Under review as a conference paper at ICLR 2023

SUPERNET TRAINING FOR FEDERATED IMAGE CLASSI-
FICATION UNDER SYSTEM HETEROGENEITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient deployment of deep neural networks across many devices and resource
constraints, particularly on edge devices, is one of the most challenging problems
in the presence of data-privacy preservation issues. Conventional approaches have
evolved to either improve a single global model while keeping each local heteroge-
neous training data decentralized (i.e. data heterogeneity; Federated Learning (FL))
or to train an overarching network that supports diverse architectural settings to
address heterogeneous systems equipped with different computational capabilities
(i.e. system heterogeneity; Neural Architecture Search). However, few studies
have considered both directions simultaneously. This paper proposes the federation
of supernet training (FedSup) framework to consider both scenarios simultane-
ously, i.e., where clients send and receive a supernet that contains all possible
architectures sampled from itself. The approach is inspired by observing that
averaging parameters during model aggregation for FL is similar to weight-sharing
in supernet training. Thus, the proposed FedSup framework combines a weight-
sharing approach widely used for training single shot models with FL averaging
(FedAvg). Furthermore, we develop an efficient algorithm (E-FedSup) by sending
the sub-model to clients on the broadcast stage to reduce communication costs
and training overhead, including several strategies to enhance supernet training in
the FL environment. We verify the proposed approach with extensive empirical
evaluations. The resulting framework also ensures data and model heterogeneity
robustness on several standard benchmarks.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable empirical success in many machine learning
applications. This has led to increasing demand for training models using local data from mobile
devices and the Internet of Things (IoT) because billions of local machines worldwide can bring
more computational power and data quantities than central server system (Lim et al.| 2020; [El4
Sayed et al., 2018). However, it remains somewhat arduous to deploy them efficiently on diverse
hardware platforms with significantly diverse specifications (e.g. latency, TPU) (Cai et al., 2019)
and subsequently train a global model without sharing local data. Federated learning (FL) has
become a popular paradigm for collaborative machine learning (Li et al., 2019; 2018}, |Karimireddy:
et al., 2019; Mohri et al., [2019; Lin et al., 20205 |Acar et al., |2021). Training the central server
(e.g. service manager) in the FL framework requires that each client (e.g. mobile devices or the
whole organization) individually updates its local model via their private data, with the global model
subsequently updated using data from all local updates, and the process is repeated until convergence.
Most notably, federated averaging (FedAvg) (McMahan et al.| [2017)) uses averaging as its aggregation
method over local learned models on clients, which helps avoid systematic privacy leakages (Voigt &
'Von dem Busschel [2017)).

Despite the popularity of FL, developed models suffer from data heterogeneity as the locally generated
data is not identically distributed. To tackle data heterogeneity, most FL studies have considered
new objective functions to aggregate of each model (Acar et al., 2021} |Wang et al.| [2020} [Yuan &
Ma, 2020; [L1 et al.,[2021a), using auxiliary data in the centeral server (Lin et al.,[2020; Zhang et al.|
2022), encoding the weight for an efficient communication stage (Wu et al., 2022; |Hyeon-Woo et al.,
2022; Xu et al., |2021)), or recruiting helpful clients for more accurate global models (Li et al., 2019
Cho et al., 2020} Nishio & Yonetani, 2019). Recently, there has also been tremendous interest in
deploying the FL algorithms for real-world applications such as mobile devices and IoT (Diao et al.,
2021; Horvath et al.| 2021} [Hyeon-Woo et al., 2022). However, significant issues remain regarding
delivering compact models specialized for edge devices with widely diverse hardware platforms
and efficiency constraints (a)). It is notorious that the inference time of a neural network

Under review as a conference paper at ICLR 2023

Client A
Tiny Al

ClientA
10T Tinyal

Client B
Mobile A

i k Client C
Vanilla ", e
Network | T --xcvnee e e g

Client A

\ @% Tiny Al
............. e) i

ClientA
> 10T Tinyar

Client B
Mobile AT

Client C
Cloud AT
e g

Client B

[S| @% D D Mobile Al
[] }, N (Gl - o .
Client C K
Supernet ., %@ “lou Supernet
p d D_’ g Cloud Al P!

(c) FedSup (d) Efficient FedSup

Figure 1: (a) Standard FL framework, (b) supernet training in a standard datacenter optimization (i.e.,
centralized settings), (c) our proposed federation of supernet training framework (FedSup), and (d)
efficient FedSup algorithm (E-FedSup).

varies greatly depending on the specification of devices (Yu et al.|[2018)). In this perspective, this can
become a significant bottleneck for aggregation rounds in synchronous FL training if the same sized
model is distributed to all clients without considering local resources (Li et al., [2020).

In the early days, neural architecture search (NAS) studies suffer from system heterogeneity issues
in deploying resource adaptive models to clients, but this challenge has been largely resolved by
training a single set of shared weights from one-shot models (i.e. supernet) (Cai et al., 2019} |Yu et al.|
2020) (b)). However, this approach has been rarely considered under data heterogeneity
scenarios that can provoke the training instability. Recent works have studied the model heterogeneity
in FL by sampling or generating sub-networks (Mushtaq et al.| 2021} [Diao et al.| 2021} [Khodak
et al., [2021}; [Shamsian et al., 2021)), or employing pruned models from a global model (Horvath
et al.,[2021}|Luo et al.,2021b). However, these methods have limitations due to model scaling (e.g.,
depth (#layers), width (#channels), kernel size), training stability, and client personalization.

This paper presents a novel framework to consider both scenarios, namely Federation of Supernet
Training (FedSup), i.e., sub-models nested in a supernet for both data and model heterogeneity. Fed-
Sup uses weight sharing in supernet training to forward supernets to each local client and ensembles
the sub-model training sampled from itself at each client (c)). We manifest an Efficient
FedSup (E-FedSup) which broadcasts sub-models to local clients in lieu of full supernets
(d)). To evaluate both methods, we focus on improving the global accuracy (on servers, 1.e., uni-
versality) and the personalized accuracy (on-device tuned models, i.e., personalization). Our key
contributions are summarized as follows:

* We propose a novel framework that simultaneously obtains a large number of sub-networks
at once under data heterogeneity, and develop an efficient version that broadcasts sub-models
for local training, dramatically reducing resource consumption during training, and hence
the network bandwidth for clients and local training overheads.

* To enhance the supernet training under federated scenarios, we propose a new normalization
technique named Parameteric Normalization (PN) which substitutes mean and variance
batch statistics in batch normalization. Our method protects the data privacy by not tracking
running statistics of representations at each hidden layer as well as reduces the discrepancies
across shared normalization layers from different sub-networks.

* We extend previous methods by analyzing the global accuracy and a personalized accuracy
for each client where multiple dimensions (depth, width, kernel size) are dynamic; and
demonstrate the superiority of our methods using accuracy with respect to FLOPS Pareto.

* Experimental results confirm that FedSup and E-FedSup provide much richer representa-
tions compared with current static training approaches on several FL. benchmark datasets,
improving global and personalized client model accuracies.

Under review as a conference paper at ICLR 2023

Organization. The remainder of this paper is organized as follows. Section[2]discusses relevant
literature considering supernet, model heterogeneity in FL, and personalized FL. Section[3]discusses
the motivation for combining federated learning with supernet training and provides details regarding
FedSup and E-FedSup. Sectionf] provides experimental results, and Section[5] summarizes and
concludes the paper.

2 RELATED WORK

Under the federated environment, architecture design costs are significantly labor-intensive and
computationally prohibitive owing to the number of participating clients and local data quantities,
even considering client network bandwidth requirements. We do not consider the works that assumed
the availability of proxy data in the server (Lin et al.| | 2020} Zhang et al., 2022]).

Supernet. Supernets are dynamic neural networks that assembles all candidate architectures into a
weight-sharing network, where each architecture corresponds to one sub-network. This is an emerging
research topic in deep learning, specifically NAS. Supernet training dramatically reduces the huge
cost of searching, training, or fine-tuning each architecture individually whose child models can be
directly deployed. However. despite its strength, supernet training remains somewhat challenging (Yu
et al.|, 2018;Yu & Huang],2019). For the stable optimization, it requires many training techniques
such as in-place knowledge distillation (Yu & Huang| [2019) to leverage soft predictions of the
largest sub-network to supervise other sub-networks; modified batch normalization to synchronize
batch statistics for the child models (Yu et al.| 2018 |Yu & Huang|, [2019); sampling strategies for
child models from the supernet (Cai et al., 2019} Wang et al.| [2021b)); and modified loss/gradient
functions (Yu et al., 2020; Wang et al.| [2021al).

