
Published in Transactions on Machine Learning Research (10/2025)

Mesh-Informed Neural Operator : A Transformer Generative
Approach

Yaozhong Shi yshi5@caltech.edu
California Institute of Technology

Zachary E. Ross zross@caltech.edu
California Institute of Technology

Domniki Asimaki domniki@caltech.edu
California Institute of Technology

Kamyar Azizzadenesheli kaazizzad@gmail.com
NVIDIA Corporation

Reviewed on OpenReview: https: // openreview. net/ forum? id= K8qAuRfv0G

Abstract

Generative models in function spaces, situated at the intersection of generative modeling and
operator learning, are attracting increasing attention due to their immense potential in diverse
scientific and engineering applications. While functional generative models are theoretically
domain- and discretization-agnostic, current implementations heavily rely on the Fourier
Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains.
To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator
(MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a
principled, domain- and discretization-agnostic backbone for generative modeling in function
spaces. This advancement significantly expands the scope of such models to more diverse
applications in generative, inverse, and regression tasks. Furthermore, MINO provides a
unified perspective on integrating neural operators with general advanced deep learning
architectures. Finally, we introduce a suite of standardized evaluation metrics that enable
objective comparison of functional generative models, addressing another critical gap in the
field.

1 Introduction

Generative models are powerful tools for fields dealing with complex data distributions, with recent advances
in diffusion and flow matching models demonstrating impressive capabilities for synthesizing high-fidelity
images (Song et al., 2021; Ho et al., 2020; Lipman et al., 2023), audio (Liu et al., 2023; Huang et al., 2023), and
video (Jin et al., 2025). These models excel at learning highly complicated probability distributions in finite-
dimensional spaces. However, numerous fields in science and engineering–such as seismology, biomechanics,
astrophysics and atmospheric sciences—primarily deal with data that inherently reside in infinite-dimensional
function spaces. Moreover, in many cases, the data collected in these fields are functions sampled on
heterogeneous networks of sensors, or even on manifolds (e.g., global seismic networks or weather stations
on Earth’s surface). Functional generative models are especially important for these fields because they
routinely deal with several broad (sometimes overlapping) challenges: (i) uncertainty quantification in physical
units, (ii) the inherent non-uniqueness present in, e.g. solutions to inverse problems, and (iii) the need to
model stochastic or latent fields that are effectively unobservable, which are better handled probabilistically.
Together, these factors necessitate a paradigm shift towards generative models that operate directly in
function spaces.

1

https://openreview.net/forum?id=K8qAuRfv0G

Published in Transactions on Machine Learning Research (10/2025)

Recent studies have generalized various generative paradigms to function spaces (Rahman et al., 2022;
Shi et al., 2024a;b; Kerrigan et al., 2023a;b; Lim et al., 2025; Seidman et al., 2023) by leveraging neural
operators (Azizzadenesheli et al., 2024; Kovachki et al., 2023). Despite these advancements, two critical
bottlenecks hinder the broader adoption and rigorous evaluation of functional generative models. First,
current implementations are predominantly based on FNO (Li et al., 2021) as their backbone. However, FNO
implementations are restricted to regular grids on rectangular domains, thereby preventing the realization
of many key theoretical benefits. Second, prior studies rely on dataset-specific metrics, making it difficult
to compare functional generative models across datasets and to draw robust conclusions about generative
quality.

Input function

Positions

[𝑓𝑑𝑖𝑚, 𝑁𝑖𝑛]

[𝑃𝑑𝑖𝑚, 𝑁𝑖𝑛]

Geometry Encoder Latent Processor (optional)

Cross-Attention Decoder

G
N

O

C
ro

ss

At
te

nt
io

n

× M𝟏

Q

KV

Latent
vector

[𝐿𝑑𝑖𝑚, 𝑁𝑛𝑜𝑑𝑒]

KV

Q

Output function
[𝑔𝑑𝑖𝑚, 𝑁𝑖𝑛]

time steps T &
other conditions

Embed

[𝐶𝑑𝑖𝑚]

Q
K V

Q
K V

Cross-Attention Block

C
ro

ss

At
te

nt
io

n

Figure 1: Overview of the MINO architecture. The geometry encoder uses a GNO as a domain-agnostic
tokenizer, followed by several cross-attention blocks and an optional latent processor. The decoder then
employs a distinct cross-attention mechanism to map the latent representation back to the target locations.

This study addresses the aforementioned limitations of functional generative models. Specifically, our
contributions are summarized as follows:

• We introduce MINO, a domain-agnostic functional generative backbone. Our comprehensive ex-
periments show that MINO achieves state-of-the-art (SOTA) performance on a diverse suite of
benchmarks with regular and irregular grids.

• We demonstrate through analysis and experiments that Sliced Wasserstein Distance (SWD) and
Maximum Mean Discrepancy (MMD) are efficient, robust, dataset-independent metrics for evaluating
the performance of functional generative models on regular and irregular grids.

• We propose a novel framework that integrates operator learning with modern deep learning practice.
By using a graph neural operator as a domain-agnostic tokenizer and embedding tailored cross-
attention modules in both the encoder and decoder, our design avoids information bottlenecks present
in prior encoder-processor-decoder neural operators, allowing any powerful, finite-dimensional network
(e.g., U-Net or Transformer) to serve as the latent processor.

2 Preliminaries
Neural operators. Neural operators learn mappings between function spaces, extending deep learning beyond
the fixed-dimensional vectors handled by classical networks. This function space perspective is especially
important for scientific computing that is governed by partial differential equations (PDEs) (Kovachki
et al., 2023; Li et al., 2021). A core theoretical property of neural operators is discretization convergence
(agnosticism): as the mesh of input function is refined, the prediction approaches the unique continuous
solution (Kovachki et al., 2023). The Fourier Neural Operator (FNO) (Li et al., 2021) achieves this property
via spectral-domain convolutions, achieving quasi-linear complexity on regular grids. Its global mixing excels

2

Published in Transactions on Machine Learning Research (10/2025)

at capturing long-range dependencies but may miss fine-scale detail (required for generative tasks) unless
many Fourier modes are retained (Liu-Schiaffini et al., 2024).

For handling functions on irregular grids, Graph Neural Operator (GNO) (Gilmer et al., 2017; Li et al.,
2020) remains a powerful candidate. GNO shares the message-passing functionality of Graph Neural Network
(GNN), but differs in that the search radius for neighbors is defined in physical coordinates and made
consistent across resolutions to guarantee discretization convergence. This results in GNO having a local
receptive field, however it is computationally inefficient for certain tasks (Li et al., 2023; Liu-Schiaffini et al.,
2024) and often struggles to learn the high-frequency information required for many generative models. This
difficulty arises from the standard message-passing mechanisms, which tend to act as low-pass filters (Li
et al., 2018; Giovanni et al., 2023). More recent work has focused on improved scalability and performance
aspects of Neural Operators on irregular grids and non-rectangular physical domains, e.g., Geometry-Informed
Neural Operator (GINO), Universal Physical Transformer (UPT), Latent Neural Operator (LNO), and
Transolver (Li et al., 2023; Alkin et al., 2024; Wang & Wang, 2024; Wu et al., 2024). However, it remains
unclear whether these architectures will also be effective for functional generative modeling on irregular grids
(see Appendix C).

