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Abstract

State-of-the-art machine learning models can be vulnerable to very small input
perturbations that are adversarially constructed. Adversarial training is an effective
approach to defend against it. Formulated as a min-max problem, it searches for
the best solution when the training data were corrupted by the worst-case attacks.
Linear models are among the simple models where vulnerabilities can be observed
and are the focus of our study. In this case, adversarial training leads to a convex
optimization problem which can be formulated as the minimization of a finite sum.
We provide a comparative analysis between the solution of adversarial training
in linear regression and other regularization methods. Our main findings are that:
(A) Adversarial training yields the minimum-norm interpolating solution in the
overparameterized regime (more parameters than data), as long as the maximum
disturbance radius is smaller than a threshold. And, conversely, the minimum-
norm interpolator is the solution to adversarial training with a given radius. (B)
Adversarial training can be equivalent to parameter shrinking methods (ridge
regression and Lasso). This happens in the underparametrized region, for an
appropriate choice of adversarial radius and zero-mean symmetrically distributed
covariates. (C) For ℓ∞-adversarial training—as in square-root Lasso—the choice
of adversarial radius for optimal bounds does not depend on the additive noise
variance. We confirm our theoretical findings with numerical examples.

1 Introduction

Adversarial attacks generated striking examples of the brittleness of modern machine learning. The
framework considers inputs contaminated with disturbances deliberately chosen to maximize the
model error and, even for small disturbances, can cause a substantial performance drop in otherwise
state-of-the-art models [1]–[6]. Adversarial training [7] is one of the most effective approaches for
deep learning models to defend against adversarial attacks [7]–[9]. It considers training models on
samples that have been modified by an adversary, with the goal of obtaining a model that will be more
robust when faced with new adversarially perturbed samples. The training procedure is formulated as
a min-max problem, searching for the best solution to the worst-case attacks.

Despite its success in producing state-of-the-art results in adversarial defense benchmarks [10], there
are still major challenges in using adversarial training. The min-max problem is a hard optimization
problem to solve and it is still an open question how to solve it efficiently. Moreover, these methods
still produce large errors in new adversarially disturbed test points, often much larger than the
adversarial error obtained during training.
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(b) ℓ∞-adversarial training

Figure 1: Regularization paths estimated in the Diabetes dataset [18]. Regularization paths are plots
showing the coefficient estimates for varying regularization parameter λ or, in adversarial training,
perturbation radius δ. This type of plot is commonly used in analysing Lasso and variants, i.e. [18],
[19]. On the horizontal axis, we give the ℓ1-norm of the estimated parameter. On the vertical axis,
the coefficients obtained for each method. The dataset has p = 10 baseline variables (age, sex, body
mass index, average blood pressure, and six blood serum measurements), which were obtained for
n = 442 diabetes patients. The model output is a quantitative measure of the disease progression.
See Appendix B.5 for the relationship between ∥β̂∥1 and δ and λ.

To get insight into adversarial training and try to tackle these challenges, a growing body of work [11]–
[15] studies fundamental properties of adversarial attacks and adversarial training in linear models.
Linear models allow for analytical analysis while still reproducing phenomena observed in state-of-
the-art models. Consider a training dataset {(xi, yi)}ni=1 consisting of n data points of dimension
Rp × R, adversarial training in linear regression corresponds to minimizing (in β ∈ Rp)

Radv(β; δ, ∥ · ∥) = 1

n

n∑
i=1

max
∥∆xi∥≤δ

|yi − (xi +∆xi)
⊤β|2. (1)

Restricting the analysis to linear models allows for a simplified analysis: the problem is convex and the
next proposition allows us to express Radv in terms of the dual norm, ∥β∥∗ = sup∥x∥≤1 |β

⊤x|.

Proposition 1 (Dual formulation). Let ∥ · ∥∗ be the dual norm of ∥ · ∥, then

Radv(β; δ, ∥ · ∥) = 1

n

n∑
i=1

(
|yi − x⊤

i β|+ δ∥β∥∗
)2

. (2)

This simple reformulation removes one of the major challenges: it removes the inner optimization
problem and yields a model that is more amenable to analysis. Similar reformulations can be obtained
for classification. This simplification made the analysis of adversarial attacks in linear models fruitful
to get insights into the properties of adversarial training and examples. From giving a counterexample
to the idea that deep neural networks’ vulnerabilities to adversarial attacks were caused by their
nonlinearity [2], [5], [16], to help explaining how implicitly regularized overparametrized models can
be robust, see [17].