Model Heterogeneity in FL.. Model heterogeneity in FL, i.e., the problem of FL training different-
size local models, has remained largely under-explored compared with statistical data heterogeneity.
Recent studies have proposed generating sets of sub-models through a hypernetwork that outputs
parameters for other neural networks (Shamsian et al.| 2021)), using a pruned model from a global
model (Bouacida et al., 2020; Horvath et al.,[2021}; |Luo et al., 2021b)), and distilling the knowledge
from local to global by using either extra proxy datasets or generators (Lin et al., 2020; Afonin &
Karimireddy}, 2022). However, pruning approaches are not truly cost-effective in terms of infer-
ence time, and distillation-based methods require additional training overhead. Although using a
hypernetwork (Shamsian et al.| [2021)) or sampling a sub-model from the global model (Diao et al.,
2021) may avoid such issues, sub-model scale is limited to only a single direction, such as width or
kernel size. Furthermore, such optimization is simple, hence the accuracy gap among sub-models
should be bridged through advanced training techniques. Although|Khodak et al.|(2021)) and Mushtaq
et al.[(2021)) apply continuous differentiable relaxation and gradient descent, the final outcomes are
significantly sensitive to hyperparameter choices.

Personalized FL.. Machine learning-based personalization has become a good candidate for retain-
ing privacy and fairness as well as recognizing particular local character. Consequently, personalized
FL has been proposed to learn personalized local models, and these models have been evolving
towards user clustering, designing new loss functions, meta-learning, and model interpolation. Incor-
porating meta-features from all clients, local clients are clustered by measuring their data distribution
and sharing separate models for each cluster without inter-cluster federation (Briggs et al.| [2020;
Mansour et al} 2020). Adding a regularizer to the loss function can prevent local models from
overfitting their local data (T Dinh et al.} 2020 [Li et al., [2021b), and bi-level optimization between
clients and servers can be interpreted as model-agnostic meta-learning (MAML). This approach can
obtain well-initialized shared global models that facilitate personalized generalization with relatively
sparse fine-tuning (Jiang et al.,2019;|Oh et al.| [2021)). Lastly, decoupling the base and personalized
layers in a network allows both layers to be trained by clients in addition to server base layers,
creating unique models for each user (Oh et al.| 2021;|Chen & Chao, [2021)). However, few studies
have considered personalized FL performance under the client system heterogeneity, i.e., clients with
widely differing computational capabilities.

3 METHOD

3.1 PROBLEM SETTINGS: FEDERATED AVERAGING (FEDAVG)

The main FL goal is to solve the optimization problem for a distributed collection of heteroge-
neous data: ming, £(w) 2 min,, > kes PeLi(w) where S is the set of total clients, py, is the
weight for client &, i.e., p > 0 and >_ « Pr = 1. The local objective for client k is to minimize

Under review as a conference paper at ICLR 2023

Li(w) = E(a, y)eDy [k (Tk, Yr; w)] parameterized by w on the local data (xx, yx) from local
data distribution Dj. FedAvg is the canonical algorithm for FL, based on local update, which learns a
local model w}, (Eq.|1) with learning rate 7 and synchronizing w}, with w’ every E steps,

(D

a [wiTt = VL (wh™Y) ift mod E # 0
w; =
e if t mod E = 0

and global aggregation, which learns the global model w’ by averaging all w, with regard to the
client k € S* uniformly sampled at random where p;, is defined as |‘DD’C‘|: w' = D kest prwk.
Such FedAvg-based approaches facilitate the model generalization without accessing local data,
but are unable to underpin various architectural settings for heterogeneous systems having different
computational capabilities.

3.2 MOTIVATION FROM WEIGHT SHARING IN CENTRALIZED SUPERNET TRAINING

Let w be the weights of the supernet and w, ., for sub-models. Then the problem for centralized
supernet optimization can be expressed as

min > Eeyenll(®, y; woren)] where D = Uy, Dy 2)
Wearch CW

which can be reformulated as a double summation to preserve data privacy for FL frameworks,
= min Z ZpkE(wk,yk)GDk [Ek($k:ayk;warch)]

w
Warech CwW k

:IILI)II E Pk E Lk(warch) Architecture
k

Wareh CW Design

3)

After exchanging the order of two summations, a new objec- v
tive (Eq.[3) is obtained as a combination of training the supernet

on each client’s local data, termed as Federation of Supernet o
Training (FedSup) (Algorithm [T). We aim to design a new Addhsas
framework to combine the federated averaging scheme with
weight sharing on mobile-friendly architectures. We attempt
to apply several training techniques to bridge the gap among —
three dimensions (Figure 2)): (1) FL for data heterogeneity, (2) Heterogencity ety
supernet training for model heterogeneity, and (3) mobilenet
search space for architecture design. Most previous centralized
supernet optimization studies heavily rely on improving train-
ing stability by optimizing generalization for candidate networks sampled from the search space and
adaptive sub-model selection at each iteration without considering data distribution. However, two
new significant challenges arise in the supernet training in federated learning, referred to as federated
supernet optimization, as follows:

Ours, FedAvg

FedProx
Federated Learning Data

Neural Architecture Search

Heterogeneity

Figure 2: Illustration for the prob-
lem settings.

* Sub-model alignment: Data heterogeneity during training exacerbates distinct sub-networks
from interfering with one another. To address the training stability issue, it is required to
align all of supernet’s offspring models in the same direction.

* Client-aware sub-model sampling: Adaptive sub-model sampling strategy is required to
draw more attention to client’s individual data distributions and their resource budget, such
as computational power and network bandwidth.

In this work, we emphasize the alignment property of the submodel to improve generalization ability
and training stability in subsection[3.3] and explain the FLOPS-aware sampling strategy; child models
are sampled by considering the client’s computational capacity in subsection[3.4] and subsection[3.5]

3.3 TRAINING STRATEGIES FOR FEDSUP

Architecture Space. Search space details are presented by referring to the previous NAS and FL
approaches (Cai et al.l [2019; |Oh et al., 2021). Our network architecture comprises a stack with
MobileNet V1 blocks (Howard et al.,[2017), and the detailed search space is summarized in Appendix.
Arbitrary numbers of layers, channels, and kernel sizes can be sampled from the proposed network.
Following previous settings (Yu et al., [2018}; 2020), lower-index layers in each network stage are
always kept. Both kernel size and channel numbers can be adjusted in a layer-wise manner.

4

Under review as a conference paper at ICLR 2023

Algorithm 1: Generic Framework for FedSup and E-FedSup

INPUT : Supernet w, the number of sampled child models M, weight update function UPDATE
1: Initialize SuperNet wy
fort < 0,...,T—1do
S* < SAMPLECLIENTS
for each client k € S* in parallel do

2
3
4
5: 'w,tc’0<—wt // Broadcast a supernet w! to client k
6
7
8

fore+0,...,F—1do
form=1,...,M do
t,e

warchk,m

: + RANDOMSAMPLEMODEL(w}®) // Sub-model selection
t,e+1
9: ’

t,e
Werchy OPTIMIZE(wamhk,m)
10: end for
. t,e+1 t,e+1 t,e+1 P .
11: w, T UPDATE('waTChk_’l, . .,warchk’M) // Supernet optimization
12: end for
13: end for .
t, ,
w3 o prwy // Aggregation
14: end for
Privacy concern
Heterogeneous mean & variance Sensitive on query data
Static Slimmable I Slimmable'
Update & i
o Tra?k ‘cale and Shlf' Instant Ecale and Sl‘llf' Learnable
store ~ rumning I [z ' arameter @
— = > statistics ltandardizatio'<— = — statistics ltandardizatio': h P
(a) Standard batch normalization (b) Static batch normalization (c) Our parametric normalization

Figure 3: (a) Standard batch normalization, (b) static batch normalization (Diao et al.,|2021), and (c)
proposed parametric normalization.

3.3.1 PARAMETRIC NORMALIZATION (PN)

Although batch normalization (BN) is an ubiquitous technique for most recent deep learning ap-
proaches, its running statistics can disturb learning for the sub-model alignment in supernet optimiza-
tion because different lengths of representations can have heterogeneous statistics, and hence their
moving average diverges for a shared BN layer (Yu & Huang}, 2019} [Yu et al., 2018) (@)).
Furthermore, it is well-known that these BN statistics can violate the data privacy in FL (Li et al.|
2021c). To alleviate these issues, we develop new normalization technique, termed as parameteric
normalization (PN), as follows:

T W (approximated normalization with learnable parameter «) “4)
y < v+ B8 =PN,g,(x) (Affine: scale and shift) Q)

where « is an input batch data, RMS is the root mean square operator, -y, 3 are learnable parameters
used in general batch normalization techniques, and « is a learnable parameter for approximating
batch mean and variance. The key difference between our PN and previous normalization techniques
is the existence of batch statistics parameters. In the previous works (Yu et al.l 2018} |Diao et al.
2021)), since the running statistics of batch normalization layers can not be accumulated during local
training in FL owing to the violence of data privacy as well as different model size (Huang et al.,
2021)), running statistics are not tracked. An adhoc solution employs static batch normalization (Diao
et al., 2021) for model heterogeneity in FL, with the running statistics updated as each test data
is sequentially queried for evaluation (b)). However, operational performance is highly
dependent on such query data and can be easily degraded by its running statistics. In contrast, the
proposed PN method simply uses an RMS norm and learnable parameter « rather than batch-wise
mean and variance statistics, and thus does not require any running statistics. Hence more robust
architectures can be trained towards batch data (¢)). In a nutshell, our PN methods not
only eliminates privacy infringement concerns due to running statistics, but also enables slimmable
normalization techniques robust towards query data.

