S(E+ M) = RS+ kN))7? 4)

where « is the unique positive solution to the self-consistent equation (Silverstein, 1995; Marchenko
& Pastur, 1967).

() = A=) [ L ) =+ w)) ) ®)

where v = d/n is the aspect ratio, and p is the (limiting) spectral measure of 3.” Note we use tr
to denote the normalized trace, such that tr[I] = 1, and Tr the unnormalized one. More elaborate
two-point deterministic equivalences (Bach, 2024; Atanasov et al., 2024a; 2025) are required to
derive the variance results in the paper, which can be found in Appendix C.1.

Property of renormalized noise x(c?) As Eq. 4 suggests, with trace-like measurement, the
stochastic effects of sample covariance 32 can be absorbed into the scalar k() leaving the population
covariance X otherwise unchanged, similar to the renormalization of self-energy in field theory
(Atanasov et al., 2024b; Hastie et al., 2019; Bach, 2024). In our context, A usually corresponds to
noise variance o2, so we could understand « as the renormalized noise variance. To build intuition,
we numerically evaluate this nonlinear mapping using the spectrum of natural images (FFHQ) (Fig. 2
A, Method in D.1). The renormalization effect % (o?) is most pronounced at low noise scales, and
when the sample number is much fewer than the data dimension (y = d/n > 1).

Notation Per conventions, we define df; ()\) := Tr[S(XZ + M) 71, dfo(\) := Tr[Z2(Z + A1) 72,
dfa(A\, V) 1= Tr[S2(2 + AD)~L(S + X'T)~1]. We have min(n, d) > df2(A) > dfs(\) > 0.

>We write A, =< B, for deterministic equivalence: for any sequence of deterministic matrices C,, with
uniformly bounded spectral norm, tr[Cy, (A, — Bn)] = 0 asd,n — oo, d/n — ~. Equivalences of scalar
trace expressions are denoted similarly with =.
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Figure 2: Renormalization of noise and its effect on expectation of linear denoiser. A. The
relationship between the renormalized and raw noise variance x(o?) as a function of v = d/n,
using the empirical spectrum of FFHQ32 as the limiting spectrum (plot underneath). See D.1 for
numerical methods. B. Shrinkage factor of linear denoiser along population eigenvectors at different
noise scales. Empirical shows vTi(ﬁ +0%I)~'v, when v = u;, population PCs, at dataset size
n = 1000, ~ 3.1. C. Schematics showing the overshrinking effect at lower eigenspaces, using
linear denoiser outcome of faces as example.

4.2 EXPECTATION: FINITE DATA RENORMALIZES NOISE SCALES

Next we apply these tools to compute the expectation and fluctuation of the denoiser under dataset
realizations. The form of Eq. 2 naturally suggests the deterministic equivalence in Eq. 4, leading to
the following result.

Proposition 1 (Deterministic equivalence of the denoiser expectation). Assuming f1 = p, and given a
fixed probe vector v € R?, then the optimal empirical linear denoiser has the following deterministic
equivalence. (Proofin App. C.2).

Eg [v Dy (x:0)] < v Dy (xin1/2(0%) = v [+ B(E + 50D (x— )] ©)

Interpretation In expectation, finite data act by renormalizing the noise scale, o2 = 5(02), in the
population denoiser. This is equivalent to adding an adaptive Ridge penalty to the DSM objective
(Eq. DSM). Compared to the population solution D%, the finite-sample denoiser shrinks low-variance
directions more aggressively, treating them as noise and pulling outputs toward the dataset mean
(Fig. 2C). Numerically, deviations are indeed most pronounced in the lower spectrum and at lower
noise levels, where the renormalization effect is the strongest (Fig. 2B). Since smaller noise scale
is associated with generation of high frequency details in image, this result suggests these detail
eigenmodes take more samples to be learn correctly, which we’ll confirm in next section.

4.3 FLUCTUATION: ANISOTROPIC AND INHOMOGENEITY OF DENOISER CONSISTENCY

Next, we tackle the fluctuation due to dataset realizations, which addresses the consistency of diffusion
models trained on independent data splits. We prove the following equivalence using two-point and
one-point deterministic equivalence identities (Eq. 19,17, Bach (2024)).

Proposition 2 (Deterministic equivalence of the denoiser variance). Assuming f1 = p, across dataset
realizations of size n,the variance of the optimal empirical linear denoiser at point x in direction v,
given by v Sp(x)v, admits the following deterministic equivalence. Proof in App. C.3.

v Sp(x)v = Vari:[vTD’é(x; o)) o
KoY . o
= ey (B ) 7B) (w34 0 B0 )

anisotropy: O(v,k,X) inhomogeneity: O(x—p,k,3)

Interpretation The variance of denoiser across dataset realizations factorizes into three interpretable
components: a dependence on probe direction (anisotropy), a dependence on noised sample location
(inhomogeneity), and an overall scale with n and o (global scaling). Note, given the relation between
score and denoiser, the score variance is 0 ~4v " Sp(x)v, i.e. all results translate by scaling.
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Figure 3: Structure of denoiser deviation across dataset splits. A. Visual examples of linear
denoisers trained on two disjoint splits of FFHQ32 as noise variance % decreases, n = 1000. Top, x;
noised sample; Bottom, output of linear denoiser (trained on split 1) Dﬁh (x¢, 0); Middle, deviation
between two denoisers (normalized) Dy, (x¢,0) — Dg_(x¢,0). Athigh noise, denoisers diverge on
global, low-frequency content; at low noise, they deviate at specular details. B. Anisotropy: variance
depends on probe direction v; deviation is maximized when the eigenvalue \;, of v matches the
renormalized noise (c?), in agreement with theory. C. Inhomogeneity: variance depends on probe
location x;; samples displaced along high-variance eigenmodes induce larger deviations. D. Global
scaling: marginal deviation decays with dataset size n, vanishing in the infinite-sample limit.

Anisotropy in probe direction. The anisotropy of consistency is governed by (v, k, ). When
the probe v aligns with a principal component (PC) u;, of 3 with eigenvalue A, this reduces to
XAk, £) := A/ (A + k)2 The function x (), ) is bell-shaped in \, uniquely maximized at A = &
with value 1/(4k). Thus, for each noise scale, the directions of greatest uncertainty are precisely
those whose variances match the renormalized noise (c2) (Fig. 3B). This effect is evident visually.
For linear denoisers trained on non-overlapping splits of human face dataset (FFHQ), their differences
follow the spectral structure of natural images (Ruderman, 1994): at high noise the deviations appear
as low-frequency facial envelopes, while at low noise they shift to high-frequency specular patterns
(Fig. 3B). Quantitatively, the MSE between two denoisers along each PC matches the variance
prediction of Eq. 7, with the expected factor of two from independent sampling (Lemma 1).

Inhomogeneity in input location. The inhomogeneity of denoiser variance across input space
is governed by [(x — p, k,X). While structurally similar to the anisotropy factor, here x — g
is drawn from the noised data distribution rather than a unit probe. Approximating x — p@ as
lying on the ellipsoidal shell of N'(0, 3 + o21), its displacement along eigenvector uy, has typical
radius /o2 + \. Substituting gives (/02 + Ay ug, 5, X) = (02 + A) X(Ax, k). Unlike the
pure anisotropy factor, this expression grows monotonically with A;. Thus, denoiser variability
is amplified for inputs displaced along high-variance modes, yielding larger uncertainty for such
locations (Fig. 3C), which agree quantitatively with numerical results. Based on this factor, denoiser
consistency can be predicted for noisy input point by pointf (e.g. Pearson » = 0.94 across noised
images, at 02 = 1, n = 1000, Fig. 21).

Global scaling with sample size. Finally, marginalizing over all directions and noised samples
yields a closed-form expression for the overall denoiser variance (Eq. 22, Fig. 3D). At large n limit,
denoiser variance scale inversely with sample number n~!, reminiscent of classic statistical laws;
while at smaller n, the renormalization effects modify the scaling.

Summary. In sum, the variance structure reveals three key effects. Anisotropy: uncertainty is
maximized along eigenmodes whose variance )\;, is comparable to the renormalized noise #(c?).
Inhomogeneity: noised points displaced along high-variance directions experience larger uncertainty.
Scaling: the overall variance shrinks with dataset size n, recovering the population model in the
large-sample limit. Together, these predictions yield a detailed spatial and spectral map of where
denoisers trained on different data splits are most likely to disagree.
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Figure 4: Finite sample effect on diffusion sampling map. A. Overshrinkage of expectation.
Expected scaling along eigenmode of the empirical sampling map uzﬁll/ 2u,, compared to the ideal
v/, showing overshrinking along lower eigenmodes. B.Anisotropy of consistency. Cross-split
MSE depends on probe direction v, with larger deviation on top eigenspaces. C. Inhomogeneity of
consistency. Cross-split MSE depends on input location X; samples displaced along high-variance
modes exhibit larger disagreement. Colors denote dataset size, shared across A,B,C. D. Scaling of
consistency by eigenband. Decomposition of MSE across eigenbands shows that lower-variance
modes require substantially more samples before cross-split MSE decays. See also Fig. 22.

5 CONSISTENCY OF DIFFUSION SAMPLES FOR LINEAR DENOISERS

Beyond the consistency of single-step denoiser output or score, we are interested in the final diffusion
sample from the same initial noise seed x,,,.. For linear denoisers, sampling map from initial noise to
generated sample is captured by Wiener filter (Eq. 3, ¢ = 0). However, unlike one-step denoiser, this
mapping involves fractional power of covariances 3'/2(X + ¢21)~'/2, for which the deterministic
equivalence is not readily available. Here, we leveraged the integral representation of fractional
power (Balakrishnan (1960)’s formula) and deterministic equivalence, and arrived at a few novel
equivalence of these matrices (Prop. 6, 8, Proof in App. C.4). Using these developments, we can
calculate the expectation and fluctuation of sampling map.

