Published as a workshop paper at ICLR 2024

FED UP WITH COMPLEXITY: SIMPLIFYING MANY-
TASK FEDERATED LEARNING WITH NTKFEDAVG

Aashiq Muhamed, Meher Mankikar, Virginia Smith
Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

{amuhamed, mmankika, smithv}@andrew.cmu.edu

ABSTRACT

Recent work has introduced the challenging setting of many-task federated learn-
ing (MaT-FL), which considers a scenario in which each client in a federated net-
work may solve a separate learning task. Unfortunately, existing methods address-
ing MaT-FL, such as dynamic client grouping and split FL, increase privacy risks
and computational demands by maintaining separate models for each client or
task on the server. We introduce a novel baseline for MaT-FL, NTKFedAvg, that
leverages a unified multi-task model on the server and the Neural Tangent Kernel
(NTK) linearization to accommodate task heterogeneity without client or task spe-
cific model adjustments on the server. This approach enhances privacy, reduces
complexity, and improves resistance to various threats. Our evaluations on two
MaT-FL benchmarks demonstrate that NTKFedAvg surpasses FedAvg in mloU
and accuracy, achieves faster convergence, is competitive with existing baselines,
and excels in task unlearning in fewer rounds. This work not only proposes a
more efficient and potentially privacy-preserving baseline for MaT-FL but also
contributes to the understanding of task composition and weight disentanglement
in FL, offering insights into the design of FL algorithms for environments charac-
terized by significant task diversity.

1 INTRODUCTION

In real-world cross-silo federated learning, the assumption that all clients work on the same set of
tasks is often unrealistic. This is due to varying data distributions among clients and the inherent
heterogeneity in their tasks. Such diversity is natural because (1) the process of obtaining task labels
is often laborious and costly, limiting clients’ access to all labels, and (2) in many real-world situa-
tions, clients typically specialize in specific tasks. For instance, self-driving car companies usually
use either LIDAR or stereo cameras to gather sensing data. LIDAR data is better for depth percep-
tion, while stereo camera data excels in edge detection and object detection. Consequently, these
companies might focus on fine-tuning tasks that are more easily solved with the type of data they
have, exemplifying task heterogeneity. This phenomenon, known as fask heterogeneity, represents
a novel and under-explored form of heterogeneity in federated learning (FL), adding complexity
to the learning process. Many-task federated learning (MaT-FL), as outlined by |Ca1 et al| (2023),
addresses FL under task heterogeneity by enabling local clients to collaborate effectively, despite
specializing in different tasks. This approach can lead to broader data coverage and more efficient
utilization.

While Federated Averaging (FedAvg) (McMahan et al., [2016) has served as a foundational algo-
rithm in FL, its efficacy diminishes in MaT-FL, where the nonlinear characteristics of modern deep-
learning networks and task interference significantly influence performance (Cai et al., [2023). Ex-
isting methods for MaT-FL include a dynamic grouping mechanism, allowing each client to select
a similar neighborhood of clients for subsequent adaptive aggregation (Cai et al., 2023; Lu et al.,
2023)), and split FL, wherein the server sustains numerous unique models, allocating one per client
(Chen et al.| 2023). These strategies necessitate the server managing individual models for each
client or task, thereby heightening the risk of privacy breaches for any given client and amplifying

Published as a workshop paper at ICLR 2024

the complexity of implementing secure aggregation. Furthermore, they augment both storage and
computational demands on the server.