Under review as a conference paper at ICLR 2023

3.3.2 IN-PLACE DISTILLATION

In our framework, the penalized risk for the local optimization of selected sub-models (line 9 in
Algorithm[T) is calculated as

t . .
Wypep, = argmin Ly (Wayrch,) = arg min Li(w) + Li(warch,) — Li(w) (6)
Warchy, Warchy, SN——
ek ek Standard FL loss Sub-model alignment loss

This generates a new sub-model alignment loss compared with standard FL optimization, which
should be minimized by converging the representation divergence between the supernet and its child
model, i.e., in-place distillation (Yu et al., 2018):

Ji(@n, yr; w)
(xka Yk; warchk)

Lk(warchk.) - Lk(w) =]E(wk,yk)ND log fk (7)

where f(-) is a neural network. From this perspective, a sub-model should be distilled during
local training with soft labels predicted by the full model (biggest child). We set the temperature
hyperparameter and the balancing hyperparameter between distillation and target loss (Hinton et al.,
20135)) following |[Lin et al.| (2020)).

3.4 E-FEDSUP FOR COMPUTATIONAL POWER AND NETWORK BANDWIDTH

While FedSup can solve system heterogeneity by distributing subnetworks in the deployment stage
after training, this can cause computational bottlenecks for mobile or tiny Al during broadcast and
local training. To further release this issue, we provide an efficient version of FedSup (E-FedSup) by
optimizing an alternative objective function instead of Eq. [3] without employing in-place distillation:

Hgn Zpk Z Fk (warch) 2 H'Ll)nzkak (wa'r‘chk,) where Wearchy, Cw (8)
k

Warch CW k

FedSup E-FedSup

Each local client receives a sub-model in the broadcast stage to achieve the efficient network band-
width as a substitute of full supernet (line 5 in Algorithm[T)). For more details of E-FedSup imple-
mentation, in Algorithm[I] M is set to 1 and the RANDOMSAMPLEMODEL function is replaced
with FLOPS-aware sampling function. Precisely, clients are clustered into groups with similar
capabilities (i.e., we call it "tiers") and each wgch, 1s randomly sampled until its computational
budget (i.e., FLOPS) does not exceed the maximum FLOPS for the tier. A chief difference in the
optimization is that FedSup samples a new sub-model every iteration; whereas E-FedSup trains a
pre-fixed sub-model received during communication at local. Therefore, various sized sub-models
are delivered to different clients during every broadcast (i.€., Warch; # Warch; When i # j in Eq.[3).
As|[Figure T|(c) and (d) show, E-FedSup reduces communication costs by sending child models in the
consideration of each local capacity, and also curtails training overhead because it trains the same
child per iteration rather than several sub-models.

3.5 DETAILS FOR MODEL AGGREGATION AND CHILD SELECTION

Model Aggregation. Typical implementations for FedSup and E-FedSup are based on the Algo-
rithm The central server for FedSup uses FedAvg with |S?| number of local models updated with
supernet optimization; whereas some clients during E-FedSup may have learned a certain part of the
weights w,.p, rather than all the parameters w. Non-updated parts of these models are filled with
previously broadcast parameters and are regarded as a supernet for aggregation.

Sub-Model Selection for Deployment. A sub-network that fulfills accuracy and efficiency require-
ments for the target hardware, e.g. latency and energy, is sampled by the central server for either
model deployment after FedSup optimization or E-FedSup training. Although numerous child models
can be sampled from the supernet, we divide clients into three tiers and candidate are explored trading
off FLOPS and accuracy, denoted as "Big (B)", "Medium (M)", and "Small (S)". Neural networks
with maximum and minimum resources determined by the architecture space are used for B and S
cases, respectively (see Appendix); and neural networks with shallowest depth, largest width, and
medium FLOPS for M cases (see elastic dimension results in Section[d] Specialized model selection
for a given deployment could be possible by assuming proxy data is available in the server (Lin et al.}
2020; [Zhang et al.| [2022) to select the pareto-frontier (subsection[4.2), but that is beyond the scope of
the current study.

Under review as a conference paper at ICLR 2023

- == FedSup (Initial Acc.) E-FedSup (Initial Acc.)
— FedSup (Personalized Acc.) E-FedSup (Personalized Acc.)
Width Depth Kernel
801 T =+ o I + 801+ T
70 —e | 70 T | 4L
o 6ol = 60
50 50
50
T — T 04T T = 40 I ____________ I _____________ I
ELR B Syp——— P g o m e ——— - A A L
30 30
30 =+ - ¥
) & ») & » O & N
R > ° £ D @ £ S @
& S & 2 S 2
(a) Width (b) Depth (c) Kernel

Figure 4: Initial and personalized accuracy on CIFAR-100 with 100 clients, s = 10, R = 0.1, and
m = 0.5 by changing the slimmability with network width, depth, and kernel size. Blue lines indicate
FedSup training, and the orange lines show E-FedSup performance.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. Four image classification benchmark datasets are employed: CIFAR-10, CIFAR-
100 (Krizhevsky et al.,|2009), Fashion-MNIST and pathMNIST for colon pathology classification, a
collection of standardized biomedical images (Yang et al., [2021).

Heterogeneous Distribution of Client Data. Two different kinds of heterogeneous data distribution
settings are employed, following previous studies (McMahan et al., 2017 |Oh et al.| 2021} [Lin et al.,
2020). Datasets are divided into similarly sized shards by considering their label distribution. Since
there is no overlapping data between shards, shard size is defined as %, where | D| is the data set
size, N is the total number of clients, and s is the number of shards per user. The Dirichlet distribution
is also used to create disjoint non-independent and identically distributed (non-i.i.d.) client training
data (Yurochkin et al.,2019; Hsu et al., [2019; |Lin et al.,[2020). Non-i.i.d. level is determined by the
value of 8. Where 8 = 100 simulates identical local data distributions, and clients with lower /3 are

more likely to only hold examples from one class (randomly chosen).

Training Details. Each client has the same label distribution on local training and test data to help
evaluate personalized accuracy. Following |Oh et al.|(2021)), FL environments are controlled using the
following hyperparameters: client fraction ratio R, local epochs 7, shards per user s, and Dirichlet
concentration parameter 3. R is the ratio of participating clients to the total number of clients in
each round and a small R is natural in the FL settings since the total number of clients is large.
Linear warmup learning rate scheduler is employed up to 20 rounds, and subsequently scheduled
using a cosine learning rate scheduler initialized with 0.1. Other settings not explicitly mentioned are
followed by Oh et al.|(2021)). For the FedSup training, we use the number M of randomly sampled
child model as equal to 3 and apply the in-place distillation.

Evaluation. We evaluate the quality of the global model and local models, using the whole data
set or following Wang et al.| (2019) and |Oh et al.| (2021)), respectively. Personalization evaluation for
each client is measured as follows:

* Initial Accuracy. Transmitted global models are evaluated for each client having their own
test dataset D!*.

* Personalized Accuracy. Local models are fine-tuned on their own training dataset D!" with
7 fine-tuning epochs; then evaluated on the client’s own test dataset D}°.

The values (X 4y) in all tables indicate the mean4¢q of the accuracies across all clients, not across
multiple seeds. Specifically, child models for the personalization are fine-tuned with five epochs on
the local training data. We only update the head instead of training either full or body part, following
previous literature (Oh et al.l 2021 [Luo et al.| 2021a). Further details regarding updated parts are
provided in Appendix.

4.2 EVALUATION ON THE COMMON FEDERATED LEARNING SETTINGS

Elastic Dimensions. We firstly take a closer look at applying the dynamic operations under
federated settings towards three different dimensions: width, depth, and kernel size of convolutional
operators. Conventional centralized learning methods (Tan & Le} 2019) mostly scale ConvNets in one

Under review as a conference paper at ICLR 2023

Table 1: Initial and personalized accuracy on CIFAR100 under various FL settings with 100 clients
and 7 = 5; initial and personalized accuracy indicate the evaluated performance without fine-tuning
and after five fine-tuning epochs for each client, respectively.