5.1 EXPECTATION OF DIFFUSION SAMPLE: OVER-SHRINKAGE TO THE MEAN

We note that when the initial noise scale o is large, the sampling map admits the approximation
X5 (Xor, 0) = p+ BB 4+ 07.1) P (xp, — p) & p+ % ®)

where we define the shift and normalized noise X := % At the o — oo limit, this approx-

imation becomes exact, and X ~ N (0,1). For clarity, we present results under this infinite-or
approximation; the expressions accounting for finite o effects are provided in App. C.6.

Proposition 3 (Deterministic equivalence for expectation of diffusion sampling map). The sample
generated from initial state X, has the following deterministic equivalence. Proof in App. C.5.

. Xg — 2 [ —1_
Eg[xg(Xor, 0)] & p + Eg [21/7] Xoo =B i 2 / 2(2 + /-;(u2)1) xdu  (9)
ar ™ Jo

Interpretation This expression mirrors the deterministic equivalence of denoisers (Eq. 6), but
with an integration over effective noise scales. Comparing to the population sampling map, where
k(u?) reduces to u?, the finite data case integrates over a stronger shrink factor (3 + 1)~ (since
k(u?) > u?), especially on the lower eigenmodes. This effect is confirmed with numerics of empirical
covariance (Fig. 4A). This leads to a systematic overshrinkage toward the dataset mean along these
modes, reducing the generated variance along lower-variance directions. *

5.2  VARIANCE OF DIFFUSION SAMPLE: ANISOTROPY AND INHOMOGENEITY

Proposition 4 (Deterministic equivalence for variance of diffusion sampling map). Due to dataset
realization, the variance of generated sample starting from initial state X..,., along vector v admits

*Note that, though the sample covariance 33 is an unbiased estimator of the population covariance 33, taking
the square root introduces this finite sample bias, i.e., & = E[3] = E[2/231/2] £ (E[21/2))2
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Figure 5: DNN validation of theory. A. Samples generated by UNet (same two seeds) across
training set sizes and splits (FFHQ64); similarity increases with n, and increasingly matches the
population linear predictor (right). B. Nearest-neighbor MSE in training vs. control sets reveals
memorization at small n, n > 3000 shows no statistical difference between the splits. C. Overall
consistency improve as a function of dataset size, with DiT more consistent than UNet at each n
(cross split MSE, mean-std). D. Variance of generated samples per eigenmode highlight insufficient
variance (overshrinkage) in mid-to-low eigenmodes with limited dataset size. E. Cross-split MSE
per eigenmode shows anisotropy of consistency (Fig. 4B). Further, per dataset size, deviation in top
eigenmodes decrease the most. F. In the renormalization regime (n = 30k), RMT predictions of
seed-wise consistency correlate with empirical deviations (Spearman r = 0.33).

the following deterministic equivalence,

T
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where O(a;k, k', 2) == al (T + k)N +w1)La, and k = k(u?), s = rx(v?) are
variables to be integrated over. Proof in App. C.7.

Interpretation The variance of sampling map Eq. 10 simplifies to a double integral of the denoiser-
variance (Eq. 7). The integrand factorizes into a direction-dependent term (anisotropy), a initial
noise-dependent term (inhomogeneity), and a scaling term. Note the anisotropy and inhomogeneity
factors rely on the same O(.; k, x’, 3) function, showing that dependency on v and x has the same
spectral structure.

We resort to numerical simulation to provide more intuition. We note that integrals in Egs. 9,10 are
nontrivial to evaluate; we describe our numerical scheme in App. D.1. Using this procedure, the theo-
retical predictions align closely with direct computations of linear diffusion (Fig. 4). Inhomogeneity
Spatially, when initial noise X deviates more along the top eigenspace of X, there will be larger
uncertainty (Fig. 4C), this enables us to predict the sample difference point by point. Anisotropy
Directionally, the dependency on v has the same structure, in absolute term, the deviation is larger
at higher eigenspace (Fig. 4B). Note that when comparing across the dataset size, the variance in
the top eigenspace decay immediately from small sample size; while the deviation in mid to lower
eigenspace will stay put and start decaying only later at larger dataset size (Fig. 4D). This shows that
the fine detail of the samples needs a larger dataset size to be consistency across training.
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6 VALIDATING PREDICTIONS ON DEEP NETWORKS

Finally, given that linear diffusion behavior is well captured by our random matrix theory (RMT), we
test the applicability of its prediction to practical deep diffusion networks.

Setup. We trained UNet- and DiT-based denoisers under the EDM framework on FFHQ64, FFHQ32,
AFHQ32 (Choi et al., 2020), and CIFAR10. For each dataset we trained on two non-overlapping
splits at sizes n = {300, 1000, 3000, 10,3 x 10°} (10 runs total per architecture). Sampling was
performed with the same random seed using the Heun solver (Karras et al., 2022). We train for
50,000 steps with Adam optimizer, further details are provided in App. D.3.

Expectation: from memorization to renormalization. We observe a clear two-phase behavior as
dataset size increases. Memorization phase (n < 1000): models largely reproduce training samples
(Fig. 5A,B), and samples are much closer to the nearest neighbor in their training split than the control
split, consistent with prior observations. This regime is outside the scope of linear theory, since
linear score models cannot memorize individual points (Wang & Pehlevan, 2025). Renormalization
phase (n > 3000): the samples have comparable distance to the neighbor in the training split and
control split, showing generalization. Further, samples begin to resemble the linear predictors (Li
et al., 2024b). In this regime, the overshrinkage predicted by Prop. 3 becomes visible: generated face
samples resemble the average face (Langlois et al., 1994), with smoother textures and background
(Fig. 5SA, n = 3000). Quantitatively, we observe reduced variance along low- and mid-spectrum
eigenmodes of the generated samples (Fig. 5 D). This bias decreases as dataset size increases, and
vanishes when learned and population spectra coincide at n ~ 30000. The same transition occurs
across architectures, though the dataset size at which it occurs depends on model capacity and image
resolution (Fig. 23,25,24).

Fluctuations: inhomogeneity of consistency. Within the renormalization phase, RMT further
predicts which initial noise and direction exhibit the largest discrepancies across data splits, due to
their alignment with data covariance (Eq. 4). Spectrally, measuring the cross-split deviation along
population eigenbases, we can see the characteristic anisotropy profile. Further the decrease of
MSE majorly occurs in top eigenspace, while the middle or lower eigenspace remains unchanged or
becomes less consistent when sample size increases (Fig. 5 E). This is consistent with the prediction of
the theory that lower eigenmodes needs more training samples to be consistent (Fig. 4B). Spatially, the
inhomogeneity effect is borne out: RMT predictions correlate with observed cross-split deviations for
each initial noise point by point; e.g., UNets trained on FFHQ64 with n = 30000 achieve a Spearman
correlation of 0.33 (p = 2.5 x 10725) over 1000 seeds (Fig. 5F). Remarkably, the prediction requires
only the population covariance and dataset size, with no knowledge of split identities or network
architecture. The absolute deviation magnitudes, however, are much larger in deep networks than
predicted by linear theory, reflecting nonlinear source of variability. As controls, correlations collapse
in the memorization regime (Fig. 42,43) and disappear when mismatched noise seeds are used.

Summary. Across architectures and datasets, the predictions of our linear RMT framework extend
to deep diffusion models: limited data induce overshrinkage toward the mean, and the variance
structure across splits exhibits inhomogeneity and anisotropy predicted by theory.

7 DISCUSSION

Our analysis shows that much of the consistency in diffusion models across training data is already
captured by Gaussian statistics: if two data splits share their first two moments, the corresponding
sampling maps nearly coincide. Random matrix theory sharpens this picture by showing that finite
data act through a renormalized noise scale 02 — r(c?), and that fluctuations across splits factor into
anisotropy over eigenmodes, inhomogeneity across inputs, and a global scaling with n. These results
extend deterministic-equivalence tools to fractional matrix powers, allowing closed-form predictions
for both denoisers and sampling trajectories, and align well with deep networks in terms of where
deviation accentuates, even if nonlinear effects amplify the magnitudes.

At the same time, our framework has limitations. Linear surrogates underestimate variability in
expressive models and do not capture architecture-specific inductive biases. Extending the theory
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to random-feature models or mild non-Gaussian structure would better explain the transition from
memorization to renormalization (Bonnaire et al., 2025; George et al., 2025), and help quantify how
model capacity shifts the required dataset size. Another promising direction is to study the anisotropy
of the initial noise space and its alignment with the data manifold. The seemingly unstructured
noise space is already anchored by the data covariance before generation. Such anchoring might
explain why certain “magic” random seeds may consistently yield better generations, e.g. they
avoid directions where cross-split disagreement is largest (Xu et al., 2025). This echoes anisotropic
effects observed in GANS’ latent space, where noise vectors aligned strongly with top eigenspaces of
Jacobian can lead to degraded generations (Wang & Ponce, 2021). Such connections suggest that
spectral geometry of the input space deserves closer attention as a unifying factor across generative
models.
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A EXTENDED RELATED WORKS

Consistency and Reproducibility in Diffusion As a motivating observation, Kadkhodaie et al.
(2024) found that diffusion models trained on non overlapping splits of training data could produce
visually highly similar images. The seminal paper studying this effect is Zhang et al. (2024), there,
the authors found that different models trained on the same dataset across architecture (transformer vs
UNet), across objectives, across training runs, and across sampler and noising kernel, have consistent
mapping from noise to sample as long as an ODE deterministic sampler is used. In their appendix B,
they also made detailed discussion about lack of reproducibility in VAE and GANs. The consistency
studied in our paper is more related to the reproducibility in the generalization regime.

