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Abstract—Open-vocabulary generalization requires robotic
systems to perform tasks involving complex and diverse envi-
ronments and task goals. While the recent advances in vision
language models (VLMs) present unprecedented opportunities to
solve unseen problems, how to utilize their emergent capabilities
to control robots in the physical world remains an open question.
In this paper, we present Marking Open-vocabulary Keypoint
Affordances (MOKA), an approach that employs VLMs to
solve robotic manipulation tasks specified by free-form language
descriptions. At the heart of our approach is a compact point-
based representation of affordance and motion that bridges the
VLM’s predictions on RGB images and the robot’s motions
in the physical world. By prompting a VLM pre-trained on
Internet-scale data, our approach predicts the affordances and
generates the corresponding motions by leveraging the concept
understanding and commonsense knowledge from broad sources.
To scaffold the VLM’s reasoning in zero-shot, we propose a
visual prompting technique that annotates marks on the images,
converting the prediction of keypoints and waypoints into a series
of visual question answering problems that are feasible for the
VLM to solve. We evaluate and analyze MOKA’s performance on
a variety of manipulation tasks specified by free-form language
descriptions, such as tool use, deformable body manipulation,
and object rearrangement.

I. INTRODUCTION

The pursuit of open-vocabulary generalization poses a major
challenge for robotic systems: Solving tasks in unseen environ-
ments given new user commands necessitate methods that can
deal with the vast diversity and complexity of the physical
world. An appealing prospect for handling this challenge is
to employ large pretrained models by encapsulating extensive
prior knowledge from broad data and bringing it to bear on
novel problems. Recent advances in large language models
(LLMs) and vision-language models (VLMs) provide partic-
ularly promising tools in this regard, with their emergent and
fast-growing conceptual understanding, commonsense knowl-
edge, and reasoning abilities [8, 39, 40, 4, 7, 1, 41, 22, 42, 23].
However, existing large models pre-trained on Internet-scale
data still lack the capabilities to understand 3D space, contact
physics, and robotic control, not to mention the knowledge
about the embodiment and environment dynamics in each
specific scenario, creating a large gap between the promising
trend in computer vision and natural language processing and
applying them to robotics. It remains an open question how
such tools can guide a robotic system to solve manipulation
tasks by interacting with the physical world.
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Fig. 1: To solve manipulation tasks with unseen objects and
goals, MOKA employs a VLM to generate motions through a
point-based affordance representation (plotted as colorful dots
on the images). By annotating marks (e.g., candidate points,
grids, and captions) on the observed 2D image, MOKA con-
verts the motion generation problem into a series of visual
question-answering problems that the VLM can solve.

Recently, a growing body of research has been dedicated
to utilizing pre-trained large-scale models for robotic control.
By incorporating broad knowledge, these approaches directly
prompt or fine-tune the large models to generate plans [2,
16, 15, 5], rewards [28, 20, 30, 56], codes [25, 45, 49],
etc. Despite the encouraging results they have demonstrated,
these approaches are subject to notable limitations. Since the
advances in LLMs precede VLMs, many previous approaches
first process the raw sensory inputs to obtain the language
description of the environment and then query LLMs to
perform reasoning and planning in the language domain.
However, relying solely on high-level language descriptions
may overlook the nuanced visual details of environments and
objects, which are vital for accurately completing tasks. In
addition, existing approaches usually require non-trivial effort
in designing in-context examples [17, 25, 45] to ensure LLMs
can produce desired predictions on similar tasks. As a result,
the tasks that can be solved by these approaches are largely
constrained by such manual efforts.

In this work, we study how to effectively endow robots the
ability to solve novel manipulation tasks specified by free-
form language instructions using VLMs. Our key insight is to
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find an intermediate affordance representation that connects
the VLM’s prediction on images with the robot’s motion
in the physical world. This affordance representation should
satisfy two critical requirements. First, it should be feasible
for the VLM to predict given the visual observation of the
environment and task description. Second, it should compactly
capture the information that well characterizes the important
properties of the robot’s motion, such that it can be easily
executed on the robot.

To this end, we propose Marking Open-vocabulary Keypoint
Affordances (MOKA), an approach that employs VLMs for
robotic manipulation through mark-based visual prompting.
As shown in Fig. 1, MOKA leverages a compact affordance
representation consisting of a set of keypoints and waypoints,
defined on open sets of objects and tasks. This point-based
affordance representation is then used to specify the desired
motion for the robot to solve the task. To generate the motions
given the free-form language descriptions, MOKA uses hier-
archical visual prompting to convert the affordance reasoning
problem into a series of visual question answering problems.
Drawing inspirations from recent advances in visual question-
answering [51], we use mark-based visual prompting to enable
the VLM to attend to the important visual cues in the observa-
tion image and further simplify the point generating problem
into multiple choice questions. As shown in the top-left part
of Fig. 1, we plot the keypoints on the image, and query the
VLM to select the keypoints that result in the desired motion.
The predicted keypoints and waypoints are used for specifying
a trajectory through a waypoint-following motion, which can
represent a wide range of manipulation skills such as picking,
placing, pressing, tool-use, etc.