In this paper, we further explore this reformulation and provide a thorough characterization of
adversarial training in linear regression problems. We do this in a comparative fashion, establishing
when the solution of adversarially-trained linear models coincides with the solution of traditional
regularization methods. For instance, a simple inspection of (2) hints at the similarities with other
parameter shrinking methods. This similarity is confirmed in Figure 1,1 which illustrates how the
solutions of ℓ∞-adversarial training can be almost indistinguishable from Lasso. We explain the
similarities and differences with other methods. Our contributions are:

A. In the overparametrized region, we prove that the minimum-norm interpolator is the solution to
adversarial training for δ smaller than a certain threshold (Section 4).

B. We establish conditions under which the solution coincides with Lasso and ridge regression,
respectively (Section 5).

C. We show that adversarial training can be framed in the robust regression framework, and use
it to establish connections with the square-root Lasso. We show that adversarial training (like
the square-root Lasso) can obtain bounds on the prediction error that do not require the noise
variance to be known (Section 6).

D. We prove a more general version of Proposition 1, valid for general lower-semicontinuous and
convex loss functions (Section 8).

1Code for reproducing the figures is available in: https://github.com/antonior92/advtrain-linreg
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2 Related work

Generalization of minimum-norm interpolators. The study of minimum-norm interpolators played
a key role in explaining why overparametrized models generalize—an important open question for
which traditional theory failed to explain empirical results [20]—and for which significant progress
has been made over the past few years [21]. These estimates provide a simple scenario where we can
interpolate noisy data and still generalize well. Minimum-norm interpolators have indeed been quite
a fruitful setting to study the phenomenon of benign overfitting, i.e., when the model interpolates
the training data but still generalizes well to new samples. In [22] the authors use these estimates
to prove consistency, a development that later had several extensions [23]. From another angle,
in a series of insightful papers, Belkin et al. [24], [25] explore the phenomena of double-descent:
where a double-descent curve subsumes the textbook U-shaped bias–variance trade-off curve, with a
second decrease in the error occurring beyond the point where the model has reached the capacity of
interpolating the training data. Interestingly, minimum-norm interpolators are also basic scenarios for
observing this phenomena [24]–[26]. Our research connects the research on robustness to adversarial
attacks to the study of generalization of minimum-norm interpolators.

Adversarial training in linear models. The generalization of adversarial attacks in linear models is
well-studied. Tsipras et al. [16] and Ilyas et al. [5] use linear models to explain the conflict between
robustness and high-performance models observed in neural networks; Ribeiro et al. [17] use these
models to show how overparameterization affects robustness to perturbations; Taheri et al. [11]
derive asymptotics for adversarial training in binary classification. Dan et al. [27] and Dobriban et al.
[28] study adversarial robustness in Gaussian classification problems. Javanmard et al. [12] provide
asymptotics for adversarial training in linear regression, Javanmard et al. [29] in classification settings
and Hassani et al. [13] for random feature regressions. Min et al. [14] investigate how the dataset size
affects adversarial performance. Yin et al. [15] provide an analysis of ℓ∞-attack on linear classifiers
based on Rademacher complexity. These works, however, focus on the generalization properties. We
provide a fresh perspective on the problem by clarifying the connection of adversarial training to
other regularization methods.

Robust regression and square-root Lasso. The properties of Lasso [30] for recovering sparse
parameters in noisy settings have been extensively studied, and bounds on the parameter estimation
error are well-known [31]. However, these results rely on choices of regularization parameters
that depend on the variance of additive noise. Square-root Lasso [32] was proposed to circumvent
this difficulty. We show that for ℓ∞-adversarial, similarly to the square-root Lasso, bounds can
be obtained with the adversarial radius set without knowledge about the variance of the additive
noise. We also show that both methods fit into the robust regression framework [33]. The work on
robust classification [34] is also connected to our work, there they show that certain robust support
vector machines are equivalent to SVM. Our results for classification in Section 8 can be viewed as a
generalization of their Theorem 3.

Dual formulation. Variations of Proposition 1 are presented in [12], [17], [35]. Equivalent results in
the context of classification are presented in [2], [15]. We use the reformulation extensively in our
developments and also present a generalized statement for it.

3 Background

Different estimators will be relevant to our developments and will be compared in this paper.