Hidden Linear Score Structure in Diffusion Models Recent work has shown, for much of
diffusion times (i.e., signal to noise ratio), the learned neural score is closely approximated by the
linear score of a Gaussian fit to the data, which is usually the best linear approximation (Wang
& Vastola, 2023; Li et al., 2024c). Crucially, this Gaussian linear score admits a closed-form
solution to the probability-flow ODE, which can be exploited to accelerate sampling and improve
its quality (Wang & Vastola, 2024a). Moreover, this same linear structure has been linked to the
generalization—memorization transition in diffusion models (Li et al., 2024c). In sum, across many
noise levels, the Gaussian linear approximation captures many salient aspects of the learned score.
Here, we leverage it to explain the observed consistency across splits and as a tractable set up for
random matrix theory analysis.

Memorization, Generalization and Creativity in Diffusion The question of when diffusion
models are able to generate genuinely novel samples matters both scientifically and for mitigating
data leakage. From the score-matching perspective, if the learned score exactly matches that of
the empirical data distribution, then the reverse process reproduces that empirical distribution, and
thus does not create new samples beyond the training set (Kamb & Ganguli, 2024; Li et al., 2024a;
Wang & Vastola, 2024b). Yet high-quality diffusion models routinely generate images that are not
identical copies of images from the training set. Kamb & Ganguli (2024) take an important step toward
reconciling this: when the score network is a simple CNN, its inductive biases (locality and translation
equivariance) favor patch wise composition, enabling global samples that are novel while remaining
locally consistent “mosaics.” Similarly, Wang (2025) noticed that score networks with different
architectural constraints will learn various approximation of the dataset, and therefore generalize:
e.g. linear networks learn the Gaussian approximation, and circular convolutional networks learn
the stationary Gaussian process approximation. Finn et al. (2025) provided evidence that adding
a final self-attention layer promotes global consistency across distant regions, organizing locally
plausible features into coherent layouts that move beyond purely patch-level mosaics. This result
is consistent with preliminary observations by Kamb & Ganguli (2024) regarding cases in which
their purely convolutional models fail to generate coherent images, while models including attention
succeed. Related theoretical work further probes why well-trained diffusion models can generalize
despite apparent memorization pressures (Bonnaire et al., 2025; Vastola, 2025; Chen, 2025). These
results suggest that departures from exact empirical-score fitting—mediated by inductive biases (both
architectural and training dynamics) can explain how diffusion models avoid pure memorization
while maintaining visual plausibility (Ambrogioni, 2023).
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B EXTENDED RESULTS AND FIGURES

B.1 EXTENDED VISUAL EXAMPLES FOR MOTIVATING OBSERVATION
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Figure 6: Motivating observation and the linear theory for FFHQ64 dataset. Similar format to
Fig. 1, but for FFHQ64 dataset. A. Examples of generarted samples from the same noise seed, for
UNet, DiT, and linear denoiser on split 1 and split 2 of data, each with 30k non overlapping samples.
The closest 4 samples in its training set are shown above and below the generated sample. One can
appreciate the visual similarity of samples generated from models trained on separate splits and even
with different neural architectures, and also with the linear denoiser on each split. Admittedly, the
generated outcomes of linear denoisers at 64 resolution look not as good, esp. for edges, showing
signatures of non-Gaussian statistics, as Wang & Vastola (2024b) has pointed out. B. Quantification
of A, paired image distances (MSE) averaging from 512 initial noises.
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Figure 7: Motivating observation and the linear theory for CIFAR10 dataset. Similar format to
Fig. 1. Left. Generated samples from DNN and linear theory from initial noise seed 2. Right. Paired
image distance MSE averaging from 1000 initial noises.
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Figure 8: Motivating observation and the linear theory for CIFAR100 dataset. Similar format to
Fig. 1. Left. Generated samples from DNN and linear theory from initial noise seed 2. Right. Paired
image distance MSE averaging from 1000 initial noises.
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Figure 9: Motivating observation and the linear theory for LSUN bedroom dataset (32 pixel).
Similar format to Fig. 1. Left. Generated samples from DNN and linear theory from initial noise
seed 2. Right. Paired image distance MSE averaging from 1000 initial noises.
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Figure 10: Motivating observation and the linear theory for LSUN church dataset (32 pixel).
Similar format to Fig. 1. Left. Generated samples from DNN and linear theory from initial noise
seed 2. Right. Paired image distance MSE averaging from 1000 initial noises.
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Figure 11: Motivating observation and the linear theory for LSUN bedroom dataset (64 pixel).
Similar format to Fig. 1. Left. Generated samples from DNN and linear theory from initial noise
seed 2. Right. Paired image distance MSE averaging from 1000 initial noises.
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Figure 12: Motivating observation and the linear theory for LSUN church dataset (64 pixel).
Similar format to Fig. 1. Left. Generated samples from DNN and linear theory from initial noise
seed 2. Right. Paired image distance MSE averaging from 1000 initial noises.
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Figure 13: Extended visual comparison of generation consistency and the linear theory for
CIFAR10 dataset. Similar format to Fig. 1A. Generated samples from DNN and linear theory from

initial noise seed 0,1,3,4
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Figure 14: Extended visual comparison of generation consistency and the linear theory for
CIFAR100 dataset. Similar format to Fig. 1A. Generated samples from DNN and linear theory from
initial noise seed 0,1,3
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Figure 15: Extended visual comparison of generation consistency and the linear theory for
FFHQ32 dataset. Similar format to Fig. 1 A. Generated samples from DNN and linear theory from

initial noise seed 0,1,3,4

FFHQ32 | 30000 samples

Linear theory

Generated
samples
(split 1)

Generated
samples
(split 2)

Linear theory

Generated
samples
(split 1)

Generated
samples
(split 2)

21



Under review as a conference paper at ICLR 2026

FFHQ64 | 30000 samples FFHQ64 | 30000 samples

Linear theory

Linear theory

Generated Generated
samples samples
(split 1) (split 1)
Generated Generated
samples samples
(split 2) (split 2)

Linear theory Linear theory

Generated
samples

Generated
samples

(split 1) | (split 1)
Wl

Generated Generated

samples samples

(split 2) (split 2)

Figure 16: Extended visual comparison of generation consistency and the linear theory for
FFHQG64 dataset. Similar format to Fig. 1 A. Generated samples from DNN and linear theory from
initial noise seed 0,1,3,4
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Figure 17: Extended visual comparison of generation consistency and the linear theory for
LSUN bedroom dataset (32 pixel). Similar format to Fig. 1 A. Generated samples from DNN and
linear theory from initial noise seed 0,1,3
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Figure 18: Extended visual comparison of generation consistency and the linear theory for
LSUN church dataset (32 pixel). Similar format to Fig. 1A. Generated samples from DNN and
linear theory from initial noise seed 0,1,3
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Figure 19: Extended visual comparison of generation consistency and the linear theory for
LSUN bedroom dataset (64 pixel). Similar format to Fig. 1A. Generated samples from DNN and
linear theory from initial noise seed 0,1,3
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Figure 20: Extended visual comparison of generation consistency and the linear theory for
LSUN church dataset (64 pixel). Similar format to Fig. 1A. Generated samples from DNN and
linear theory from initial noise seed 0,1,3
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B.2 EXTENDED VALIDATION OF THE THEORY

Inhomogeneity of linear denoiser consistency
(random noised image, independent mean denoiser)
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Figure 21: Point by point prediction of denoiser consistency. (FFHQ32 dataset, n = 1000)
Each dot denotes one noised image sample, x-axis shows the theoretical prediction from Eq. 7, after
marginalizing over v; y-axis shows the empirical measurement of their MSE after training two linear
denoiser on non-overlapping data splits. We note that, the RMT theory prediction is more precise for
lower noise scales; at higher noise scales, we think the effect of different empirical means f& kicks in,

resulting in deviation from the theory that only considers s
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A.  Expectation: overshrinkage effect
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Figure 22: Finite sample effect on diffusion sampling map. (extended) A. Overshinkage of
expectation. The expected scaling along PC u;ﬁll/ 2u;, of empirical sampling map compared to the
ideal scaling v/, here we used oy = 0.002 for empirical matrix computation. The o is smallest
noise scale that probability flow ODE integration stops, for numerical reasons. This floors the smallest
scaling factor it could generate, making the mismatch with theory at the low eigen space. B. Overall
MSE scaling with respect to dataset size, roughly scales at 1/n at large data, but the scaling is

shallower at smaller data scale.
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122: B.3 EXTENDED EVIDENCE FROM THE DNN VALIDATION EXPERIMENTS
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Figure 24:

