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Abstract: We present a learning-based dynamics model for granular material ma-
nipulation. Drawing inspiration from computer graphics’ Eulerian approach, our
method adopts a fully convolutional neural network that operates on a density
field-based representation of object piles, allowing it to exploit the spatial local-
ity of inter-object interactions through the convolution operations. This approach
greatly improves the learning and computation efficiency compared to existing
latent or particle-based methods and sidesteps the need for state estimation, mak-
ing it directly applicable to real-world settings. Furthermore, our differentiable
action rendering module makes the model fully differentiable and can be directly
integrated with a gradient-based algorithm for curvilinear trajectory optimization.
We evaluate our model with a wide array of piles manipulation tasks both in sim-
ulation and real-world experiments and demonstrate that it significantly exceeds
existing methods in both accuracy and computation efficiency. More details can
be found at https://sites.google.com/view/nfd-corl23/.
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1 Introduction

Figure 1: We present a flexible learning-
based dynamics model that allows robot
to manipulate object piles into target
configurations while avoiding obstacles.

Granular objects such as beans, nuts, and ball bearings are
ubiquitous in daily life and industry [1], making accurate
granular modeling and manipulation essential for various
robotic tasks. However, such modeling is challenging due
to the large number of particles and complex dynamics, as
well as the properties of granular materials such as size,
shape, friction, and contact mechanics. Overcoming these
challenges is crucial to developing accurate and efficient
learning-based models that enable robots to perform tasks
involving granular materials.

To address these challenges, recent efforts have been
made to model granular pile dynamics using deep latent
dynamics models directly from pixel input [2]. However,
such models have shown limitations in capturing the dy-
namics, under-performing a linear dynamics model due
to a lack of inductive biases [2]. Alternatively, physics-
inspired concepts such as particles lend themselves as
strong inductive biases for deep dynamics models. A long
line of works approximate a system with a collection of
particles and model inter-particle dynamics [3, 4]. How-
ever, while conventional particle-based techniques have demonstrated impressive accuracy, their
memory and computational costs grow superlinearly with the number of particles [5, 6], posing scal-
ability challenges for their application to granular material manipulations. Moreover, these methods
assume that the underlying particles can be tracked, limiting their real-world applicability.
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In this work, we argue that field-based representations are better-suited for modeling granular ob-
ject piles. By representing the space in which the physical system resides as a density field with
discrete sampling positions, we can avoid the challenges associated with modeling interacting par-
ticles. Moreover, it facilitates prediction and observation input processing directly in pixel space
while providing strong inductive bias, including the sparsity of the dynamics resulting from the
locality of the contact mechanics as well as the spatial equivariance of the dynamics. However,
field-based representation is rarely explored in learning-based dynamics models and presents many
design challenges, such as how to jointly represent states and actions, and compatibility with plan-
ning algorithms that rely on object-centric representations.

To this end, we introduce Neural Field Dynamics Model (NFD), a learning-based dynamics model
for granular material manipulation. To account for the complex granular dynamics, we leverage the
insight that the interaction between each granular object is dominated by local friction and contact,
indicating that each voxel in the scene is only interacting with nearby voxels. To take advantage of
such sparsity in the transition model and account for translation equivariance, we develop a transition
model based on fully convolutional networks (FCN) that uses a unified density-field-based represen-
tation of both objects and actions. By using differentiable rendering to construct the density-field of
actions, our model is fully differentiable, allowing it to be integrated with gradient-based trajectory
optimization methods for planning in complex scenarios, such as pushing piles around obstacles.

We evaluate our approach with a variety of pile manipulation tasks in both simulation and the real
world. We demonstrate that the field-based models are more accurate and efficient than existing
latent dynamics [2] and particle-based methods [3]. Moreover, our model can solve unseen complex
planning tasks, such as continuously pushing piles around obstacles. Additionally, we showcase
the generalizability of our method by transferring a trained model to different environments with
varying pusher and object shapes in a zero-shot setting.