Functional generative models. Classical generative models learn a mapping from a simple base distribution
(e.g., multi-variate Gaussian) to a target finite dimensional data distribution. Alternatively, the functional
perspective frames this problem in infinite-dimensional spaces. A sample function f1 : D → Rfdim , with
D denoting the domain of the function, is treated as a sample from a target probability measure µ1 over
a function space. The discrete samples are formed by evaluating f1 on a set of grid points of locations.
Functional generative models often aim to learn a mapping between function spaces by training a neural
operator to transform a function f0 sampled from a simple base measure µ0 (typically a Gaussian random
field measure N (0, C)) into a function f1 that follows the target measure µ1. The distribution of the discrete
data is thus a finite-dimensional marginal of the true data measure µ1.

Adopting this perspective, functional generative models offer several key benefits not generally available in
their traditional finite-dimensional counterparts:

• Flexible domain geometries: The function domain D is not required to be rectangular; it could be
an irregular domain or even a manifold. Such flexibility is ideal for many real-world scenarios in
science and engineering, such as modeling rainfall over a city with an irregular boundary, or modeling
weather patterns on the Earth’s surface.

• Discretization agnosticism (mesh invariance): By learning a probability measure over functions, func-
tional generative models can be trained on samples with varying discretizations and can subsequently
generate new function samples at any desired discretization in a zero-shot manner.

• Inference-time control and guidance in function space: Functional diffusion/flow models enable the
incorporation of inference-time scaling rules and precise guidance signals directly within function
spaces. For instance, this facilitates the development of probabilistic PDE solvers that can rigorously
enforce hard boundary conditions or other external controls during generation (Cheng et al., 2024;
Yao et al., 2025).

• Universal functional regression via stochastic process learning: By leveraging invertible trajectories
derived from neural operators, it is possible to perform functional regression with learned (non-
Gaussian) stochastic process priors (Shi et al., 2024a; 2025). These learned distributions are capable
of providing exact prior and posterior density estimation for a general stochastic process.

Flow matching in Hilbert space. Recent work has established a rigorous mathematical framework for
extending flow matching to Hilbert spaces (Kerrigan et al., 2023b), Functional Flow Matching (FFM), where
a velocity field is learned to transport a base Gaussian measure to a target measure. This was further built
upon by Operator Flow Matching (OFM) (Shi et al., 2025), which extended the paradigm to stochastic
processes and incorporated a dynamic optimal-transport path.

The core idea of FFM/OFM is to learn a continuous path of functions, ft for t ∈ [0, 1], that transforms samples
f0 from a base Gaussian measure µ0 into samples f1 from a target data measure µ1. This transformation is

3

Published in Transactions on Machine Learning Research (10/2025)

governed by an Ordinary Differential Equation (ODE) whose velocity field, vθ, is parameterized by a neural
operator with weights θ:

dft

dt
= vθ(ft, t) (1)

For training, OFM draws pairs of functions (f0, f1) from a mini-batch optimal coupling π(µ0, µ1), which is
achieved by minimizing the 2-Wasserstein distance between µ0 and µ1. The base measure, µ0, is typically a
Gaussian measure N (0, C), where C is a trace-class covariance operator. The framework then defines the
path ft as a linear interpolation between f0 and f1, i.e., ft = (1 − t)f0 + tf1. ft induces a time-dependent
probability measure µt, such that at t = 0, µt = µ0 and t = 1, µt = µ1. This specific choice yields a simple
ground truth expression for the velocity, vt = f1 − f0. The training objective is then to minimize the Mean
Squared Error (MSE) between the parameterized velocity field vθ(ft, t) and this target vt. To generate
a new sample, one draws f0 ∼ µ0 and solves the learned ODE numerically. While functional diffusion
models offer a related framework, they typically rely on Stochastic Differential Equations (SDEs), which
introduce an additional perturbation term with longer generation time and inferior performance compared
to ODE-based flow matching (Lim et al., 2025; Kerrigan et al., 2023a). A fundamental property of both
paradigms is domain alignment: for a given trajectory, all evolving functions ft must be defined on the
same fixed spatial domain D. (µt ∈ P(L2(D;Rfdim))). Crucially, the theory allows this domain D to be
geometrically complex; it is not restricted to a rectangular shape and can be a domain with an irregular
boundary or even a manifold. However, this theoretical flexibility has been underutilized in practice, as
existing implementations predominantly rely on FNO, which restricts them to domains discretized by regular
grids.

Grid-Based Architectures. The modern U-Net architecture used in diffusion models (Rombach et al.,
2022) has become a de-facto standard for generative tasks on grid-like data. These advanced U-Nets are
distinct from the variant used in some earlier neural operators (Rahman et al., 2023), the U-Net can effectively
capture multi-scale information through their hierarchical structure, skip connections, and integration of
attention and residual blocks. Nevertheless, they remain constrained to regular grids due to their reliance
on standard convolutional neural network kernels. Another prominent line of work involves Transformer-
based architectures. Standard Vision Transformers (ViTs) and Diffusion Transformers (DiTs) (Dosovitskiy
et al., 2021; Peebles & Xie, 2023), first "patchify" the input into non-overlapping blocks and then apply full
self-attention, incurring O(N2

patch) time complexity. For images, Npatch ≪H × W (Height and Width), yet
the patchify operation creates discontinuities at block borders that can lead to checkerboard artifacts (Fang
et al., 2023). Moreover, both ViT and DiT presuppose a fixed rectangular grid so that patchification is well
defined.

Table 1: Comparison of MINO with other architectures. "local → global" receptive field gathers global context
through stacked local operations. "local + global" receptive field combines local and global information
directly. A detailed discussion is provided in Appendix C

Architecture Efficient Receptive field Irregular grid Discretization convergent Frequency learnt
GNN ✗ local ✓ ✗ low
GNO ✗ local ✓ ✓ low
FNO ✓ global ✗ ✓ low + high
U-Net ✓ local → global ✗ ✗ low + high
ViT/DiT ✓ global ✗ ✗ low + high
GINO ✓ local → global ✓ ✓ low
UPT ✓ local → global ✓ ✓ low
MINO [Ours] ✓ local + global ✓ ✓ low + high

3 Methods
Our proposed architecture, MINO, provides an effective solution for functional generative models on non-
rectangular domains with irregular grids. It integrates powerful deep learning backbones with neural operators
in a manner that is tailored for improving functional generative performance. Specifically, this is achieved

4

Published in Transactions on Machine Learning Research (10/2025)

T = 0 (GP noise) T = 0.25 T = 0.75 T = 1 (output)Inference
Time

N
-S

W
ea

th
er

M
es

hG
P

Cy
lin

de
r

Coarse

Fine

Medium

Zero-shot generation at different spatial scales

(a)

(b)

Figure 2: Inference and zero-shot Generation with MINO. (a) MINO gradually transforms a GP sample to
the data sample under flow matching paradigm. (b) Zero-shot generation at varying spatial scales by directly
transforming finer GP samples to finer data samples.

by combining GNO with cross-attention mechanisms (see Table 1). As illustrated in Figure 1, the GNO in
the encoder can be viewed as a domain- and discretization-agnostic alternative to the "patchify" operation.
By injecting the input function representation into both the encoder and the cross-attention decoder, our
framework benefits from both local and global receptive fields.