In this work, we propose a new baseline for MaT-FL that involves the server maintaining a single
multi-task model, as opposed to separate models for each client or task. Additionally, our method
avoids any form of clustering or aggregation that necessitates the server to store client-specific
weights. While our approach does not formally quantify privacy improvements using notions such
as differential privacy, it facilitates secure aggregation and potentially provides better resistance to
threats like membership inference, model inversion, and attribute inference by operating with a uni-
fied model architecture. As FedAvg is ineffective in MaT-FL scenarios, we draw inspiration from
the model merging literature, specifically the concept of task arithmetic (Ilharco et al.l[2021)). This
concept involves manipulating task vectors within the weight space of a pre-trained model to en-
hance performance on specific tasks. Our approach adapts the idea of task vectors to the sequential
training dynamics of FL, in contrast to the one-shot model merging techniques found in the litera-
ture. We introduce a novel technique that integrates Neural Tangent Kernel (NTK) linearization with
task vectors in a federated aggregation framework, called NTKFedAvg. This technique modifies the
federated training behavior of deep neural networks, promoting better weight disentanglement and
proving exceptionally effective in environments characterized by significant task heterogeneity.

Our empirical evaluations on two MaT-FL benchmarks reveal that NTKFedAvg not only outper-
forms FedAvg but is also competitive with other MaT-FL baselines. Specifically, NTKFedAvg
achieves an 8% higher mloU and a 6% greater accuracy compared to FedAvg on the Pascal-Context
and Clip datasets, respectively, in less than 10 rounds. Furthermore, NTKFedAvg demonstrates
an enhanced ability for client task unlearning, effectively reducing performance on a specified task
(MNIST) to zero within four rounds while maintaining performance on other tasks. The contribu-
tions of our work include:

e We propose a new baseline for MaT-FL where a single multi-task model is maintained by the
server to potentially enhance privacy. This is supported by our FL algorithm, NTKFedAvg, de-
signed to promote weight disentanglement and improve task composition.

e Across two MaT-FL benchmarks, we show that NTKFedAvg outperforms FedAvg in terms of
communication efficiency and convergence speed, and is competitive with existing MaT-FL base-
lines. Additionally, it excels at task unlearning, requiring fewer communication rounds for effective
unlearning compared to FedAvg.

e We explore the impact of key design decisions within our framework through ablations, focusing
on local work, linearization strategies, and proximal losses, to refine our understanding of MaT-FL.

2 METHODOLOGY

2.1 MANY TASK FEDERATED LEARNING

Cluster Model Aggregate and Update
Updates saved models

(Client 1 Client K/T Client K/T +1 ClientK
Task 1 Task 1 Task2 TaskT

[Head] [Head | [Head] [Head |

‘ Backbone ‘ ‘ Backbone

@ || B

L Local Dataset | Local Dataset K /T Local Dataset K/7 + 1 Local Dataset K

‘ Backbone

Figure 1: (Left) Existing works in MaT-FL often store a server-side model per task/client, which is
inefficient and susceptible to model inversion attacks. (Right) In our approach NTKFedAvg, clients
communicate task vectors which are aggregated at the server to maintain a single global model. This
approach enhances efficiency and security.

Many-Task Federated Learning (MaT-FL) is a recently proposed federated learning setting designed
to address task heterogeneity. In this setting, local clients need to collaborate effectively despite be-

Published as a workshop paper at ICLR 2024

ing specialized in different tasks (Cai et al.,[2023)). We denote an MaT-FL system with K total clients
and T tasks, where each client specializes in one task ¢ from the set of total tasks ¢1,%s,--- ,¢7. In
the existing body of work on MaT-FL, the server maintains a distinct model for each task, ¢ € [T,
(Cai et al.| [2023)) or a distinct, general backbone for each client, i € [K] (Chen et all [2023), as
illustrated in Figure [1| (Left). The server employs weight aggregation strategies such as dynamic
grouping and adaptive aggregation to update these task-specific models and then communicates the
updated model back to the client performing that task. However, dynamic grouping and maintaining
task-specific models on the server increase the risk of privacy attacks. Managing separate models
for each task or client amplifies the system’s susceptibility to privacy breaches. Model inversion at-
tacks (Shokri et al.| 2016)), membership inference attacks (Jia & Gong}[2018]), and attribute inference
attacks (Fredrikson et al., 2015) become more feasible when models are not securely aggregated, as
each model’s fine-tuned weights to its unique dataset can provide adversaries with more direct clues
about the underlying data.

