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Abstract

Language models with billions of parameters have shown remarkable emergent
properties, including the ability to reason on unstructured data. We show that
open-science multi-lingual large language models can perform the task of spatial
reasoning on two or more entities with significant accuracy. A responsible large
language model would perform this spatial reasoning task with the same
accuracy regardless of the choice of the names of the entities over which the
spatial relationships are defined. However, we show that the accuracies of
contemporary large language models are impacted by the choice of proper nouns
even when the underlying task ought to be independent of the choice of proper
nouns. In this context, we observe that the conditional log probabilities or beam
scores of open-science multi-lingual large language model predictions are not
well-calibrated, and the beam scores do not discriminate well between correct
and wrong responses in this context.

1 Introduction

Over the last four decades, cognitive psychologists and neurolinguistic studies have investigated the
impact of proper names on human cognition with interesting outcomes (Bredart et al., 2002). It is
now widely accepted that human beings find it more difficult to recall personal names (Young et al.,
1985, 1988) than other kinds of words, including relatively rare common nouns. Several different
explanations have been investigated for such a discrepancy, including (i) the semantic tag nature of
personal names without being descriptive (Fogler & James, 2007), (ii) the need to obtain a single
correct label with no synonyms (Hanley, 2011), (iii) the larger set of possible phonologies (James
& Fogler, 2007), and (iv) the frequency of word use in daily discourse (Kittredge et al., 2008).
Inspired by these results in human cognition, we seek to investigate the impact of personal names
from different parts of the world on the linear spatial reasoning ability of large language models - a
task that ought to be neutral to the choice of the names themselves.

The rise of the large language models promises to revolutionize differentiable approaches to natural
language processing. Models such as BERT (Devlin et al., 2018), T5 (Raffel et al., 2020),
GPT (Brown et al., 2020), OPT (Zhang et al., 2022), PALM (Chowdhery et al., 2022) and
BLOOM (BigScience, 2022) yield results close to the state-of-the-art on popular benchmarks in
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several language tasks. However, such models are susceptible to adversarial attacks (Wang et al.)
and reduced accuracy on out-of-distribution data (Du et al., 2021). Bias and toxicity evaluations of
such models are now standard with a variety of benchmarks (Ousidhoum et al., 2021). Inspired by
both the neurolinguistic findings about the curious case of personal names in human cognition and
the now well-established bias studies in deep learning, we study personal names as a new source of
variations in the performance of large language models even when the underlying reasoning task
ought to be independent of the choice of personal names.

We create a scalable spatial reasoning task involving n individuals with different names. In this
task, we provide the pairwise spatial relationship between entities to the BLOOM family of models,
and then ask the model to predict a new relationship among the entities. Using male names popular
in the US on the spatial reasoning task with four individuals, the accuracy of the BLOOM model
grows from 0.3 to an impressive 0.83 as the number of parameters increases from 560 million to 146
billion. A random guess would achieve an accuracy of only 0.33 on the task. Thus, an increase in
the model size leads to an improvement in the accuracy of the model’s accuracy in reasoning about
the spatial relationships, and sufficiently large models exhibit very good spatial reasoning capability.

Figure 1: Overview of our approach. (left) BLOOM model for solving the spatial reasoning task. (top right)
Beam scores from the largest BLOOM model for correct (blue) and incorrect (red) responses. (bottom right)
Variation in response from the largest BLOOM model on personal names from different countries.

Variation of accuracy based on names: The accuracy of the BLOOM models on this spatial
reasoning task varies depending on the source countries of the proper names even though the
reasoning task is completely invariant to the choice of the names. The difference in accuracies for
popular proper names from USA, Morocco, South Africa and China are shown in Fig 1(bottom
right). When we change the names in the reasoning task using the names common in US, the
variance is 0 but it increases to 0.08 for names from Morocco, 0.12 for South Africa, and 0.24 for
China. We conjecture that the difference in accuracy may be related to the use of unicode
characters while writing names from international countries and perhaps the fewer occurrence of
such names in the training data. Further, the difference in accuracies depending on the choice of
proper names is generally exacerbated in larger BLOOM models.