In the following, we outline the MINO architecture. We specifically focus on its use in the flow matching
paradigm to learn velocity fields, as illustrated in Fig. 2. Although our primary application is generative
modeling, the MINO architecture is general-purpose and can be used for other operator learning tasks, such
as solving PDEs, with minor adjustments.

Problem Formulation. Within the flow matching paradigm, MINO takes three primary inputs: a noisy
function ft, the set of its observation positions fpos, and the corresponding time step t, along with any
optional conditioning variables. Specifically, the input function ft is represented by its values at Nin discrete

5

Published in Transactions on Machine Learning Research (10/2025)

locations, fpos = {pi}Nin
i=1. These locations are a discretization of a continuous domain D ⊂ RPdim . Note that

Nin can be different per sample. The codomain (channel) of ft has dimension fdim, resulting in an input
tensor of function values with shape [fdim, Nin]. The output is another function (velocity field vt) at these
same locations. In the context of flow matching or diffusion, the output dimension matches the input, so the
target output also has a shape of [gdim, Nin], where gdim = fdim.

The MINO framework is inspired by the encoder-processor-decoder structure of prior architectures like
GINO and UPT. Our model consists of three main components: (i) a geometry encoder, (ii) an (optional)
latent-space processor, and (iii) a cross-attention decoder. We introduce several key modifications to this
design that significantly improve performance on functional generative tasks, as detailed in the following
subsections.

Geometry Encoder. First, we apply sinusoidal embeddings (Vaswani et al., 2017; Peebles & Xie, 2023) to
the time step t and the observation positions fpos, yielding temb and pemb respectively, as shown in Eq. 2.
The input function ft is then concatenated with the embedded positions pemb along the codomain before
being passed to a GNO layer; this maps the function from its potentially irregular discretization {pi}Nin

i=1 to a
latent representation on a predefined regular grid of query points {pquery

j }Nnode
j=1 . The GNO mapping is based

on neighbor-searching within a fixed radius r, where Nnode ≪ Nin. Following this GNO layer, a linear layer
projects its output fE

t into hE
0 of shape [Ldim, Nnode].

This initial latent representation hE
0 is then processed by M1 blocks of Multi-Head Cross-Attention (MHCA).

Importantly, the key-value (KV) pair for all attention blocks is fixed as hE
0 , while the query (Q) is the

output of the previous MHCA layer hE
j−1, and the time embedding temb is used for conditioning. We found

this configuration yields better performance than the standard self-attention used in DiT, with comparisons
provided in Appendix E. Thus, for this entire component of the architecture, we have the following,

pemb = Emb(fpos), temb = Emb(t) (2)

fE
t = GNO(concat(MLP(ft), pemb)), hE

0 = Linear(fE
t) (3)

hE
j = MHCA(Q = hE

j−1, KV = hE
0 , C = temb), j = 1, · · · , M1. (4)

The output of the geometry encoder has a fixed size of [Ldim, Nnode], which is independent of the manner in
which the input function ft is discretized.

Latent-Space Processor. Given that the latent representation hE
M1

has a fixed size, any suitable neural
network (NN) can act as the processor. In our implementation, we use a Diffusion U-Net, known for being
a strong backbone in generative modeling. It is important to note that this processor is optional; MINO
remains a well-defined neural operator without it, although we found that its inclusion generally improves
performance. The processor’s input is conditioned on temb, whereas its output, hP, maintains the same shape
as its input,

hP = NN(hE
M1

, temb) (5)

Cross-Attention Decoder. The decoder employs a different cross-attention mechanism from that of
the encoder to enable mapping the latent representation back into the output velocity field at the original
observation locations. Specifically, ft is first processed by an MLP and then concatenated with pemb to form
fD
t . In a single cross-attention block, fD

t serves as the query (Q), while the key-value (KV) pair is taken
from the output of the optional processor hP (or hE

M1
if the processor is omitted). The time embedding temb

provides conditioning. Finally, a LayerNorm and a linear transformation are applied to the output of this
attention block to produce the estimated velocity field vt.

fD
t = MLP(concat(MLP(ft), pemb)) (6)

hD
1 = MHCA(Q = fD

t , KV = hP, C = temb) (7)

vt = Linear(LayerNorm(hD
1) (8)

A detailed comparison of the MINO framework to prior neural operator architectures is provided in Appendix C,
with an ablation study of our model’s components in Appendix E

6

Published in Transactions on Machine Learning Research (10/2025)

4 Experiments
In this section we empirically evaluate MINO and other baselines on a suite of functional generative benchmarks
under the OFM (Shi et al., 2025) paradigm due to its concise formulation and SOTA performance among
functional generative paradigms. For each task we parameterize the velocity field vθ(ft, t) with different
neural-operator backbones to study how the choice of architecture affects performance. The benchmarks cover
both regular and irregular grids, providing a comprehensive assessment. To the best of our knowledge, this is
the first systematic comparison of modern neural-operator architectures on function-generation problems.
We evaluate two variants of our proposed architecture: (i) MINO-U: a Diffusion U-Net as the latent space
processor, and (ii) MINO-T: a pure Transformer-based variant without the latent space processor, where the
encoder receives additional cross-attention blocks.

Table 2: Summary of experimental benchmarks, covering diverse domains with both regular and irregular
grids

Geometry Datasets Domain Co-domain Mesh Training Samples Test Samples

Regular Grid
Navier Stokes D ⊂ R2 1 4,096 30,000 5,000
Shallow Water D ⊂ R2 1 4,096 30,000 5,000

Darcy Flow D ⊂ R2 1 4,096 8,000 2,000

Irregular Grid
Cylinder Flow D ⊂ R2 3 1,699 30,000 5,000

MeshGP D ⊂ R2 1 3,727 30,000 5,000
Global Climate S2 ⊂ R3 1 4,140 9,676 2,420

Datasets. We curated a benchmark of six challenging functional datasets to evaluate performance across
different domain types: (i) Rectangular Domains and Regular Grids: We use Navier-Stokes (Li et al., 2021),
Shallow Water equation (Takamoto et al., 2022), and Darcy Flow (Takamoto et al., 2022) datasets. (ii)
Irregular Domains and Grids: We use the Cylinder Flow dataset (Han et al., 2022), a synthetic Mesh-GP
dataset on irregular meshes (Zhao et al., 2022), and a real-world global climate dataset (Dupont et al.,
2022). These datasets are summarized in Table 2. Detailed descriptions of the datasets and their associated
preparation are provided in Appendix A.