Adversarially-trained linear regression. Our main object of study is the minimization of

Radv(β; δ, ∥ · ∥) = 1

n

n∑
i=1

max
∥∆xi∥≤δ

|yi − (xi +∆xi)
⊤β|2

(a)
=

1

n

n∑
i=1

(
|yi − x⊤

i β|+ δ∥β∥∗
)2

,

where equality (a) follows from Proposition 1. We use ∥β∥∗ = sup∥x∥≤1 |β
⊤x| to denote the dual

norm of ∥ · ∥. We highlight that the ℓ2-norm, ∥β∥2 =
∑

i |βi|2 is dual to itself. The ℓ1-norm,
∥β∥1 =

∑
i |βi|, is the dual norm of the ℓ∞-norm, ∥β∥∞ = maxi |βi|. When the adversarial

disturbances are constrained to the ℓp ball: {∆x : ∥∆x∥p ≤ δ} we will call it ℓp-adversarial training.
Our focus will be on ℓ∞ and ℓ2-adversarial training.

Parameter-shrinking methods. Parameter-shrinking methods explicitly penalize large values of β.
Regression methods that involve shrinkage include Lasso [30] and ridge regression, which minimize,
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respectively

Rlasso(β;λ) =
1

n

n∑
i=1

|yi − x⊤
i β|2 + λ∥β∥1 and Rridge(β;λ) =

1

n

n∑
i=1

|yi − xT
i β|2 + λ∥β∥22.

Square-root Lasso: Setting (with guarantees) the Lasso regularization parameters requires knowledge
about the variance of the noise. Square-root Lasso [32] circumvent this difficulty by minimizing:

R
√

lasso(β, λ) =
√

1
n

∑n
i=1|yi − x⊤

i β|2 + λ∥β∥1. (3)

Minimum-norm interpolator: Let X ∈ Rn×p denote the matrix of stacked vectors xi and y ∈ Rn

is the vector of stacked outputs. When matrix X has full row rank, the linear system Xβ = y has
multiple solutions. In this case the minimum ∥ · ∥∗-norm interpolator is the solution of

min
β

∥β∥∗ subject to Xβ = y. (4)

4 Adversarial training in the overparametrized regime

Our first contribution is to provide conditions for when the minimum-norm interpolator is equivalent
to adversarial training in the overparametrized case (we will assume that rank(X) = n and n < p).
On the one hand, our result gives further insight into adversarial training. On the other hand, it allows
us to see minimum-norm interpolators as a solution of the adversarial training problem.

Theorem 1. Assume the matrix X ∈ Rn×p to have full row rank, let α̂ denote the solution of
the dual problem max∥α⊤X∥≤1 α

⊤y, and δ̄ denote the threshold

δ̄ = (n∥α̂∥∞)
−1

. (5)

The minimum ∥ · ∥∗-norm interpolator minimizes the adversarial risk Radv(β, δ, ∥ · ∥) if and
only if δ ∈ (0, δ̄].

Remark 1 (Bounds on δ̄). The theorem allows us to directly compute δ̄, but it does require solving the
dual problem to the minimum-norm solution. In Appendix A.3, we provide bounds on δ̄ that avoid
solving the optimization problem. For instance, for ℓ∞-adversarial attacks, we have the following
bounds depending on the singular values of X: 1√

pσn(X) ≤ nδ̄ ≤ √
pσ1(X). Where σ1 and σn

denote the largest and smallest positive singular values of X , respectively.
Proof of Theorem 1. Let β̂ and α̂ be the minimum ∥ · ∥∗-norm solution and the solution of the
associated dual problem. Throughout the proof we denote Radv(β) = Radv(β; δ, ∥ · ∥), dropping the
last two arguments. The subgradient of Radv(β) evaluated at β̂ is given by2

∂Radv(β̂) =
2δ

n

n∑
i=1

∥β̂∥∗(ρixi + δ∂∥β̂∥∗), (6)

for any ρ = (ρ1, . . . , ρn) ∈ Rn that satisfies ∥ρ∥∞ ≤ 1. We have that any element of ∂∥β̂∥∗ can be
written as X⊤α̂ (we prove that in Lemma 1 in the Appendix). Hence, we can rewrite

∂Radv(β̂) =
2δ

n

n∑
i=1

∥β̂∥∗(ρixi + δXT α̂) = 2δ∥β̂∥∗
(X⊤ρ

n
+ δX⊤α̂

)
.

If δ ≤ δ̄ = 1/(n∥α̂∥∞), we can take ρ = −nδα̂ and the subderivative contains zero. On the other
hand, if δ > 1/(n∥α̂∥∞) then

(
X⊤ρ
n + δX⊤α̂

)
is not zero for ∥ρ∥∞ ≤ 1.

The minimum ℓ1-norm interpolator is well studied in the context of ‘basis pursuit’ and allows the
recovery of low-dimensional representations in sparse signals [39]. The interest in the minimum
ℓ2-norm is more recent. It played an important role in studying the interplay between interpolation
and generalization, being used in many recent papers where the double-descent [24], [26] and the
benign overfitting phenomena [22] were observed.