Poor calibration of BLOOM models on spatial reasoning: We observe that the conditional log
probabilities or beam scores of BLOOM predictions are not well-calibrated, and the scores do not
discriminate between correct and wrong responses. The beam scores of 100 responses from
BLOOM-176B are shown in Fig. 1 (top right). The scores for the correct (incorrect) responses are
shown in blue (red). As shown in the figure, the distributions of the two scores can not be
separated. Thus, this approach for uncertainty quantification is not sufficient to detect when the
model makes wrong predictions due to name bias in this setting.

We believe that our results show that there is a need to develop training strategies and inference al-
gorithms that can mitigate emergent bias for large language models in such settings, where perfor-
mance in the underlying task ought to be clearly independent of the source of the bias.
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2 Spatial Reasoning in BLOOM Large Language Models

2.1 Spatial Reasoning Tasks

Spatial reasoning has been a topic of sustained interest in representational learning. Qualitative
reasoning using spatial cardinal directional representations has been investigated for at least three
decades (Frank, 1991; Teresa Escrig & Toledo, 1998). Spatial reasoning for textual data (Weston
et al., 2015) using deep learning models (Le et al., 2020) has made such rapid progress that has led
to the need for creating new and more challenging benchmarks (Shi et al.).

Algorithm 1: Synthesis of Spatial Problems
Input: List of popular names p1, p2, . . . pn, Set of left-of relations Sl = {(pi, pj)|pi is on left of pj},

Set of right-of relations Sr = {(pi, pj)|pi is on right of pj}, Query Pair (pk, pl)
Output: Correct Response R

1 V  {p1, p2, . . . pn}, El  �, Er  � // Graph
2 for (pi, pj) 2 Sl // Add left-of relations
3 do

4 El  El [ (pi, pj), Er  Er [ (pj , pi)

5 for (pi, pj) 2 Sr // Add right-of relations
6 do

7 Er  Er [ (pi, pj), El  El [ (pj , pi)

8 E0
l  El, E0

r  Er , i = 0 while i = 0 or Ei
l 6= Ei�1

l // transitive closure

9 do

10 Ei+1
l = Ei

l if (pi, pj) 2 Ei
l and (pj , pk) 2 Ei

l then

11 Ei+1
l  Ei+1

l [ (pi, pk)

12 i i + 1

13 i = 0 while i = 0 or Ei
r 6= Ei�1

r // transitive closure
14 do

15 Ei+1
r = Ei

r if (pi, pj) 2 Ei
r and (pj , pk) 2 Ei

r then

16 Ei+1
r = Ei+1

r [ (pi, pk)

17 i i + 1

18 if (pk, pl) 2 Ei
l then

19 R pk is on the left of pl

20 if (pk, pl) 2 Ei
r then

21 R pk is on the right of pl

22 if (pk, pl) 62 Ei
l and (pk, pl) 62 Ei

r then

23 R Relationship between pk and pl not known.

We create a simple spatial reasoning task where n individuals are located on a straight line. The task
specifies the relative location, left or right, of one person with respect to another. Finally, the task
requires that we make a new hitherto undeclared inference about the relative position of individuals.
We keep the reasoning problem simple because our goal is not to evaluate the limits of the reasoning
capability of these large language models, but instead to analyze their bias with respect to the used
proper names in defining the reasoning problem.

The challenge problems in our tasks are created algorithmically. See Algorithm 1 on the right. Given
n individuals and a query pair pk, pl, we construct a left-graph Gl = (V,El) of n nodes. For every
pair of nodes pi, pj 2 V , we add the directed edge (pi, pj) to the left-graph if pi is known to be on
the left of pj according to the stated facts in the generated task. Finally, we compute the transitive
closure G⇤l = (V,E⇤l ) of the left-graph.

If (pk, pl) 2 E⇤l , the given facts in the generated task are adequate to show that pk is to left of
pl, we keep this problem in our task and note that the correct response states that pk is to left of pl.
Similarly, we create a right-graph where the edges denote that an individual is to the right of another,
compute its transitive closure and determine whether the stated facts are enough to conclude that pk
is to the right of pl. An illustrative automatically generated task is shown below with the response
from the BLOOM-176B model colored in red.

