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ABSTRACT

Emerging lensless imaging techniques hold promise for miniaturized cameras,
but their effectiveness is constrained by challenges like model mismatch from the
point spread function (PSF), which undermines reconstruction methods dependent
on accurate PSF modeling. To address this issue, we propose a joint Maximum
a Posteriori (MAP) approach to simultaneously estimate model mismatch error
(M2E) and reconstruct high-resolution images from lensless imaging measure-
ments. Specifically, we propose an explicit latent space representation for M2E to
improve robustness against PSF inaccuracies. Additionally, we develop a multi-
stage reconstruction network by unfolding the joint MAP estimator with a learned
Laplacian Scale Mixture (LSM) prior and M2E representation (M2ER) through
end-to-end optimization. Extensive experiments show that our method surpasses
current state-of-the-art methods.

1 INTRODUCTION

Lensless imaging is integral to inverse imaging research, offering compact, budget-friendly camera
solutions (Pan et al. (2022); Lee et al. (2023)). Differing significantly from traditional optical meth-
ods, lensless imaging encodes information as diffraction patterns and uses computational methods
for lensless image reconstruction (Zuo et al. (2024)), as shown in Fig. 1 (a). However, the presence
of misalignment, lateral shift, object-to-sensor distance (OSD) variations, and environmental / sys-
tem noise in point spread function (PSF) of the lensless imaging system brings the model mismatch
error (M2E) for lensless image reconstruction method (Zeng & Lam (2021); Yang et al. (2022); Li
et al. (2023); Qian et al. (2024)), as shown in Fig. 1 (b).

Latent PSF  Misalignment Lateral shift NoiseOSD variations

 Lensless Imaging System
Measurement ResultSensorMaskScene SensorMaskScene Reconstruction 

a.

b.

Figure 1: Brief pipeline of lensless imging and reconstrcution (a) and causes of M2E (b).

Most of existing reconstruction techniques in lensless imaging utilize data-driven methods such as
the multi-stage networks (Wu et al. (2021)), generative adversarial learning frameworks (Salman
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et al. (2022); Lee et al. (2023)), Transformers (Pan et al. (2022)), and diffusion model-based meth-
ods (Wan et al. (2023)). They fail to integrate knowledge of the forward imaging model, overlook
M2E, and are limited by their reliance on specific system setups, making them less adaptable. Mi-
nor changes in these setups (i.e., minor M2E) requires retraining, hindering generalizability across
different imaging scenarios.

Some studies leverage physical priors to image degradation caused by the M2E. Such as, a PSF-
learned deep unfolding method (Yang et al. (2022)) is proposed to joint of image reconstrcution and
denoise. Furthermore, Wiener deconvolution within a multiscale feature space (Li et al. (2023)) is
employed to enhance input correction, effectively minimizing information loss and mitigating M2E.
In another study (Banerjee & Singh (2024)), multiple PSFs are utilized to develop a sparse convolu-
tional PSF-aware auxiliary branch, enabling CycleGAN to mitigate M2E and enhance reconstruction
accuracy. These methods rely on learning-based corrections for inputs or PSFs without providing
explicit representations from physical models, limiting their ability to effectively eliminate M2E.

Recent studies (Zeng & Lam (2021); Qian et al. (2024)) have characterized M2E as an additive
bias within the latent model, conceptualizing it as a specific noise through unfolding and merging
operators. To mitigate its effects, these studies have incorporated specialized denoising mechanisms
aimed at reducing M2E. Although these methods involve the M2E, they do not explicitly integrate
it into the computational framework, primarily serving as correction schemes.

To fundamentally improve lensless image reconstruction affected by M2E, we explicitly quantify
the M2E and integrate it into a co-optimization framework. Specifically, we propose a co-learning
network by converting the joint Maximum a Posteriori (MAP) estimator with a learned Laplacian
Scale Mixture (LSM) prior and estimated M2E into a multi-stage deep unfolding network. In a
nutshell, our contributions are listed as follows:

• The lensless image reconstruction task is first formulated as a joint MAP method for co-
estimating the M2E and reconstructing the underlying scene. We propose a M2E learning-
aware reconstruction network called as M2LNet by incorporating the MAP estimator with
a learned LSM prior and estimated M2E into a multi-stage reconstruction framework in an
end-to-end learning manner.

• An explicit learning model called as M2E representation (M2ER) is proposed to improve
the robustness of M2E estimation. Both the feature (mean) and uncertainty (variance) in
the latent space of the M2E are learned, aided in the learning of M2E.

• Extensive experiments on datasets captured by two prototypes, PHlatCam and our Fin-
Cam, demonstrate that our method can significantly improve lensless image reconstruction
performance and has the potential to be applied to other lensless cameras.

2 RELATED WORKS

2.1 LENSLESS IMAGING

Lensless imaging systems (M. Salman et al. (2017); Nick et al. (2018); Pan et al. (2022); Wu et al.
(2020); Adams et al. (2022)), which replace bulky lenses with thin optical masks, are emerging as a
compact alternative to traditional cameras. These systems use amplitude (M. Salman et al. (2017);
Pan et al. (2022)) or phase masks (Nick et al. (2018); Wu et al. (2020)) to project light diffusely onto
the sensor, requiring advanced algorithms to decode the captured scene. Recent prototypes, such
as FlatCam (M. Salman et al. (2017)), DiffuserCam (Nick et al. (2018)), PHlatCam (Boominathan
et al. (2020)), and FZA-based cameras (Wu et al. (2020; 2021)), have demonstrated significant
improvements in imaging quality through enhanced reconstruction algorithms.