In this work, we revisit the question of whether it is necessary to maintain a separate model for
each task on the server and propose a novel baseline in which the server maintains a single multi-
task model, rather than individual models for each task or client. This configuration is illustrated
in Figure |1| (Right). After local training, each client ¢ generates a task vector by calculating the
difference between the checkpoint at the start of the round and the fine-tuned checkpoint, and then
communicates this difference to the server. The server aggregates the task vectors from all clients
and updates its single central multi-task model accordingly. This method offers additional protection
against privacy attacks. By foregoing dynamic grouping and adaptive aggregation, we enable the
implementation of secure aggregation for the task vectors of clients, thus concealing the contribu-
tions of individual clients. Dynamic grouping, on the other hand, can expose the weights of clients
in smaller clusters and may also reveal the identities of cluster centers. In addition to privacy ben-
efits, employing a single server model simplifies model management overhead on the server side.
This approach eliminates the need for tracking and updating task-specific models, thereby reducing
computational and storage requirements. By maintaining a single multi-task model, our framework
promotes the learning of shared representations that generalize across tasks, which can mitigate the
risk of overfitting and enhance the model’s robustness to privacy attacks.

2.2 NTKFEDAVG FOR MANY TASK FEDERATED LEARNING

In the MaT-FL setting, FedAvg (McMahan et al., |2016) is not effective for optimizing a single
multi-task server model (Cai et al.| 2023)). This inefficacy is attributed to the phenomenon of weight
entanglement, where distinct directions in the model’s weight space fail to map directly to task-
specific regions within the input space. To address this challenge, our approach draws upon insights
from the domain of model merging, aiming to enhance the disentanglement of task-related features.
We demonstrate that such disentanglement not only improves the performance of task aggregation
algorithms but also facilitates the process of federated task unlearning. Our methodology incorpo-
rates task vectors and the application of neural tangent kernel (NTK) linearization techniques into
the FL paradigm, thereby proposing a more refined and effective framework for handling multiple
tasks simultaneously.

Task Vector and Task Arithmetic: A task vector 7; for task ¢ is defined as 7; = 6; — 6, where 6;
and 6 are the fine-tuned and pre-trained model weights, respectively. The network f demonstrates
task arithmetic when f(x; 6y + > ax7y) yields f(x; 00 + ay7t) for x € Dy, and f(x; 6p) otherwise,
with T' = {7, } and distinct task supports D = {D, }.

Weight Disentanglement: Weight disentanglement occurs if f(z; 00+ > cum) = > ge (5) +
go(x), with g;(x; ay7¢) and go(x) being non-zero only within their respective task supports. It was
recently shown to be a necessary condition for task arithmetic (Ortiz-Jimenez et al., 2023)).

Neural Tangent Kernel Linearization: NTK approximates a neural network’s function via a
first-order Taylor expansion around initialization weights 6, given by f(x;0) ~ f(xz;60) + (6 —
00) " Vo f(x;00), defining a linear relationship in neural tangent space. It was empirically observed
in|Ortiz-Jimenez et al.|(2023) that NTK linearization promotes weight disentanglement.

The proposed method, NTKFedAvg, is shown in Algorithm [T} This approach leverages the prin-
ciples of task vectors and NTK linearization in that each client’s model corresponding to a task,
is linearized to ensure operation within a linear regime. Client task vectors, computed post-local

Published as a workshop paper at ICLR 2024

Algorithm 1 NTK-FedAvg for Federated Learning and Federated Unlearning

1: Initialize global model weights 6, learning rate «

2: foreachroundi=1,2,..., Rdo

3: Initialize server weights for round 4, Oerver,s

4 for each client k = 1,2, ..., K in parallel do

5: Linearize local model around fgepver,; using NTK

6: Perform local training to obtain updated weights 0y, ;
7 Compute task vector 75, ; = 0; — Oserver,i
8 if task is to be negated for client & then