Distribution of MSE to nearest neighbor across Dataset Sizes
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DNN validation experiments (CIFAR), nearest neighbor in training and control set
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Figure 29: DNN validation experiments (LSUN church 32), nearest neighbor in training and

control set
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Figure 30: DNN validation experiments (LSUN church 64), nearest neighbor in training and
control set
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Figure 31: DNN validation experiments, scaling of consistency with dataset size
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Generated samples approach Gaussian predictor
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Figure 32: DNN generated samples approach the linear theory predictor (with finite sample or
population covariance). With increasing dataset size n, the generated sample from DNN (trained on
split 1) with a fixed noise seed gradually approach the linear theory predictor using the same initial

seed. Consistent across datasets.
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Figure 33: DNN validation experiments, Anisotropy and overshrinking (AFHQ32)
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Figure 34: DNN validation experiments, Anisotropy and overshrinking (FFHQ32)
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Figure 35: DNN validation experiments, Anisotropy and overshrinking (CIFAR10)
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Variance (Split 1) and MSE (Split 1 vs 2) per Eigen Component | CNN | FFHQ64
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Figure 36: DNN validation experiments, Anisotropy and overshrinking (FFHQG64)
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Figure 37: DNN validation experiments, Anisotropy and overshrinking (CIFAR100)
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Figure 38: DNN validation experiments, Anisotropy and overshrinking (LSUN bedroom 32)
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Figure 39: DNN validation experiments, Anisotropy and overshrinking (LSUN bedroom 64)
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Figure 40: DNN validation experiments, Anisotropy and overshrinking (LSUN church 32)
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Figure 41: DNN validation experiments, Anisotropy and overshrinking (LSUN church 64)
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Top 50 eigenspace Top 50 eigenspace
stdx 1.5 std x 0.1

Figure 49: Anisotropic structure of the initial noise space (CNN-UNet FFHQ64). Left: Am-
plifying the initial-noise amplitude in the top-50 eigenspace. Right: Decreasing the initial-noise
amplitude in the top-50 eigenspace. Top: initial noise; Bottom: generated samples (same noise seed).
Increasing noise in the dominant eigendirections introduces more visual artifacts by amplifying the
top eigen-structure of the generative map (Eq. 3). Conversely, reducing noise in these dimensions
yields a cleanly segmented face against a gray background.
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Top 200 eigenspace

Top200 eigenspace
std x 0.1

_ std15

Figure 50: Anisotropic structure of the initial noise space (CNN-UNet FFHQ64). Left: Am-
plifying the initial-noise amplitude in the top-200 eigenspace. Right: Decreasing the initial-noise
amplitude in the top-200 eigenspace. Top: initial noise; Bottom: generated samples (same noise seed).
Similar to the top-50 case: stronger noise in leading eigendirections amplifies dominant structure,
producing visible artifacts. Suppressing noise yields an even more homogeneous and simplified face,

reflecting the removal of additional variation modes.

39



Under review as a conference paper at ICLR 2026

Bottom 200 eigenspace Bottom 200 eigenspace
stdx 1.5 std x 0.1

Figure 51: Anisotropic structure of the initial noise space (CNN-UNet FFHQG64). Left: Ampli-
fying the initial-noise amplitude in the bottom-200 eigenspace. Right: Decreasing the initial-noise
amplitude in the bottom-200 eigenspace. Top: initial noise; Bottom: generated samples (same
noise seed). In contrast to perturbations along top eigendirections, manipulating the least-significant
eigenspaces produces minimal perceptual impact on the generated image.
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C PROOF AND DERIVATIONS

C.1 DETERMINISTIC EQUIVALENCE RELATIONS

Here we collect the one-point and two point deterministic equivalence relationships adopted from
Atanasov et al. (2024b; 2025); Bach (2024), under the same notations.

Set up Using similar notation as Bach (2024), we consider data matrix X € R™*4 where each row
is an i.i.d. sample x;. The population covariance of these samples is denoted as 3. The key object of
analysis is their empirical covariance

= lXTX
n

Self-consistency equation for renormalized variable The spectral properties of a matrix are
determined by the Stieltjes transform. We consider the Stieltjes transform of the kernel matrix
LXXT, defined as ¢(z) := Tr[(XX T — nzI)~']. At the large matrix limit, the limiting variable
satisfy the following self consistent equation,

1 ° sdp(s)
— et it S 11
EOR 7/o T+ s9(2) ()

where p(s) is the limiting spectral measure of the population covariance X. This follows from the
arguments in the Appendix of Bach (2024), as well as Bai et al. (2010); Ledoit & Péché (2011).

This can be translated to the self-consistent equation of the renormalized ridge variable k(z) := ﬁ,
which is used throughout the paper,

I L © sdu(s)
p(—2) 7/o 1+ sp(—2)

= sdp(s)
IQ(Z)—Z—’)//O T
(2)

k(z) — z :'m(z)/OOOSd“(S)

Kk(z)+s

z:m(z){l—y/ooom]

Practically, when solving such equations, given a finite size population covariance matrix, the integral
over the spectral measure can be represented as normalized trace, leading to the Silverstein equation
(Eq.5).

KA) = X = e\ tr[2(Z + k(M) )7 (12)

Degrees of Freedom We define the degree of freedom functions with unnormalized trace, similar
to convention in Bach (2024), unlike Atanasov et al. (2025).
df;(A) == Te[B(Z 4+ A1) 7Y (13)
dfy(\) := Tr[Z3(Z + M) 2. (14)
We see that
dfy(k) — dfy (k) = Te[B*(Z + k1) 73] - Te[B(Z + &)1
=Tr[(B(E+ k) =)D +kl)7!
=k Tr[2(Z + w1)7?
> 0.

Note that both dfs (), df; () are smaller than the number on non-zero eigenvalues of X, i.e. rank(3X).
Thus, we have the chain of inequalities

min(n, p) > rank(X) > dfs(k) > dfy (k)
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Basic equivalences Following Proposition 1 of Bach (2024), we use the shorthand k(z) :=
1/¢(—z) to express the deterministic equivalences in the more convenient forms below. In what
follows, A and B are test matrices of bounded spectral norm. For the resolvent, we have:

Tr[A(Z+ M)~ = @T&M(mﬁ(m)‘l] (15)
and
Tr[AZ + M) B(E + M)
= A (B4 s B (S 4+ )] 6
k()2 -2 -2
+ (A ) — dfi(nm) Te[A (2 + s(W)I) "] T [B (2 + (NI) %],
Equivalently,
Tr[AS(S + M) = Tr[AS (S + (W) '] (17)
and
Tr[AS(Z+A) ' BE(Z+ M)
=Tr[AS (S +w(NI) " B (S+r(N)I) "] 18)

R ()
n — dfz(k(N))

-2

Tr[A (S 4 s(WI) °E] Te[B (S + s(VI) %]

where k() can be solved from self consistent equation above. Note given the unnormalized trace,
the trace equivalence < shall be understood through convergence of ratio.

Two-point equivalence for resolvents of different argument This can be further generalized to
equivalence with two variables,

Te[AS(0+ ) BEO + 5)7] < Tr [ATs BT+ 1)
kK
) ¥ [AC=TCE] T [C5RG=E] 20)

where T = E(Z + k) LT =B+ )L G = (T +k)1LG5 = (E++)"L and
dfs(k, k') == Tr[X2GsGY]. When k = &’ it recovers Eq.18.

As a brief note for derivation, this follows from the deterministic equivalence for free product of
matrices A * B stated in Appendix A of Atanasov et al. (2025). Set A = X as population covariance,

B = 1777 as whitened data, then A + B = . Thus,

. SN . Tr [G&XGs M)
> MMV + ) < TS MTY ‘GG ——2— =
()‘ + ) ()‘ + ) b s T KK Gs GE n— de(H, Hl)

21
Note that ¢ in their convention correspond sto our «y and that their df definition is normalized trace.
We note in passing that this two-point equivalent was derived in Atanasov et al. (2025; 2024a) using
a diagrammatic moment-method argument; it could also be derived by extending the leave-one-out
arguments used by Bach (2024) to prove the deterministic equivalents with a single X listed above.
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C.2 PROOF FOR DETERMINISTIC EQUIVALENCE OF DENOISER EXPECTATION (PROPOSITION 1)

Proposition 5 (Main result, deterministic equivalence of the expectation of score and denoiser).
The optimal linear score and denoiser using empirical covariance has the following deterministic
equivalence.

Eg [VTD*ZA:(X; 0‘)} =v x+v k(0?2 + k(e —x)
=V p+ VI S(E A+ k(0 ) " (x )

Ei[stg(xuﬂ}><““f)vT(z-+n@¥)U—lut—;q
o
Proof. Per assumption, assume the sample mean [t = p, consider only the effect of empirical
covariance ﬁ],
D} (x;0) =x+ 0> (2 +0°I) " (1 —x)
Using the deterministic equivalence Eq. 15,17, in the sense that the trace with any independent matrix
converge in ratio at limit.

(2+£n*xfgﬁm+aﬁurl
S 402N =B+ k(e

Then, given the a fixed measurement vector v, and a noised input x, the projection of score onto a
vector can be framed as trace. The equivalence reads,

Eg [VTSE(X; O’)} =Eg {VT(EAJ + 00— x)}

=EsTr {(2 + 020N — X)VT}
k(0?)

o2

- %‘;)J(E + (%))~ (1 — %)

X

Te|(S + £(0*)) (- x)v |

Similarly, use the other equivalence, the denoiser projection has equivalence,
Es [VTD;(X; 0)} =v'p+Eg {VTZA](ZA] + o2 (x — [,l.):|
=v ipu+v Z(Z+ k0 Hx - p)
= VTD*E(X; 51/2)

Thus, in the expectation sense, the effect of empirical data covariance (finite data) on the denoiser, is
equivalent to renormalizing and increasing the effective noise scale o2 — k(0 ?), similar to adding
an adaptive Ridge parameter. O

Interpretation Measuring the deviation of the empirical covariance denoiser from the population
covariance denoiser, at the same noise scale,

Eg[v' (Dy(x0) - Dy(xi0))]
=T [T + k(o)D) = (B 40D (1 %)
Using push through identity A~! — B~' = A=Y(B — A)B~},
K(E+rcD) -3+ 0%t
_ 2 —1 2 -1(1 apy L
=Ko (B + k)T (B+0°1) (;(24—0 I) R(E—i—fd))
= (k(0?) = o)B(Z + &) YD 4 o?1) 7
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We can represent the deviation as resolvant product. This makes it clear that the deviation is
proportional to the effect of renormalization (k(0?) — 02).