Baselines. To ensure a thorough comparison, we selected several state-of-the-art neural operators tailored
to different domains : (i) For irregular grids, we benchmark against leading architectures including the
Universal Physical Transformer (UPT) (Alkin et al., 2024), Latent Neural Operator (LNO) (Wang & Wang,
2024), Transolver (Wu et al., 2024), and Geometry-Informed Neural Operator (GINO) (Li et al., 2023). (ii)
For regular grids, we further include the Fourier Neural Operator (FNO) as a strong, established baseline.
To ensure a fair assessment, the parameter counts (or computational budgets) of all baseline models were
carefully matched to our variants. It is important to note that, with the exception of FNO, all evaluated
models (including our MINO variants) are designed to be domain-agnostic and process regular and irregular
grids identically. A detailed description of the the baseline implementation is provided in Appendix A.

Metrics. A significant current challenge in the field of functional generative models is the lack of standardized
evaluation protocols. Previous studies often rely on dataset-specific metrics, which prohibits fair and direct
comparison between models (Rahman et al., 2022; Kerrigan et al., 2023a; Shi et al., 2024a; Lim et al., 2025).
To address this gap, our work validates two robust and general metrics suitable for estimating the distance
between the learned probability measure ν (from which generated samples X are drawn) and the target
probability measure µ (from which test samples (dataset) Y are drawn).

The first metric is the Sliced Wasserstein Distance (SWD) (Bonneel et al., 2015; Han, 2023). SWD provides a
computationally efficient yet powerful alternative to the exact Wasserstein distance, which is often intractable
in high dimensions. It works by projecting high-dimensional distributions onto random 1D lines and then
averaging the simpler 1D Wasserstein distances. This approach converges to the true Wasserstein distance as
the number of projections increases and provides a robust way to compare the geometric structure of two
probability measures. For two measures µ and ν in Hilbert space, SWD is defined as (Definition 2.5 of Han

7

Published in Transactions on Machine Learning Research (10/2025)

(2023)):

SWDγ
p(µ, ν) =

(
1

γS(S)

∫
∥θ∥=1

W p
p (θ#µ, θ#ν)γS(dθ)

) 1
p

(9)

Where base measure γs is strictly positive Borel measure defined on a sphere S, Wp is the Wasserstein-p
distance, and θ#µ, θ#ν denote the pushforward measure of µ, ν under the projection θ separately. Further
details are provided in Appendix B.

The second metric is the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). Let X = L2(D;Rfdim)
and choose a bounded, characteristic kernel k : X × X → R with reproducing-kernel Hilbert space (RKHS)
(Hk, ⟨·, ·⟩k). Denote the mean embeddings mµ = E[k(X, ·)], mν = E[k(Y, ·)]. Then MMD is defined as

MMDk(X, Y) =
∥∥mν − mµ

∥∥
Hk

(10)

Because k is characteristic, MMDk = 0 if and only if µ = ν. In Appendix B, we show how to calculate SWD
and MMD given discretized function samples, and empirically verify that these metrics are valid, robust, and
sample-efficient for functional generative models.

Results. A visualization of the performance of MINO is provided in Figure 3 and as shown in Table 4, on
regular grid benchmarks, our MINO variants achieve SOTA performance: MINO-U achieves best performance
on the Navier-Stokes and Shallow Water datasets, while MINO-T excels on the Darcy Flow benchmark.
In contrast, several baseline neural operators (GINO, LNO, UPT) perform poorly. Further analysis in
Appendix C, D suggests this is because these models primarily learn low-frequency information and fail to
capture the high-frequency components essential for these generative tasks. FNO and Transolver achieve
comparable, albeit inferior, results to our models. Notably, beyond superior accuracy, our MINO variants
are also significantly more efficient than Transolver. As detailed in Table 5, they require substantially less
computation to train, are more GPU memory-efficient, and achieve up to a 3.0x speedup during inference,
demonstrating the efficiency of the MINO architecture.

For tasks on irregular grids, our models continue to demonstrate top performance. MINO-U achieves the
best results on the Cylinder Flow benchmark, while MINO-T is the top performer on the Mesh-GP and
Global Climate benchmarks. Then, We perform an ablation study, which confirm the effectiveness the
each component of our architecture, as detailed in Appendix E. Last, we provide additional experiments in
Appendix F and G to further demonstrate the superior performance of MINO.

M
IN

O
G

ro
un

d
Tr

ut
h

M
IN

O
 –

Su
pe

r R
es

ol
ut

io
n

(a)

(b)

G
ro

un
d

Tr
ut

h
M

IN
O

M
IN

O
 –

Su
pe

r R
es

ol
ut

io
n

Figure 3: Visualization of generation and zero-shot super-resolution by MINO-U. (a) Navier-Stokes samples
generated on the original mesh (4,096 nodes) and a finer mesh (25,600 nodes). (b) Global Climate sample
generated on the original mesh (4,140 nodes) and a finer mesh (16,560 nodes).

8

Published in Transactions on Machine Learning Research (10/2025)

Table 3: Generation performance on benchmarks with irregular grids. Best performance in bold

Dataset → Cylinder Flow Mesh-GP Global Climate
Model ↓ Metric → SWD MMD SWD MMD SWD MMD

GINO 4.6 · 10−1 3.1 · 10−1 1.1 · 10 0 3.6 · 10−1 6.9 · 10−1 5.1 · 10−1

UPT 7.3 · 10−1 5.4 · 10−1 4.2 · 10−1 2.8 · 10−1 7.4 · 10−1 5.4 · 10−1

Transolver 2.5 · 10−2 2.4 · 10−2 9.1 · 10−2 4.6 · 10−2 2.8 · 10−2 2.9 · 10−2

LNO 5.3 · 10−1 3.8 · 10−1 3.5 · 10−1 2.4 · 10−1 6.7 · 10−1 4.9 · 10−1

MINO-T (ours) 2.9 · 10−2 2.6 · 10−2 4.1 · 10−2 3.0 · 10−3 2.1 · 10−2 1.4 · 10−2

MINO-U (ours) 2.3 · 10−2 2.1 · 10−2 7.2 · 10−2 4.1 · 10−2 2.8 · 10−2 2.6 · 10−2

Table 4: Generation performance on benchmarks with regular grids. Evaluation metrics include the Sliced
Wasserstein Distance (SWD), Maximum Mean Discrepancy (MMD), and Mean Squared Error (MSE) for
spectra, autocovariance, and point-wise density. Best performance is indicated in bold.