9: Tk = — Tk,
10: end if
11: end for
12: Aggregate task vectors: 7; = % Zszl Th.i
13: Update global model Ogerver,it1 = Oserver,i + OT;
14: Distribute Ogerver,i+1 to clients
15: end for

training at every round, are communicated to the server and are either aggregated (for federated
learning) or negated (for federated unlearning) to update the global model. In general, thanks to
the efficiency of the Jacobian-vector product implementations in most deep learning frameworks,
training and inference in linearized neural networks only require an O(1) increase in computational
costs with respect to their non-linear counterparts.

3 EXPERIMENTS AND RESULTS

3.1 DATASET, MODELS, AND METRICS

Pascal-Context setting Clients are allocated one of five tasks from Pascal-Context (Mottaghi et al.,
2014)), including semantic segmentation, saliency estimation, surface normals estimation, edge esti-
mation, and human part segmentation, employing a ResNet18 backbone and deeplab decoder (Chen
et al.|, [2017). We compare NTKFedAvg with DGAgg (Cai et al.l |2023)), where clients dynamically
group based on similarity for weight aggregation. For NTK-FedAvg, we linearize the ResNet back-
bone and keep the decoder frozen. We train using Ir 1e — 7 and 10 rounds, and evaluate with mean
Intersection over Union (mloU) or angular Root Mean Squared Error (RMSE).

CLIP setting We focus on contrastively pretrained vision-language models, using OpenCLIP (II-
harco et al.,[2021]) with a ViT-B/32 encoder, pretrained on 34B samples from DataComp-1B at 256px
resolution. Eight clients are fine-tuned on tasks defined in [I[lharco et al.|(2022); |Ortiz-Jimenez et al.
(2023)), including Cars (Krause et al.;[2013)), DTD (Cimpoi et al., 2014), SUN397 (Xiao et al., |2016)),
EuroSAT (Helber et al 2019), GTSRB (Stallkamp et al.l 2011), MNIST (LeCun, {1998)), SVHN
(Netzer et al.,|[2011)), and RESISC45 (Cheng et al.,2017)). The ViT image encoder is linearized, and
classification layers for the text encoder are frozen, only communicating CLIP backbone parame-
ters. Normalization precedes inner product operations with text embeddings, and average absolute
accuracy (%) on a server-held test set is used for evaluation.

Each model configuration is trained on 2 A6000 GPUs, in under 96 GPU hours. We aim to experi-
ment in a setting where communication is extremely limited. We evaluate the performance of these
models across rounds 1 to 10, given that FL incurs significant communication overhead, making this
range of rounds a realistic scenario for practical applications.

3.2 PASCALCONTEXT SETTING RESULTS

Fig 2] compares FedAvg and NTKFedAvg averaged across 3 tasks: semantic segmentation (Seg.),
saliency estimation (Sal.), and human parts estimation (H. Parts). In the standard setting, each client
is trained for 10 local epochs, while in the “local work™ setting, each client is trained for 50 local
epochs. All experiments were run with batch size 16 and Ir 1le — 7. We see that in the standard
setting with little local work, NTKFedAvg is comparable to FedAvg. However, when we increase

Published as a workshop paper at ICLR 2024

0.30

0.25 =& 0.25 s ST

=)
9 0.20
1S

—e— FedAvg
—e— NTKFedAvg

-o- FedAvg Local Work -e- FedAvg Local Work 2 Client
- NTKFedAvg Local Work -e- NTKFedAvg Local Work 2 Client

—e— FedAvg 2 Client
—e— NTKFedAvg 2 Client

1 2 3 4 5 6 1 8 95 10)
Round Round
Figure 2: (Left) Averaged performance of Seg., Sal., and H.Parts estimation with one client per task,
NTKFedAvg performs better than FedAvg at fewer rounds with sufficient local work. (Right) With

two clients per task, NTKFedAvg continues to perform better than FedAvg at every round.