Eg¢ [VT (D; (x;0) — D% (x; a))}
=(k(0?) =)V B(Z + kD) "HZ 4 o) — x)
Setting the measurement vector along population eigenvector uy, with eigenvalue A\, then the

deviation reads

)\k(ﬁ — 02)
M +02)( Mk + K

Eg[u] (Dy(x0) - Dy (x;0))| = ul (=)

It’s easy to see the deviation affects lower eigenspace more.

C.3 PROOF FOR DETERMINISTIC EQUIVALENCE OF DENOISER FLUCTUATION (PROPOSITION 2)

Proof. Next, we examine the covariance of denoiser due to dataset realization, the score variance
reads,

S, i= Covg[sy (x;0)] = Egsi(x;0)sh(x;0) T — (Eﬁsg(x; a)) (]Eﬁ:sg(x; a))T
—Eg[(E+0* D) p—x)(n—%) (S +0° D)7

Eg|(£+0 D) (- %) |Eg|(n—%)T (S + 02D
=Eg[(E+0?D)  p—x)(n—x) (S +0* D7

Eg[(E+ 0D (- x)(1 — %) Bg [ (% +0°1) ]

Note that the variance of denoiser and that of score has the simple scaling relationship, so we just
need to study the score.

SD = 0'455
We are interested in the variance of score vector along a fixed probe vector v,
v'Syv = Varg [VTS’%(X; o)

—Eg [V (E 4+ (n-x)(n-x)T S+ )] - (VIEg (540D (u - x))2

—EgTr [va(S Lo D) Hp—x)(p—x) T (S + 021)*1] _(E2 Tr [(2 o) Y — x)vq )2

2nd moment 1'st moment

The two terms can be tackled by one-point and two-point equivalence Eq. 16,15. Abbreviating
A=vw,B:=(pu—x)(n—x)",2:=02

Te[A (S +20) ] ~ 22 Te[A(S + k(2)) ]

Te[AS +21) ' B(E +20) ] ~ GCIHE [A(S + k(z)) " B(S+r()I) "]

# SR A (2 w(a)1) B BB (B m()) B s
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The 2nd moment term is equivalent to,
Tr[AE + 20) ' B(S + 21)7']

~ T (2 k) -0 - 0T (2 4 sl

H(Z)2 1 T 5 . e " _2
T 0 dbs (w(2)) Tr[vw' (E+k()I) ] Tr[(p—x)(p—x)" (Z+k(=)) 3]
= K;) (vT (Z+r6()I)  (n— x))2
+ HS;) n — dfl(li(z)) (VT (2 + K(Z)I) _22‘/) ((/1' - X)T(E + H(Z)I) _2E(M — x))

The first moment term is equivalent to,

Tr [(2 I T x)vq ~ @ Te[(S+ r()) (- x)v]

k(z -1
= %VT (Z+k()I)  (p—x)
Thus, combining the two terms, we obtain the variance of score at noised datapoint x, along direction
v7

v Ss(x)v = Varg [VTS; (x;0)]

=EgTr [VVT(fJ +2D) N p—x)(p—x)" (B + 021)_1}

- (EE Tr {(XA] + o) — X)VT:| )2

N“ZF(VW2+n@ﬂr%u—XU2
O (@ o) ) (0T (B 4 w) EW‘XDn—&;M@)

n — dfz(k(z2))

1 K(0?)?

(z+0?) = L (x(0?) o (VT (=+ H(O’2)I)_22V) ((u -x)" (T + K(UQ)I)_QE(/,L — x))

Per simple scaling, the variance of denoisers reads,

v Sp(x)v =otv S (x)v
il )72 2\ 7y —2
s (x(0?)) (vI(E+ D) 2) (0= %) (T + w02 7 S(n - %))

O(v,r,5) O(ku—x,%,5)

O

C.3.1 INTERPRETATION AND DERIVATIONS

Dependency on probe direction v This dependency on v tells us about the anisotropy of uncer-
tainty, or variance of the score / denoiser prediction on different directions.

Ov, k%) =v (Z+ 5(02)1)722v
A

arrepl Y

=v'U
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Per assumption the probe vector v is unit vector. Then this dependency is decided by the diagonal

: A _ Ak
MatriX (R omyye = (aFa (22

Consider when the probing vector is aligned exactly with the k th eigenvector uy, this term reads

O(ug, 5, ) = v (T + k(%)) *Suy
Ak

(A + K(02))?

= X(Ak, k(7))

We can discuss the different regime of x (), x) depending on \j, and x(o?)

* High noise regime A\, < &: x(Ap, k) = %, so X(Ag, £) will increase with ;. Higher
variance directions have larger uncertainties.

* Low noise regime A\ > k: x(A\g, k) =~ A%,’ s0 x (A, k) will decrease with A\;. Lower
variance directions have larger uncertainties!

* Regarding «, x(Ag, k) is monotonic decreasing with «, i.e. higher the noise scale, the
smaller the variance.

* Regarding, Ag, x(Ak, ) has one unique maximum, where arg maxy x(\, k) = &, and
maxy X (A, k) = z-. Soit’s a bell shaped function of A;. (Proof below.)

— This shows that at different noise level or x(c2), there is always some direction with
variance comparable to x(c2) which will have the largest variance!

— Further the largest variance will be inverse proportional to x(c2), i.e. generally larger
variance at lower noise case.

This result is definitely not obvious! It shows that the anisotropy of the uncertainty depends on the
renormalized noise scale x(c?), and the maximal uncertainty are focused around the PC dimensions
with variance similar to x(c?).

Proof of unique maximum of x(\, k)

Given
A
XA k) = m
Then
dx(\ k) (A+K)2 =2+ K)A
dx A+ r)*
K= A
(A k)3

Setting gradient to zero yield unique stationary point, K = .
Given K, A > 0, we have the unique maximum w.r.t. \.

arg max X\ k) =k

1
ANEK) = —
() = 3
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Dependency on the probe point x. The dependency on probe point x tells us about the spatial
in-homogeneity of the uncertainty.

Ox—p,63)=(x—p)" (Z+ /@(02)[)722()( — )

- (x—mTU%UT(x—m

- Z X 5(0) (uz<x - u))2
k

This is similar to the dependency above, except that now our argument x — g is no longer unit
normed, but any probing direction in the sample space.

Note, generally the noised sample x from a certain realization of dataset is distributed like N/ (s, >+
02I) (under Gaussian data assumption), so

vi(x—p) ~NO,v (Z+I)v)

Consider a probe point on the hyper elliptical shell defined by N (i, & + 02I), then if the point falls
on the line x = p + cuy. ||x — p|> = ~ 0?2 + N\

Then

Ox — p, K, 2) = O(cug, k, X)
= 027)%
(A + £(0?))?
Ak + 02) A
T Mk + R(02))?
= (0% + M) XAk, (0?))
=&, 0”)

* High noise regime, x > 02 > ), then {(\,0?%) ~ ﬁ'(U);) < ~(22) < 1, which scale

linearly with PC variance )\, higher the PC, larger the variance.

* Low noise regime, A\ > k > 02, then £(\, 0%) &~ 1. Then all points on the ellipsoid have
large variance.

* Atany fixed o2, this function monotonically increase with \.

— The score or denoiser variance is larger when the probing point @ + cuy, is deviating
along those higher variance directions u.

— When the probing point is deviating along low variance directions, the variance is
lower.
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Derivation of properties of £()\, 02)

(02 + XA

= e

Derivative

dé(N,0?) (02 +20) (A + K(02))2 = 2(A + k(0?)) (0% + A)A

o (A + r(02))*
(02 4+ 20) (A + £(02)) — 2(0% + M)A
a (A+ H(Uz))
_ (02 + 20)r(0?) — Ao
(A+ K(UQ))?’
*k(0?) + (26(0%) = o*)A
A+ K(0?))?

2
Note that through the self consistent equation k(o) — o > 0, thus % > 0, V. The function
is monotonically increasing for A.
Given that k(0?) > 2 > 0, we have bounds

(62 4+ M)A A

6()\702) - ()\+/€(0'2))2 < )\+K)(O'2) < 1

Overall scaling with sample Finally, we marginalize over space and direction, obtaining an overall
quantification of consistency of denoiser, and study its scaling property.