II. MARKING OPEN-VOCABULARY KEYPOINT
AFFORDANCES

We propose Marking Open-vocabulary Keypoint Affor-
dances (MOKA), an approach that leverages the emergent
reasoning capability of Vision-Language Models (VLMs) to
guide a low-level motion generator to solve unseen tasks
specified by free-form language instructions. As shown in
Fig. 2, MOKA uses a point-based affordance representation to
connect the VLM’s prediction on 2D images with the robot’s
motion in the physical world.

A. Motion with Point-based Affordances
To leverage VLMs for solving open-vocabulary manipula-

tion tasks, there needs to be an interface that connects the
inputs and outputs of the VLM and the motions performed
by the robot. To achieve this goal, we design an affordance
representation defined on 2D images. Produced as the end
result by the VLM, the affordance representation specifies the
desired motion.

By extending the definitions in Manuelli et al. [32] and Qin
et al. [38], we design a point-based affordance representation
for a wide range of manipulation tasks. Instead of separately
devising motion primitives for different pre-defined skills,
we use a unified set of keypoints and waypoints to specify

the motion. These points are predicted by VLMs on 2D
images and converted to poses in the SE(3) space. Then a
smooth motion trajectory is generated based on these poses.
To perform the task, the robot gripper interacts with the
environment by following the generated motion trajectory.

We specify the robot’s motion in an object-centric manner
as shown in Fig. 2. We would like this representation to be
applicable to different types of interactions with objects in
the environment. Therefore, we consider two types of objects,
oin-hand (e.g., the broom) and ounattached (e.g., the trash), and
specify the motion with a grasping phase and a manipulation
phase. In the grasping phase, the robot reaches and grasps an
object oin-hand from the environment. Then in the manipulation
phase, the robot performs a motion and makes contact with
another object ounattached, either directly or using oin-hand as a
tool. In some scenarios, only one of these two types of objects
is interacted with by the robot, either oin-hand (e.g., unplugging
a cable, opening a drawer) or ounattached (e.g., pressing a button),
and one of the two phases can be skipped accordingly.

We now describe the definition of the keypoints and way-
points as well as how they are used to specify the motions in
both phases. These points are illustrated in Fig. 2. Following
the practice of Manuelli et al. [32] and Qin et al. [38], we use
the grasping keypoint xgrasp to specify the position on oin-hand
where the robot gripper should hold the object. If oin-hand is
not involved in a task, the grasping phase will be skipped. For
the manipulation phase, the robot’s gripper follows a motion
trajectory specified by an additional set of points. The function
keypoint xfunction specifies the part of oin-hand that will make
contact with ounattached in the manipulation phase. If oin-hand is
not specified, xfunction will be on the robot gripper and the
contact will directly be made between the robot and ounattached.
Correspondingly, the target keypoint xtarget is the part of
ounattached that will be contacted by xfunction during the manip-
ulation phase. We also introduce the pre-contact waypoints
xpre-contact and the post-contact waypoints xpost-contact defined
in free space, which dictates the manipulation motion along
with the keypoints defined on the objects.

During the manipulation phase, the robot moves the gripper
such that xfunction follows the path sequentially connecting
the xpre-contact, xtarget, and xpost-contact. Besides following the
path, we also require the robot gripper to follow the specified
grasping orientation Rgrasp and manipulation orientation
Rmanipulate during the two phases respectively. To better il-
lustrate the design of our point-based motion, we provide
examples of the predicted point specifications and the resultant
motions from our experiments in Appendix D. In MOKA,
this set of keypoints and additional attributes (described in
Sec. II-C) are summarized in a dictionary as the affordance
representation (see Fig. 2).

B. Affordance Reasoning with Vision-Language Models
To predict the defined affordance representations, we em-

ploy the VLM M(·), which is pre-trained on Internet-scale
data for solving general visual question answering (VQA)
problems. Using a hierarchical prompting framework as shown



{
    'instruction': 'Wipe the snack 
package to the right side of the table 
using the brush.',
    'object_inhand': 'broom',
    'object_unattached': 'trash',
    'motion_direction': 'to the right',
}

Use the broom to wipe the trash to the right side of the 
table after moving the eyeglasses into the case. VLMVLM

Describe the motion of the robot 
gripper by selecting keypoints and 
waypoints along with other attributes.