Clients/Task Work Type =~ Method Seg. (mloU) Sal. (mloU) H. Parts (RMSE)
Standard FedAvg 0.0898 0.4022 0.1255
NTKFedAvg 0.1025 0.4253 0.1344
! Local Work DGAgg 0.1980 0.5083 0.2330
FedAvg 0.1963 0.4792 0.2183
NTKFedAvg 0.2025 0.4892 0.2337
Standard FedAvg 0.0416 0.3740 0.0959
NTKFedAvg 0.0496 0.3979 0.1023
2 Local Work DGAgg 0.1454 0.4537 0.1804
FedAvg 0.1454 0.4492 0.1681
NTKFedAvg 0.1405 0.4653 0.1910

Table 1: Max metrics of DGAgg, FedAvg, NTKFedAvg in Standard/Local Work settings on Pascal-
Context dataset over 10 epochs.

the amount of local work, NTKFedAvg is more effective at task merging, and outperforms FedAvg
from rounds 1 through 10.

Table[T]presents a comparison of DGAgg, FedAvg, and NTKFedAvg under both standard and “local
work” settings, with configurations of 1 and 2 clients per round. NTKFedAvg consistently sur-
passes FedAvg across these setups. Notably, in the local work scenario with 2 clients per task,
NTKFedAvg outperforms FedAvg in the initial rounds (1 to 7), highlighting its greater efficiency in
contexts with limited communication rounds, despite FedAvg achieving a higher maximum mloU.
Additionally, NTKFedAvg beats DGAgg in two out of three tasks in the local work setting, illus-
trating the effectiveness of linearization for task disentanglement without the need for task-specific
global models. The transition from 1 to 2 clients per task leads to a performance decline due to
a more decentralized FL environment with reduced data per client. However, NTKFedAvg shows
enhanced resilience to this decentralization effect, with a smaller performance drop (13.90%) com-
pared to FedAvg (14.67%), suggesting NTKFedAvg is more robust in MaT-FL settings.

3.3 CLIP SETTING RESULTS

Centralized and single task baselines Figure 3| (Left) illustrates the average performance of both
centralized (best model within 25 epochs) and single-task models (Ilharco et al.| [2021)) across all
tasks. The nonlinear single-task models demonstrate superior performance compared to their lin-
earized counterpart, which surpass the performance of the multi-task centralized models. Within the
centralized framework, the nonlinear model exhibited better performance than the linearized model,
a result that may be attributed to the higher representational capacity of nonlinear networks. Train-

Published as a workshop paper at ICLR 2024

3

—e— FedAvg except MNIST
..8-- NTKFedAvg except MNIST -
FedAvg MNIST
NTKFedAvg MNIST
ZeroShot MNIST
—-= ZeroShot except MNIST

—e— FedAvg local work

%) --m-- NTKFedAvg local work
Nonlinear single client

~== Linear single client

=== ZeroShot Accuracy

5 --~- Nonlinear Centralized

_______________________________________ —==Linear Centralized 4 o

Avg Top-1 Accuracy (%)
Avg Top-1 Accuracy (%)
8

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8
Round Round

Figure 3: (Left) Federated Learning: NTKFedAvg performs better than FedAvg at fewer rounds
(Right) Federated Unlearning: NTKFedAvg is more effective at unlearning than FedAvg.

ing and tuning hyperparameters in multi-task centralized models however is challenging, primarily
due to task interference, variations in task loss scales, and imbalanced batches (Crawshaw), [2020).

FedAvg vs NTKFedAvg In Appendix Fig. 4] we compare FedAvg with a = 1 against NTKFe-
dAvg over 10 rounds, training client models for a single epoch per round. Initially, NTKFedAvg
experiences a slight performance decline in the first round, particularly on the Cars task, suggesting
adaptation challenges. However, NTKFedAvg exceeds FedAvg from rounds 2 through 6, indicating
its early-stage learning advantages—critical for FL systems focused on reducing communication
costs via fast convergence.