First, marginalizing (summing) all directions, we have
Z O(ug, k, X) = Z u, (Z + k(o)) su,
; E
=Tr {(E + K(U2)I)722]
This can be further abbreviated as following,

3 O(up, v, %) = Tr[(E n 5(02)1)’221}
k

= Tr[(E + /@(02)1)_2%(2 + k(c®)] — E)}

_ ﬁ(g | (Te[(Z+ w(eHD) 'E] = T (B + wl0?)1) 2]
_dfy(k) —dfa(k)

K
Next, marginalize (averaging) over space. Here we consider the noised distribution starting from the

true target distribution x ~ p(x; ) = po(x) * N'(0,02I). For us, the only thing matter is the 2nd
moment, so for arbitrary distribution we have,

Ed(x— ) (x— ) ] = £+ 01
Thus,

ExO(x = 1,5, %) = (x = )T (2 + k(o)1) " S(x - p)
W [(2 +0%I) (2 + /-;(02)1)‘22}
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This can also be abbreviated using degree of freedom,
E O(x — p, 5, 8) = Tr [(z +o2)(D+ /Q(O’Q)I)_ZE}
=T [(B+ w(e")]) 2| + * T | (B + w(0?)]) Z]

o2
=dfy(k) + ;(dfl(lﬁ) —dfy(k))

o? o?
= Tafi(w) + (1 T ()
Thus, we have
(02)2 B B
Ex Z u; Sp(x)uy =< n—df(g(.%)(UQ)) Z (u;r (Z+ k(o)) 2Euk>Ex ((u -x)"(Z + k(o)) ’S(p— x))
; ; O(v,x,X) O(p—x,k,X)
K(0?)? 2\ 1\ —2 2 2\ 7\ 2
— mﬂ[(ﬁ + k(o)) 2} Tr[(Z +020)(S + k(o)) 2}
K 0'2 2 1K) — 2( R 02 02
= _dﬁz(,i(,,g)) « it - dfa() (s () + (1= Z)dfa(w))
_ (df1 (k) — df2(r)) x (02df1 (k) + (k — 02)df2(k))
n — dfz(k(c?))
=: A(n, 0%, A)
A(no? A) = (dfy (k) — dfa(k)) (Jdel(n) + (k- Uz)dfg(li)) )

n — dfy(k)

Now, marginalized over space and direction, this is only a function of the population spectrum,
sample number and noise scale. Note n is the sample number, so it makes sense when n goes to

infinity, then S s Yand k — o2, the variance reduce to zero.

Basically the higher the , the smaller the df;(k), so n — dfa(k(c?)) will be larger, which scale
1 K(az)z

dOWH TS (/{(0’2)) ot

Note, when we compare our theory with the empirical measurement of deviation of denoiser or
samples between the two splits, we used the following lemma to use the variance to predict the
expected MSE deviation.

Lemma 1 (Expected MSE between two i.i.d. samples doubles the variance). Let X,Y be i.i.d.
random variables with variance S = Var(X). Then their mean squared error (MSE) is double the
variance.

E[(X -Y)*] = 25
Proof. Expanding and using independence,

E[(X - Y)?] =E[X?]|+E[Y?] - 2E[XY] = 2E[X?] - 2E[X]E[Y].
Since Var(X) = E[X?] — (E[X])2 = S, this simplifies to 25. O

C.4 INTEGRAL REPRESENTATION OF MATRIX FRACTIONAL POWER (BALAKRISHNAN
FORMULA)

Lemma 2 (Scalar beta integral identity). The integral identity

Ctmedt ™
= A 0,1
/0 A+t sin(ra) a€(01)
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Proof. Recall the definition of Beta function,

1
Blp.q) = / W (1 - u)t ™ du
0

_ T'(pI(e)
I(p+aq)

We can turn it into beta function via change of variable u = A%_t then ¢ € [0, 00) maps to u € [0,1).
U

T 1l-uw

dt=
(1—u)?

Cpmeqr [t
= [ ()t it
=i A=
Loouh A
—/0 u(l_u) (1_u)2du

1
= )\_“/ u™ (1 —u)* tdu
0

=A"*B(l—-a,a)

and using Euler’s reflection formula, we have

B(l —a,a) =

sin(ra)

/Oo tdt T a
= N )\
o A+t sin(ma)

Thus,

O
Corollary 1 (Integral formula for power one half). In the special case of o = 1/2
oo 4—1/2 oo
“,1/2:/ t /dtQ/ ds
0 )\ + t 0 )\ + 52
Proof. Use simple change of variable t — s2,
oo 4—1/2
T2 = / t=1/2dt
0o A+t
B /°° s71ds?
o 0 /\ + 52
B /°° 2ds
0o At s?
O

Corollary 2 (Integral representation of fractional matrix power). The matrix version of such identity,
for self-adjoint, positive semi definite matrix A > 0,

™

A+t dt = AT 1
/0 ( tI)~ t~dt sin(ra) , a€(0,1)
Similarly, for z > 0,z € R,
A+ (z+t)) "1 %dt = A+ 2I)™¢ 1
/0 ( (z+t)I) sin )( 217, «a€(0,1)
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Corollary 3 (Integral representation of matrix one half). The matrix version of such identity, for
self-adjoint, positive semi definite matrix A > 0,

™

1 [ 2 [
ATV2 = f/ (A+ )~ 24t = f/ (A+s*I)"'ds
™ Jo 0
Lemma 3 (Resolvent Identity). When u # s, we have identity

(AtsD™A+ul) " = ——((A+un) ™ —(A+sD) )

A(A+sI) " MA+ul)! = L(A(A ful) — A(A+ D))

~ s(A4 st —u(A+ul)!

s—u
Proof. Note that

((A +sI) — (A+ uI)) (A+ )~ (A+ul)?
=(A+ul)™ —(A4sD)7H
=(s—u)(A+sI)"H(A+ul)!

Thus,

(A+ s M A+ul)™ ! =

as corollary
1
s—u

_ 1 _ -1 _ -1
_s—u(I u(A + ul) I+ s(A+sl) )
s(A+ sl —u(A+ul)™?!

S—Uu

A(A+ D)™ Y(A + ul)™! (A(A+u1)—1 _A(A+sf)—1)

Note that this formula has no real pole, and it behaves nicely when denominator vanishes, and the
RHS becomes a derivative.

i S A
s—u s—u ds
=(A4sI)™t —s(A+sI)?
= A(A+sI)?
lim L((A Ful)t - (A 51)71) — LA yun
s—u (3 —u) du
= (A+ul)™?

C.5 PROOF FOR EXPECTATION OF THE SAMPLING MAPPING (APPROXIMATE VERSION,
INFINITE o7, PROPOSITION 3)

Using empirical covariance and mean to realize the sampling, we have

X(XUT7UO) = Ijl’ + (XA) + 08])1/2(2 + U%I)71/2(XUT - i&’)
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For the final sampling outcome oy — 0, this reads

X(Xop,0) = fr + B35 + 03.1) "2 (x5, — f1)

As before, assume the sample mean equals the population one, then the finite sample effect comes

from the matrix 3'/2(3 + o21)~1/2

X(Xop,0) = p+ BV2(S + 07 1) (x5, — 1)

Note that for sampling, under EDM convention, the initial noise are sampled with variance 021,

Xop ~ N(0, O’%I ), notably for practical diffusion models, initial noise variances are large, o

6000. Thus we can define a normalized initial noise X = (X5, — p)/0o7.

As a large initial noise limit, given that 3 has finite spectral norm,

lim oXY%(X 4 o21)" Y2 = nl/2

g—00

2
T

~

and when o — oo the normalized initial noise are sampled from standard Gaussian, X ~ N (0, I).

Equivalently, we can consider expansion as orders of 1/,
1
0_21/2(2 +O_2])—1/2 _ 21/2(I+ 722)—1/2
g
11
SPAI( g I
I-55%+.)

11
~ /2 2 T §3/2
~ X 5 27+

If we keep the zeroth-order term, then we get the approximation

0_21/2(2 +021)—1/2 ~ 21/2

Consider approximation,
X(Xo7,0) = p+ BB+ 07 1) T2 (%0, — 1)
~ A+ 21/2(XUT - “’)
or
= p+ 3%

then we can study the effect of finite sample on sampling mapping via the matrix /2.

Proposition 6. Deterministic equivalence of empirical covariance matrix one half

. 2 © L.
31/2 :f/ 3S(Z +u?) tdu
™ Jo

x% /OOO 2(2 n n(uz)I)_ldu

Proof. Combining Lemma 3 with deterministic equivalence of one point \ref

(23)

(24)

O

This result can be compared to population covariance half, when renormalization effect vanish

k(u?) — u?.

2 o0
»i/2 = 7/ (4% tdu
™ Jo

Since x(u?) > u? point by point in the integral, the sample version leads to larger shrinkage.

vIiSl2y <« vTxl/2y
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Concretely, if we measure along spectral modesu;, of population covariance,
. 2 [ -1
u/ B2y, < = / u;E(E + H(UQ)I) uy,du
T Jo
k
=— ——d
T /0 Ai + k(u?) “

2 A
<—/ Fdu
7 Jo A+u?

=2

C.6 PROOF FOR EXPECTATION OF THE SAMPLING MAPPING (FULL VERSION, FINITE o)

Next, we consider the finite o7 case, which involves two matrix half and their equivalence. To prove
this, we proceed in two steps 1) use integral identity to represent matrix of this form A'/2(A+2I)~1/2,
2) apply one point deterministic equivalence.

Proposition 7. Integral representation, for self-adjoint, positive semi definite matrix A » 0,
_ 4 [ [ _ -
AV2(A + 2172 = ﬁ/ / A(A+ D) N A+ (2 +0°)) tdudv

_ / / A(A+ (z+u?)D)7t A(A—i—vzf)*ldudv

v2 —u? —z

Proof. Next, we can study matrix of this form,
A1/2(A + ZI)_1/2

using the integral representation above twice, we have
Al/Q(A + ZI)—I/Q
=AATY2(A  21)71/2

1 oo oo
:714/ (A+31)—1s—1/2ds/ (A+ (= + 0124
T 0 0
1 >~ > —1 —-1,-1/2 _—-1/2
——2/ / A(A+sD) N A+ (2 +0)I) Y2571 2dsdt
/ / A(A+w?T) YA+ (2 +0*)) ' dudv

To deal with this product of resolvent, we can turn it into difference of resolvent via Lemma 3,

((A vt (At 5[)_1>

e

Now using the identity, we have
AI/Z(A + ZI)_1/2

1 [ [~ 1 —1,-1/2 —1/2
——2/ / A(A+sD) M A+ (z+0)I) Y2571 2dsdt

/ / AA+ GHODT - AA+sD ™ yp appy

s—z—1

Putting it together,

AVE(A 4 21) V2 = /OO/OO AA+ (z+t) )7t A<A+SI)71t’1/2s’1/2dsdt
o Jo

1
w2 s—t—=z
4

[ AA I — A(A 2n-1
_ 2/ / +(z+u?)I)t (A+v*I) dudo
o Jo

v2 —u? —z

3
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Next we are ready to use the one-point deterministic equivalence.