The growing advantages of lensless imaging have driven its adoption in ultrafast optical, hyperspec-
tral, and microscopic imaging. Studies like (Zhao & Li (2022)) and (Touil et al. (2022)) achieved
single-shot ultrafast optical imaging by combining an acoustic-optic programmable dispersive fil-
ter with spectrally filtered time all-optical mapping. For hyperspectral imaging (Monakhova et al.
(2020)), a compact computational camera uses a spectral filter array on the sensor and a nearby
diffuser. Additionally, a scatter-plate microscope (Alok et al. (2017)) leverages random medium dif-
fusion for diffraction-limited microstructure imaging. In vivo tissue imaging (Adams et al. (2022))
with a phase mask produced a high-contrast PSF covering a broad spatial frequency range. Recent
works (Pan et al. (2021); Yin et al. (2022)) further explored object inference using lensless cameras,
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emphasizing their versatility across many applications. As technology progresses, lensless cameras
play crucial roles in compact, lightweight, and computationally advanced imaging solutions.

2.2 IMAGE RECONSTRUCTION FOR LENSLESS IMAGING

The advances in deep learning have notably impacted computational imaging, particularly lensless
imaging (Sinha et al. (2017); Salman et al. (2022); Wu et al. (2021)). Models such as UNet (Sinha
et al. (2017)) and its variants (Horisaki et al. (2020)) have been adapted for lensless image recon-
struction, while GANs (Rego et al. (2021); Ni et al. (2024); Banerjee & Singh (2024)) have been em-
ployed to improve visual fidelity by estimating the single PSF or muilt-PSF. Recently, Transformer-
based method (Pan et al. (2022)) is proposed for leveraging long-range dependencies to enhance
reconstruction. These models analyze extensive datasets to find correlations between lensless mea-
surements and corresponding scenes. However, the presence of inappropriate data can significantly
impair reconstruction quality.

Recent studies (Yang et al. (2019); Zhao et al. (2022b); Dong et al. (2023)) have explored integrating
model-based methods with deep learning networks. For instance, in (Monakhova et al. (2019)), au-
thores combined unrolled ADMM with UNet denoisers for lensless image reconstruction. Although
these methods improve reconstruction performance, their reliance on accurate imaging model and
minor M2E limits practical use. To address this, a PSF-learned deep unfolding strategy (Yang et al.
(2022)) to mitigate M2E, as well as, Wiener deconvolution operator within a multiscale feature
space (Li et al. (2023)) is employed to reduce M2E. Latest studies (Zeng & Lam (2021); Qian et al.
(2024)) shows that characterizing M2E as an additive bias within the latent model helps lensless im-
age reconstruction. However, they do not adequately address how to fundamentally suppress M2E.
Unlike the aforementioned methods, our method distinguishes itself by explicitly addressing M2E
in lensless imaging. Our method models and corrects M2E using a novel latent space representation,
and integrate LSM prior in a joint MAP framework, enabling more accurate reconstruction.

Unlike the aforementioned methods, our method mitigates the impact of M2E by explicitly modeling
it and incorporating this consideration during reconstruction.

3 METHODOLOGY

To enhance clarity of this paper, this section initially presents the problem formulation (Sec. 3.1),
followed by an in-depth discussion on M2E modeling and its network architecture (Sec. 3.2). Sub-
sequently, we explore the integration of M2E with a multi-stage lensless imaging reconstruction
network (Sec. 3.3). Finally, we give the a comprehensive description of the overall framework
called M2LNet (Sec. 3.4), as depicted in Fig. 2.

3.1 PROBLEM FORMULATION

According to (Ni et al. (2024)), the lensless imaging measurement y can be modeled as:

y = Φ⊛ x+ n = Ox+ n (1)

where ⊛ represents convolution operation, x denotes the underlying scene, and n is the noise. Note
that we default the system matrix O as the agent of PSF Φ to unify the description. Thus, the model
mismatch and PSF mismatch are equivalent.

The forward imaging model described in Eq. (29) allows computable modeling of lensless image
reconstruction, but it requires an accurate PSF. In practice, the on-axis PSF obtained from exper-
imental measurements or simulations based on mask patterns and imaging geometry may contain
significant deviation against the ground truths, thus leading to the model mismatch that would bring
substantial artifacts in the reconstructed images.

For this, we introduce the model mismatch denoted as ∆O to represent the mismatch between the
biased PSF and the actual PSF. As a result, we have the following lensless imaging forward model:

y =
(
Ô +∆Ô

)
x+ n, (2)

where Ô and O = Ô +∆Ô are biased and true one, respectively.
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Figure 2: The architecture of our M2LNet. It consists of a trainable fidelity reconstruction (TFR)
module, a M2E respresentation (M2ER) module, and a multi-stage reconstruction network (MSRN).
The MSRN comprises several cascaded stages with DPMB.

Consequently, according to Taylor expansion, the lensless image reconstruction by inversion opera-
tion (Zeng & Lam (2021)) can be written as

x̂ = Ô−1y =
(
I −O−1∆Ô

)−1 (
x+O−1n

)
=
(
I+O−1∆Ô

) (
x+O−1n

)
+ o

(∥∥∆Ô
∥∥2
F

)
=
(
I+O−1∆Ô

)
x+

(
I+O−1∆Ô

)
O−1n+ o

(∥∥∆Ô
∥∥2
F

)
=Ax+ ξ,

(3)

where A is the M2E formulated as

A = I +O−1∆Ô = I + (Ô +∆Ô)
−1∆Ô. (4)

And the ξ = A(Ô +∆Ô)
−1n+ o

(∥∥∆Ô
∥∥2
F

)
represents the mixed interference under the influence

of measurement noise and M2E. The I is the identity matrix. ∥·∥2F denotes Frobenius norm.