Local work: In “local work” configuration, each client model is trained to near convergence in every
round across diverse tasks. Specifically, ”’Cars” undergoes 35 epochs of training, "DTD” 76 epochs,
“"EuroSAT” 12 epochs, "GTSRB” 1 epoch, "MNIST” 5 epochs, "RESISC45” 15 epochs, ?SUN397”
14 epochs, and "SVHN” 4 epochs. In Figure [3|(Left), with this configuration, NTKFedAvg exhibits
a consistent lead of nearly 4% in absolute accuracy with FedAvg from the first round and maintains
this advantage for approximately 7 rounds. This difference highlights the limitations of FedAvg
in integrating local updates within large pre-trained models when compared to NTKFedAvg that
promotes weight disentanglement.

Federated Unlearning We also perform Federated Unlearning experiments, where the goal is to
unlearn a client task while retaining the performance on all other tasks. This is done by subtracting
the task vector of the client whose task we need to unlearn before aggregation on the server. Fig
[] (Right) shows how NTKFedAvg with local work is much more effective at unlearning MNIST.
Unlike FedAvg, with NTKFedAvg, the performance on MNIST decays to zero in 5 rounds, while
retaining performance on other tasks. In Appendix[A.5] we observe that centralized training requires
about 22 epochs to unlearn a task, with gradient methods.

Linearization point Algorithm[I|suggests we can linearize NTKFedAvg in two ways. We can either
linearize the local model around 6y, ; Which is the global model after aggregation every round,
or we can continue linearizing about the original pretrained model 6. In Appendix Fig[5] we find
that updating the linearization point about the global model every round is more effective when each
client is trained for 1 epoch/round, so we continue using this strategy for other experiments.

FedProx vs. NTKFedProx As FedProx (Li et al., [2020) was shown to be a competitive baseline for
multi-task federated learning in |Cat et al.| (2023), we additionally experiment with a proximal loss
in the local work configuration at every round. The proximal loss is & ||0k i — Oserver,i || and we set
p = 1. Appendix Fig[8] shows our results with local work. We find that the prox1mal loss reduces
the average accuracy of both FedProx and NTKFedProx relative to FedAvg and NTKFedAvg, but
NTKFedProx outperforms FedProx.

4 CONCLUSION, LIMITATIONS AND FUTURE WORK

This work introduces NTKFedAvg for MaT-FL, emphasizing its privacy advantages, communication
efficiency and quick convergence, especially with large pretrained models in diverse tasks. Limita-
tions include the need for heuristics in sequential linearization and lack of theoretical analysis of the

Published as a workshop paper at ICLR 2024

conditions on tasks/datasets where it outperforms FedAvg. Future work will focus on optimizing
the linearization initiation point in federated contexts, comparing various optimizers in federated
multi-task settings, and assessing effectiveness amid varying data and task heterogeneity.

Published as a workshop paper at ICLR 2024

REFERENCES

Ruisi Cai, Xiaohan Chen, Shiwei Liu, Jayanth Srinivasa, Myungjin Lee, Ramana Kompella, and
Zhangyang Wang. Many-task federated learning: A new problem setting and a simple baseline.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5036-5044, 2023.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs, 2017.

Yigiang Chen, Teng Zhang, Xinlong Jiang, Qian Chen, Chenlong Gao, and Wuliang Huang. Fed-
bone: Towards large-scale federated multi-task learning, 2023.

Gong Cheng, Junwei Han, and Xiaogiang Lu. Remote sensing image scene classification:
Benchmark and state of the art. Proceedings of the IEEE, 105(10):1865-1883, 2017. doi:
10.1109/JPROC.2017.2675998.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015. URL https://api.
semanticscholar.org/CorpusID:207229839.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217-2226, 2019.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo. 5143773\ If you use this software, please cite it as below.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. International Con-
ference on Learning Representations, 2022. doi: 10.48550/arXiv.2212.04089.