2The subgradient of a function ω : Rp → R is the set:
∂ω(β0) = {v ∈ Rp : ω(β)− ω(β0) ≥ v(β − β0), ∀β ∈ Rp}.

See [36]–[38] for properties. We use ∂∥β̂∥∗ to denote the subgradient of ω(β) = ∥β∥∗ evaluated at β̂.
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Figure 2: Threshold δ̄ vs. number of fea-
tures. We fix n = 60 and show the value of δ̄
(defined in (5)) as a function of the number of
features p. The dotted lines give the reference
δtest = 0.01E [∥x∥] for comparison.

Theorem 1 gives a new perspective on the robust-
ness of the minimum-norm interpolator, allow-
ing us to see it as a solution to adversarial train-
ing with adversarial radius δ̄. Figure 2 shows
that the radius δ̄ of the adversarial training prob-
lem corresponding to the minimum-norm inter-
polator increases with the ratio p/n. It is natural
to expect that training with a larger radius would
yield more adversarially robust models on new
test points. The next result formalizes this intu-
ition by establishing an upper bound on the ro-
bustness gap: the difference between the square-
root of the expected adversarial squared error
Radv

∗ (β; δtest, ∥ · ∥) = Ey0,x0

[
max∥∆xi∥≤δtest(y0 − (x0 +∆x0)

⊤β)2
]

and the expected squared
error R∗(β) = Ey0,x0

[
(y0 − x⊤

0 β)
2
]
. The upper bound depends on the in-training adversarial error

and on the ratio δtest
δ̄

which are quantities that you can directly compute.

Proposition 2. Assume X to have full row rank and let β̂ be the minimum ∥ · ∥∗-norm
interpolator, than√

Radv
∗ (β̂; δtest, ∥ · ∥)−

√
R∗(β̂) ≤

δtest
δ̄

√
Radv(β̂; δ̄, ∥ · ∥). (7)

Remark 2. The example in Figure 2 is one case where adding more features makes the minimum-
norm interpolator more robust. Examples showing the opposite and illustrating that adding more
features to linear models can make them less adversarially robust are abound in the literature [16],
[17]. Indeed, examples that consider the minimum ℓ2-interpolator subject to ℓ∞-adversarial attacks
during test-time result in this scenario, as discussed in [17]. Proposition 7 in the Appendix is the
equivalent of Proposition 2 for this case (mismatched norms in train and test). There, the upper bound
grows with

√
p, which explains the vulnerability in this scenario.

Remark 3. A pitfall of analyzing the minimum-norm solution properties in linear models is that
it requires the analysis of nested problems: different choices of p require different covariates x.
The random projection model proposed by Bach [40] avoids this pitfall by considering the input x
is fixed, but only a projected version of it Sx is observed, with the number of parameters being
estimated changing with the number of projections observed. Adversarially training this model
consists in finding a parameter β̂ that minimizes: 1

n

∑n
i=1 max∥∆xi∥≤δ |yi − (xi +∆xi)

⊤S⊤β|2.
We generalize our results so that we can also study this case (See Appendix A.4).

5 Adversarial training and parameter-shrinking methods

Theorem 1 stated an equivalence with the minimum-norm solution when δ is small. The next result
applies to the other extreme of the spectrum, characterizing the case when δ is large.

Proposition 3 (Zero solution of adversarial training). The zero solution β̂ = 0 minimizes the
adversarial training if and only if δ ≥ ∥X⊤y∥

∥y∥1
.

In the remaining of this section, we will characterize the solution between these two extremes. We
compare adversarial training to Lasso and ridge regression.

5.1 Relation to Lasso and ridge regression

Proposition 1 makes it clear by inspection that adversarial training is similar to other well-known
parameter-shrinking regularization methods. Indeed, for ℓ∞-adversarial attacks, the cost function
Radv(β; δ, ∥ · ∥∞) in its dual form is remarkably similar to Lasso [30] and Radv(β; δ, ∥ · ∥2), to
ridge regression (the cost functions were presented in Section 3). In Figures 1 and 3, we show
the regularization paths of these methods (the dataset is described in [18]). We observe that ℓ∞-
adversarial training produces sparse solutions and that Lasso and ℓ∞-adversarial training have
extremely similar regularization paths. There are also striking similarities between ridge regression
and ℓ2-adversarial training, with the notable difference that for large δ the solution of ℓ2-adversarial
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Figure 3: Regularization paths in the Diabetes dataset [18] (see dataset description in Figure 1). On
the horizontal axis, we give the inverse of the regularization parameter (in log scale). On the vertical
axis, the coefficients.

training is zero (which is explained by Proposition 3). The next proposition justifies why we can
observe such similarities in part of the regularization path. It applies to data that has been normalized
and for positive responses y (as it is the case in our example).