Lensless image reconstruction involves estimating A and recovering x from x̂ and A, posing a
highly ill-posed inverse problem. We formulate it as maximum posteriori (MAP) estimation:

p(A,x|x̂) = p(A|x̂) p(x|A, x̂) = p(A|x̂)p(x̂|A,x)p(x)
p(x̂|A)

, (5)

where p(x̂|A) =
∫
p(x̂|A,x)p(x)dx is a normalization constant ensuring the proper normalization

of the conditional probability. Ignoring this term and taking logarithms on both sides of equation,

log p(A,x|x̂) ∝ log p(A|x̂) + log p(x̂|A,x) + log p(x), (6)

then solving the MAP problem can be expressed as

(A∗,x∗) = argmax
A,x

log p(A|x̂) + log p(x̂|A,x) + log p(x). (7)

whereA∗ and x∗ are the expected value ofA and x, respectively. According to (Zhao et al. (2022a)),
the Eq. (7) can be converted into two subproblems:

A∗ = argmax
A

log p(A|x̂), (8a)

x∗ = argmax
x

log p(x̂|A,x) + log p(x). (8b)

where Eq. (8a) denotes the estimation of A and Eq. (8b) represents reconstructing underlying scene
from coarse image induced by model mismatch and estimated A.

3.2 EXPLICIT LEARNING OF M2E

Due to the effective modeling the randomness and uncertainty introduced by misalignment, OSD
variations, and system noise, we employ the Gaussian distribution (Zhao et al. (2022a)) to model
M2E. Thus the ∆Ô is model by the following distribution:

∆Ô ∼ N (µ(x̂), σ2(x̂)). (9)
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3×3 Convolution

Figure 3: The architecture of M2ER.

By combining with Eq.( 4), thus the likelihood term p(A|x̂) can be formulated as

p(A|x̂) ∼ I + (Ô +N (µ(x̂), σ2(x̂)))−1N (µ(x̂), σ2(x̂)), (10)

where µ(x̂) and σ2(x̂) represent the mappings from x̂ to the posterior distribution parameters (µ
and σ) of A. Direct computation of these mappings is challenging, so we parameterize them as
deep networks: µ = fθ1(x̂) and σ = fθ2(x̂), where θ1 and θ2 are the parameters for the µ and
σ branches, respectively. Specifically, the coarse reconstructed image x̂ is fed into a CNN block
consisting of three 3 × 3 convolution layers (i.e., fCB) to extract feature maps of the M2E. These
features are passed through two 3× 3 convolution layers to simultaneously learn the µ and σ of the
prediction. Additionally, µ can be viewed as the identity mapping of the blur kernel, while σ reflects
the uncertainty in the predicted µ. An equivalent sampling representation z is then generated via the
re-parameterization method:

z = µ+ ϵσ, ϵ ∼ N (0, I), (11)

where ϵ represents random noise sampled from a normal distribution. Since µ is perturbed by σ
during training, z becomes a non-deterministic embedding. However, without constraints on the
embeddings, the model tends to predict a small σ for all samples to suppress unstable components.
To address this, we incorporate a Kullback-Leibler (KL) divergence regularization term (Chang et al.
(2020)) to enforce a normal distribution constraint:

Lkl = KL
[
N

(
µ, σ2

)
∥N (0, I)

]
= −1

2

(
1 + log σ2 − µ2 − σ2

)
. (12)

According to above description, we integrateA into a neural network framework for characterization

A ← fM2ER(Ô) = I + fδ (x̂)⊗ fInv

(
Ô + fδ (x̂)

)
, (13)

whereA is learning-tuned, and fM2ER (·) is the neural operator characterizing M2E call M2E repre-
sentation (M2ER) module, as shown in Fig. 3. The fδ (·) explicitly maps ∆Ô as ∆Ô = Conv3×3(z),
Conv3×3 is the 3× 3 convolution layer. ⊗ is a matrix-multiplication operator. fInv (·) is an inverse
operation can be described as fInv (a) = UaΣ

−1
a V ⊤

a , and UaΣaV
⊤
a = SVD(a).

3.3 MULTI-STAGE LENSLESS IMAGE RECONSTRUCTION

LSM Model for Lensless Image Reconstruction. To solve Eq. (8b), we note that p(x̂|A,x) is the
likelihood term and p(x) is the prior distribution of x. The likelihood term can be generally modeled
by a Gaussian distribution

p(x̂|A,x) = 1√
2πσn

exp

(
−∥x̂−Ax∥

2
2

2σ2
n

)
. (14)

To effectively model the sparsity and edge characteristics inherent in natural images, we propose to
characterize each pixel xi with a nonzero-mean Laplacian distribution of mean υi and variance 2ω2

i :

p (xi|ωi) =
1

2ωi
exp

(
−|xi − υi|

ωi

)
. (15)
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With the assumption that xi and ωi are independent, we can model x with the following LSM model

p(x) =
∏
i

p (xi) , p (xi) =

∫ ∞

0

p (xi|ωi) p (ωi) dωi, (16)

where the scale prior p(ωi) can be modeled by a general energy function p (ωi) ∝ exp (−J (ωi)).
Then Eq. (8b) is equivalent to a bivariate estimation problem