<description of the request format>

<description of the response format>

Decompose the task into a sequence 
of subtasks and summarize the 
information of each subtask. 

<description of the request format>

<description of the response format>

{
    'grasp_keypoint': 'P5',
    'function_keypoint': 'P3',
    'target_keypoint': 'Q1',
    'pre_contact_tile': 'c4',
    'post_contact_tile': 'e4',
    <additional attributes>
}

text prompt text promptresponse [ -th subtask] response [affordance]

high-level reasoning low-level reasoning

input image segmentation masks marked image generated motion

visual prompt

Fig. 2: Overview of MOKA. We propose a hierarchical approach to prompt the VLM to perform affordance reasoning. On the
high-level, we query the VLM to decompose the free-form language description of the task into a sequence of subtasks and
summarize the subtask information. On the low-level, the VLM is prompted to produce the keypoints and additional attributes.

in Fig. 2, MOKA converts this affordance reasoning problem
into a series of VQA problems that are solvable by the pre-
trained VLM.

The hierarchical prompting framework takes as input the
free-form language description l of the task and an RGB image
observation of the environment st. MOKA examines the initial
observation s0 and decomposes the task l into a sequence of
subtasks using the VLM. For each of the subtasks, the VLM
is asked to provide the summary of the subtask instruction, the
description of the corresponding oin-hand, ounattached, as well as
the description of the motion (e.g., ”from left to right”). On the
low level, given the response from the high-level reasoning and
the visual observation st(k) at the beginning of k-th subtask (at
the time step t(k)), the VLM is queried again with a different
prompt to produce the affordance representation defined in
Sec. II-A. In the remainder of this section, we will describe
the input formats, output formats, and prompt designs that we
use to instantiate this method. Further details, including the
complete prompts, can be found in the Appendix C.

High-level reasoning. Given the initial observation s0 and
the language description l, we first query the VLM M with
the language prompt ptask to produce the response yhigh:

yhigh = M([phigh, l, s0]). (1)

The representation yhigh is a string that contains structured
information for the K subtasks that the VLM infers are needed
to solve the task. We design the prompt so as to require the
VLM to produce ytask as a list of dictionaries. As shown in
Fig. 2, each dictionary contains the language description of
a subtask (e.g., “Wipe the snack package to the right side of
the table using the broom.”), as well as detailed information
to facilitate motion generation, including the description of
oin-hand (e.g., “broom”), the object name of ounattached (e.g.,
“snack package”), and the description of the motion (e.g.,
“from left to right”). This high-level plan will be used as

an intermediate result for producing the detailed affordance
representation through the low-level reasoning with the VLM.

Low-level reasoning. Next, we prompt the VLM once again
to produce the affordance representation defined in Sec. II-A as
yklow, conditioning on the high-level representation yhigh and the
visual observation st(k) at the beginning of the k-th subtask.
Instead of directly predicting 3D coordinates on 2D images,
which is challenging and even ill-defined, we query the VLM
to output 2D coordinates on the images and deproject them
back to the 3D space. The three keypoints xgrasp, xfunction and
xtarget are defined on the object surface, and thus we can
compute the 3D coordinates using the corresponding depth
value of the 2D location based on the RGB image and camera
parameters. For the waypoints in free space, we query the
VLM to predict the desired height in text. To produce such an
affordance representation ykmotion, we query the VLM again by

yklow = M([plow, y
k
task, f(st(k))]), (2)

where ykhigh is the substring corresponding to the k-th subtask
extracted from yhigh, and f(·) is a function that process the
raw visual observation st(k). We will explain the motivation
and detailed implementation of f(·) in the next section and
Appendix C. Through our ablation study in Appendix D,
the hierarchical prompting strategy is essential for VLM to
successfully perform the affordance reasoning for solving the
tasks.

C. Mark-Based Visual Prompting
To perform the low-level reasoning mentioned in the pre-

vious section, we need the VLM to generate keypoints and
waypoints on 2D images in order to execute a specific motion
for a subtask. Since VLMs are better at multiple-choice
problems than directly producing continuous-valued locations,
we employ a mark-based visual prompting strategy to extract
the desired output from VLMs, which we will describe in this
subsection.