Datasets Model ↓ Metric → SWD MMD Spectra-MSE Autocovariance-MSE Density-MSE

Navier-Stokes

GINO 4.6 · 10−1 3.7 · 10−1 1.9 · 102 4.6 · 10−4 1.9 · 10−2

UPT 6.0 · 10−1 4.7 · 10−1 2.5 · 103 1.5 · 10−2 4.0 · 10−3

Transolver 5.3 · 10−2 5.1 · 10−2 1.1 · 102 6.7 · 10−4 2.0 · 10−4

LNO 5.2 · 10−1 3.8 · 10−1 2.0 · 104 1.1 · 10−1 5.0 · 10−4

FNO 3.2 · 10−2 2.6 · 10−2 5.1 · 101 2.2 · 10−4 6.9 · 10−5

MINO-T (Ours) 4.0 · 10−2 3.6 · 10−2 1.9 · 101 6.8 · 10−5 1.6 · 10−5

MINO-U (Ours) 2.8 · 10−2 1.9 · 10−2 1.3 · 101 9.2 · 10−5 1.4 · 10−5

Shallow Water

GINO 7.3 · 10−1 5.1 · 10−1 1.5 · 102 1.8 · 10−1 9.9 · 10−1

UPT 8.6 · 10−1 5.9 · 10−1 3.1 · 102 4.0 · 10−3 1.0 · 10 0

Transolver 1.7 · 10−2 1.8 · 10−2 2.0 · 10−2 1.2 · 10−6 9.0 · 10−4

LNO 8.7 · 10−1 6.5 · 10−1 2.1 · 102 1.4 · 10 0 1.0 · 10 0

FNO 1.0 · 10−2 9.4 · 10−3 7.9 · 10−3 2.8 · 10−6 1.0 · 10−4

MINO-T (Ours) 9.8 · 10−3 8.7 · 10−3 1.6 · 10−2 5.2 · 10−6 2.0 · 10−5

MINO-U (Ours) 4.0 · 10−3 1.1 · 10−3 4.3 · 10−3 5.1 · 10−7 1.7 · 10−5

Darcy Flow

GINO 4.0 · 10−1 3.0 · 10−1 5.5 · 103 5.4 · 10−2 1.8 · 10−3

UPT 8.7 · 10−1 4.6 · 10−1 6.0 · 104 4.0 · 10 0 7.5 · 10−3

Transolver 2.2 · 10−1 8.9 · 10−2 4.8 · 103 3.4 · 10−1 3.0 · 10−4

LNO 5.5 · 10−1 3.8 · 10−1 2.7 · 103 2.4 · 10−1 1.0 · 10−3

FNO 1.1 · 10−1 3.6 · 10−2 1.2 · 103 8.4 · 10−2 8.9 · 10−5

MINO-T (Ours) 8.9 · 10−2 3.4 · 10−2 9.1 · 102 4.4 · 10−2 9.4 · 10−5

MINO-U (Ours) 9.5 · 10−2 4.8 · 10−2 1.0 · 103 7.7 · 10−2 3.8 · 10−5

Table 5: Computational efficiency and performance comparison between MINO variants and Transolver
during training and inference on Navier-Stokes benchmark.

Training Phase→ Params GPU memory (per sample) Training time (per epoch) Speedup

Transolver 15.0 M 0.913 GB 734 s 1×
MINO-T (ours) 21.5 M 0.429 GB 277 s 2.6×
MINO-U (ours) 19.2 M 0.419 GB 279 s 2.6×

Inference Phase → SWD MMD Generation time (per sample) Speedup

Transolver 0.053 0.051 1.49 s 1×
MINO-T (ours) 0.040 0.036 0.51 s 2.9×
MINO-U (ours) 0.028 0.019 0.49 s 3.0×

5 Conclusions
In this paper, we introduce the Mesh-Informed Neural Operator (MINO), a novel backbone for functional
generative models that leverages graph neural operators and cross-attention mechanisms. MINO operates

9

Published in Transactions on Machine Learning Research (10/2025)

directly on arbitrary meshes, addressing the reliance on grid-dependent architectures like FNO and thereby
enabling high-fidelity generation on complex and irregular domains. To complement this architectural
advance, we validate the Sliced Wasserstein Distance (SWD) and Maximum Mean Discrepancy (MMD) as
general-purpose metrics for fair and standardized model comparison. Our comprehensive experiments confirm
the success of this approach: MINO variants achieve state-of-the-art performance across a diverse suite of
benchmarks while being substantially more computationally efficient than strong competitors.

Additionally, the MINO framework helps bridge the gap between math-driven operator learning and modern
deep learning practice, unlocking the potential to apply high-fidelity generative modeling to a broader range
of complex scientific problems. We believe our contributions will foster more rigorous and rapid advancement
in the field of functional generative modeling. Python code is available at https://github.com/yzshi5/
MINO

Acknowledgments
The authors would like to thank the TMLR reviewers and the action editor for their constructive feedback,
and in particular reviewer fkny for the valuable suggestion regarding Table 8. This material is based upon
work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research, Science Foundations for Energy Earthshot under Award Number DE-SC0024705. ZER is supported
by a fellowship from the David and Lucile Packard Foundation.

References
Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes Brandstetter.

Universal physics transformers: A framework for efficiently scaling neural operators. Advances in Neural
Information Processing Systems, 37:25152–25194, 2024.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and Anima
Anandkumar. Neural operators for accelerating scientific simulations and design. Nature Reviews Physics,
6(5):320–328, May 2024. ISSN 2522-5820. doi: 10.1038/s42254-024-00712-5. Publisher: Nature Publishing
Group.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein
Barycenters of Measures. Journal of Mathematical Imaging and Vision, 51(1):22–45, January 2015. ISSN
1573-7683. doi: 10.1007/s10851-014-0506-3.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

Chaoran Cheng, Boran Han, Danielle C. Maddix, Abdul Fatir Ansari, Andrew Stuart, Michael W. Mahoney,
and Yuyang Wang. Gradient-Free Generation for Hard-Constrained Systems. arXiv:2412.01786, December
2024.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure attention
loses rank doubly exponentially with depth. pp. 2793–2803. International Conference on Machine Learning,
2021. ISBN 2640-3498.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, June 2021. arXiv:2010.11929
[cs].

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative Models as Distributions of Functions,
February 2022. arXiv:2102.04776 [cs].

Yuxin Fang, Shusheng Yang, Shijie Wang, Yixiao Ge, Ying Shan, and Xinggang Wang. Unleashing vanilla
vision transformer with masked image modeling for object detection. pp. 6244–6253. Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023.

10

https://github.com/yzshi5/MINO
https://github.com/yzshi5/MINO

Published in Transactions on Machine Learning Research (10/2025)

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie
T. H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz,
Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. POT: Python
Optimal Transport. Journal of Machine Learning Research, 22(78):1–8, 2021. ISSN 1533-7928.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. pp. 1263–1272. International conference on machine learning, 2017. ISBN
2640-3498.

Francesco Di Giovanni, James Rowbottom, Benjamin P. Chamberlain, Thomas Markovich, and Michael M.
Bronstein. Understanding convolution on graphs via energies, September 2023. arXiv:2206.10991 [cs].

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. J. Mach. Learn. Res., 13(null):723–773, March 2012. ISSN 1532-4435.