2 Related Works

Learned Dynamics Model with Inductive Bias. Inductive biases, particularly object-centric repre-
sentations, have been widely adopted in learning-based dynamics models. Particle-based representa-
tions serve as strong inductive biases for representing deformable objects [7, 3, 8, 4, 9, 10, 11, 12].In
particular, DPI-Net [8] combines a hierarchical particle dynamics model with MPC-based control
for deformable object manipulation. For planar pushing tasks, Xu et al. proposed an volumetric
object representation learned via history aggregation [13]. However, particle-based approaches, also
known as Lagrangian methods, face scalability issues as the number of particles increases, thereby
making them computationally expensive and challenging to use in practical planning tasks. On the
contrary, our proposed model employs a field-based representation, specifically the Eulerian method,
which could overcome this limitation and also provide a strong inductive bias for learning.

Piles Manipulation, specifically moving piles of objects to target regions through pushing, is a
challenging task due to complex dynamics and the large number of objects involved. Several special
cases of this problem, including table wiping [14] (simpler dynamics) and multi-object pushing [15]
(non-granular) have been proposed to be addressed by reinforcement learning. Suh et al. introduce
a strong dense latent dynamics model baseline [2] for general piles manipulation problem. We show
that our method achieves superior accuracy and sample efficiency by incorporating the field-based
representation as model inductive bias. Imitation learning approaches such as Transporter Network
[16] and Cliport [17] can directly predict the start and end poses of the pushes. However, these meth-
ods require task-specific oracle demonstrations and cannot easily generalize beyond training tasks.
In contrast, our method trains on random interaction data and can solve unseen pile manipulation
tasks in new environments. Recently, a concurrent work by Wang et al. [18] proposed a learning-
based resolution regressor to address the scalability issues in particle-based dynamics models for
pile manipulation. However, [18] require task-specific training data, for example, pile gathering and
splitting require designated goal information during training, and hence making it challenging to
generalize across unseen tasks. In contrast, our method does not rely on goal information during
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training, and enables generalizations to new environments in zero-shot. Moreover, existing meth-
ods [2, 16, 14, 18] primarily focus on planning straight-line pushes and neglect the importance of
obstacle avoidance in accomplishing tasks within complex real-world environments. In contrast,
our proposed method employs trajectory optimization to plan curvilinear pushes, while considering
geometric constraints such as obstacle avoidance.

Optimization-based Trajectory Generation Trajectory optimization plays a vital role in robotic
applications as it enables robot agents to execute desired fluid movements while respecting en-
vironment constraints [19, 20, 21, 22, 23, 24, 25, 26, 27]. In particular, gradient-based meth-
ods [28, 19, 29, 30] can efficiently optimize trajectories to minimize cost while satisfying differ-
entiable dynamics and constraints. We incorporate a differentiable action rendering module into
our unified field-based dynamics model, thereby making it entirely differentiable end-to-end and
compatible with a gradient-based trajectory optimizer.

3 Method

Developing dynamics models for granular materials manipulation is challenging due to the complex
non-convex and non-linear nature of their dynamics. In addition, developing models that are appli-
cable to real-world scenarios presents practical challenges; specifically, ensuring that the model’s
complexity is scalable and independent of the number of particles involved is crucial. Furthermore,
the dynamics model must be amenable to planning algorithms, such as trajectory optimization, in
order to perform complex tasks in real-world scenarios where obstacles exist.

To address these challenges, we proposed Neural Field Dynamics (NFD) based on Fully Convo-
lutional Network (FCN). The FCN model, which brings strong inductive bias, is well-suited for
capturing the complex nature of granular materials dynamics. Moreover, by using the Eulerian
approach that represents objects as images, our NFD models show better scalability compared to
the Lagrangian approach that models objects as particles, further enhancing their potential for use
in real-world scenarios. In this section, after describing the formulation of the problem, we explain
why our proposed model is able to better capture the complex nature of granular materials dynamics,
and we also discuss how it can be integrated into trajectory optimization algorithms.

Problem statement. The goal is for a robot to use a flat-surface pusher, such as a spatula, to
interact with piles of granular materials in order to push all the particles to a designated target
region. Our model operates on a quasistatic system where a state is represented as a density field
image of the pile s ∈ RH×W , and the target region, denoted as G ∈ RH×W , is a 2D binary mask
representing the goal region where all the piles are intended to be gathered. Unlike existing methods
that only consider the start and end positions of a straight-line push, our method generates curvilinear
trajectories τ = (x1,x2, ...xH), where xi ∈ SE(2) is the top-down 2D pose of the pusher, to
support more flexible behaviors, allowing the robot to execute continuous pushes satisfying specific
geometric constraints such as avoiding obstacles.