(x∗, ω∗) = argmax
x,ω

log p(x̂|A,x) + log p(x|ω) + log p(ω). (17)

By substituting the Gaussian likelihood term of Eq. (14), the prior terms of Eq. (15) into the MAP
estimator in Eq. (17), we can obtain the following objective function

(x∗, ω∗) = argmin
x,ω

1

2
∥x̂−Ax∥22 +

∑
i=1

σ2
n

ωi
|xi − υi|+Ω(ω), (18)

where Ω(ω) = σ2
n

∑N
i=1 logωi+σ2

nJ(ω), J(ω) is regularization term on ω. Then the lensless image
reconstruction problem can be solved by alternating optimizing x and ω. For the x-subproblem, with
fixed ω, we can solve x by

x∗ = argmin
x

1

2
∥x̂−Ax∥22 +

∑
i=1

ςi|xi − υi|, (19)

where ςi =
σ2
n

ωi
. Inspired by recent advances in image denoising (Zhang et al. (2022)), the mean

υi can be predicted by a deep denoising module, i.e. υi = fd(xi), where fd(·) denotes a denoiser.
Then the Eq. (19) can be solved by the iterative shrinkage thresholding algorithm as

x(k+1) = Sτ (k),υ(k)

(
x(k) +

1

c
A⊤

(
x̂−Ax(k)

))
(20)

where c is chosen to ensure convergence. Sτ (k),υ(k)(·) denotes a generalized shrinkage operator

with threshold τ (k) = ςi
(k)

c and υ(k), which is defined by

Sτ ,υ(t) =

{
t+ υ,
υ,

t− υ,

t < υ − τ
υ − τ ≤ t ≤ υ + τ

t > υ + τ
(21)

Similarly, the ω-subproblem is equivalent to solve the ς-subproblem. With a fixed x, we have

ς∗ = argmin
ς

N∑
i=1

ςi|xi − υi|+Ω(ς). (22)

Functional optimization method (Yang et al. (2022)) can be used to solve ς , which depends on a
hand-crafted prior p(ω) in Ω(ς). Instead of using a fixed prior, we propose to estimate ς(k) from
x̂(k) by a designed DPMB, as detailed in Appendix. A.3.

Multi-stage network for Lensless Image Reconstruction. Despite the theoretical rigor, alterna-
tively solving x and ς requires many iterations to converge and needs a hand-crafted prior p(ω).
Meanwhile, all parameters and the denoiser can not be jointly optimized. To address these issues,
we replace all variables in Eq. (20) with a common expression containing x, so that x and ς can be
jointly optimized in a unified framework as

x(k+1) = SGς (x(k))
c ,Gυ(x(k))

(
x(k) +

1

c
A⊤

(
x̂−Ax(k)

))
. (23)

3.4 COMPREHENSIVE NETWORK ARCHITECTURE

The comprehensive network architecture is shown in Fig. 2, which consists of a trainable fidelity
reconstruction (TFR) module, a M2ER module, and a multi-stage reconstruction network (MSRN).
The TFR module is design for obtaining coarse image by performing a Hadamard product in the
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Fourier domain, along with a least-squares operation, denoted as x̂ =
(
F−1

diag
[
F (Φ)

]
F
)−1

y,

which is the networked form of Eq. (3). The M2ER module, as defined in Eq.(13), is responsible
for mining A. Each stage in the MSRN directly aligns with steps in the optimization process, exe-
cuting K iterations of Eqs. (22) and (23) with the input of A and x̂. Eq.(22) functions as a denoiser,
implemented with the proposed DPMB, which follows with an encoder-decoder architecture to es-
timate the weight ς(k) and mean υ(k), as shown in Fig. 12 of Apppendix A.3. The K-th output
corresponding to Eq. (23) regards the final reconstruction result.

3.5 LOSS FUNCTION

We impose supervision on predictions of each stage by MSE loss (Yang et al. (2022)), perceptual
loss (Yang et al. (2022)), and KL loss (Chang et al. (2020)). Our total loss is written as

Lall = Lmse + λ1LP + λ2Lkl, (24)

where λ1 and λ2 are set to 0.01 and 0.1, respectively.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

The datasets are captured by two prototypes, PHlatCam (Boominathan et al. (2020)), and our Fin-
Cam, forming PHlatCam Display Captured Dataset (DCD-PHlatCam), and FinCam Display Cap-
tured Dataset (DCD-FinCam), respectively.

DCD-PHlatCam. The DCD-PHlatCam dataset is the public dataset gerenated from a subset of the
ILSVRC 2012 dataset (Russakovsky et al. (2015)) for fair evaluation. The images are first resized
to 384 × 384 and displayed on a monitor for imaging. PHlatCam, equipped with a 12.2 MP Sony
IMX226 sensor, then captures lensless measurements at a resolution of 1280 × 1480 pixels. The
dataset is split into two parts: a training set with 9900 images and a testing set with 100 images.

DCD-FinCam. The DCD-FinCam dataset is based on a subset of ImageNet. Paired lensless mea-
surements are captured using our custom-built FinCam (Fig. 10 in Apppendix). The images are
resized to 320× 320× 3 as ground truths and projected onto an LCD. FinCam captures the lensless
measurements, which are converted to Bayer data at 1024 × 1536 × 4. The dataset includes 9900
pairs for training and 100 for testing.

4.2 SETUPS

Evaluation Metrics. We use the peak-signal-to-noise ratio (PSNR), the structural similarity index
(SSIM), and the learned perceptual image patch similarity (LPIPS) metrics to assess the performance
of various methods. Additionally, the number of parameters (#Param), floating point operations per
second (FLOPs), and frames per second (FPS) are used for evaluating computational complexity.