FL Settings s=50 s=10
R A FedSup E-FedSup FedSup E-FedSup
Initial Personalized Initial Personalized Initial Personalized Initial Personalized
B 47.1946.01 58.5545.37 45.194549 57.964538 352441723 71.2146.87 34.6047.01 69.8146.75
1.0 M 45194567 57.344521 44.244539 56.80+5.44 34.8146.01 70.5546.65 34.7246.69 68.0116.34
S 45.06+6.33 54.9615.29 43.691585 53.9815.61 34.0lte.97 70.2117.10 33.4117.03 68.32416.88
B 43.9346.15 956.60+5. 020 42.054536 54.69+6.45 33.1314801 71.114712 32.1549.44 69.1316.95
0.1 M 43.13+6.17 55.871+5.36 41.241549 53.9615.46 33.041778 70.0316.88 31.4218.77 69.11i6.61
S 42.1816.53 55.3145.75 41.054536 53.6945.45 32.441799 70.0046.91 31.114583 68.8616.77

Table 2: Initial and personalized accuracy on CIFAR-100 with 100 clients, R = 0.1, and m = 0.5.

Non—I.I.D.\ Algorithm \ Local-Only FedAvg [2017] Ditto [2021b] LG-FedAvg [2020] Per—FedAvg[ZOZO]\ FedSup E-FedSup

s _ 5o | ital N 36.0347.56 33.1247.64 30.0li0.07 38.5547.81 |43.9316.15 42.0545 36
- Personalized 27.98;&4,12 49.61:&5410 44.10i5,75 39.92i5.02 44~21:t6.23 56.60:&5,22 54.69:&6.45
o _ 10 | idal . 21.5846.0r 20.1045.75 15.9245.02 21.2146.05 |33.1318.01 32.1510.44
- Personalized 60~33i6.88 64~51i6A62 58.15:&6,32 45.53:&10‘45 63.72:&7,04 71.11:&7,12 69.13:&6‘95

Table 3: Initial and personalized accuracy on CIFAR100 between sBN (Diao et al., 2021} and our PN.

FL Settings s=50 s=10
R N FedSup E-FedSup FedSup E-FedSup

Initial Personalized Initial Personalized Initial Personalized Initial Personalized
1.0 sBN 47.0845.14 58.1516.14 46.181568 58.041562 31.241566 69.4216.69 29.7716.22 69.4746.35

PN 47.1916.01 58.55415.37 45.194549 57.961538 35.241723 71.2116.87 34.601701 69.8116.75

sBN 43.8316.20 56.5115.15 43.5316.22 55.7515.61 26.0716.58 68.0916.22 24.5617.35 67.6816.49
PN 483.9316.15 56.6015 22 42.051536 54.6946.45 33.1318.01 71.1117.12 32.1519.44 69.1316.95

0.1

or other of these dimensions. As[Figure 4]shows, along any dimension, all child models are stably
trained and can produce enhanced representations. FedSup has consistently better inital accuracies
and personalized accuracies than E-FedSup. Dynamic depth exhibits little performance improvement
compared with width or kernel size, which is desirable for further model scale optimization.

Compounding Dimensions. shows initial and personalized accuracies combining dimen-
sions for architecture space. In most cases, FedSup has consistently less generalization error than
E-FedSup in the global model (initial accuracy), and the gap between FedSup and E-FedSup after
personalization keeps almost same when the five fine-tuning epochs are applied. Both FedSup and
E-FedSup exhibit slight performance reduction as a model size gets smaller[Table 2] By referring to
the experimental settings in |Oh et al.|(2021), we also compare our methods with existing methods
for universality and personality. describes the initial and personalized accuracy of various
algorithms. Other methods considered here are evaluated based on a single model, whereas the
proposed approach reports the performance of the largest network from supernet. Federated supernet
optimization further improves model universality and personalization. Thus, the proposed approach
verifies applying federated supernet optimization to future FL studies as an alternative to simple
model averaging (FedAvg).

Parametric Normalization. compares static batch normalization (Diao et al.,[2021) and
parametric normalization under federated supernet optimization. PN shows significantly better
performance than sBN for s=10, which induces heterogeneous batch statistics; whereas the data
distribution at s=50, is closer to i.i.d., and hence sBN has marginally better accuracy than PN in some
cases. Since PN does not depend on query data as well as not contain any running statistics in its
module, in contrast to sBN, there is little privacy concern. In this view, we demonstrate that PN
presents a more reasonable choice for federated supernet optimization.

Pareto Frontier. We compare the accuracy vs. FLOPS Pareto to find the set of solutions where
improving one objective will degrade another in the multi-objective optimization (Eriksson et al.,
2021). Here, we randomly sample 500 sub-models from the supernet and estimate their initial and

Under review as a conference paper at ICLR 2023

E-FedSup

w
o
o

«

@

Fo Suovid
:’ "s}': % 3 ~’

w
ol
o

w
I
o

%3

)

O

w
&
o

w
@

Mean of Accuracies
Mean of Accuracies

w
>
o

«

£

w
w
o

4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14
FLOPS (M) FLOPS (M) FLOPS (M) FLOPS (M)
(a) s=10, Initial Acc. (b) s=10, , Personalized Acc. (c) =50, Initial Acc. (d) s=50, Personalized Acc.

Figure 5: Attributes (e.g., initial acc., personalized acc., and FLOPS) from trained supernet. Each dot
represents a sub-model and 500 child models are sampled from the supernet.

personalized accuracies. As shows, larger models exhibit stronger performance for both
methods. Even with the same FLOPS, the initial and personalized accuracy are different depending
on the client’s data distribution or sampled architecture. The performance degradation decreases
almost linearly with decreasing FLOPS. FedSup has better Pareto frontier than E-FedSup for the

initial and personalized accuracy. Feda —
— CdAvVE — etero!

Others. We provide more investigations about collaboration with T (FedSup —— E-FedSup
other methods such as FedProx (Li et al., |2018)), in-place distil-
lation, and label smoothing as well as the hidden representation
changes (Kornblith et al.,|2019) in the Appendix.

4.3 EVALUATION ON THE RESOURCE EFFICIENCY
Communication Cost Analysis. depicts the communi-
cation cost required for the neural networks trained with FedAvg to Ys 0 7s
reach 36% initial accuracy on CIFAR-100 (/N = 100, R = 0.1, s = Communication Cost [GB]

50). The communication cost is paid until reaching the same accu- Figure 6: Communication costs
racy is compared. The size of the model is about 1.96 MB, and thus ~With FedAvg, HeteroFL [2021],
the communication cost required until convergence is about 10 GB. FedSup, and E-FedSup.
Meanwhile, in order to achieve comparable levels of initial accu-

w
>

N
i

Accuracy (%)

-
N

racy, FedSup requires fewer epochs, making it efficient. In addition 0.40

to that, E-FedSup is approximately four times more efficient than 035

FedAvg by delivering sub-models rather than all of them. go30 @
©0.25

Inference Time. compares sub-model inference times £

for the FjORD,(Horvath et al.| [2021)) and HeteroFL (Diao et al., gms

2021) model heterogeneity methods, measured on an NVIDIA g,

2080-Ti GPU. FedSup spawns much more efficient models in terms ™~

of local inference time. Since FjORD and HeteroFL are either

unstructured pruning or channel pruning-based methodologies, re-

& & S
spectively, ours requires less processing time, benefitting from N Y\@@(&
dynamic depth. Figure 7: Inference time per im-
5 CONCLUSION age for each sub-model.

This paper proposes the federation of supernet training (FedSup) branch of approaches under system
heterogeneity motivated by the weigh-sharing utilized for the training of a supernet whereby it
contains all possible architectures sampled from itself. Our work engages in the solutions of federated
learning for both data-heterogeneity and model-heterogeneity. Specifically, FedSup aggregates a large
number of sub-networks with different capabilities into a single one global model. We subsequently
develop an efficient version of FedSup (E-FedSup) which reduces the model size transferred per
round and local training overhead. We show that FedSup and E-FedSup have an excellent ability to
generalize the personal data as well as the global data. Our methods yield strong results on standard
benchmarks and a medical dataset (Appendix) for federated scenarios; offering additional benefits by
reducing network bandwidth and computation overheads on inference compared with conventional
approaches. Despite the promise of FL, practical applications have been limited due to the large
bandwidth requirement and computational capabilities for each local device. We believe that our
work opens the door to deploying resource-adaptive service access to real-world applications with
diverse system capabilities; while dramatically reducing energy consumption from training costs.
This will considerably lower barriers to entry for developing dynamic FL models for DL practitioners
and greatly impact the IoT industry.

Under review as a conference paper at ICLR 2023

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021.

Andrei Afonin and Sai Praneeth Karimireddy. Towards model agnostic federated learning using
knowledge distillation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=1QI_mZjvBx].

Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. Adaptive federated dropout: Improving
communication efficiency and generalization for federated learning. CoRR, abs/2011.04050, 2020.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. In 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1-9. IEEE, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient
deployment. CoRR, abs/1908.09791, 2019.

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
image classification. In International Conference on Learning Representations, 2021.

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies. arXiv preprint arXiv:2010.01243, 2020.

Enmao Diao, Jie Ding, and Vahid Tarokh. Hetero{fl}: Computation and communication efficient fed-
erated learning for heterogeneous clients. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=TNkPBBYFkXqg.