Table Wiping Watch Cleaning Gift Preparation Laptop Packing

Subtask I Subtask II Subtask I Subtask II Subtask I Subtask II Subtask I Subtask II
Methods
Code-as-Policies [25] 0.7 0.6 0.6 1.0 1.0 0.7 0.4 0.8
VoxPoser [17] 0.6 0 0.6 0.8 1.0 0.6 0.5 0.8
MOKA (Ours) 0.6 0.6 0.7 1.0 1.0 0.7 0.5 0.8

TABLE I: Success rate of our method and baselines. Across 4 tasks, MOKA consistently achieves superior performances.

Inspired by Yang et al. [52], MOKA uses a set of marks as
visual prompts to enable VLM to apply its reasoning capability
to predict the point-based affordance representation as shown
in Fig. 2. Consisting of dots, grids, and text notations annotated
on the image observation, these marks play an important role
in the reasoning process. Proposed by open-vocabulary object
detection and segmentation algorithms, these marks facilitate
visual reasoning by encouraging the VLM to attend to the
target objects and other task-relevant information in the image.
We annotate marks as candidate parts and regions for the VLM
to choose the points from, converting the original problem of
directly generating coordinates into multiple-choice questions,
which is usually more tractable for existing VLMs.

To select keypoints, which are defined on the in-hand
object oin-hand and the unattached object ounattached suggested
by the high-level reasoning in Sec. II-B, we propose and
plot candidate keypoints on these objects. Given the names of
oin-hand and ounattached, we first segment these two objects using
GroundedSAM [43], which combines GroundingDINO [27]
and SAM [58] to extract segmentation masks of objects
specified by a text prompt. After we obtain the segmentation
masks of oin-hand and ounattached, we perform farthest point
sampling [37] on the object contour to obtain K boundary
points. Together with its geometric center, and overlay the
K + 1 candidate keypoints on each object. Each candidate
keypoint is assigned an index, which is annotated next to it
as a reference. To avoid confusion, we use different colors
for candidate keypoints on oin-hand and ounattached and use the
caption in the format of Pi and Qj respectively, where i and
j are integers. More implementation details can be found in
Appendix C-B.

Selecting waypoints in free space involves searching over a
much larger region. Instead of directly sampling points in the
entire workspace, we divide the observed RGB image into an
M⇥n grid, where m and n are integers. Both m and n are set
to 5 for our evaluation tasks. The VLM is prompted to choose
the tiles in which the pre-contact and post-contact keypoints
are supposed to locate in and then the exact waypoints are
sampled uniformly within the tile. For this purpose, we overlay
the grid along with the name of each tile on the image. The
tile names follow chess notation, which uses letters to specify
the columns and integers for the rows.

III. EXPERIMENTS

A. Experimental Setup
We compare MOKA with Code-as-Policies [25] and Vox-

Poser [17], two baselines that also enable zero-shot execu-
tion of open-vocabulary tasks:. Code-as-Policies provides a

framework for language model-generated programs executed
on robotic systems by prompting with code examples. For a
fair comparison, we provide the two baselines with the task
description in the code comments, with an additional 40 lines
of code prompts providing example usage, as in the original
implementation [25]. Similarly, VoxPoser [17] also provides
code examples to large language models to build a 3D voxel
map of value functions. For VoxPoser, we reuse the example
prompts and planning pipeline in the original implementation,
and use the same hyper-parameters to create the voxel value
map. For both baselines, we only adapt the perception modules
for fair comparisons, while retaining the functionality of the
other components.

B. Evaluation

Our quantitative evaluation results across 4 tasks are il-
lustrated in Tab. I. For each task, we report the number
of successes out of 10 trials. As shown in the the table,
MOKA achieves state-of-the-art performance at each subtask
of the 4 tasks (totally 8 subtasks), with consistent improve-
ments using in-context learning. On most of the tasks, Vox-
Poser [17] has similar performance with MOKA (zero-shot),
except for subtask 2 of table wiping (which is a tool-use
task). Additionally, the task success rates can be sensitive
to the resolution of the voxel map, which requires some
hyperparameter tuning. Unlike the baselines, MOKA can work
well without example prompts. For more qualitative results,
please refer to Appendix D-A.

IV. CONCLUSION AND DISCUSSION

In this paper, we proposed MOKA, a simple and effec-
tive visual prompting method that leverages VLMs for robot
manipulation. By representing manipulation tasks with point-
based affordances, we convert the motion generation process
to a visual question-answering problem that VLMs can solve.
MOKA provides a general and flexible framework that can
intuitively and effectively harness VLM to generate point-
based motion for a wide range of open-vocabulary tasks, while
preserving the visual reasoning capabilities of VLMs. Our
experiments demonstrate the effectiveness and robustness of
MOKA across multiple tasks in both zero-shot and in-context
learning manners. As far as we know, MOKA is the very first
method that leverages visual prompting on VLMs for open-
vocabulary robot manipulation.
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