Implementation Bodies. For training, we use the Adam optimizer with “cos” learning rate schedul-
ing policy: lr = 0.5× init r × (1 + cos(π ∗ epoch/max epoch)), the initial learning rate (init r)
is set to 5 × 10−4, and the maximum number of epochs (max epoch) is 100. The whole network
is trained with a batch size of 8. We use the Pytorch framework on a Linux 20.04 server with single
NVIDIA GTX3090 GPU for all experiments.

4.3 COMPARISONS WITH STATE-OF-THE-ARTS ON PHLATCAM

We assess the performance on DCD-PHlatCam by comparing the reconstruction results with mea-
sured PSF. We present a comparative analysis between our M2LNet and several cutting-edge data-
driven methods, including UDN (Banerjee et al. (2023)), UNet (Horisaki et al. (2020)), MMCN Zeng
& Lam (2021), ULAMP-Net Yang et al. (2022), and MDGAN (Ni et al. (2024)). The results are
shown in Fig. 4 and Tab. 1. In Fig. 4, the visual reconstruction performance of M2LNet is superior
compared with state-of-the-art methods. Additionally, Tab. 1 presents the quantitative comparison
results. Our M2LNet outperforms all other state-of-the-art models, consistenting with the visual
reconstruction performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Visual inspection of the reconstruction performance for DCD-PHlatCam by (b)
UDN (Banerjee et al. (2023)), (c) UNet (Horisaki et al. (2020)), (d) MMCN Zeng & Lam (2021),
(e) ULAMP-Net Yang et al. (2022), (f) MDGAN (Ni et al. (2024)), and (g) our M2LNet. (a) is the
lensless imaging measurements corresponding to (h) ground truths.

Table 1: Comparison of reconstructed performance on DCD-PHlatCam. The best 1-st,2-nd,3-rd
results are shown in red, green, and blue.

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓
UDN (Banerjee et al. (2023)) 14.11 0.2927 0.6237
UNet (Horisaki et al. (2020)) 18.83 0.4503 0.3617
MMCN Zeng & Lam (2021) 20.44 0.5401 0.3472

ULAMP-Net Yang et al. (2022) 22.28 0.6097 0.2835
MDGAN (Ni et al. (2024)) 22.59 0.6142 0.2782

M2LNet (ours) 23.63 0.7527 0.2649

4.4 COMPARISONS WITH STATE-OF-THE-ARTS ON FINCAM

The visual comparisons in Fig. 5 shows that our M2LNet outperforms state-of-the-art methods (i.e.,
UDN, UNet, MMCN, ULAMP-Net, and MDGAN) with superior image quality. M2LNet pro-
vides more accurate colors and textures, closely matching the ground truths, while other methods
show color biases. It also produces sharper boundaries and clearer textures than ULAMP-Net and
MDGAN. Table 2 shows the quantitative results on the DCD-FinCam dataset. Our M2LNet leads
with a PSNR of 24.19 dB, SSIM of 0.7566, and LPIPS of 0.2533, outperforming MDGAN, which
scores 23.69 dB, 0.6203, and 0.2621. This marks a 2.1% improvement in PSNR, 22.0% in SSIM,
and 3.4% in LPIPS. While MDGAN benefits from adversarial learning, it demands more compu-
tational resources. Due to the consideration of M2E, our M2LNet achieves superior reconstruc-
tion. Furthermore, we evaluate the robustness of M2LNet by using histograms for PSNR, SSIM,
LPIPS, and their standard deviations (Fig. 6). M2LNet consistently outperforms across all metrics
and shows lower standard deviations, indicating stable and robust reconstruction. Additionally, we
present further experimental comparison results in Apppendix A.4 and A.5.

Table 2: Comparison of reconstructed performance on DCD-FinCam. The best 1-st,2-nd,3-rd results
are shown in red, green, and blue.

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ FLOPs (G) ↓ #Param (M) ↓ FPS ↑
UDN (Banerjee et al. (2023)) 15.43 0.3289 0.5824 17.81 2.20 5.50
UNet (Horisaki et al. (2020)) 19.35 0.4763 0.3548 119.90 59.40 36.99

MMCN (Zeng & Lam (2021)) 20.44 0.5487 0.3307 365.50 206.14 10.68
ULAMP-Net (Yang et al. (2022)) 23.61 0.6182 0.2674 29.24 3.01 38.35

MDGAN (Ni et al. (2024)) 23.69 0.6203 0.2621 492.30 507.52 12.99
M2LNet (ours) 24.19 0.7566 0.2533 277.41 343.20 18.92
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Visual inspection of the reconstruction performance for DCD-FinCam by (b) UDN (Baner-
jee et al. (2023)), (c) UNet (Horisaki et al. (2020)), (d) MMCN (Zeng & Lam (2021)), (e) ULAMP-
Net (Yang et al. (2022)), (f) MDGAN (Ni et al. (2024)), and (g) our M2LNet. (a) is the lensless
imaging measurements corresponding to ground truths (h).
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Figure 6: Illustration of the robustness of our method and other state-of-the-art methods in terms of
PSNR, SSIM, LPIPS and their standard deviations on DCD-FinCam.

4.5 COMPLEXITY ANALYSIS

Tab. 2 presents the complexity comparison results between the above compared methods and our
M2LNet in terms of the #Param, FLOPs, and FPS metrics. Due to the the multi-stage reconstruction
strategy used for improving accuracy at the expense of complexity, our M2LNet has a relatively high
computational complexity and ranks in the middle of all compared methods. Furthermore, the FPS
still reaches 18.92 for FinCam, slightly below the real-time operational requirements. In the future,
we will work on modeling simplified designs to improve operational efficiency.