Hesham El-Sayed, Sharmi Sankar, Mukesh Prasad, Deepak Puthal, Akshansh Gupta, Manoranjan
Mohanty, and Chin-Teng Lin. Edge of things: The big picture on the integration of edge, iot
and the cloud in a distributed computing environment. IEEE Access, 6:1706—1717, 2018. doi:
10.1109/ACCESS.2017.2780087.

David Eriksson, Pierce I-Jen Chuang, Sam Daulton, Ahmed Aly, Arun Babu, Akshat Shrivastava,
Peng Xia, Shicong Zhao, Ganesh Venkatesh, and Maximilian Balandat. Latency-aware neural
architecture search with multi-objective bayesian optimization. arXiv preprint arXiv:2106.11890,
2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-learning approach. Advances in Neural Information
Processing Systems, 33, 2020.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic neural
architecture search towards general-purpose multi-task learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11543-11552, 2020.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. Advances in Neural Information Processing Systems, 34, 2021.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

10

https://openreview.net/forum?id=lQI_mZjvBxj
https://openreview.net/forum?id=TNkPBBYFkXg

Under review as a conference paper at ICLR 2023

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Multi-scale dense networks for resource efficient image classification. arXiv preprint
arXiv:1703.09844, 2017.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient
inversion attacks and defenses in federated learning. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=0CDKgyYaxC8.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=d71n4ftoCBy.

Yihan Jiang, Jakub Konecny, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated
learning. arXiv preprint arXiv:1910.06378, 2019.

Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Esther Herpel, Cleo-
Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous, Dyke Ferber, et al. Predicting
survival from colorectal cancer histology slides using deep learning: A retrospective multicenter
study. PLoS medicine, 16(1):e1002730, 2019.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet
Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to weight-
sharing. Advances in Neural Information Processing Systems, 34:19184-19197, 2021.

Taehyeon Kim, Jongwoo Ko, Sangwook Cho, JinHwan Choi, and Se-Young Yun. FINE samples for
learning with noisy labels. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview,
net/forum?id=QZpx42n0BWr.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural

network representations revisited. In International Conference on Machine Learning, pp. 3519—
3529. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jason Kuen, Xiangfei Kong, Zhe Lin, Gang Wang, Jianxiong Yin, Simon See, and Yap-Peng
Tan. Stochastic downsampling for cost-adjustable inference and improved regularization in
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7929-7938, 2018.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713-10722, 2021a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50-60, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357-6368. PMLR,
2021b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

11

https://openreview.net/forum?id=0CDKgyYaxC8
https://openreview.net/forum?id=d71n4ftoCBy
https://openreview.net/forum?id=QZpx42n0BWr
https://openreview.net/forum?id=QZpx42n0BWr

Under review as a conference paper at ICLR 2023

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021c.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang,
Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge networks: A
comprehensive survey. IEEE Communications Surveys Tutorials, 22(3):2031-2063, 2020. doi:
10.1109/COMST.2020.2986024.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. Advances in neural
information processing systems, 30, 2017.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. arXiv preprint arXiv:2006.07242, 2020.

Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs
by selective execution. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-iid data. Advances in Neural Information
Processing Systems, 34, 2021a.

Mi Luo, Fei Chen, Zhenguo Li, and Jiashi Feng. Architecture personalization in resource-constrained
federated learning. 2021b. URL |https://neurips202lworkshopfl.github.io/
NFFL-2021/papers/2021/Luo2021_supp.pdf.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282, 2017.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. arXiv
preprint arXiv:1902.00146, 2019.

Erum Mushtaq, Chaoyang He, Jie Ding, and Salman Avestimehr. Spider: Searching personalized
neural architecture for federated learning. arXiv preprint arXiv:2112.13939, 2021.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In ICC 2019-2019 IEEE International Conference on Communications
(ICC), pp. 1-7. IEEE, 2019.

Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced representation for
federated image classification. arXiv preprint arXiv:2106.06042, 2021.

Ramakanth Pasunuru and Mohit Bansal. Continual and multi-task architecture search. arXiv preprint
arXiv:1906.05226, 2019.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances
in neural information processing systems, 30, 2017.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In International Conference on Machine Learning, pp. 9489-9502. PMLR, 2021.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

12

https://neurips2021workshopfl.github.io/NFFL-2021/papers/2021/Luo2021_supp.pdf
https://neurips2021workshopfl.github.io/NFFL-2021/papers/2021/Luo2021_supp.pdf

Under review as a conference paper at ICLR 2023

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818-2826, 2016.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394-21405, 2020.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, Ist Ed., Cham: Springer International Publishing, 10(3152676):10-5555, 2017.

Dilin Wang, Chengyue Gong, Meng Li, Qiang Liu, and Vikas Chandra. Alphanet: Improved
training of supernets with alpha-divergence. In International Conference on Machine Learning, pp.
10760-10771. PMLR, 2021a.

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. Attentivenas: Improving neural
architecture search via attentive sampling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6418-6427, 2021b.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. arXiv preprint arXiv:2007.07481,
2020.

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Francoise Beaufays, and Daniel
Ramage. Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252,
2019.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 409-424, 2018.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-efficient
federated learning via knowledge distillation. Nature communications, 13(1):1-8, 2022.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman,
and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8817-8826, 2018.

Hang Xu, Kelly Kostopoulou, Aritra Dutta, Xin Li, Alexandros Ntoulas, and Panos Kalnis. Deepre-
duce: A sparse-tensor communication framework for federated deep learning. Advances in Neural
Information Processing Systems, 34:21150-21163, 2021.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parameter-
ized convolutions for efficient inference. Advances in Neural Information Processing Systems, 32,
2019.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical image
classification. arXiv preprint arXiv:2110.14795, 2021.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 1803-1811,
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas S. Huang. Slimmable neural networks.
CoRR, abs/1812.08928, 2018.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural archi-
tecture search with big single-stage models. In European Conference on Computer Vision, pp.
702-717. Springer, 2020.

13

Under review as a conference paper at ICLR 2023

Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. arXiv preprint
arXiv:2006.08950, 2020.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang,
and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. arXiv
preprint arXiv:1905.12022, 2019.

Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model via
data-free knowledge distillation for non-iid federated learning. arXiv preprint arXiv:2203.09249,
2022.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

14

Under review as a conference paper at ICLR 2023

A OVERVIEW OF APPENDIX

In this supplementary material, we present additional details, results, and experiments that are not
included in the main paper due to the space limit.

B ETHICS STATEMENT

To address potential concerns, we describe the ethical aspect in respects to privacy, security, infras-
tructure level gap, and energy consumption.

Privacy and Security. Despite the promise of FL, owing to the presence of malicious users or the
stragglers in the network, some workers may disturb the protocols and send arbitrary/adversarial
messages that disturbs the generalization during FL. Recently, to tackle the system heterogeneity,
some works allow the server to use proxy data or transmit encrypted data from local to server, but
it may infringe on privacy. FedSup is also able to have such potential risks during communication.
However, because FedSup can enable the training of models under heterogeneous system without
using any proxy dataset, our methods could be uses as a general solution to personalize the model,
having less risks of privacy and security under system heterogeneity. Under adversarial attacks, it
would be a nice direction to investigate the defense methods regarding the robustness against such
adversarial risks.

Infrastructure Level Gap. In real-world applications, there is a bandwidth issues between clients
and the server. More precisely, because of some limited-service access to areas where communication
is rarely possible. Sending a model of the same size can greatly affect the synchronize training of
FL with such infrastructure level gap. Because our work is efficient in terms of communication cost,
we can deploy the model resource-adaptively. In addition, it is possible to use the model adaptively
enough within the local according to the model resource and situation.

Energy Consumption. Our methods are more efficient than other methods in the respect of energy
consumption: (1) communication efficiency and (2) design costs. Firstly, if E-FedSup is used, the
sub-model is transferred to local as a substitute for the full supernet. Therefore, noticeable energy-
saving effects can be obtained. On the other side, since our methods can design various architectures
rather than specialized neural networks, our approach reduces the cost of specialized deep learning
deployment from O(N) to O(1) (Cai et al., 2019). Even, our methods have less generalization
errors than other FedAvg-variant methods while total communication costs are the same, so further
energy-savings can happen in the respect of convergence speed.

FedAvg-Variant Methods @@ E-FedSup FedSup & E-FedSup
) / /
5 / i /
-
_g / Reduction & /
c @ Reduction
5 2 /
£ (]
& /
o P
7
Number of Rounds Number of Deployment Scenarios
(a) Communication Efficiency (b) Design Efficiency

Figure 8: Savings of energy consumption in the respects to communication costs and design costs.

15

Under review as a conference paper at ICLR 2023

C LIMITATIONS AND FUTURE DIRECTIONS
In this sections, we describe the limitations of our work and future directions for further development.

Limitations. Although illustrating the superiority of our proposed methods over state of the art, the
bottleneck lies in the presence of arbitrary device unavailability or adversarial clients that disturb
the training. We only consider vision-centric classification tasks on smaller datasets (CIFAR-10,
CIFAR-100, Fashion-MNIST, PathMNIST). We do not investigate a large-scale datasets (namely
ImageNet); FL framework gets computationally more prohibitive as the number of clients and local
training iterations are increasing.