Proposition 8. For sample covariance matrix 3, the following expression has deterministic equiva-
lent to the double integral of population covariance,

S 1/2/%v 27\ —1/2 k(0? +u?) — w(v?) 2, 2y 1 2y 7\ 1
SV 1021) V2 = / / o~ yr SR ) ) (S(?) 1) duds
Proof. Using Proposition 7, set A — 3 we can apply the deterministic equivalence \ref for resolvants
SU2(S 4 o21) "2 = 22—1/2(2 +o?1)7 12

= / / B(E 4 s)THE + (o + 1)) Y257 2 dsdt

1 A —1
/ / B(S 4 (02 + 1))~ 22(24‘31) 4=1/2 6172 gt
s—t—o

BE 4R+ )NT =SE AR 1m0
772/ / p——— t S dsdt

)(

Note there is no pole in this double integral, i.e. when s = t + 02, (X + k(0? + t)I)~! =
3(X + k(s)I)~1, thus both numerator and denomerator vanish, and the limit is well defined as a
derivative!

(s nl-x(= Nt
RHS —7/ / Tl 0D~ BE+ R Y2571 2dsdt
™

s—t— o2
2 —1 -1
2/ / ) = k(0 +)B(T + k(0 + 1)) (Z + k(s)]) /212 g gt
o s—t—o?
_ t _ 3
/ / P ';215 )E(E+H(a2+t)f) 1(E+,{(s)[) Li=1/24-1/2 g6 0t

This formulation shows that there is no real poles.

We can remove the singularity at 0 via t — u?, s — v? change of variables

2
RHS = = / / UU2++UU2 _’if;) )E(E + k(0?4 u2)I)_1 (= + li(’UQ)I)_ldudU

Thus we obtain the desired equivalence,

2
BB / / ) = W) s (o)) (S (0?) )
(X+o ) 02+u2 — 2 ( +r(o“+u”) ) ( +r(v?) ) dudv

Note that the coefficient % has nice behavior when (0% +u?) —v? — 0, i.e. it becomes

a derivative of k (Lemma 3). So there is no singularity in the integrand. O

Interpretation We can compare it to sampling mapping with the population covariance, i.e. infinite
data limit. Using Prop 7, setting A — 3, the double integral representation of the denoiser mapping
reads,

1 o0 oo —1
V(S 4+ o272 = —2/ / E(E+(02+t)l) (B 4 sI) "1 Y257 2 sdt
™ Jo Jo

4 [= [ 2 2 -1 27\—1
ﬁ/o /0 2(2+(a +u)1) (2 + v21)dudv

Indeed, since 1 (02 + u?) > (02 + u?) and r(v?) > v?, this creates a larger shrinkage, especially at
small eigen dimensions.
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C.7 PROOF FOR FLUCTUATION OF THE SAMPLING MAPPING (APPROXIMATE VERSION,
INFINITE o7, PROPOSITION 4)

Now let’s consider the variance of the generated outcome with the infinite o approximation, ignoring
estimation error in p,

Xgo = M+ 21/2(2 + O%I)il/Z(XﬂT - N)

~p 4 /2 Ter T Hy
or
=pn+ 2%

So the variance coming from estimation of the covariance , let X := ";TT  i.e. normalized deviation
from center.

Proposition 9 (Main result, variance of generated sample under empirical data covariance.).

A T . .
7r2/0 /0 n_deﬂH)[ (X4 sI)TH(B+ET) v]

x [XT2(E + k) HE+KT)T! ]}dudv

Varg[v T21/2

where k = r(u?), K’ := k(v?) are variables needing to be integrated over.

Proof. Represent variance by moments,

Varﬁ:[v—rfll/gi]
— EE[(VTXA:UQ)_()Q] _]Ei[ T21/2—}2
= Eg[v BY2%x T8 2v) - By v SV2R]Eg R T

:EE{VT[% /OOO ﬁ](ﬁ]+u21 1du xx [%/ >+ 1dv} }

>
—Eﬁ:{VT [% /OOO ﬁ](ﬁ]—&-uQI)_ldu} %/ B(3 4 021) 1dv}v}

using Eq. 23
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Using the integral representation and exchanging the integral with expectation,

RHS——/ / Tz: (42 'xx B2 +02) 7! }

-Eg {VTE(E + u2I)’ 5{] Eg [XTﬁ)(ﬁ] + UQI)’lv} }dudv
integral representation of matrix half
4 o0 oo N .
= / / {EE{VTE(Z D)% TS + 0t }
™ Jo Jo

- [VTZ(E + H(uQ)I)*li] [XTE(Z + /@(UQ)I)*lV} }dudv

using one point equivalence

X

4 o0 oo ’
= = /0 /0 { Tr [vv TexxTg] + #ﬁw Tr [vv GsEGs] Tr [xx ' G5 EGx]
- [VTz(z + n(u2)1)*1x} [xTz(z + H(UQ)I)*V} }dudv
using two point equivalence
_ 4 > > ﬁ/i/ T ! ——T
= p/o /0 {m Tr [vv GEEGE] Tr [xx GEEGE}}dudU

first trace cancels out.

_ // n_dfﬂﬁ)[v G Gv][X| Gy EGx] Jdudy

- / / n_df2 (k m)[ vIS(E + k()T + w(u?) ) 7V]
% [RTR(E + k(o)1) (2 + w(u?)]) 5] bdudv

KK

4 [ e g .
:ﬁ/() /O {W[VTE(E+FJ) (S + w1)~ V]
x [KTS(S+ kD) "N + H/I)_li]}dudv

Thus we arrive at our result

- 4 [ [ KK
T$1/227 O T —1 1y -1
Var[v' X x]/\ﬂz/0 /0 {n_de(ﬁ K/)[V S(E+sl)HE+ KTV

x X2+ k) HE+KT)T! ]}dudv

C.7.1 INTERPRETATION

Anisotropy: effect of probe vector If we marginalize over the X, assuming X ~ N (0, I) from
white noise, and consider only the effect of probe direction v,

ExVar[v' $1/2%] //O %[T2(2+m Y+ K1) ']

X Ex[&TS(S + k)" 1S + #T)" X]}dudv

_4 [z k' Tr[B(Z + k)Y Z + 1)1 T o)1 W)
AWQ/ / VIS(S 4 kD) (S + /1)

n — dfy(k, k')
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T2 +sl) NS+ KT = % Tr[(E+ k] - 2)E(Z +wl) U+ 1)1

%n[z(z + & 1)71 = %n[zQ(z +w)HE + KDY

o 1 / 1 /
= del(m) deg(lﬁ,lﬁ)
1 1 )
gdﬂ(ﬁ) - gdfg(:‘i, k')

Using this identity

ExVar[v' $/2%] / / df; 4 de(if:(/; ) VIE(E+RD)TH(E+ n’I)*lv]}dudv

Let’s set the direction as the eigenvector ug, and the corresponding eigenvalue \j

ExVar[u) /2% / / w (AR () — dba(k, 1)) A }dudv
) )

n—dfg(m K') M + k) (A, + K

Inhomogeneity: effect of initial noise Since the variance is symmetric in X and v, so we can
marginalize over v while keeping the X dependency. Note that we assume v is unit norm, so
summation over uy eigenvectors (instead of expectation) is equivalent to trace.

. df —df !
Z VaT[uzzl/Q x| = Tr Var 21/2 / / 1 2, )) [XTZ(Z‘*‘“I)_l(Z‘F"fq)_li]}dum}
k

n— dfz(:‘i K')
(25)

Scaling: effect of sample number and scaling Finally marginalizing over both factors, we have
the overall scaling.

. df — dfy (e, 1))(Af () — df (i,
Ex Y Var[u] $Y/2%] = Ex Tr Var[$'/2] / / i 25, 1)) (d () 2(K’K))}dudv

- n — dfay(k, k')

(26)
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D EXPERIMENTAL DETAILS

D.1 NUMERICAL METHODS

Numerical evaluation of renormalized Ridge x(z). We computed x(z) as the solution to the
self-consistent Silverstein equation

Kk(z)—2z = 3 ) Ae 2
—WZ“’%(ZHA,; @7

where {\;} are the eigenvalues of X and {wy,} are their normalized weights. For scalar z, we solved
this nonlinear equation using Newton’s method with analytical derivative

K(z) =1 — ’yiwk 7/\i
A CORP W

falling back to a robust root-finder for purely real inputs. For a sequence of z values along a path,
we used an “analytic continuation” procedure in which the solution at the previous z served as the
initial guess for the next, ensuring branch continuity and numerical stability, particularly for small z.
Further, we generally start the path from z with high norm and solve with continuation back to small
z. A caching mechanism stored previously computed (z, ) pairs, with nearest-neighbor retrieval for
initial guesses, further accelerating repeated evaluations. This approach yields accurate and smooth
k(z) profiles suitable for downstream quadrature-based integration.