4.6 ABLATION STUDIES

To simplify this work, our ablation experiments are all studied on the DCD-PHlatCam dataset. Some
experimental results can be found in Apppendix A.6.

The Accuracy of M2E Prediction. To thoroughly investigate this, we manually inject mix biases
generating by the combination of translating and rotating to the PSF for simulating the biased PSF,
and then through the Eq. (2), we obtain the corresponding simulation datasets, on which we train
our M2LNet. Here, we present a comparison between the learned M2E (A) and the true M2E
(I +(Ô +∆Ô)

−1∆Ô), as shown in Fig. 7. The visualization results show that theA learned by our
method closely align with the true M2E.
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Figure 7: Visualization prediction results of M2E. The M2E predicted by our method highly matches
the true M2E.

     (a) (b) (c) (d) (e)

Figure 8: Visual results of ablation study on components. (a)–(d) bind to #Conf1–#Conf4. (e) is
ground truth.

Ablation Studies on Components. The experiments evaluate the effect of removing individual
components from M2LNet on reconstruction performance. TFR+MSRN(w./o. DPMB)+M2ER is
the full model withou without DPMB along with M2ER. Tab. 3 and Fig. 8 present a detailed anal-
ysis of various configurations (#Conf1 to #Conf4). Results show that omitting any component
significantly degrades performance, underscoring the importance of each component’s design and
integration. Both quantitative and visual assessments reveal the critical role of component synergy,
highlighting their collective contribution to optimal reconstruction performance.

Ablation Studies on Loss Functions. Tab. 3 presents the results from different combinations of loss
function. The analysis shows that incorporating Lp and Lkl significantly improves reconstruction
performance. Notably, PSNR and SSIM increase and then decrease as the λ1 and λ2. Considering
the goal is to enhance perceptual quality (high LPIPS), we set λ1 = 0.01 and λ2 = 0.1 for training.

Table 3: Ablation study on components and loss functions
ID Config PSNR (dB) ↑ SSIM ↑ LPIPS ↓

#Conf1 TFR 10.53 0.2604 0.5935
#Conf2 TFR + MSRN 17.29 0.5248 0.4262
#Conf3 TFR + MSRN (w./o. DPMB) +M2ER 20.39 0.5782 0.3568
#Conf4 Full model 23.63 0.7527 0.2533

#Conf5 Lmse 22.67 0.6932 0.2569
#Conf6 Lmse + 0.01 ∗ Lp 22.52 0.7095 0.2527
#Conf7 Lmse + 0.1 ∗ Lp 22.61 0.7233 0.2531
#Conf8 Lmse + 1.0 ∗ Lp 22.95 0.7488 0.2534
#Conf9 Lmse + 0.01 ∗ Lp + 0.01 ∗ Lkl 23.29 0.7501 0.2437
#Conf10 Lmse + 0.01 ∗ Lp + 0.1 ∗ Lkl 23.63 0.7527 0.2533
#Conf11 Lmse + 0.01 ∗ Lp +1.0 ∗ Lkl 23.41 0.7512 0.2529

5 CONCLUSION

In this paper, we frame lensless image reconstruction as a joint MAP problem, estimating both
model mismatch error (M2E) and thus high-resolution images. To enhance M2E estimation, we in-
troduce an explicit latent space representation with proposed mathematical model. We then propose
a multi-stage reconstruction network by unfolding the MAP estimator with a learned LSM prior
and estimated M2E. Both the scale prior coefficient and local means of the LSM model are learned
through customized networks, with all parameters optimized end-to-end. Experiments show that our
method outperforms state-of-the-art approaches. Future work will explore spatially varying PSF and
broader generalization to other lensless cameras with lower complexity.
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A APPENDIX

A.1 DETAILS OF LENSLESS IMAGING MODEL

Wave-based Point Spread Function (PSF) Model. Fig. 9 provides the wave-based lensless forward
imaging model. We consider a single refractive or diffractive optical element, such as a thin phase
mask. This element delays the phase of a complex-valued wave field proportionally to its pattern h

ϕ (x′, y′) =
2π∆n

λ
h (x′, y′) , (25)

where (x′, y′) indicates the coordinates of the mask plane. ϕ (x′, y′) is the phase bound to the thin
phase mask. λ is the wavelength and ∆n is the refractive index difference between air (nair) and the
material of the optical mask (nmask).

A wave field Uλ with amplitude A and phase ϕd incident on the optical mask is affected as

Uλ (x
′, y′, z = 0) = A (x′, y′) ei(ϕd(x

′,y′)+ϕ(x′,y′)), (26)

where Uλ (x
′, y′, z) is the wave field passing through the optical element. As illustrated in Fig. 9,

after the field propagates in free space at distance z, the field becomes

Uλ(x, y, z) =
eikz

iλz

∫∫
Uλ (x

′, y′, 0) e
ik
2z ((x−x′)2+(y−y′)2)dx′dy′, (27)

which applies the Fresnel propagation operator, an accurate model for near and far distances when
λ≪ z. The wavenumber is k = 2π/λ.
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Figure 9: Wave-based lensless forward imaging model.
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Let Φ be PSF associated with the optical mask, a point representing an optical infinity, the optical
axis at the front of the sensor arriving at a distance z from the element propagates through the
element as

Φ (x, y) ∝
∣∣∣F {

A (x′, y′) eiϕ(x
′,y′)ei

π
λz (x

′2+y′2)
}∣∣∣2 , (28)

where F{·} is the Fourier transform (FT).