Future Directions. In future work, we aim to explore more efficient training strategies in the pres-
ence of stragglers and adversarial users. Furthermore, we improve the robustness of FedSup families
in more resource-intensive settings. We intend to investigate our methods on other applications such
as object-detection, semantic segmentation, and natural language processing models. Lastly, we
plan to explore why FedSup and E-FedSup has similar personalization accuracies while the global
accuracy has slight gap between FedSup and E-FedSup.

D CONCEPTUAL COMPARISON TO PRIOR WORKS

Recently, numerous studies have been studied to address the problem of either data heterogeneity
or model heterogeneity. As discussed in Section 2] literature can be categorized into several groups
with FedSup and E-FedSup: data heterogeneity, model heterogeneity, and their hybrid.
systematically compares related methods in the respect to flexibility, data-privacy, efficiency on
design, and efficiency on communication. More detailed explanations are described in Section[2} To
the best of our knowledge, our methods are the first method to satisfy the two conflicting factors:
compounding model scales (depth, width, kernel size) and personalized models, by taking advantage
of both categories.

Table 4: Comparison with related training methods: each method is grouped into three categories. In
the first row, "Flexibility": need not be tied with a specific architecture; "Data Privacy": keep the data
privacy on each client; "Efficiency on Design": can design the architecture efficiently; "Efficiency on
Communication": can reduce the communication cost between clients and the server.

Category | Data Heterogeneity | Model Heterogeneity | Hybrid
Method | FedAvg[2017] AFD[2020] FedDF[2020] | OFA|2019] BigNAS[2020] | FedSup E-FedSup
Flexibility X X O O O o O
Data-Privacy O O O X X (6] (6]
Efficieny on Design X X X (@) (@) (6] (6]
Efficiency on Communication X (6] X X X X (6]

Dynamic Neural Network. Compared to static neural networks, dynamic neural networks can
adapt their structures or parameters to input during inference considering the quality-cost trade-
off (Han et al., 2021). To adaptively allocate computations on demand at inference, some works
selectively activate model components (e.g., layers (Huang et al.| 2017), channels (Lin et al., 2017}
Sabour et al.|[2017)); a controller or gating modules are learned to dynamically choose which layers
of a deep network (Wu et al., [2018; [Liu & Deng, |2018; Wang et al., 2018)); |[Kuen et al.| (2018)
introduce stochastic downsampling points to adaptively reduce the feature map size. By extending
the capabilities of well-known human-designed neural networks like the MobileNet series (Howard
et al.,2017; Sandler et al., |2018), Slimmable nets (Yu et al., 2018 |Yu & Huang, 2019) train itself by
changing multiple width multipliers (for instance, 4 different global width multipliers).

Benefits of Supernet. Many applications present the use cases of supernet for real-world scenarios.
One of the most notable advantages is that they are able to allocate the user-customized network
in consideration of their capabilities on edge devices (e.g., smartphones, the internet of things) (Cai
et al 2018). Next, the supernet seemingly produces better representation power than the static
version of the network (Yang et al.,[2019; |Cai et al., 2019). In addition, supernet alleviates the issue
of excessive energy consumption and CO, emission caused by designing specialized DNNs for

16

Under review as a conference paper at ICLR 2023

every scenario (Strubell et al.,[2019; [Cai et al.,|2019). Lastly, supernet has superior transferability
across different datasets (Zoph et al.,|2018)) and tasks (Pasunuru & Bansal, |[2019; |Gao et al.| 2020).
All these advantages seem like a double line that will work well in a federated environment, to
our best knowledge, but there are few studies applied in FL yet. Recently, |Diao et al.| (2021]) show
the possibility of coordinatively training local models by using a weight-sharing concept while it
limits the degree of flexibility (e.g., only width multiplier can adapt), analysis of model behavior, the
examination for a collection of training refinements, and the investigation towards personalization.

E IMPLEMENTATION DETAILS FOR [SECTION 4]

We build our methods and reproduce all experimental results referring to other official repositories[ﬂ

E.1 ARCHITECTURAL SPACE

In this section, we present the details of our search space. Our network architectures consist of a stack
with MobilenetV1 blocks (MBConv) (Howard et al., |2017). The detailed search space is summarized
in For the depth dimension, our network has five stages (excluding the first convolutional
layer (also called Stem)).Each stage has multiple choices of the number of layers, the number of
channels and kernel size.

Table 5: MobileNetV 1-based search space.

Stage Operator Resolution #Channels #Layers Kernel Sizes

Conv 32x32 32 1 3
1 MBConv 16x16 32-64 1-1 3,57
2 MBConv 16x16 64-128 1-2 3,57
3 MBConv 8x8 128-256 1-2 3,57
4 MBConv 4x4 256-1024 1-2 3,57

E.2 M SAMPLED CHILD MODELS AND SANDWICH RULE.

At every local training iteration, the gradients are aggregated from M sampled child models. If
M > 3, the smallest child and the biggest child are included where the gradients are clipped (i.e.,
sandwich rule (Yu et al.,[2018};|2020)). Through these aggregated gradients, a supernet’s weight is
updated where the “smallest” child denotes the model having the thinnest width, shallowest depth,
and smallest kernel size under the pre-defined architecture space.

E.3 EXPERIMENTAL SETTINGS

Data Preprocessing. We use the same settings in|Oh et al.|(2021). We apply normalization and
simple data augmentation techniques (random crop and horizontal flip) on the training sets of all
datasets. The size of the random crop is set to 32 for all datasets referred to previous works (Oh et al.|
2021} |Liang et al 2020; McMahan et al., [2017).

Dirichlet Distribution. To simulate a wide range of non-i.i.d.ness, we design representative
heterogeneity settings based on widely used techniques (Yurochkin et al.l [2019). A dataset is

partitioned by following p. ~ Diry (8 - f) that involves allocating py, . proportion of data examples
for class ¢ to client k& where 1 is the vector of ones.

"nttps://github.com/facebookresearch/AttentiveNAS
https://github.com/jhoon-oh/FedBABU
*https://github.com/pliang279/LG-FedAvg

17

https://github.com/facebookresearch/AttentiveNAS
https://github.com/jhoon-oh/FedBABU
https://github.com/pliang279/LG-FedAvg

Under review as a conference paper at ICLR 2023

CIFAR-10. CIFAR-10 (Krizhevsky et al., [2009) is the popular classification benchmark dataset.
CIFAR-10 consists of 32 x 32 resolution images in 10 classes, with 6,000 images per class. We use
50,000 images for training and 10,000 images for testing.

CIFAR-100. CIFAR-100 (Krizhevsky et al.}[2009) is the popular classification benchmark dataset.
CIFAR-100 consists of 32 x 32 resolution images in 100 classes, with 6,00 images per class. We use
50,000 images for training and 10,000 images for testing.

Fashion-MNIST. Fashion-MNIST is a dataset consisting of a 60,000 images for training and
10,000 images for testing. Each example is a 28x28 grayscale image, associated with a label from 10
classes. In our work, an input is rescaled into 32 x 32 resolution RGB images for data processing.

PathMNIST. PathMNIST (Kather et al} 2019) is a collection of 10 pre-processed medical open
datasets. It is standardized to perform classification tasks on light weight 28 x 28 images, which
requires no background knowledge, while we apply the image size as 32 x 32. PathMNIST has 9
classes and three subsets: training, validation, and test. Each has 89,996 data whose label distribution
is near balanced, but unbalanced, and we do not use the validation subset for training. shows
several images from the training dataset.

s

e

Figure 9: PathMNIST Images.

18

Under review as a conference paper at ICLR 2023

Specification. We describe the detailed specification regarding ‘Big’, ‘Medium’, ‘Small’ models.
Deservedly, other medium-size models also are able to be sampled from the supernet while the
trade-off between resources and accuracies happens (Figure 3).

Table 6: Specification for the child models sampled from the supernet. We report inference time in
milliseconds, model size in million (M) units, and FLOPS in million (M) units of parameters.

Child Model Big (B) Medium (M) Small (S)

Inference Time 0.37 (ms) 0.20 (ms) 0.06 (ms)
Model Size 1.96 M) 1.47 (M) 0.78 (M)
FLOPS 13.36 M) 7.51 (M) 4.00 (M)

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 PERSONALIZATION AND CKA SIMILARITIES

Body === Head === Full

BET

. FedSup vs E-FedSup . FedSup vs

E-FedSup

p
3

>
a 07 @ g 07
s] °
N 06 ¥ 0 0.6
30 4 os 2 05
% - 30 -
B 04 ®
20 - - — 20 0.4

=
)

o

FedSup E-FedSup L;(;/ers 4E-Fed568p ? L;(;/ers 4Ig-FedSGL(J)p ?
(a) Updates for personalization (b) CKA, s=10 (c) CKA, s=50
Figure 10: (a) Personalization accuracy of FedSup and E-FedSup on CIFAR-100 according to
the fine-tuned part by referring to |Oh et al| (2021) (other parts are freezed); (b), (c): Centered

Kernel Alignments (CKA) similarities of two different global models trained with FedSup and

E-FedSup (Kornblith et al, 2019).