Jinyuan Jia and N. Gong. Attriguard: A practical defense against attribute inference attacks via
adversarial machine learning. USENIX Security Symposium, 2018.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV)
Workshops, June 2013.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429-450, 2020.

Yuxiang Lu, Suizhi Huang, Yuwen Yang, Shalayiding Sirejiding, Yue Ding, and Hongtao Lu. To-
wards hetero-client federated multi-task learning, 2023.

H. B. McMahan, Eider Moore, Daniel Ramage, S. Hampson, and B. A. Y. Arcas. Communication-
efficient learning of deep networks from decentralized data. International Conference on Artificial
Intelligence and Statistics, 2016.

https://api.semanticscholar.org/CorpusID:207229839
https://api.semanticscholar.org/CorpusID:207229839
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

Published as a workshop paper at ICLR 2024

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmen-
tation in the wild. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.
891-898, 2014. doi: 10.1109/CVPR.2014.119.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. arXiv preprint arXiv: 2305.12827, 2023.

R. Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. IEEE Symposium on Security and Privacy, 2016. doi: 10.1109/
SP.2017.41.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: A multi-class classification competition. In The 2011 International Joint
Conference on Neural Networks, pp. 1453-1460, 2011. doi: 10.1109/IJCNN.2011.6033395.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 119:
3-22,2016.

Published as a workshop paper at ICLR 2024

A APPENDIX

A.1 CLIP: FEDAVG VvS. NTKFEDAVG 1 EPOCH PER ROUND

Top-1 Accuracy (%)

Round1 Round2 ~ Round3 Round4 ~ RoundS Round6 Round7 Round8 Round9 Round 10 Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round® Round 10
Round Round

Figure 4: (Left) Average accuracy of FedAvg (dots) and NTKFedAvg (dashes) (Right) Dataset
accuracy of FedAvg (dots) and NTKFedAvg (dashes). All models are trained for 1 epoch per round.

A.2 CLIP: LINEARIZATION POINT

—e— NTKFedAvg (current global) 100
+- NTKFedAvg (pretrained)

—e— Cars
—e— DTD

g g
z z —e— EuroSAT
£ 0 . —s— GTSRB
2 2
£ £ 7] MNIST
by - e e SET (EE S S —e— RESISC45
5675 s T ‘ SVHN
= Ll —— . —e— SUN397
1 .
6.0
50
625 S
LS e SN SR S ,\:‘\‘
W

Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round 10 Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round 10
Round Round

Figure 5: (Left) Average accuracy when NTKFedAvg is linearized about current global server model
or pretrained model (Right) Per dataset accuracy when NTKFedAvg is linearized about current
global server model (dash) or pretrained model (dot). All clients are trained for 1 epoch per round.

A.3 CLIP: TUNING LEARNING RATE o FOR FEDAVG AND NTKFEDAVG

We experimented by tuning the learning rate a every round to maximize average accuracy on a
held-out validation set on the server (partitioned from the client training sets). In real-world FL
applications, this is not a realistic assumption as for reasons of privacy this data is almost never
available. However, we wanted to understand the extent to which FedAvg and NTKFedAvg improve
by tuning the server learning rate. We see that in both scenarios, whether the clients are only trained
for a single epoch every round (Appendix Fig|[6), or in the local work configuration (Appendix Fig
[7), tuning significantly benefits FedAvg, as it better adapts to the varying data characteristics and
distributional shifts in each round.

10

Published as a workshop paper at ICLR 2024

0| —o— FedAvg Tuned
-+~ NTKFedAvg Tuned

Top-1 Accuracy (%)

¢

68

Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round 10
d

Top-1 Accuracy (%)

—e— Cars
o —e— DTD
—e— EUroSAT
—e— GTSRB
MNIST
—e— RESISC45
SVHN
—e— SUN397

- e

- $og 2= - - .

g g]

Round1 Round2 Round3 Round4 Round5 Round6 Round7 Roun

Round

48

Round 9

Round 10

Figure 6: (Left) Average accuracy of FedAvg improves significantly when tuning o (Right) Dataset
specific accuracy of FedAvg improves significantly when tuning «. All clients are trained for 1

epoch per round.