Proposition 4. Assume the output is positive and the data is normalized: y ≥ 0 and X⊤1 = 0.
The solution of adversarial training β̂, for ∥β̂∥∗ ≤ mini

|yi|
∥xi∥ is also the solution of

min
β

1

n

n∑
i=1

|yi − x⊤
i β|2 +

(
δ∥β∥∗ + 1

n∥y∥1
)2
.

The proposition is proved in Appendix B. It establishes the equivalence between ℓ∞-adversarial
training and Lasso (even though there is not a closed-formula expression for the map between δ and
λ′). Indeed, under the assumptions of the propositions, β̂ is the solution of ℓ∞-adversarial problem
only if it is the solution of

min
β

1

n

n∑
i=1

(yi − x⊤
i β) + λ′||β||1, (8)

for some λ′. We can prove this statement using the proposition: under the appropriate assumptions,
the ℓ∞-adversarial problem solution is also a solution to the problem

min
β

1

n

n∑
i=1

(yi − x⊤
i β)

2 +
(
δ||β||1 +

1

n
||y||1

)2
,

which in turn, is the Lagrangian formulation of the following constrained optimization problem

min
β

1

n

n∑
i=1

(yi − x⊤
i β)

2 subject to
(
δ||β||1 +

1

n
||y||1

)2
≤ ∆,

for some ∆ ≥ 1
n ||y||1. The constraint can be rewritten as δ||β||1 ≤

√
∆− 1

n ||y||1. And, the result
follows because (8) is the Lagrangian formulation of this modified problem. A similar reasoning
could be used to connect the result for ℓ2-adversarial training with ridge regression.

More generally, even when the condition on β̂ is not satisfied and if y is negative, we show in Ap-
pendix B that for zero-mean and symmetrically distributed covariates, i.e., E [x] = 0 and (x ∼ −x),
adversarial training has approximately the same solution as

min
β

1

n

n∑
i=1

|yi − x⊤
i β|2 +

(
δ∥β∥∗ + 1

ns
⊤y
)2
,

for s = sign(y −X⊤β̂). This explains the similarities in the regularization paths.

5.2 Transition into the interpolation regime

The discussion above hints at the similarities between adversarial training and parameter-shrinking
methods. Interestingly, Lasso and ridge regression are also connected to minimum-norm interpolators.
The ridge regression solution converges to the minimum-norm solution as the parameter vanishes
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Figure 4: Training mean squared error vs inverse adversarial radius. Left: for ridge and ℓ2-
adversarial training. Right: for Lasso and ℓ∞-adversarial training. The error bars give the median
and the 0.25 and 0.75 quantiles from 5 realizations. The vertical black lines show δ̄ in (5). Figure S.9
(appendix) shows the test MSE. For ridge regression or Lasso (see Section 3), the x-axis should be
read as 1/λ, rather than 1/δ. We generate the data synthetically using an isotropic Gaussian feature
model (see Section 7) with n = 60 training data points and p = 200 features.

i.e., β̂
ridge

(λ) → β̂
min−ℓ2

as λ → 0+. Similarly, there is a relation between the minimum ℓ1-norm
solution and Lasso. The relation requires additional constraints because, for the overparameterized
case, Lasso does not necessarily have a unique solution. Nonetheless, it is proved in [41, Lemma 7]

that the Lasso solution by the LARS algorithm satisfies β̂
lasso

(λ) → β̂
min−ℓ1

as λ → 0+.

For a sufficiently small δ, the solution of ℓ2-adversarial training equals the minimum ℓ2-norm solution;
and, the solution of ℓ∞-adversarial training equals the minimum ℓ1-norm solution. There is a notable
difference though: while this happens only in the limit for ridge regression and Lasso, for adversarial
training this happens for all values δ smaller than the threshold δ̄. We illustrate this phenomenon next.
Unlike ridge regression and Lasso which converge towards the interpolation solution, adversarial
training goes through abrupt transitions and suddenly starts to interpolate the data. Figure 4 illustrates
this phenomenon in synthetically generated data (with isotropic Gaussian feature, see Section 7).

-2 -1 0 1 2
U

0
2
4
6
8

10

L
(U
x
)

X = 0.5
X = 1
X = 2

X = 4

Figure 5: Function L(β) for β = αx.

Intuitive explanation for abrupt transitions. To get
insight into why the abrupt transition occurs we present
the case where n = 1, i.e., the dataset has a single data
point (x, y), where y = 1 and ∥x∥2 = 1. We can write
Radv(β; δ, ∥ · ∥2) = (L(β))2, where

L(β) = |y − xTβ|+ δ∥β∥2.