John is on the right of David. James is on the left of David. James is on the left of John. Joseph is
on the right of James. John is on the left of Joseph. Then, we can make a new inference that David
is on the left of Joseph.
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2.2 BLOOM Large Language Models

The recent increase in the size of large language models using distributed GPUs has led to impressive
performance on diverse tasks, such as finishing sentences (Zellers et al., 2019), commonsense story
cloze (Mostafazadeh et al., 2016), physical commonsense reasoning (Bisk et al., 2020), challenging
question answering problems (Clark et al., 2018), open book question answering (Mihaylov et al.,
2018), Turing tests based on correct word disambiguation (Levesque et al., 2012; Sakaguchi et al.,
2021), and more challenging general-purpose language understanding (Wang et al.).

A variety of large language models have been trained on internet-scale corpora of text in multiple
languages and code bases. These models include BERT, T5 , GPT, OPT, PALM and BLOOM. A
few of these models, such as GPT3, are only accessible via an API while all the trained weights for
other models, such as BLOOM, are available to the public at large.

Our experimental studies have focused on BLOOM as it is an open-science open-access model that
has been trained using data in multiple languages and is the result of an international effort. BLOOM
has been trained on the Jean Zay Public Supercomputer provided by the French government and is
readily available to the public (BigScience, 2022). BLOOM is a family of large-language models
ranging from 560 million parameters to 176 billion parameters, and provides an effective platform
for evaluating the variations in our spatial reasoning task. BLOOM models have been trained on
substantial text from multiple languages.

2.3 Efficacy of BLOOM and Variation due to Choice of Names

We observe that BLOOM is capable of solving the spatial reasoning task with zero-shot prompting
in many cases. An example can be seen in the illustration in Fig. 1. We consider reasoning tasks with
different complexities by changing the number of individuals over which spatial reasoning needs to
be performed. Each language task was performed 100 times to compute the average accuracy of the
task and a fixed number of token predictions were sought from the model. Our list of popular names
in different countries was first obtained from Wiktionary and then supplemented by the popular name
lists available on Wikipedia. We used the English language transliteration of the names instead of
using the names in their original script. As an example, names from China were written in English
but accents were included, thereby exposing the larger set of possible phonologies (James & Fogler,
2007). We performed experiments on the BLOOM family of large language models on a server with
256 AMD cores, 2 TB of RAM and 8 Nvidia A100 80GB GPUs.

Spatial reasoning over 3 individuals. Figure 2 shows the performance of the BLOOM family of
models on our spatial reasoning task for 3 male names drawn from the popular names of different
countries. The accuracy of the BLOOM family rsies in a sustained manner from a maximum of 0.52
for the 560 million parameter model to a maximum of 1.0 for the 176 billion parameter model.
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Figure 2: Reasoning with 3 male names using 4 different BLOOM models with increasing model parameters.

Spatial reasoning over 4 individuals. Figure 3 shows the performance of BLOOM family of
models on the spatial task with 4 male names drawn from the popular names of different countries.
The 560 million parameter model has a maximum accuracy of only 0.3, which is below random
chance. However, the 176 billion parameter model has an accuracy of 0.83 for the United States.

Accuracy Variation due to Choice of Names. While the significant variation of the model
accuracy on the choice of the names on an unrelated spatial reasoning task is itself a source of
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Figure 3: Efficacy of spatial reasoning with 4 male names popular in different areas using BLOOM models.

concern, we observe that the variation is emergent and it generally increases in magnitude as the
models grow in size. We quantitatively evaluate the variation as the difference between the
accuracy for a given geographical area and the maximum accuracy for a model of that size. For
example, for 4 individuals, names drawn from China have an accuracy of 0.59 while names drawn
from USA have an accuracy of 0.83 for the BLOOM-176B model. Hence, the variation for China
is the difference of the two accuracies, i.e., 0.24. This high variation indicates relatively low
accuracy for the corresponding choice of names even when the underlying reasoning task is the
same and should not depend on the names being used.