Ruiyu Han. Sliced Wasserstein Distance between Probability Measures on Hilbert Spaces, September 2023.
arXiv:2307.05802 [math].

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Li-Ping Liu. Predicting Physics in Mesh-reduced Space
with Temporal Attention, May 2022. arXiv:2201.09113 [cs].

Alex Havrilla, Kevin Rojas, Wenjing Liao, and Molei Tao. DFU: scale-robust diffusion model for zero-shot
super-resolution image generation, January 2024. arXiv:2401.06144 [cs].

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin Liu,
Xiang Yin, and Zhou Zhao. Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models. In Proceedings of the 40th International Conference on Machine Learning, pp. 13916–13932. PMLR,
July 2023. ISSN: 2640-3498.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick,
Andrew Zisserman, Oriol Vinyals, and Joāo Carreira. Perceiver IO: A General Architecture for Structured
Inputs & Outputs, March 2022. arXiv:2107.14795 [cs].

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
Yadong Mu, and Zhouchen Lin. Pyramidal Flow Matching for Efficient Video Generative Modeling, March
2025. arXiv:2410.05954 [cs].

Gavin Kerrigan, Justin Ley, and Padhraic Smyth. Diffusion Generative Models in Infinite Dimensions,
February 2023a. arXiv:2212.00886 [cs].

Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Functional Flow Matching, December 2023b.
arXiv:2305.17209 [cs].

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to
pdes. Journal of Machine Learning Research, 24(89):1–97, 2023. ISSN 1533-7928.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. volume 32. Proceedings of the AAAI conference on artificial intelligence, 2018. ISBN
2374-3468. Issue: 1.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural Operator: Graph Kernel Network for Partial Differential Equations,
March 2020. arXiv:2003.03485 [cs].

11

Published in Transactions on Machine Learning Research (10/2025)

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential Equations, May
2021. arXiv:2010.08895 [cs].

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian,
Maximilian Stadler, Christian Hundt, and Kamyar Azizzadenesheli. Geometry-informed neural operator
for large-scale 3d pdes. Advances in Neural Information Processing Systems, 36:35836–35854, 2023.

Jae Hyun Lim, Nikola B Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzadenesheli, Jean
Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, and Jan Kautz. Score-based diffusion models in
function space. Journal of Machine Learning Research, 26(158):1–62, 2025. ISSN 1533-7928.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching for
Generative Modeling, February 2023. arXiv:2210.02747 [cs].

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D. Plumb-
ley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models, September 2023. arXiv:2301.12503
[cs].

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyar Azizzadenesheli, and An-
ima Anandkumar. Neural Operators with Localized Integral and Differential Kernels, June 2024.
arXiv:2402.16845 [cs].

Peter Mostowsky, Vincent Dutordoir, Iskander Azangulov, Noémie Jaquier, Michael John Hutchinson, Aditya
Ravuri, Leonel Rozo, Alexander Terenin, and Viacheslav Borovitskiy. The GeometricKernels Package: Heat
and Matérn Kernels for Geometric Learning on Manifolds, Meshes, and Graphs, July 2024. arXiv:2407.08086
[cs].

William Peebles and Saining Xie. Scalable diffusion models with transformers. pp. 4195–4205. Proceedings of
the IEEE/CVF international conference on computer vision, 2023.

Md Ashiqur Rahman, Manuel A. Florez, Anima Anandkumar, Zachary E. Ross, and Kamyar Azizzadenesheli.
Generative Adversarial Neural Operators, October 2022. arXiv:2205.03017 [cs].

Md Ashiqur Rahman, Zachary E. Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped Neural Operators,
May 2023. arXiv:2204.11127 [cs].

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. pp. 10684–10695, 2022.

Jacob H. Seidman, Georgios Kissas, George J. Pappas, and Paris Perdikaris. Variational Autoencoding Neural
Operators, February 2023. arXiv:2302.10351 [cs].

Yaozhong Shi, Angela F Gao, Zachary E Ross, and Kamyar Azizzadenesheli. Universal functional regression
with neural operator flows. arXiv preprint arXiv:2404.02986, 2024a.

Yaozhong Shi, Grigorios Lavrentiadis, Domniki Asimaki, Zachary E. Ross, and Kamyar Azizzadenesheli.
Broadband Ground-Motion Synthesis via Generative Adversarial Neural Operators: Development and
Validation. Bulletin of the Seismological Society of America, 114(4):2151–2171, March 2024b. ISSN
0037-1106. doi: 10.1785/0120230207.

Yaozhong Shi, Zachary E. Ross, Domniki Asimaki, and Kamyar Azizzadenesheli. Stochastic Process Learning
via Operator Flow Matching, January 2025. arXiv:2501.04126 [cs].

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations, February 2021.
arXiv:2011.13456 [cs].

12

Published in Transactions on Machine Learning Research (10/2025)

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger,
and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. Advances in
Neural Information Processing Systems, 35:1596–1611, 2022.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
optimal transport, March 2024. arXiv:2302.00482 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Sifan Wang, Jacob H. Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris Perdikaris.
CViT: Continuous Vision Transformer for Operator Learning, February 2025. arXiv:2405.13998 [cs].

Tian Wang and Chuang Wang. Latent neural operator for solving forward and inverse pde problems. Advances
in Neural Information Processing Systems, 37:33085–33107, 2024.

Yuyang Wang, Anurag Ranjan, Josh Susskind, and Miguel Angel Bautista. Coordinate In and Value Out:
Training Flow Transformers in Ambient Space, December 2024. arXiv:2412.03791 [cs].

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A Fast Transformer
Solver for PDEs on General Geometries, June 2024. arXiv:2402.02366 [cs].

Jiachen Yao, Abbas Mammadov, Julius Berner, Gavin Kerrigan, Jong Chul Ye, Kamyar Azizzadenesheli, and
Anima Anandkumar. Guided Diffusion Sampling on Function Spaces with Applications to PDEs, May
2025. arXiv:2505.17004 [cs].

Qingqing Zhao, David B. Lindell, and Gordon Wetzstein. Learning to Solve PDE-constrained Inverse Problems
with Graph Networks, June 2022. arXiv:2206.00711 [cs].

13

Published in Transactions on Machine Learning Research (10/2025)

A Experimental setup
A.1 Datasets description
We curated a benchmark of six challenging functional datasets to evaluate performance across different
domain types, as summarized in Table 1.

Navier-Stokes. This dataset contains solutions to the 2D Navier-Stokes equations on a torus at a resolution
of 64 × 64. Following the pre-processing of previous work (Kerrigan et al., 2023b; Shi et al., 2025), we use
30,000 samples for training and 5,000 for testing, drawn from the original dataset introduced in (Li et al.,
2021).