The function L is necessarily minimized along the sub-
space spanned by the vector x. Now, along this line, the
function L is piecewise linear with three segments, see Figure 5. One of the three segments changes
the slope sign as δ decreases and the minimum of the function changes abruptly, thus explaining why
abrupt transitions occur.

6 Relation to robust regression and square-root Lasso

In this section we establish that both adversarial training and square-root Lasso can be integrated
into the robust regression framework. We further investigate the similarities between the methods by
analyzing the prediction error upper bounds.

Robust regression framework. Robust linear regression considers the minimization of the following
cost function

Rrobust(β;S) = max
∆∈S

∥y − (X +∆)β∥2, (9)

where the disturbance matrix ∆ is constrained to belong to the ‘disturbance set’ S . We connect robust
regression, square-root Lasso and adversarial training. The next proposition gives the equivalence
between robust regression for a row-bounded disturbance sets Rp,δ and ℓp-adversarial training, see
the appendix for the proof.
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Proposition 5. For a disturbance set with the rows bounded by δ:

Rp,δ =


−−− ∆x1 −−−

...
−−− ∆xn −−−

 : ∥∆xi∥ ≤ δ, ∀i

 ,

we have that argminβ Rrobust(β,Rp,δ) = argminβ Radv(β; δ, ∥ · ∥).

On the other hand, there is an equivalence between square-root Lasso and robust regression for
column-bounded disturbance sets C2,δ. This was established by Xu et al. [33, Theorem 1] and we
repeat it below.

Proposition 6. [33] For a disturbance set with columns bounded by δ:

C2,δ =


 ∣∣ ∣∣
ζ1 · · · ζm∣∣ ∣∣

 : ∥ζi∥2 ≤ δ, ∀i

 ,

we have that argminβ Rrobust(β; C2,δ) = argminβ R
√

lasso(β, δ).

The above discussion hints at the similarities between adversarial training and square-root Lasso,
as instances of robust regression under different constraints. Square-root Lasso minimizes
R

√
lasso(β, λ) = n−1/2∥y −Xβ∥2 + λ∥β∥1 (See Section 3). The main motivation for the square-

root Lasso is that it is a ‘pivotal’ method for sparse recovery: that is, it attains near-oracle performance
without knowledge of the variance levels to set the regularization parameter [32]. As we will show in
the next section, a similar property applies to ℓ∞-adversarial training.

Fixed-design analysis and similarities with square-root Lasso. In this section, we assume that the
data was generated as: yi = x⊤

i β
∗ + εi where β∗ is the parameter vector used to generate the data.

Under these assumptions, we can derive an upper bound for the (in-sample) prediction error:

Theorem 2. Let δ > δ∗ = 3∥X⊤ε∥∞
∥ε∥1

, the prediction error of ℓ∞-adversarial training satisfies
the bound:

1
n∥X(β̂ − β∗)∥22 ≤ 8δ∥β∗∥1

(
1
n∥ε∥1 + 10δ∥β∗∥1

)
. (10)

For comparison, we also provide the result for Lasso: (Adapted from [31, Thm. 7.13, p. 210])

Theorem 3. [31] Let λ > λ∗ = 3∥X⊤ε
n ∥∞, the prediction error of Lasso satisfies the bound:

1
n∥X(β̂ − β∗)∥22 ≤ 8λ∥β∗∥1. (11)

Without additional constraints (see Remark 5) it can be shown that for Lasso it is not possible to
improve the above bound. To satisfy this bound, however, Lasso requires knowledge of the magnitude
of the noise ε. In Theorem 3, λ∗ = 3

n∥X
⊤ε∥. Hence, if we rescale ε (i.e., ε → ηε) then a

correspondent change in magnitude follows in λ∗ (i.e., λ∗ → ηλ∗). Square-root Lasso [32] avoids
this problem and achieves a similar rate even without knowing the variance: i.e., it is a ‘pivotal’
method. Our method has similar properties and allows us to set δ without estimating the variance.
This can be seen in Theorem 2, where re-scaling ε does not alter the value of δ∗ = 3∥X

⊤ε∥/∥ε∥1

because it affects the numerator and denominator simultaneously.

For instance, if we assume ε has i.i.d. N (0, σ2) entries and that the matrix X is fixed with
maxj=1,...,m ∥xj∥∞ ≤ M . For λ ∝ Mσ

√
(log p)/n, we (with high-probability) satisfy the con-

dition in Theorem 3, obtaining: 1
n∥X(β̂ − β∗)∥22 ≲ Mσ

√
(log p)/n. For adversarial training, we can

set: δ ∝ M
√

(log p)/n, and (with high-probability) satisfy the theorem condition, obtaining the same
bound. Notice that the choice of δ is not dependent on σ. We provide a full analysis in Appendix C.3.