3.1 State and Action Representation

Density field state representation. To develop a scalable model that is independent of the number
of particles, we propose representing the system state as a grid-based density field of the granular
materials. This approach, known as the Eulerian approach, avoids the explicit modeling and per-
ception of each particle and enables our model to scale effectively in complex real-world scenarios.
Specifically, we capture the density field state s by segmenting an RGB image into a one-channel
occupancy grid after an orthographic projection.

Differentiable rendering for field-based action representation. To allow our FCN-based dynam-
ics model (Sec. 3.2) to directly capture the local interaction between the pusher and the objects,
we propose mapping the pushing action into a similar spatial field-based representation. We imple-
ment the mapping function using a differentiable rasterizer, allowing gradients from the dynamics
model to backpropagate to the trajectory, enabling gradient-based optimization (see Sec. 3.2). Con-
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Figure 2: We propose Neural Field Dynamics (NFD) model, a fully convolutional network that
employs a unified density-field-based representation of both object states and actions. By using dif-
ferentiable rendering, the dynamics model is fully differentiable, and enables us to integrate learned
field dynamics with gradient-based trajectory optimization methods.

cretely, we assume linear pusher motion during a short time interval [t, t + 1) and represent an
action as at := [r(xt), r(xt+1)], where xt ∈ SE(2) is the proposed pusher pose at time t and
r : SE(2) → RH×W is a differentiable rendering function (see appendix for more details) that
rasterizes a pusher pose into a one-channel image representing the density field of the pusher in the
plane. A sample rendered trajectory is illustrated in Fig. 2

3.2 Learning Localized Field Dynamics

We propose to use Fully Convolutional Networks (FCN) as the backbone for the dynamics model to
(1) improve sample efficiency of the dynamics model and (2) incorporate strong inductive bias of the
dynamics by exploiting the localized dynamics of granular material manipulation. Given the current
state st and the proposed action at, both in field representations, the model captures the forward
dynamics ŝt+1 = fθ(st,at) , where s ∈ RH×W is the state of the objects, at := [r(xt), r(xt+1)],
xt ∈ SE(2) is the proposed pusher pose at time t and r : SE(2) → RH×W is the differentiable
rendering function.

Figure 3: Correlation functions of
the piles pushing dataset C(d), as
well as FCN’s Ĉ(d) and MLP’s
Ĉ(d). The closeness to the black
line indicates the model’s capacity
to adapt to the data. The dashed
line corresponds to 1/e and deter-
mines the correlation length (see
Appendix for more details).

FCN-based dynamics models are equivariant to translation by
nature [31], as fθ(ω ∗ s, ω ∗a) = ω ∗ fθ(s,a), where fθ is the
FCN with parameter θ, and ω is a translation. Such equivari-
ance to translation has shown to provide better learning sample
efficiency [16].

We further conducted an in-depth analysis to justify why FCN
incorporates strong inductive bias. Ideally, a neural network
model with a strong inductive bias should capture the intrin-
sic physical properties of a system even in the absence of
training. For tasks involving granular material manipulation,
a fundamental physical property is the localized dynamics.
This means that the end-effector or particles only interact with
neighboring particles. By drawing an analogy from the cor-
relation function in statistical physics [32], such localized dy-
namics can be described by evaluating the correlation between
variations in the pusher density field (ȧ := dr(x)

dt ) at one point
and the variations in the object density field (ṡ := ds

dt ) at an-
other. This correlation changes based on the distance between
these points. In scenarios where objects interact locally, higher
correlations are anticipated when two points are in proximity,
and vice versa. By evaluating this metric, which characterizes
the locality of dynamics, in both the dataset and the FCN model, we found that the FCN model
displayed significant similarities with the dataset even without training, as is shown in Fig. 3 This
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suggests that the FCN model inherently possesses a strong inductive bias towards granular mate-
rial dynamics represented as density fields. We provide a detailed explanation of the correlation
functions in the Appendix B.1.