Lensless Imaging Model. Considering a single depth, x is the intensity of the natural object at this
depth slice. According to the convolution model, the lensless imaging measurement y is:

y = Φ⊛ x+ n = Ox+ n (29)

where ⊛ represents convolution operation, n is the noise term. Note that we default the model O
as the agent of PSF to unify the description. Thus, the model mismatch and PSF mismatch are
equivalent.

A.2 SYSTEM SETUPS OF OUR FINCAM

As shown in Fig. 10 (a), the FinCam we constructed consists of a phase mask, image sensor, oc-
clusion support, and optical aperture. The pattern of phase mask is produced by SFinGe algo-
rithm (Cappelli (2009)), resulting in a high-contrast, randomly textured fingerprint image, as shown
in Fig. 10 (b). The occlusion support encloses the imaging system to block stray light from the sur-
roundings. The optical aperture is attached to the phase mask to ensure that light enters the imaging
system only through this aperture. The phase mask is positioned 2 mm in front of the image sensor
and is secured with support material. Manufactured using two-photon lithography 3D printing, the
phase mask measures 2.5 mm×2.5 mm. The practical setup of FinCam is shown in Fig. 10 (c). The
FinCam is equipped with a 6.41 MP Sony IMX178 CMOS sensor with 2.4µm × 2.4µm pixels and
a 12-bit color depth.

 c. Actual System Configuration

a. System Architecture

Height Map of Mask PSF Pattern

b. Mask and PSF

Sensor

Mask

Display

Light wave
object distance

350mm

Mask-to-sensor distance

2mm

Pupil diameter

2.5mm

Occlusion Sensor

Mask

Display

Light wave
Object distance

350mm

Mask-to-sensor distance

2mm

Pupil diameter

2.5mm

Display

FinCam

Figure 10: The hardware setup of FinCam.

We create a large dataset called DCD-FinCam by projecting images onto monitors and capturing
these projections with lensless cameras. This ensures alignment with the true imaging model for
lensless cameras and facilitates the collection of a labeled dataset for lensless image reconstruction.
The example of the DCD-FinCam dataset is shown in Fig. 11.

A.3 THE DETAILS OF DPMB

The DPMB is designed with an encoder-decoder architecture to utilize the multi-scale features, as
shown in Fig. 12. Specifically, in the encoder, the 1-st and 2-nd scales consist of channel attention
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Figure 11: Examples of the DCD-FinCam dataset.

block (CAB), residual block (RB), inline feature fusion block (IFFB), and down-sampling (simpli-
fied as Down), while the 3-rd scale consists of CAB, RB, IFFB, Down, and convolution. In the
decoder, the 1-st and 2-nd scales consist of up-sampling (simplified as Up), RB, and CAB, while the
3-rd scale consists of convolution, Up, RB, and CAB.

For the sake of subsequent description, the encoder and decoder features extracted from the k-th
stage are represented as

Fk
Enc = Cat

(
fk,1
Enc, f

k,2
Enc, f

k,3
Enc

)
Fk

Dec = Cat
(
fk,1
Dec, f

k,2
Dec, f

k,3
Dec

), (30)

where the Cat(·) is the concatenation operation. The {fk,1
Enc, f

k,2
Enc, f

k,3
Enc} and {fk,1

Dec, f
k,2
Dec, f

k,3
Dec} are

transmitted in IFFB in the encoder and RB in the decoder at different stages to integrate beneficial
cues at different scales.

The CAB at each scale in the encoder and decoder is employed to enhance the representation of
specific features, facilitating the capture and utilization of information conducive to reconstruction.
The steps of CAB can be mathematically detailed as

fk,i
AP = AP

(
CR

(
CR

(
fk,i

)))
, (31)

fk,i
W = Sigmoid

(
CR

(
CR

(
fk,i
AP

)))
, (32)

fk,i
CA = fk,i

W ⊙ fk,i
AP + fk,i, (33)

where AP (·) and Sigmoid (·) are the average pooling operator and sigmoid function, respectively.

The RB at each scale in the encoder and decoder are exploited to enhance the ability to capture
crucial features. Mathematically, the RB in encoder is described as fk,i

RB = CR
(
CR

(
fk,i
IN

))
+fk,i

IN ,

while the RB in decoder is fk,i
RB = CR

(
CR

(
fk,i
IN + fk,i

Enc

))
+ fk,i

IN .

The IFFB at each scale in the encoder fuses the inter-stage information to balance the intrinsic infor-
mation loss. We compute two affine parameters σk,i, µk,i ∈ RC×H×W to transfer the intermediate
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Figure 12: The architecture of DPMB.

output fk,i
RB ∈ RC×H×W (the output of RB in encoder at k-th stage and i-th scale) to an informative

one fk,i
Enc ∈ RC×H×W ,

T k,i
n = Conv

(
Fk−1

Enc

)
+Conv

(
Fk−1

Dec

)
, (34)

σk,i = CR
(
T k,i
n

)
, µk,i = CR

(
T k,i
n

)
, (35)

fk,i
Enc = fk,i

RB ⊙ σk,i + µk,i, (36)

where Conv(·) is the convolution with a kernel size of 3× 3.