Shallow Water. This dataset contains solutions to the shallow-water equations for a 2D radial dam-break
scenario on a square domain, from PDEBench (Takamoto et al., 2022). Each of the 1,000 simulations has
1,000 time steps at 128 × 128 resolution; we downsample spatially to 64 × 64 for efficiency and treat each
time step as an independent snapshot. We randomly select 30,000 snapshots for training and 5,000 for
testing

Darcy Flow. This dataset contains steady-state solutions of 2D Darcy Flow over the unit square, obtained
directly from the PDEBench benchmark (Takamoto et al., 2022). We downsample the original 128 × 128
resolution to 64 × 64. The dataset contains 10,000 samples and we split it into 8,000 samples for training and
2,000 for testing.

Cylinder Flow. We use the Cylinder Flow dataset of Han et al. (2022), which describes flow past a cylinder
on a fixed mesh of 1,699 nodes. Each sample is a 3-channel function (x-velocity, y-velocity, pressure). From
101 simulations × 400 time steps, we ignore temporal order and treat each time step as an independent
sample, randomly selecting 30,000 training and 5,000 testing samples.

Mesh GP. This is a synthetic dataset generated on a fixed irregular mesh of 3,727 nodes provided by (Zhao
et al., 2022). We generate function samples from a Gaussian Process (GP) with a Matérn kernel (length scale
= 0.4, smoothness factor = 1.5) given the domain, creating a training set of 30,000 samples and a test set of
5,000 samples.

Global Climate. We use the real-world global climate dataset from (Dupont et al., 2022), which contains
global temperature measurements over the last 40 years. Each data sample is a function defined on a grid of
46 × 90 evenly spaced latitudes and longitudes. Following the previous pipeline (Dupont et al., 2022), we
convert the latitude-longitude pairs to Euclidean coordinates (R3) before passing them to the models. The
dataset contains 9,676 training samples and 2,420 test samples.

A.2 Baselines description
For all baseline models, we adopt their official implementations to ensure reproducibility; the corresponding
code repositories are linked in the referenced papers. The key initialization hyperparameters for the baselines
: GINO (Li et al., 2023), UPT (Alkin et al., 2024), Transolver (Wu et al., 2024), LNO (Wang & Wang, 2024),
and FNO (Li et al., 2021)—are detailed in Table 6. Note that a slightly different configuration was used for
the Global Climate experiment. For a complete understanding of all arguments, we refer the reader to the
official repository for each respective model (github link provided in all referred papers)

A.3 Hyperparameters for MINO
For the decoder, the single cross-attention block is followed by a multi-head self-attention (MHSA) block.
Although this MHSA block is optional, we found that its inclusion slightly improves performance for generation
task. To maintain the overall linear time complexity of MINO, the MHSA module can be replaced by any
self-attention variant with linear complexity (like transolver layer).

MINO-T. The GNO maps input functions to a latent representation on a 16 × 16 grid of query points,
defined over the [0, 1]2 domain. We set the GNO search radius to 0.07, the latent dimension Ldim to 256,
and the number of attention heads to 4. The encoder consists of M1 = 5 cross-attention blocks. For the
Global Climate dataset, which is defined on a spherical manifold S2, we adjust the latent query positions to a
32 × 16 spherical grid and increase the GNO radius to 0.2 to account for the different coordinate system;
other hyperparameters remain unchanged. The total parameter count for MINO-T is 21.5 M.

14

Published in Transactions on Machine Learning Research (10/2025)

Table 6: Hyperparameter settings for all baseline models.

Hyperparameter GINO UPT Transolver LNO FNO
Parameters 19.7 M 19.6 M 15.0 M 22.2 M 20.6 M
GNN radius - 0.07 - - -
GNO radius 0.06 - - - -
Width/Dim. 128 192 512 512 128
Blocks/Layers 4 12 10 8 × 4 4
Attn. Heads - 3 6 8 -
Latent Grid 32 × 32 - - - -
Latent Tokens - 256 - 256 -
Fourier Modes 16 - - - 24
FNO Channels 180 - - - 128
Slice Number - - 24 - -

MINO-U. The GNO maps input functions to a latent representation on a 16 × 16 grid of query points,
defined over the [0, 1]2 domain. We set the GNO search radius to 0.07, the latent dimension Ldim to 256,
and the number of attention heads to 4. The encoder consists of M1 = 2 cross-attention blocks. For its
latent-space processor, we adopt a Diffusion U-Net architecture from the torchcfm library (Tong et al., 2024),
which operates on the [16, 16] latent tensor with 64 channels, 1 residual block, and 4 attention heads for the
processor. Same setting of MINO-T on the Global Climate dataset. The total parameter count for MINO-U
is 19.2 M.

A.4 Details for training and inference
Reference Measures. We choose µ0 as a Gaussian measure characterized by a Gaussian Process (GP)
with a Matérn kernel. Unless otherwise specified, the function domain is [0, 1]2 (or subset of it), and we
use a kernel length scale of 0.01 and a smoothness parameter of 0.5. For the Global Climate dataset, the
domain is a spherical manifold represented as a subset of [−1, 1]3, and the kernel length scale is adjusted
to 0.05. Furthermore, for the GP on the sphere, we explored two distance metrics for the kernel. The first
uses the chordal distance (the Euclidean distance in the R3 embedding space), while the second employs
the geodesic distance on S2, for which we leverage the GeometricKernels library (Mostowsky et al., 2024).
Although both approaches yield a valid GP, the results presented in this paper are based on the chordal
distance implementation. We selected this method for two primary reasons: its superior computational speed
and to ensure consistency with other benchmarks. To facilitate further exploration, we will release the code
repository with both implementations. The variance is fixed at 1 for all GPs.

Training Details. We train all models for 300 epochs using the AdamW optimizer with an initial learning
rate of 1e-4. We employ a step learning rate scheduler that decays the learning rate by a gamma of 0.8 every
25 epochs. The default batch size is 96. However, Transolver consumes significantly more GPU memory than
other models. To accommodate it on a single NVIDIA RTX A6000 Ada GPU (48 GB memory), we reduced
its batch size to 48 and, to maintain a comparable training iteration (duration), limited its training to 200
epochs. Despite these adjustments, Transolver still required approximately 1.76x more total GPU-hours
than MINO-T and MINO-U, respectively. The only exception was the Global Climate experiment, where we
explicitly matched the total GPU computation time of MINO variants to that of Transolver by extending their
training epochs. All experiments reported in Table 4 and Table 3 were conducted three times, and we report
the best performance (among the three) achieved for each model. To further strengthen our comparative
analysis, Appendix G details an experiment with matched settings (parameter counts, batch size, epochs)
that reveals MINO’s significant speedup and superior performance over Transolver.

Inference Details. To evaluate the models, we generate the same number of samples as contained in the
test set for each dataset shown in Table 2. All samples are generated by solving the learned ODE numerically
using the dopri5 solver from the torchdiffeq library (Chen et al., 2018), with an error tolerance set to 1e-5
for all experiments.