Our dynamics model adopts a shallow U-Net [33] architecture to ensure computational efficiency.
The network is trained in a self-supervised manner, using randomized pushing data in environments
to predict subsequent steps following an action, minimizing the loss function Ltrain = ||fθ(st,at)−
st+1||2F between the predicted and observed states, where || · ||F is the Frobenius norm. To perform
sequential prediction for long-horizon, the predicted state ŝt+1 is fed again into the dynamics model
along with the proposed action at+1. Note that at, at+1 are not necessarily along the same direction,
and hence allow us to model curvilinear trajectories.

3.3 Trajectory Optimization with Learned Dynamics

Because our learned dynamics is end-to-end differentiable, it can be directly integrated with
gradient-based trajectory optimization to effectively handle complex scenarios involving geomet-
ric constraints, such as collision avoidance. The objective of such optimization is to maximize the
amount of material that is pushed to the designated target region, while simultaneously avoiding
collisions with obstacles. The optimization problem is defined as follows:

min
xt∈SE(2)

ℓgoal(sT ;G) +

T∑
i=0

ℓaction(xi;O) +

T∑
i=1

ℓstate(si;O)

s.t. st+1 = fθ(xt, [r(xt), r(xt+1)]) ∀t ∈ [0, T − 1]

(1)

where G ∈ RH×W is the mask of the target zone and it is assigned 0 inside the zone and 1 out of
the zone. The individual objective functions are defined as follows:

ℓgoal(sT ;G) := α1 ⟨EDF (G), sT ⟩F − α2 ⟨G, sT ⟩F
ℓstate(si;O) := α3 ⟨O, sT ⟩F

ℓaction(xi;O) := α4 ⟨O, r(xi)⟩F

(2)

where EDF (G) computes the Euclidean Distance Field (EDF) of the target zone. ⟨, ⟩F is the
Frobenius inner product (i.e. the sum of element-wise product), α1, α2, α3, α4 are positive weight
parameters. In our experiments, we let α1 = 1, α2 = 2, α3 = 1, α4 = 2. Moreover, ℓaction and
ℓstate are loss functions utilized to address geometric constraints such as obstacles avoidance, and
O ∈ RH×W is the mask of the obstacle objects. The objective is flexible and can handle a variety
of tasks, including including piles splitting (where piles are pushed towards multiple target regions
while ensuring balanced distribution) and piles spreading, without the need for explicit training
for these specific scenarios. For further information regarding the optimization objectives for piles
splitting and spreading, please refer to the Appendix.

Generating curvilinear trajectories. Most existing pile manipulation methods are limited to gen-
erating straight pushes. However, curved trajectories are required for complex scenarios such where
straight push is not possible (e.g., blocked by obstacles) or suboptimal. We enable curvilinear tra-
jectory generation by parameterizing the trajectory with B-spline. The parametrized curves could
be viewed as an additional constraint in Eq.1. We include additional detail in Appendix. To further
account for the non-convex nature of the dynamics model and mitigate the risk of local minima,
we perform an initial random sampling of the control points for the spline curves. Subsequently,
the optimization is conducted in batches, and the resulting optimal solution that minimizes the cost
function is chosen as the output of the planning model.

4 Experiments

We conduct experiments to validate that our field-based dynamics model is more accurate and effi-
cient than existing latent and particle-based methods in capturing granular material dynamics. More-
over, we show that our model can solve unseen pile manipulation tasks such as pile splitting and
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spreading, as well as pile pushing around obstacles. Finally, we transfer a trained model to new
scenarios, including unseen object and pusher shapes and a physical robot setting.

Simulation setup. The Pybullet simulation environment is adapted from Ravens [16]. Throughout
the data generation process and all evaluations, unless explicitly stated otherwise, we use a set of 50
cubic blocks with a size of 1cm and a planer pusher of length 5cm.

Physical robot setup. The robot setup consists of a Franka Panda manipulator and a Intel RealSense
camera (see Appendix for more details). The camera captures a top-down view of environment. The
captures images are rectified using homographic warping, followed by color and depth thresholding
to extract the object density field. We directly transfer a model trained in simulation for real-world
experiments. To ensure consistency between the simulation and real-world settings, we resize the
input image to capture a workspace same size as in simulation. The pusher is of identical width as
the simulated pusher and is affixed to the robot gripper.