—e— FedAvg Tuned 100
e NTKFedAvg Tuned) I
8.0 /"_*_,—.”’
Pu— .
%
a5
- % —e— Cars
£ a0 g —— DTD
3 3 —e— EuroSAT
g [_—— GTSRB
Sus g e e MNIST
< < e
3 3 1 b ¢ ¢ —e— RESISC45
]] P
8 8 SVHN
. L] —e— SUN397
e T e 1
b - 3 - - <
25 50
— 3
7.0 o + 2]

Round1 Round2 Round3 Round4 Round5 Round6 Round 7 Round8 Round9 Round 10
Round

Round1 Round2 Round3 Round4 Round5 Round6 Round 7 Round8 Round9 Round 10
Round

Figure 7: (Left) Average accuracy of FedAvg improves significantly when tuning « (Right) Dataset
specific accuracy of FedAvg improves significantly when tuning «. Clients are trained in the local

work configuration.

A.4 CLIP:FEDPROX AND NTKFEDPROX

0] —e— FedProx
e NTKFedProx -

Top-1 Accuracy (%)

J;

Top-1 Accuracy (%)

—e— Cars
—e— DTD
—e— EUroSAT
—e— GTSRB
MNIST
—e— RESISC45
SVHN
—e— SUN397

b R e e

Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round 10
d

Round 1

Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round 10
Round

Figure 8: (Left) Average accuracy of FedProx (dots) and NTKFedProx (dashes) (Right) Per dataset
accuracy of FedProx (dots) and NTKFedProx (dashes). All clients are in local work configuration.

A.5 CLIP: CENTRALIZED EXPERIMENTS: BASELINE AND UNLEARNING MNIST

For our centralized baseline, we created a multi-task learning setup where at each epoch, batches
were created by taking B samples from each task (B = 8). For tasks with a lower number of sam-
ples, oversampling was performed to have an even number of samples per batch. During training,
inputs were fed into the model per task, and their losses were summed together. For non-linear

11

Published as a workshop paper at ICLR 2024

(standard) finetuning, we achieved an average task accuracy (%) of 83.795% on the test set. For
linear finetuning, we achieved an average test accuracy of 79.98%.

For the unlearning experiment, the sign of the loss on the MNIST task was flipped in each batch.
With non-linear (standard) finetuning, MNIST reached an accuracy of 0.00% at epoch 22. With
linear finetuning, MNIST did not reach an accuracy of 0.00% in 25 epochs. The lowest accuracy
achieved was 0.03% at epoch 12. All experiments were trained for 25 epochs with a learning rate of
le-7.

0 5 10 15 20 25 [5 10 15 20 25
Epoch Epoch

Figure 9: (Left) Average Top-1 accuracy across all tasks on centralized multitask learning setup
with nonlinear finetuning (solid) and linear finetuning (dots) (Right) MNIST Top-1 accuracy versus
average other task accuracy for nonlinear finetuning (solid) versus linear finetuning (dashes).

12

	Introduction
	Methodology
	Many Task Federated Learning
	NTKFedAvg For Many Task Federated Learning

	Experiments And Results
	Dataset, Models, and Metrics
	PascalContext Setting Results
	CLIP Setting Results

	Conclusion, Limitations and Future Work
	Appendix
	CLIP: FedAvg vs. NTKFedAvg 1 epoch per round
	CLIP: Linearization point
	CLIP: Tuning learning rate for FedAvg and NTKFedAvg
	CLIP:FedProx and NTKFedProx
	CLIP: Centralized Experiments: Baseline and Unlearning MNIST