Numerical evaluation of the integral over deterministic equivalence The analytical results in
Egs. 9,10 involving integral to infinity are not trivial to evaluate. To avoid truncation error, we used
the following scheme by translating the integration onto a finite domain.

We approximated the double integral

4 [k Te[B(E+c) N (E+DT
— S(E+sD)THEZ+ AT V] dudo (28
7r2/o /o n — dfy(k, &) [V B+ RD)TE+RD V] wdv 29
using a Gauss—Legendre quadrature scheme combined with the tangent mapping u = tané to
transform the semi-infinite domain [0, o) to a finite interval [0, 7/2).

We first generated npd0s Gauss—Legendre nodes 6; and weights w; on [0, 7/2], then applied the
transformation u = tan @ with Jacobian .J(6) = 1/ cos? 6 to obtain quadrature points on [0, o). This
was performed independently for u and v, and their 2D tensor product provided the integration grid.

The x values were computed at each u? and v? using a numerically stable, vectorized evaluation
of the spectral mapping function x(z) derived from the eigenspectrum of ¥. The integrand was
then assembled by evaluating the trace term, the scalar bilinear form v (-)v, and the denominator
n — dfy(k, k') on the full 2D grid. Quadrature weights and Jacobians were applied multiplicatively,
and the sum over all grid points yielded the numerical approximation to the integral.

Similar quadrature is used for the single integral equivalence Eq.9, where we integrate over 1d grid.

This approach yields high accuracy while avoiding explicit truncation of the infinite domain, as the
nonlinear mapping concentrates quadrature nodes where the integrand varies most rapidly.

D.2 LINEAR DENOISER EXPERIMENTS

To cross validate against our theory and numerical scheme, we performed extensive validation via
linear denoiser set up using empirical denoiser.

We compute the empirical covariance of a dataset and then used the following functions implementing
the linear one-step denoiser and the full sampling map (Wiener filter).

58



Under review as a conference paper at ICLR 2026

def dnoised_X(x, Xmean, sample_cov, sigma2,):
# single step denoiser
return x + sigma2 * (Xmean - x ) @ torch.inverse(sample_cov +
torch.eye(sample_cov.shape[@], device=x.device) * sigma2)

def wiener_gen_X(x, Xmean, wiener_matrix, sigmaT,):
if x.dim() == 1:
# Single vector case
return Xmean + wiener_matrix @ (x * sigmaT - Xmean)
else:
# Batched vector case - x should be shape (batch_size, ndim)
return Xmean[None,:] + (x * sigmaT - Xmean[None,:]) @ wiener_matrix.T

def build_wiener_matrix(eigvals, eigvecs, sigmaT=80.0, sigma@=0.0, EPS=1E-16,
clip=True):
if clip:
eigvals = torch.clamp(eigvals, min=EPS)
scaling = ((eigvals + sigma@**2) / (eigvals + sigmaT#**2)).sqrt()
return eigvecs @ torch.diag(scaling) @ eigvecs.T

We keep the oy = 0 in theory, in reality, it’s usually set to a small positive number e.g. 0.002. So
in a few cases, we tested this and reported the results in appendix. Generally, it acts as a floor for

generated variance, thus remedy the overshrinking effect.

We found when the dataset size is not enough, e.g. rank deficient 3, the eigendecomposition is not
stable, sometimes generating negative eigenvalues, which affects the matrix square root operation in
Wiener matrix. Even if we clip them, there is often numerical artifacts at small eigenspaces. One

solution is, we use higher precision float64 number to yield similar results with the theory.

D.3 DEEP NEURAL NETWORK EXPERIMENTS

We used following preconditioning scheme inspired by Karras et al. (2022), for all our architectures

for comparison.

class EDMPrecondWrapper(nn.Module):
def __init__(self, model, sigma_data=0.5, sigma_min=0.002, sigma_max=80,

rho=7.0):
super().__init__()
self.model = model
self.sigma_data = sigma_data
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.rho = rho

def forward(self, X, sigma, cond=None, ):
sigma[sigma == 0] = self.sigma_min
## edm preconditioning for input and output
## https://github.com/NVlabs/edm/blob/main/training/networks.py#L632
# unsqueze sigma to have same dimension as X (which may have 2-4 dim)
sigma_vec = sigma.view([-1, 1 + [1, 1 * (X.ndim - 1))
c_skip = self.sigma_data *x 2 / (sigma_vec ** 2 + self.sigma_data x* 2)

c_out = sigma_vec x self.sigma_data / (sigma_vec ** 2 + self.sigma_data **

2).sqrt()
c_in = 1 / (self.sigma_data *x 2 + sigma_vec *x 2).sqrt()
c_noise = sigma.log() / 4
model_out = self.model(c_in * X, c_noise, cond=cond)
return c_skip * X + c_out * model_out
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EDM Loss Function We employ the loss function Lgpy introduced in the Elucidated Diffusion
Model (EDM) paper Karras et al. (2022), which is one specific weighting scheme for training
diffusion models.

For each data point x € R, the loss is computed as follows. The noise level for each data point is
sampled from a log-normal distribution with hyperparameters Pyean and Pyg (€.8., Prean = —1.2 and
Py = 1.2). Specifically, the noise level ¢ is sampled via

o = exp (Ppean + Pua€), € ~N(0,1).
The weighting function per noise scale is defined as:
w(o) = Lt Tl
2
(U Udata)

with hyperparameter o4, (€.2., 0data = 0.5). The noisy input y is created by the following,
y=x+on, n~AN(0,I,),

Let Dy(y, o,labels) denote the output of the denoising network when given the noisy input y, the
noise level o, and optional conditioning labels. The EDM loss per data point can be computed as:

L(x) = w(o) |Dg(x + on, o, labels) — x||?.

Taking expectation over the data points and noise scales, the overall loss reads

LEpM = Exapanr Enon(0,1)Eo |w(0) | Do(x + on, o, labels) — x| (29)

Hyperparameter Settings: DiT All experiments use DiT backbones with consistent architectural
and optimization settings unless otherwise specified. Key hyperparameters:

* Model architecture: patch size 2 or 4 (used once for FFHQ64, discarded for worse
performance), hidden size 384, depth 6 layers, 6 attention heads, MLP ratio 4.

» Datasets: FFHQ-32, AFHQ-32, CIFAR-32, and FFHQ-64; subsampled at varying sizes
(300, 1k, 3k, 10k, 30k) with two non-overlapping splits per size.

* Training objective: Denoising Score Matching (DSM) under EDM parametrization.

* Training schedule: 50000 steps with batch size 256, Adam optimizer with learning rate
1x 1074

* Evaluation: fixed-noise seed, sampling with 35 steps with Heun sampler; evaluation sample
size 1000, batch size 512.

Hyperparameter Settings: UNet All CNN-UNet experiments follow consistent architectural and
optimization settings unless noted. Key hyperparameters:

* Model architecture: UNet with base channels 128 ; channel multipliers {1, 2, 2, 2}; self-
attention at resolution 8.

* Datasets: FFHQ-32, AFHQ-32, CIFAR-32, and FFHQ-64; subsampled at varying sizes
(300, 1k, 3k, 10k, 30k) with two non-overlapping splits per size.

* Training objective: Denoising Score Matching (DSM) under EDM parametrization.
+ Training schedule: 50000 steps, batch size 256, Adam with learning rate 1 x 104,

* Evaluation: fixed-noise seed, sampling with 35 steps with Heun sampler; evaluation sample
size 1000, batch size 512.

Computation Cost All experiments were conducted on NVIDIA A100 or HI00 GPUs. Training
DiT and CNN models on 32 x 32 resolution datasets typically required 5—8 hours to complete. In
contrast, DiT models trained on FFHQ64 were substantially more expensive, taking approximately
24 hours per run.
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E USAGE OF LLMS

We used LLMs in three ways. First, as a research assistant, to look up tools related to deterministic
equivalence and to point us toward integral identities for fractional matrix powers, which we then
verified and derived independently. Second, as a coding agent to help us generate plotting and analysis
code for our results. Third, as a writing aid, for polishing technical text and providing feedback on
clarity and presentation of the whole paper.

61



	Introduction
	Notation and Set up
	Motivating Empirical Observation
	Theory of Diffusion Consistency Across Independent Data
	Self consistency equation and renormalized noise scale
	Expectation: Finite Data Renormalizes Noise Scales
	Fluctuation: Anisotropic and Inhomogeneity of Denoiser Consistency

	Consistency of Diffusion Samples for Linear Denoisers
	Expectation of diffusion sample: over-shrinkage to the mean
	Variance of diffusion sample: Anisotropy and inhomogeneity

	Validating Predictions on Deep Networks
	Discussion
	Extended Related Works
	Extended Results and Figures
	Extended visual examples for motivating observation
	Extended validation of the theory
	Extended evidence from the DNN validation experiments

	Proof and Derivations
	Deterministic equivalence relations 
	Proof for Deterministic equivalence of denoiser expectation (proposition 1)
	Proof for Deterministic equivalence of denoiser fluctuation (proposition 2)
	Interpretation and derivations

	Integral representation of matrix fractional power (Balakrishnan formula)
	Proof for expectation of the sampling mapping (approximate version, infinite T, Proposition 3) 
	Proof for expectation of the sampling mapping (full version, finite T) 
	Proof for fluctuation of the sampling mapping (approximate version, infinite T, Proposition 4) 
	Interpretation


	Experimental Details
	Numerical methods
	Linear denoiser experiments
	Deep neural network experiments

	Usage of LLMs