Evaluation setup. For offline analysis of dynamics model, we measure prediction performance
using the Mean Squared Error (MSE) between the predicted and the ground truth density field image.
We measure rollout performance with success rate, which is the fraction of objects that are inside
the goal region at the end of an episode, and cost function ℓeval(st;G) = ⟨EDF (G), st⟩F which
could also be viewed as the Control Lyapunov Function as has been pointed out by Suh et al [2].
The episode length is 10 steps (pushes). The success rates are averaged across 20 trials with random
initial state and goal regions. This evaluation reflects the objective of efficiently pushing piles into
the target region with a minimal number of pushes.

Baselines. The baseline methods for pile manipulation can be categorized into three groups: (1)
field-based latent dynamics model, (2) particle-based dynamics model, (3) and model-free imitation
learning. We pick the strongest among each as our baseline, with a brief description for each below.

• DVF [2] is a strong dynamics model that uses field-based state representation without inductive
biases. The original DVF only predicts the start and end position of a straight push (Single Pred.).
To facilitate fair comparison, we evaluated DVF for both single and sequential prediction (Seq.
Pred.). We also augment DVF with the same gradient-based optimizer used by NFD, despite the
original work only showed shooting-based planning.

• DPI-Net [3] is a particle-based method built on GNNs. We adapted the original codebase [3, 34]
for piles manipulation tasks. Unlike field-based methods, the method has access to the ground
truth particle position for rollout experiments in simulation. Moreover, since the output of DPI-
Net is particle positions, the image-based observation is obtained by rendering the predicted
position of each particle during prediction evaluation.

• Object-centric (OC) [2] is a non-learning method proposed in [2] that approximates the particle
pushing dynamics with analytical model.

• Transporter Network [16] is a model-free method trained with expert demonstrations. It adopts
a similar FCN backbone as our method, but instead of predicting dynamics, it directly outputs
the next pushing action.

We use 256 planning samples for all model-based methods. For our NFD mdoel, we evaluate 3
different planning strategies: (1) straight line pushing using the random shooting (RS) method [35]
with only forward pass (NFD-RS), (2) trajectory optimization with straight line pushing (NFD-Opt),
and (3) trajectory optimization with curved pushing (NFD-Curve).

4.1 Main experiment results

Our method outperforms the baseline planning methods in accuracy and speed. Quantita-
tive results (Tab. 1) and qualitative results (Fig. 4) demonstrate that our method outperforms the
latent-dynamics DVF model in prediction accuracy for both single-push and sequential-push sce-
narios, showing the advantage of the FCN inductive bias. Additionally, our method is far more
computationally-efficient than the baseline methods, as shown in Tab. 2, which quantifies the
GFLOP required for each prediction. For rollout performance, our sequential prediction-based ap-
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proach outperforms all baselines in both relative cost reduction and the task success rate (see Tab. 1
and 3). Notably, despite our method not being trained on expert data, it achieves better performance
than the Transporter Network which was trained by 10,000 expert pushes. As illustrated in Fig. 5,
our method not only reaches the goal significantly faster than other methods but also closely ap-
proximates expert behavior, even in the absence of expert training data. However, in the second half
of the episode, our method’s convergence rate is slower than that of expert demonstration. This is
because our randomly generated dataset rarely involves pushing one particle to a pile of particles
once most particles are already in the target region, which results in less accurate predictions.

(a) MSE Prediction Error Comparison

Single Pred. Seq. Pred.

DVF [2] 7.80E-04 2.13E-03
NFD (Ours) 5.72E-04 4.42E-04

(b) Visualizing model predictions and errors.

Figure 4: Quantitative (a) and qualitative (b) comparison between field-based methods.

Table 1: Rollout Performance Comparison of Model-based Methods

Model Type Cost Success

Particle-based
DPI-Net [3] RS 0.448 0.125
DPI-Net [3] Opt 0.2325 0.449

OC [2] RS 0.1265 0.459

Image-based
(Single Pred.)

DVF [2] RS 0.1838 0.606
DVF [2] Opt 0.1498 0.768

NFD (Ours) RS 0.1677 0.744
NFD (Ours) Opt 0.07173 0.899

Image-based
(Seq. Pred.)

DVF [2] RS 1.103 0.014
DVF [2] Opt 1.126 0.015

NFD (Ours) RS 0.0819 0.8
NFD (Ours) Opt 0.0197 0.966
NFD (Ours) Curve 0.0416 0.936
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Figure 5: Detailed compari-
son of rollout performance.