Remark 4 (On the relation between δ̄ and δ∗). For sufficiently large n, we have δ∗ > δ̄ in the scenario
above—the noise ε has i.i.d. normal entries N (0, σ2) and the matrix X is fixed. We can prove it by
contradiction: if δ∗ ≤ δ̄ then we could apply the bound from Theorem 2 to the minimum ℓ1-norm
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interpolator (due to Theorem 1). Hence, σ2 ≈ 1
n∥ε∥

2
2 = 1

n∥X(β̂ − β∗)∥22 ≲ Mσ
√

(log p)/n and we
can always choose a sufficiently large value of n for which the inequality is false.
Remark 5. In the original square-root Lasso paper [32], a bound is obtained for the ℓ2 parameter
distance: ∥β̂ − β∗∥22 for the case X satisfy the restricted eigenvalue condition and β∗ is sparse.
Under these more strict assumptions (restricted eigenvalue condition) we can also obtain a faster
convergence rate for the prediction error. Here we focus on the fixed-design prediction error without
additional assumptions on X . For other predictors, these other proofs follow similar steps and yield
similar requirements on λ∗, see [31, Chapter 7]. However, we leave these and other analysis (such as
variable selection consistency) of adversarial training for future work.

7 Numerical Experiments

We study five different examples. The main goal is to experimentally confirm our theoretical findings.
For each scenario, we compute and plot: train and test MSE for different choices of p, n and δ. For
comparison purposes, we also compute and plot train and test MSE for Lasso and ridge regression
and minimum-norm interpolators. Finally, in line with our discussion in Section 4, we compute
and plot δ̄ as a function of p/n. In all the numerical examples the adversarial training solution is
implemented by minimizing (2) using CVXPY [42]. The scenarios under consideration are described
below (see Appendix D for additional details)

1. Isotropic Gaussian feature model. The output is a linear combination of the features plus additive
noise: yi = x⊤

i β + ϵi, for Gaussian noise and covariates: ϵi ∼ N (0, σ2) and xi ∼ N (0, Ip).
2. Latent-space feature model [26, Section 5.4]. The features x are noisy observations of a lower-

dimensional subspace of dimension d. A vector in this latent space is represented by z ∈ Rd.
x = Wz + u. The output is a linear combination of the latent space plus noise.

3. Random Fourier features model [43]. We apply a random Fourier feature map to inputs of
the Diabetes dataset [18]. Random fourier features are obtained by the transformation xi =√

2/m cos(Wzi + b) where the entries of W and b are independently sampled. It can be seen as
a one-layer untrained neural network and approximates the Gaussian kernel feature map [43].

4. Random projection model [40]. The data is generated as in the isotropic Gaussian feature model,
but we only observe Sxi, i.e., a projection of the inputs.

5. Phenotype prediction from genotype. We illustrate our method on the Diverse MAGIC wheat
dataset [44] from the National Institute for Applied Botany. We use a subset of the genotype to
predict one of the continuous phenotypes.

Results. We experimentally corroborate Theorem 1 in all scenarios: In Figures 4 and S.8
(Appendix) we show the train MSE as we change the adversarial radius δ, confirm-
ing the abrupt transitions into the interpolation regime and also that δ̄ is the transition
point. In Figures S.9 and S.10 we show the corresponding test MSE without and in
the presence of an adversary, respectively. Interestingly, the adversarial radius that yields
the best results is not always equal to the radius δtest the model will be evaluated on.
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Figure 6: Test normalized MSE (NMSE)
in the MAGIC dataset.

Figures 2 and S.5 (Appendix) display δ̄ as a function
of the ratio p/n. We observe that δ̄/E [∥x∥] is growing
in all examples and we would still expect improved ro-
bustness in light of Proposition 2. The Random Fourier
features model is the only case where δ̄ seems to de-
crease (in absolute value). However, E [∥x∥1] is also
decreasing (and at a faster rate). Figures S.6 and S.7
give test MSE without and in the presence of an adver-
sary for the minimum-norm interpolator as a function
of the ratio p/n, confirming improved adversarial ro-
bustness as p grows.