The feature fusion described above is known as spatial-adaptive normalization. Unlike conditional
normalization techniques (Ulyanov et al. (2017)), the parameters σk,i, µk,i ∈ RC×H×W are spa-
tial tensors instead of vectors. σk,i and µk,i enable the encoder and decoder to capture multi-scale
features while retaining the refined memory from previous stages, ensuring that each scale retains
well-preserved spatial information. Consequently, the resulting proximal mapping is more informa-
tive. To denote the set of multi-scale encoder and decoder features, i.e., Fk =

{
Fk

Enc,F
k
Dec

}
, our

DPMB is expressed as

X̂k,Fk = DPMB
(
X̂k−1,Fk−1;θk

)
, (37)

where θk refers to the parameters of the DPMB at k-th stage.

A.4 COMPARISONS WITH OTHER STATE-OF-THE-ARTS ON FINCAM

We present a comprehensive comparison between our M2LNet and other state-of-the-art methods
considering the model mismatch, namely MMCN (Zeng & Lam (2021)), FlatNet (Salman et al.
(2022)), MN-FISTA-Net (Qian et al. (2024)), and MWDNS (Li et al. (2023)) to meticulously eval-
uate their reconstruction performance on DCD-Fincam dataset captured by FinCam, as shown in
Fig. 13 and Tab. 4. The comparison results shows our method maintains state-of-the-art perfor-
mance in both visual quality and quantitative evaluation.

A.5 RECONSTRUCTION RESULT FOR NATURAL SCENES

To further validate the generalization capability of our method, we collected natural scene data us-
ing a custom-built FinCam and compared it with top-performing methods, as illustrated in Fig. 14.
The selected methods successfully reconstruct underlying scene information from complex lens-
less imaging measurements, demonstrating the effectiveness of our custom FinCam. Moreover, our
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(a) (b) (c) (e) (f) (g)(d)

Figure 13: Visual inspection of the reconstruction performance for FinCam by (b) MMCN, (c)
FlatNet, (d) MN-FISTA-Net, (e) MWDNS, and (f) our M2LNet. (a) is the lensless imaging mea-
surements corresponding to (g) ground truths.

Table 4: Comparison of reconstructed performance on DCD-FinCam. The best results are shown in
red.

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓
MMCN (Zeng & Lam (2021)) 20.44 0.5487 0.3307
FlatNet (Salman et al. (2022)) 20.07 0.6017 0.3135

MN-FISTA-Net (Qian et al. (2024)) 21.97 0.5623 0.3117
MWDNS (Li et al. (2023)) 22.36 0.5779 0.2935

M2LNet (ours) 24.19 0.7566 0.2533

method consistently outperforms in visual quality, further confirming its robust generalization capa-
bility. This experiment provides valuable insights for advancing the practical application of lensless
imaging technology.

A.6 ABLATION STUDIES ON STAGE NUMBER OF MSRN.

We investigated the impact of the stage number of MSRN, varying from 0 to 5. The results, shown
in Figs. 15 and 16, reveal that performance improves with the addition of stages, but levels off
around 4 stages. Beyond this point, further increases the number of stages do not significantly
enhance performance. To balance efficiency and computational cost, we select 4 stages, optimizing
performance while controlling computational burden.

A.7 COMPARISON WITH STATE-OF-THE-ARTS ON DIFFUSERCAM.

To further validate the generalization capability of our method, we conduct experiments on the pub-
licly available dataset provided by the DiffuserCam prototype (Monakhova et al. (2019)). Adhering
to its data configuration protocols in Monakhova et al. (2019), we compare reconstruction results
across methods such as MMCN (Zeng & Lam (2021)), FlatNet (Salman et al. (2022)), MWDNs (Li
et al. (2023)), MDGAN (Ni et al. (2024)), and ours. The results in Fig. 17 highlight our method’s
ability to recover detailed scene information effectively, demonstrating its applicability to Diffuser-
cam setups.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 14: Visual inspection of the reconstruction performance for natural scenes captured by Fin-
Cam with (b) UDN (Banerjee et al. (2023)), (c) MMCN (Zeng & Lam (2021)), (d) MN-FISTA-
Net (Qian et al. (2024)), (e) MWDNS (Li et al. (2023)), (f) ULAMP-Net (Yang et al. (2022)), (g)
MDGAN (Ni et al. (2024)), and (h) our M2LNet. (a) is the lensless imaging measurements.

(a)

(b) (c)

(e) (f) (g)

(d)

Figure 15: Visual results of ablation study on stage number of MSRN. (b)–(g) bind to the stage
number from 0 to 5. (a) is the ground truth.

A.8 COMPARISON RESULTS BY LATEST METHODS.

To further demonstrate the superiority of our method, we select the two most recent methods (DPNN
and DeepLIR) for comparison experiments, with the corresponding visualization results presented
in Fig. 18. As shown, our method continues to demonstrate superior performance.

A.9 LIMITATIONS

In general, our method achieves high-precision visual reconstruction under M2E. However, exper-
iments show that it is currently effective for minor M2E such as translations, rotations, and slight
PSF blur. Future work will explore to enhance generalization and practicality.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0

5

10

15

20

25

0 1 2 3 4 5

P
S

N
R

 (
d

B
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
S

IM

Blocks
0 1 2 3 4 5

Blocks

Figure 16: Quantitative ablation study on the effect of MSRN with stage number from 0 to 5.

Mesurements MMCN MWDNS MDGANFlatNet Ours Ground Truth

Figure 17: Visual inspection of the reconstruction performance on DiffuserCam.

DPNN DeepLIR Ours Ground TruthsMeasurements

Figure 18: Visual inspection of the reconstruction performance by latest methods such as DPNN
and DeepLIR.
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