Table 2: Computation Cost Comparison among Model-based Method

Params GFLOP
50 particles

GFLOP
200 particles

DPI [3] 3.91E+05 7.53E-01 8.43E+00
DVF [2] 6.95E+07 1.62E-01 1.62E-01

NFD (Ours) 1.53E+04 7.36E-03 7.36E-03

Our method can generate flexible pushing trajectories in challenging environments. Notably,
our approach can effectively plan in the presence of obstacles between the initial objects and the
target region. As illustrated in Tab. 3, our method achieves high performance despite not being
explicitly trained for such scenarios. Furthermore, we demonstrate that our model can be applied
to different tasks including splitting and spreading without additional training (see Appendix for
details). This highlights the generalizability of our approach, especially compared to model-free
methods like the Transporter, qualitative results are shown in Fig. 6.
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Table 3: Comparison with Model-free Method

# Expert
Pushes

w/o Obstacle w/ Obstacle
Cost Success Cost Success

Transporter [16]
1000 0.1731 0.754 0.575 0.049

10000 0.1211 0.835 0.5331 0.088

NFD-Linear (Ours) 0 0.0197 0.966 0.3820 0.455
NFD-Curve (Ours) 0 0.0416 0.936 0.1318 0.838

Figure 6: Simulated: (a) curved pushing (b) obstacle avoidance (c) pushing larger object (d) pile
splitting (e) pile spreading. Real-world: (f) pushing blocks and (e) beans (h) obstacle avoidance.
Our method can generalize to diverse environments with different dynamics. As we varied the
shapes and sizes of objects and pushers, we notice that despite using unseen pusher lengths (50%
longer and 20% shorter) and unseen objects (one big circular disk and 200 small octahedrons instead
of small cubic blocks), our method still achieved comparable performance (see Tab. 4). Moreover,
in real-world experiments, our model performs well with unseen objects, such as beans, without
retraining (see Fig. 6 and Tab. 4).

5 Limitation

Table 4: Generalization Results - Rollout Evaluation
under Diverse Environment without Training

Case Rollout Cost

Piles (Training) 50 blocks 0.0416

Different
object shape

200 small-
octahedrons 0.0905

1 large disk 0.0003

Different Pusher
shape

Larger pusher 0.0156
Smaller pusher 0.1179

Suboptimal solutions. The non-convex na-
ture of the dynamics may lead to subopti-
mal trajectory solutions. This often happens
when pusher fails to interact with any parti-
cles and the gradient becomes zero. This
issue is particularly pronounced when deal-
ing with scenarios with isolated particles in
specific regions, necessitating a larger num-
ber of samples to find the optimal trajectory.
Such limitation could be addressed by com-
bining our model with a model-free method,
such as Transporter, and using the output of
the model-free approach as initialization of the trajectory optimizer.

Myopic planning. While effective, our method greedily optimizes for the next best trajectory given
a global cost function. However, in complex scenarios, it may be necessary plan ahead multiple
pushes to determine the next best action. Our future work will investigate longer-horizon prediction
and develop a more efficient sampling and optimization strategy to enable long-horizon planning.

6 Conclusion

We presented Neural Field Dynamics Model (NFD), a learning-based dynamics model that effec-
tively addresses granular material manipulation challenges. Leveraging field-based representations
and fully convolutional networks (FCN), our model outperforms existing methods in both accuracy
and efficiency. Its ability to perform complex tasks and adapt to varying environments highlights its
robustness and versatility, promising significant improvements in granular object manipulation.
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Figure 7: Architecture of proposed neural network

A Model Details

Our learned dynamics model takes current state in image and action in poses as input. To bridge
field-based state representation and object based pose representation, we employed differentiable
rendering to transform pusher poses from SE(3) to RH×W . In this context, we utilized a simplified
SoftRasterizer[36], since our scenario involves solely 2D motion without occlusion and texture. The
rendered image could be differentially obtained by transforming the probability map of the pusher
in the 2D plane.

To ensure the smoothness of the generated trajectory, the trajectory of the pusher is constrained
to be a B-Spline curve, which is defined as C(u) =

∑m
i=0 Ni,n(u) · Pi, where Pi is the control

points, C(u) is the pusher position on the curve at parameter u , Ni,n is the i-th basis function at
degree n. Noticed that the basis function evaluated at u could be pre-computed, enabling efficient
computation of C(u) using matrix multiplication given Pi. This allows us to directly optimize for
the control points Pi for trajectory planning. In our experiments, we used Bazier curve, a special
case of the B-Spline curve, while our method can readily extend to handle more complex scenarios
with B-spline curves.