Personalization. Referring to recent personalized FL experimental settings 2021), we
compare the performance according to the fine-tuned part (Figure 10|(a)). Child models are fine-tuned
with five epochs based on the local training data. As mentioned in literature (Oh et al.l 2021} [Cuo|
[202Ta), it is shown that updating only head has slightly better performance than the others
including local-only training(Table 2)). In the main paper, we thus updates only the head for the
personalization unless otherwise mentioned.

CKA Similarities (Kornblith et al., 2019). We vividly compare how the representations of neural
networks are changed through the FedSup and E-FedSup. To be specific, Centered Kernel Align-
ment (CKA) is leveraged to analyze the features learned by two architectures trained with FedSup and
E-FedSup under different heterogeneous settings, given the same input testing samples (Figure 10](b)
and (c)). Regardless of the degree of heterogeneity, CKA visualizations show that the representations
of two neural networks trained with FedSup and E-FedSup seem similar during the propagation.

F.2 GLOBAL ACCURACIES

Unlike the main section, we evaluate a global accuracy of each server model with original test dataset

on CIFAR-10 dataset [Table B).

F.3 ABLATION STUDIES: MOMENTUM AND LABEL SMOOTHING

Momentum. describes the initial and personalzied accuracy according to the momentum.
The momentum is not applied during the fine-tuning of personalization. In most cases, appropriate
momentum improves the performance.

Label Smoothing (LS) (Szegedy et al.| 2016). [Table 10| describes the initial and personalized
accuracy according to the LS. LS is popularly used in the existing weight-sharing methods

2019} [Yu et al.}, 2020; [Wang et al.| 2021b)), but in our environment, it rather degrades both initial and
personalized performance.

19

Under review as a conference paper at ICLR 2023

Table 7: Performance of FedSup on CIFAR-10 test dataset. (last accuracy / best accuracy) is written
in order (R = 0.1, N = 100).

Dirichlet Shard
T m £ =0.01 B8=1.0 s=2 s=10

0.0 27.31/29.04 72.34/73.04 56.70/58.70 74.38/75.09
1 0.1 3498/3505 7451/7488 60.22/61.58 75.51/76.24
0.5 35.12/3572 75.22/76.10 61.42/6237 75.13/76.90

0.0 44.21/4531 80.13/80.80 69.30/69.39 81.01/81.66
5 0.1 471574777 82.22/83.02 69.62/70.61 82.15/82.92
0.5 51.81/52.13 82.60/83.18 70.20/71.05 82.14/82.98

Table 8: Performance of E-FedSup on CIFAR-10 test dataset. (last accuracy / best accuracy) is written
in order (R = 0.1, N = 100).

Dirichlet Shard
T m 5 =0.01 B8=10 s=2 s=10

0.0 2549/27.02 72.27/72.62 60.67/60.70 72.10/73.63
1 0.1 2856/30.87 72.55/72.56 60.72/60.93 73.28/74.01
0.5 33.34/3334 73.32/7438 60.16/61.25 73.21/74.87

0.0 40.72/41.01 80.06/80.52 64.64/67.10 79.38/80.04
5 0.1 4243/44.83 79.83/80.87 65.54/67.96 80.90/80.92
0.5 46.36/46.48 80.39/82.14 65.70/68.49 80.72/80.98

F.4 EXPERIMENTS ON MEDICAL DATASET.

shows that FedSup and E-FedSup work fairly well on the PathMNIST dataset and have the
similar tendency shown in

20

Under review as a conference paper at ICLR 2023

Table 9: Initial and personalized accuracy of FedSup and E-FedSup on CIFAR-100 according to the
change of the momentum magnitude. The fine-tuning epochs is 5, R is 0.1, N is 100, and s is 10.

Settings B M N

Alg. m Initial Personalized Initial Personalized Initial Personalized

0.0 30411798 68.091t6.26 30.2817.73 67.581t6.06 29.73£7.30 66.79+7.01
FedSup 0.1 31.0447.96 69.9846.46 30.981 768 68.5446.50 30.3546.43 67.61417.07
05 33134801 7l.1li712 33.044775 70.0316.8s 32.444799 T0.0046 .01

0.0 29.91;{:7.14 66.94:{:6.61 29.62:{:8.15 66.15:(:7_90 29-11:!:8.80 65.86:{;7_02
E-FedSup 0.1 30.394¢.86 68.7446.66 30.06+s.35 67.8316.80 29.7245.04 66.7046.02
0.5 32.1549.44 69.1346.95 31.4248.77 69.1146.61 31.1148.83 68.86+6.77

©

Table 10: Initial and personalized accuracy of FedSup and E-FedSup on CIFAR-100 with and without
label smoothing. The fine-tuning epochs is 5, R is 0.1, N is 100, and s is 10.

Architecture Size B M S

Architecture LS Initial Personalized Initial Personalized Initial Personalized

0.0 33.134+8.01 71114712 33.044+7.78 70.03+6.88 32.44417 99 70.00+6.91
0.1 31.11t760 69.86+7.54 30.7017.36 68.91t6.74 30.8317.41 68.1617.56

00 32.1549.44 69.1346.95 31.424g8.77 69.114661 31.114g8.83 68.8646.77
0.1 30.63t9.02 68.77+6.33 30.151g.05 67.4146.45 30.0415.91 66.9716.73

FedSup

E-FedSup

Table 11: Initial and personalized accuracy with static batch normalization on PathMNIST
under various FL settings with 100 clients. We implement data heterogeneity through
Dirichlet distribution (3) (Yurochkin et al., 2019; [Hsu et al., 2019} [Lin et al.}[2020). FedAvg algorithm
has 2-3% lower initial and personalzied acc. on average than E-FedSup.

FL Settings B = 100.0 B =1.0
R A FedSup E-FedSup FedSup E-FedSup
Initial Personalized Initial Personalized Initial Personalized Initial Personalized
B 75.0214.95 74.6714.56 73.0414.39 73.564£4.74 71.701g8.01 79.6716.34 70.3318.10 79.1716.62
1.0 M 74‘33:&4‘45 74‘33:&4‘40 74‘30:&4‘47 73‘69:&4.66 70.19i7_91 78~63:H3.84 69.40;&&43 78.48i7‘33
N 74.0344.41 73.1244 54 70.664+5 50 70.0045.60 68.59+8.17 77.60+7.17 66.9548 14 76.38+7.65
B T4.76 1403 74.3814.20 73.9114. 87 73.2214.95 70.0718.65 79.30+7.29 69.401L8.05 79.0816.74
0.1 M 73.974+4.90 73.48 14,54 74.0844 91 73.2644.54 69.461+9 23 78.804+6.33 69.1349.07 78.76+6.24
S 7323 484 T1.790a.65 73.88 14,44 72.97 1404 68.0548.77 77.3747.63 67.274s.07 76.9917 58

Table 12: Initial and personalized accuracy with parametric normalization on PathMNIST (Yang et al.|
under various FL settings with 100 clients. We implement data heterogeneity through Dirichlet

distribution (3) (Yurochkin et al,[2019; [Hsu et al., 2019} [Lin et al., [2020). FedAvg algorithm has

3-4% lower initial and personalzied acc. on average than E-FedSup.

FL Settings B = 100.0 B =1.0
R A FedSup E-FedSup FedSup E-FedSup
Initial Personalized Initial Personalized Initial Personalized Initial Personalized
B 75.3844.57 75.0844. 22 74.5944.11 74.38+4.96 72.764+8.38 79.93+7.62 70.984808 79.78+6.31
1.0 M 75.0544.24 74.894+4.68 74.3014.84 73.6914.85 71.1717 93 78.5416.90 70.011g 22 78.60+7.46
S 73.97+4.70 73.9444.75 T1.4645 73 70.9615 75 68.8218.91 77.1247.72 69.6418.83 77.4817.74
B 74.5714.94 T4.6314.43 T4.514t4.47 73.674516 71124855 79.1147.29 70.14158.91 79.0216.60
0.1 M 73.864+4.82 73.49+4.36 73.714+5.30 73.53+5.12 70.38+9.01 78.99+6.33 70.07+9.61 78.60+6.54
N 73.2744.71 73.5645.11 73.3845.08 72.734+4.90 69.87+5.82 78.534+7 63 68.2648.79 78.02+6.60

21

Under review as a conference paper at ICLR 2023

Table 13: Experiments with static batch normalization: Initial and personalized accuracy on CI-
FAR100 under various FL settings with 100 clients. The initial and personalized accuracy indicate
the evaluated performance without fine-tuning and after five fine-tuning epochs for each client,
respectively.