We analyze the variation on a challenging spatial reasoning task with 5 individuals. Figure 4 shows
that the BLOOM-176B model shows a variation of 0.03 for the United States. However, the variation
for China, India, and South Africa becomes as high as 0.14, 0.17, 0.10. We also notice a high
variance for Canada and a low variance for Morocco, which suggests that other confounding factors
not being analyzed by us may also be present in our observations.
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Figure 4: Difference between the best accuracy for a given model and the accuracy for popular male names
drawn from a geographical region. This spatial reasoning task uses 5 individuals.

These variations may be explained using various reasons: (i) different term-frequency in training
data, (ii) lack of descriptive value of a personal name that can be learned using a large text corpora,
and (iii) the potentially larger set of possible phonologies in different languages, especially with
our use of accents and other unicode English-like characters while transliterating from international
names. However, none of this would be a problem for classical graph-based analysis algorithms.
As classical algorithms are replaced by increasingly complex and often proprietary and closed large
language models, the variation from proper names needs to be addressed to avoid biased analyses.

3 Uncalibrated Model Scores for Predictions

Since the BLOOM models produce significantly different accuracies on the spatial reasoning task for
different choice of names, it becomes even more important to understand if the model is predicting
a correct response on a given query. A natural approach to quantify uncertainty of a model is to use
the log probability of the response predicted by the model and threshold it to decide if a response
is reliable or not. We show that the BLOOM models are not well-calibrated and produce similar
conditional log probabilities for both correct and incorrect responses in this context.
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The BLOOM models, like other large language models, compute the beam score or the conditional
log probability of the response being predicted. In a well-calibrated model, a correct output will
be associated with a high probability and an incorrect output will correspond to a relatively lower
probability. This will allow the model to be deployed in a practical setting.

0 50 100

�0.15

�0.1

(a) USA

0 50 100

�0.08

�0.06

�0.04

(b) China

0 50 100
�0.1

�0.08

�0.06

�0.04

(c) South Africa

Figure 5: The beam score or conditional log probabilities for the top response from the model using male
names. The X axis represents the index of the query and the Y axis represent the score. Red color represents
an incorrect response, while a blue color represents a correct response.

Fig 5 shows the beam score or log probability corresponding to a typical response from the BLOOM-
176B model on male names from the US, China and South Africa. The horizontal axis represents
the index of the query and the vertical axis represents the beam score or the log probability of the
response.

4 Conclusions and Future Work

We make three contributions in this paper. First, we create a simple spatial reasoning task where n
individuals are located on a straight line. The task specifies the relative location, left or right, of one
person with respect to another. Finally, the task requires that we make a new hitherto undeclared
inference about the relative position of individuals. We then observe that BLOOM and other large
language models have the emergent capability of solving this linear spatial reasoning task as these
models become larger. Second, we make empirical observations on the choice of names and their
influence of model accuracy in our linear spatial reasoning task. While there has been significant
work on evaluating explicit bias in the predictions from large language models, we make a new
observation that BLOOM large language models are substantially influenced by the choice of
personal names on the linear spatial reasoning task. Third, we observe that the beam score or
conditional log probabilities of predicted tokens have poor correlation with the correctness of the
model response, and cannot be relied upon as a metric for uncertainty quantification on this task.

The analysis and observations in this paper open up a couple of exciting directions for future
research. First, it will be interesting to compare the performance of BLOOM with other large
language models that were not designed by an international team of researchers. Since the trained
weights of many of the state-of-the-art models are not available to the public at large, such
proprietary models need similar internal auditing. Second, we have employed English
transliterations with accents and diacritics that may explain the increased phonology and reduced
accuracy for international names. Experimental investigations that avoid accents and diacritics may
be needed to conclude that different choice of names lead to different accuracies even when the
underlying search space is unaccented English. Third, our work has focused on personal names,
and it may be interesting to pursue a wider study using different proper nouns, such as places and
brand names. It may also be interesting to replace proper names with hitherto unknown sequences
of characters as a test for proper names of different complexity.
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5 Ethics Statement

Our approach brings to light a potential concern with BLOOM and possibly other large language
models where their accuracy is potentially affected by the choice of personal names, even on tasks
that are completely independent of the choice of names.
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