A.1 Objective Function for different tasks

Our learned field dynamics model exhibits versatility beyond the task of gathering particles to a
target position. It can be applied to various tasks, including splitting piles and spreading piles.
When splitting piles, the objective is to push the piles towards multiple designated target regions
while ensuring an equal distribution of particles among these targets. To achieve this, we utilized
a goal mask G where 0 is assigned to objects inside any one of the N targets. By computing the
minimum value of N single-target EDF, we obtained the EDF for the N-target and could similarly
applied the objective function described in Equation 2. To evenly split the target into different goals,
we compute the Voronoi diagram of G which is a partition of a plane into regions close to each of
the given target regions, then the additional objective term objective function ℓsplit(si;G) simply
computes the standard deviation of the weight of particles distributed within each partition of the
Voronoi diagram.

In the case of piles spreading, we partitioned the space into low-resolution grids. The objective
function ℓspread(si) was introduced to quantify the standard deviation of the total weight of particles
distributed within each grid. This measure enabled us to assess the uniformity of particle distribution
across the workspace.
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B NFD with Fully Convolutional Network Backbone

The architecture of our proposed neural network model is shown in Fig.7. It is a shallow version of
U-Net[33], this is inspired by the fact that the dynamics of granular particle interation is localized,
and hence we do not need a very deep network to capture long range interaction. We performed
correlation analysis on our dataset and the model to justify this.

B.1 Details on Spatial Correlation Analysis

In this section, we investigated the correlation function between variations in the pusher density
field (ȧ := dr(x)

dt ) at one point and the variations in the object density field (ṡ := ds
dt ) at another.

It measures how two positions in the field affect each other as a function of distance. We perform
evaluations of the correlation function both in the dataset and the learned dynamics models, to justify
that the FCN model inherently possesses a strong inductive bias towards granular material dynamics,
compared with a fully connected network.

Firstly, we define the correlation between the variation in pusher density field ȧ of pixel i and the
variation in particle density field ṡ of pixel j:

ρij =
Cov(ȧi, ṡj)

σȧiσṡj

noticed that σȧi , σṡj is the variance of ai, sj respectively and could be dropped as we assume they
are normalized and translational equivariant. We could then compute the correlation function from
the dataset:

C(d) = E [ρij |D(i, j) = d] (3)

where D(i, j) is the Euclidean distance between pixel i and j. C(d) represents the correlation
between the variation of the pusher density field and the variation of the particle density field as a
function of distance, characterizing the localized dynamics in the dataset.

Secondly, we compute the correlation function of a dynamics model fθ. As a result of regression
toward the mean [37], and assuming ȧi and ṡj are correlated linearly, we have ∆ṡj = ρij∆ȧi,

indicating if ȧi changes by ∆ȧi, the expected change in ṡj is ρij∆ȧi, and hence ρij = E
[
∂ṡi

∂ȧj

]
.

Therefore we could similarly obtain the correlation ρ̂ij of a dynamics model by:

ρ̂ij = E

[
∂ ˆ̇si
∂ȧj

]

which represents how much ˆ̇si changes by expectation, for a small change in ȧi, where ˆ̇s(t) =
ŝt+1 − st. We could accordingly compute ρ̂ij through back-propagation of the neural network.
Thus the correlation function of the dynamics model could be written as:

Ĉ(d) = E [ρ̂ij |D(i, j) = d] (4)

where Ĉ(d) characterized the localization of the dynamics model, specifically the extent to which
altering an action will impact the output state located a distance d away from it.