FL Settings s=50 s=10
FedSup E-FedSup FedSup E-FedSup

R ™ A

Initial Personalized Initial Personalized Initial Personalized Initial Personalized

42.83415.05 55.03+4.95 42.461560 55.951+6.03 25.9616.47 65.751+6.05 26.3316.37 66.44416.83
41.3945.33 55.33+14.53 42.154557 55.914557 26.0416.28 65.5916.00 26.5046.70 66.50L7.01
39.1944.77 53.1744.77 39.7845.20 54.3545.88 25.0645.94 64.8116.12 25.2046.00 64.53+6.52

47.0845.14 58.154+6.14 46.184568 58.04+562 31.244566 69.4246.69 29.77+6.22 69.4716.35
43.3444.89 H57.014536 44.134551 57.2546.17 28.8146.14 69.3745.30 30.2246.31 69.38+6.00
40.33+5.02 52.7815.66 40.2215028 53.2415.42 25.011511 66.4916.36 26.411597 66.30416.34

38944530 53.5514.81 39.3745.40 54.8814.79 22434511 65.1214595 22424532 64.7546.3s
38.0945.40 53.314s5.26 39.3345.10 54.814s5.22 22.4045.23 64.9516.21 22.2315.66 64.7316.55
36.0145.50 52.2914.91 37.344526 53.0815090 21.171567 64.1816.52 21.3245.59 64.2916.69

43.834+6.20 56.5145.15 43.53416.22 55.7545.61 26.07+6.58 68.094+6.22 24.5647.35 67.68+6.49
42.2145 78 55.424535 42.2445 72 55.3845.51 24.8146.99 67.9316.32 24.7647.23 67.87+6.50
37944515 52.154528 37.1945.10 52.33+5.38 20.274+6.98 64.4146.30 20.28+6.71 64.3545.99

0.1

NZW| VZW| wZW| wZw

22

Under review as a conference paper at ICLR 2023

F.5 LEARNING CURVE OF GLOBAL ACCURACY

We visualize the learning curves of the networks trained with FedSup and E-FedSup (Figure T1). As
Figure T1|shows, FedSup has slightly better performance than E-FedSup. Here, the cosine learning
rate scheduler is used, and the detailed explanations are noted in SectionE}

—— FedSup
E-FedSup

40+

w
o
L

Accuracy
N
o

10 r

6 160 260 360 460 560
Communication Round

Figure 11: Learning curve of the networks trained with FedSup and E-FedSup. Both networks are
trained with s = 50,7 =5, R = 0.1, N = 100.
F.6 PATHMNIST RESULTS OF FEDAVG

As mentioned in [lable 11| FedSup and E-FedSup works better than FedAvg algorithm. Most
performances in [Table 14]are lower than the values in

Table 14: FedAvg performance on PathMNIST (N = 100, 7 = 5).

8 =100.0 B=10
R m Initial Personalized Initial Personalized
1.0 00 72214467 72.09+430 69.95+6.94 77.00+6.26
0.1 0.0 71.1544.43 72121 4.69 67.8716.78 76.77+7.34

F.7 FASHION-MNIST RESULTS
As shows, FedSup and E-FedSup fairly works well on Fashion-MNIST dataset.

Table 15: Initial and personalized accuracies on Fashion-MNIST with 100 clients, R = 0.1, and
m = 0.5.

Non-LLD. | Algorithm | FedAvg[2017] Ditto [2021b] LG-FedAvg[2020] Per-FedAvg[2020]| FedSup E-FedSup
s=5 Initial 84‘12:&5_99 68‘93:&7‘25 83.37i5_30 85‘79:&5‘21 91‘12:&5‘11 89‘42:&5_34
- Personalized | 90.304+5.30 82.1746.16 90.6445.30 92.3546.07 94.47 15 71 94.0116.19
s—29 Initial 75.43+6.57 62.5445.17 81.4546.03 79.9615 35 86.2315 81 83.2016.68
- Personalized | 91.8845 70 88.724¢6.79 92.6346.53 85.0146.54 95.48,1 484 93.3146.71

F.8 INPLACE DISTILLATION: REPRESENTATION DIVERGENCE

describes the initial and personalzied accuracy according to the inplace distillation. The
inplace-distillation is not applied during the fine-tuning of personalization. In most cases, applying

23

Under review as a conference paper at ICLR 2023

inplace distillation improves the performance. Namely, without any additional models, it can supervise
a sub-model’s representation aligning into the same direction (i.e., representation alignment; a concept
from Kim et al. (Kim et al.| |2021)).

Table 16: Initial and personalized accuracy of FedSup on CIFAR-100 with and without inplace
distillation. The fine-tuning epochs is 5, R is 0.1, N is 100, and s is 10.

Architecture Size B M S
Architecture In-Distill Initial Personalized Initial Personalized Initial Personalized
FedSup True 33.1348.01 7l.1147.12 33.0447.78 70.034¢.88 32.4447.99 70.0046.91

False 32.8817.99 70.6217 88 32.73+8.01 69.55+7. 07 30.7618.51 68.441 7 51

F.9 FEDPROX: WEIGHT DIVERGENCE

describes the initial and personalized accuracy according to the FedProx. The FedProx is
not applied during the fine-tuning of personalization. In most cases, there remains little changes in
performance after applying FedProx. Here, we use the value of hyperparameter A in FedProx as
0.001.

Table 17: Initial and personalized accuracy of FedSup on CIFAR-100 with and without FedProx. The
fine-tuning epochs is 5, R is 0.1, N is 100, and s is 10.

Architecture Size B M S
Architecture FedProx Initial Personalized Initial Personalized Initial Personalized
FedSu X 33.13+8.01 7l.11i712 33.0dt7.78 70.0316.88 32.4417.99 70.00+6.91
P (6] 32.9347.85 70.0147.33 33.0147.08 68.6947.54 32.5948.02 68.3847.22

F.10 TRAINING TIME ANALYSIS ON SYNCHRONIZED TRAINING SETTINGS

Our methods are much more efficient in terms of time than the synchronous training of FedAvg-
Variant methods. Consider an example for real-world applications. Since IoT, Edge Device, and
Cloud Server have different resource performance, the time it takes for local training is different
for each machine. We assume the local training time for every round in If you need to
train with FedAvg-Variant Model, the time it takes to synchronize every round is 30 (sec) + network
bandwidth time. On the other hand, in the case of E-FedSup, the model is distributed in consideration
of the resource, S for IoT, M for Edge Device, and B for Cloud Server, FL can be implemented so
that 10 (sec) + network bandwidth time is required. FedSup can also be implemented much more
effectively than FedAvg-variant methods if sub-models are selected well in local training.

Table 18: Assuming that the local training time of the Big model in the IoT device is 30 seconds, the
training time in different machines of different models is assumed based on this.

B M S

IoT 30(sec) 20(sec) 10(sec)
Edge Device 20(sec) 10(sec) 6(sec)
Cloud Server 10(sec) 5(sec) 3(sec)

F.11 NUMBER OF SAMPLED ARCHITECTURES FOR TRAINING IN FEDSUP

We study the number of sampled architectures M per training iterations. It is important because larger
n leads to more training time. We train the models with n equal to 1,2,3, or 4 where the sandwich
rule is not applied when n < 2.

24

Under review as a conference paper at ICLR 2023

Table 19: Performance of FedSup on CIFAR-10 test dataset with supernet having dynamic operations
on depth, kernel, and width. (accuracy on Dirichlet distribution having 8 = 0.01 / accuracy on
Dirichlet distribution having 8 = 1.0) is written in order (R = 0.1, N = 100, 7 = 5,m = 0.5).

M 1 2 3 4
W/ Sandwich Rule - - 47.90/80.01 48.53/80.76
W/O Sandwich Rule 47.74/79.22 46.99/79.15 46.11/79.32 47.16/79.91

25

	Introduction
	Related Work
	Method
	Problem Settings: Federated Averaging (FedAvg)
	Motivation from Weight Sharing in Centralized Supernet Training
	Training Strategies for FedSup
	Parametric Normalization (PN)
	In-place Distillation

	E-FedSup for Computational Power and Network Bandwidth
	Details for Model Aggregation and Child Selection

	Experiment
	Experimental Settings
	Evaluation on the Common Federated Learning Settings
	Evaluation on the Resource Efficiency

	Conclusion
	Overview of Appendix
	Ethics Statement
	Limitations and Future Directions
	Conceptual Comparison to Prior Works
	Implementation Details for section 4
	Architectural Space
	M Sampled Child Models and Sandwich Rule.
	Experimental Settings

	Additional Experimental Results
	Personalization and CKA similarities
	Global Accuracies
	Ablation Studies: Momentum and Label Smoothing
	Experiments on Medical Dataset.
	Learning Curve of Global Accuracy
	PathMNIST Results of FedAvg
	Fashion-MNIST Results
	Inplace Distillation: Representation Divergence
	FedProx: Weight Divergence
	Training Time Analysis on Synchronized Training Settings
	Number of Sampled Architectures for Training in FedSup