Figure 6 provides a comparison of the test error of the
different methods under study. For Lasso, ridge and
adversarial training, we use the best δ or λ available for each method (obtained via grid search).
We note that while for p = 1000 optimally tuned Lasso and ℓ∞-adversarial training significantly
outperform the corresponding minimum ℓ1-norm interpolator. As p increases, the performance
of the three different methods becomes quite similar. It is also an example where the minimum
ℓ1-norm outperforms the minimum ℓ2-norm interpolator (for large p). In the same setup, Figure S.12
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study a choice of adversarial radius inspired by Theorem 2. We use δ ∝ ∥Xξ∥∞/∥ξ∥1 for ξ a vector
with zero-mean normal entries. We use a random ξ, since we do not know the true additive noise.
Even with this approximation, ℓ∞-adversarial training performs comparably with Lasso with the
regularization parameter set using 5-fold cross-validation doing a full search in the hyperparameter
space. The figure also provides a comparison with square-root Lasso under a similar setting.

8 Results for general loss functions

The following theorem can be used to generalize Proposition 1.

Theorem 4. Let L : R → R be a convex and lower-semicontinuous function, for every δ ≥ 0,

max
∥∆x∥≤δ

L
(
(x+∆x)⊤β

)
= max

s∈{−1,1}
L
(
x⊤β + δs∥β∥∗

)
. (12)

We can find a closed-formula expression for s∗ = argmaxs∈{−1,1} L(β⊤x + δs∥β∥∗) in many
cases of interest. For regression problems, given any non-decreasing function ℓ : R+ → R+, and
L(x⊤β) = ℓ(|x⊤β − y|). If ℓ is lower semicontinuous and convex then so will L and the result of
the theorem holds (the squared loss ℓ(z) = z2 is a special case). Then s∗ = −sign(y − x⊤β) and

max
∥∆x∥≤δ

ℓ(|(x+∆x)⊤β − y|) = ℓ(|y − x⊤β|+ δ∥β∥∗).

For classification, let y ∈ {−1, 1} and L(x⊤β) = ℓ(y(x⊤β)) where ℓ is a non-increasing function.
If ℓ is lower semicontinuous and convex then so will L and the result of the theorem holds. Then
s∗ = −y and we obtain:

max
∥∆x∥≤δ

ℓ(y((x+∆x)⊤β)) = ℓ(y(x⊤β)− δ∥β∥∗).

The above result can also be applied to unsupervised learning. In the Appendix, we illustrate how
Theorem 4 can be used for dimensionality reduction. We consider the problem of finding P
that minimizes the reconstruction error ∥x+ PP⊤x∥22 (that yields PCA algorithm) and derive an
adversarial version of it.
Remark 6. Over this paper we consider x,β ∈ Rp, but Theorem 4 holds generaly for x ∈ X a vector
in a Banach space endowed with norm ∥ · ∥ and β ∈ X ∗ a continuous linear map β : X → R. Just
define x⊤β := β(x) and take ∥ · ∥∗ to be the norm of the dual space X ∗.

9 Conclusion

We study adversarial training in linear regression. Adversarial training allows us to depart from
the traditional regularization setting where we can decompose the loss and the regularization terms,
minimizing 1

n

∑n
i=0 ℓ(x

⊤
i β, yi) + Ω(β) for some penalization function Ω. We show how it provides

new insights into the minimum-norm interpolator, by proving a new equivalence between the two
methods (Section 4). While adversarially-trained linear regression arrives at similar solutions to
parameter shrinking methods in some scenarios (Section 5), it also has some advantages, for instance,
the adversarial radius might be set without knowing the noise variance (Section 6). Unlike, squared-
root Lasso it achieves this while still minimizing a sum of squared terms. We believe a natural next
step is to provide a tailored solver that can allow for efficient solutions for models with many features,
rendering adversarially-trained linear regression useful, for instance, in modeling genetics data (see
one minimal example of phenotype prediction from the genotype in Section 7).

Another interesting direction is generalizing our results to classification and nonlinear models. Indeed,
adversarial training is very often used in the context of neural networks and it is natural to be interested
in the behavior of this class of models. Our work allows for the analysis of simplified theoretical
models commonly used to study neural networks. Random Fourier feature models can be analyzed
using our theory and are they studied in the numerical examples. These models can be seen as a
simplified neural network model (one-layer neural network where only the last layer weights are
adjusted). In Appendix A.4, we provide adversarial training after linear projections, and could, for
instance, be used to analyze deep linear networks, as the ones studied in [45], [46]. Finally, Section 8
provides a result for infinite spaces, and one could attempt to use it to analyze kernel methods and
infinitely-wide neural networks [47], [48]. Overall we believe that our results provide an interesting
set of tools also for the analysis of nonlinear models, and could provide insight into the empirically
observed interplay (see [49]) between robustness and regularization in deep neural networks.
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