To calculate the correlation function C(d), we consider all pairs of pixels (state-action) in neighbor-
ing timesteps by evaluating ṡiȧj . These pairs are then grouped based on their Euclidean distance,
and the average is computed to obtain the correlation function C(d). For Ĉ(d), we perform back-
propagation on the neural network to compute ∂fθ

∂r(xt)
for all state-action pixel pairs. This computa-

tion is conducted using random inputs and random network weight initialization. Similar to C(d),
the results are grouped based on the Euclidean distance between each pair, and the average is taken
to obtain Ĉ(d).
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Figure 8: Toy example of a simplified scenarios

The computation results of C(d) for our dataset using Eq. 3 are shown as the black curve in Fig. 3,
indicating that the correlation strengthens as the distance between pixels decreases. This suggests
that when two pixels are in close proximity, a change in one pixel is more likely to influence the other,
which can be attributed to localized dynamics. Additionally, we evaluate Ĉ(d) for an untrained
FCN model. The red curve in Fig. 3 shows that even without training, the behavior of Ĉ(d) in the
FCN is similar to that of the dataset. Specifically, the correlation diminishes as the distance grows,
implying that the FCN can effectively capture the localized nature of the dynamics. This suggests
that the FCN inherently possesses a strong inductive bias towards the dynamics system. On the other
hand, the correlation for an MLP model, represented by the blue curve in Fig. 3, remains consistent
regardless of distance. This indicates that a change in one pixel is equally likely to influence all
other pixels, irrespective of their distance apart. Such behavior does not align with the localized
nature of the dynamics, suggesting that the MLP lacks the necessary inductive bias for manipulating
granular materials. Additionally, we observed a good fit between our correlation function C(d) and
exp(−d

ξ ), which is a commonly used function for correlation in statistical physics[32]. This fitting
allows us to estimate the correlation length ξ of the system, a parameter often used to characterize
system localization. Notably, the correlation length of our dataset is approximately 0.035, which
closely aligns with the correlation length of the FCN. In contrast, the correlation length of the MLP
tends towards infinity. This indicates that the FCN model is more suitable for modeling granular
material manipulation with localized dynamics.

B.2 Toy Example

In addition, we present a toy example illustrating the effectiveness of a shallow FCN with field-
based action representation in modeling the dynamics of granular materials in a simplified setting.
As depicted in Fig. 8, the blue area represents the pusher, while the red area represents the particles.
We made the assumption that the pusher only moves upward by 1 pixel per step and neglected
particle-particle interactions. Remarkably, even with this minimalistic approach, we could see that
the shallow FCN successfully captured the dynamics of this scenario, showcasing its capability in
modeling such cases.
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C Supplementary Experimental Results

C.1 Experiment Details

In the roll-out experiments and data generation process, we use 50 blocks with dimension 1cm×1cm.
In roll-out experiments, the size of the target region is 12cm× 12cm and is randomly sampled away
from the particle’s initial positions.

C.2 Additional Qualitative Results

We present further qualitative results in Fig. 9 for two representative cases: one using a linear planner
and the other using a curved planner.

C.3 Additional Results on Trajectory Optimization

Fig. 10 displays representative examples of trajectory optimization. The figure illustrates that, de-
spite the initial trajectory being suboptimal, the optimization process refines it, leading to trajectories
with reduced costs.

C.4 Ablation Study on Action Representation

To demonstrate the effectiveness of the field-based action representation, we replace DVF’s vector-
based action with the field-based action representation (Sec. 3.1). Tab. 5 shows the substantial
improvements in prediction and rollout performance achieved through the utilization of field-based
action representation, particularly in scenarios with limited training data. Note that our proposed
field-based action representation is not limited to pile manipulation and has the potential to be used
in many model-based learning methods in robotics.

Table 5: Ablation - Action Representation and FCN

Error (Sequential Prediction) Loss (Rollout)
2000 6000 20000 2000 6000 20000

DVF [2] 3.98E-03 1.81E-03 2.13E-03 1.088 1.06 1.103
DVF - Improved 1.43E-03 6.77E-04 5.67E-04 0.4155 0.1727 0.1001

Ours 6.97E-04 4.79E-04 4.42E-04 0.1348 0.0993 0.0819

D Real Robot Setup

We include a picture (Fig. 11) of the real robot setup as well as the pusher, the objects (beans), and
the obstacles (can) used in the experiments.
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Figure 9: Qualitative rollout examples in simulation using (up) a linear planner and (bottom) a
curved planner.
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Figure 10: Visualization of the trajectory optimization process. White curves represent the initial
trajectory, and the darkest curves highlight the optimized trajectory. The gradations in color (white
to blue) indicate the iteration steps throughout the optimization.

Figure 11: (Left) Real robot setup. (Right) Pusher, objects, and obstacles used in the experiments.
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