15

Published in Transactions on Machine Learning Research (10/2025)

B SWD and MMD as general metrics for functional generation tasks
Unlike image generation, where established metrics like the Fréchet Inception Distance (FID) can leverage a
well pretrained models to compare distributions in a latent space, the field of functional generative models
lacks such standardized evaluation protocols. Functional data covers a wide range of modalities, often
without a common pretrained model, what’s more, the learnt objective is probability measure not probability
distribution, which requires the metrics should be consistent regardless of discretization of function sample.
This makes fair and direct comparison between models challenging, as previous studies frequently rely on
dataset-specific metrics. To address this gap, our work proposes and validates two general metrics that
directly estimate the distance between a learned probability measure, ν, and a target measure, µ, using
samples drawn from each.

We are given two sets of i.i.d. function samples, X = {x(j)}N
j=1 drawn from ν and Y = {y(j)}N

j=1 drawn from
µ. Each function is observed at the same Nin locations. To compute the distance, each function sample is
first flattened into a single vector representation.

Sliced Wasserstein Distance (SWD). In practice, we estimate the distance between two probability
measure,µ and ν, using the discretized function samples in the datasets X and Y . To make the metric shown
in Eq. 9 computable, we need to derive the discretized version of it, which is achieved by choosing the base
measure γs to be the Haar measure (uniform surface measure) on the sphere Rd−1 (d is the discreziation
of functions and d = Nin if co-domain is 1 in our case) and replace the integral and normalization with
an expectation with respect to the probability measure defined by normalizing γs. Finally, we can get a
discretized version of Eq. 9:

SWDp(µ, ν) =
(

E
θ∼U(Sd−1)

[
Wp

p (θ#µ, θ#ν)
]) 1

p

(11)

where θ is a random direction on the unit sphere Sd−1. SWD converges to the exact p-Wasserstein distance
for two probability measures as the number of projections goes to infinity. In our experiments, we use the
official implementation from the POT library (Flamary et al., 2021). We use the Sliced Wasserstein-2 distance
(p = 2) (Bonneel et al., 2015), the time complexity for SWD is O(L · N · Nin + L · N log N), where L is the
number of projections.

Maximum Mean Discrepancy (MMD). For MMD (Gretton et al., 2012), the time complexity is
O(N2 · Nin) we use the Gaussian RBF kernel k(·, ·). Given the sample sets X and Y , we compute the squared
MMD using the standard unbiased U-statistic estimator:

M̂MD
2
u(X, Y) = 1

N(N − 1)
∑
i̸=j

k(x(i), x(j)) + 1
N(N − 1)

∑
i ̸=j

k(y(i), y(j)) − 2
N2

N∑
i=1

N∑
j=1

k(x(i), y(j)) (12)

A practical consideration for the SWD is that it relies on a Monte Carlo approximation over random
projections. This can introduce variance; calculating the SWD multiple times on the same two test datasets
may yield slightly different results. To ensure our evaluations are stable and meaningful, we must reduce
this variance to a negligible level. We propose a simple procedure we term averaged-SWD: instead of
a single SWD estimation, we perform nrun independent estimations via Eq 11(each with a large number
of projections, L = 256 in our case) and report the mean, we would expect averaged-SWD has very small
variance introduced by the Monte Carlo approximation.

To validate this approach, we created two distinct Gaussian measures, characterized by GP, GP1 (length
scale=0.3, smoothness=1.5) and GP2 (length scale=0.01, smoothness=0.5), on a 64 × 64 regular grid. We
drew 5,000 GP samples from each measure to create X, Y and then calculated the averaged-SWD between
them for varying nrun and repeated this entire process 20 times to report the mean and standard deviation of
the averaged-SWD. As shown in Table 7, when nrun = 10, the variance of the averaged-SWD is sufficiently
small. We therefore adopt nrun = 10 for all SWD computations in our experiments. In contrast, MMD is
deterministic for a given kernel and does not exhibit this variance.

16

Published in Transactions on Machine Learning Research (10/2025)

Metric Consistency Across Discretizations. A crucial property of a metric for functional data is its
consistency with respect to the discretization of the function domain. The computed distance between two
measures should be consistent regardless of the discretization for functions samples in two function datasets
drawn from the two probability measure. That is, if we draw new function samples X† and Y† from the same
measures µ and ν but observe them on a different set of locations, we expect MMD(X†, Y†) ≈ MMD(X, Y)
and SWD(X†, Y†) ≈ SWD(X, Y).

To verify this property, we calculated SWD and MMD in three representative scenarios while varying the
number of observation points by randomly sub-sampling the full discretization (Nin). The scenarios are: (i).
GP1 vs. GP2. (ii). GP1 vs. Navier-Stokes (test dataset) .(iii) GP1 vs. Cylinder Flow (test dataset). For
each case, we will unify the observed position (discretization) of function samples

As shown in Fig. 4, both MMD and SWD remain highly consistent across different sub-sampling ratios of the
observation points. This analysis demonstrates that SWD and MMD are not only theoretically sound but
also empirically robust and sample-efficient evaluation metrics for functional generative models.

Table 7: Variance analysis of the averaged-SWD metric. We report the mean and standard deviation of the
averaged-SWD, calculated over 20 trials, for different numbers of averaging runs (nrun).

nrun 5 10 20 40 60

SWD (mean ± std) 0.2482 ± 0.0052 0.2485 ± 0.0038 0.2494 ± 0.0029 0.2497 ± 0.0017 0.2498 ± 0.0014

1000 2000 3000 4000
Numberof discretization

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 v

al
ue

GP1 vs GP2

swd
mmd

1000 2000 3000 4000
Number of discretization

0.0

0.2

0.4

0.6

0.8

1.0
GP1 vs Navier Stokes

swd
mmd

500 1000 1500
Number of discretization

0.0

0.2

0.4

0.6

0.8

1.0
GP1 vs Cylinder Flow

swd
mmd

Figure 4: Consistency of SWD and MMD with respect to the number of discretization points. The metrics
remain stable as the number of observation points is varied for three comparison scenarios: two synthetic
GPs (left), a GP vs. a regular grid dataset (center), and a GP vs. an irregular mesh dataset (right).

C Connection and Difference to Prior Works
C.1 Functional Generative Models vs. Surrogate PDE Solvers
While both functional generative models and surrogate PDE solvers utilize neural operators as their backbone
architecture, the demands placed on the operator in these two settings are fundamentally different. A
surrogate PDE solver typically learns a one-step mapping between function states, such as mapping initial
conditions to a final solution. In contrast, a functional diffusion or flow model must learn to parameterize a
continuous transformation between two probability measures, and also requires many steps evaluation during
inference. This contrast is further highlighted by the signal frequencies involved: surrogate solvers often
map between smooth, low-frequency functions (Li et al., 2023), while functional generative models must
transform high-frequency noise into structured data samples. Consequently, designing a neural operator for
generative tasks is significantly more demanding, as the learning task itself is more challenging. There are
some finite-dimensional generative models (Havrilla et al., 2024; Wang et al., 2024) can also achieve zero-shot
generation at arbitrary resolutions. However, these approaches do not explicitly learn a probability measure

17

Published in Transactions on Machine Learning Research (10/2025)

over the function space and the zero-shot generation is similar to the linear or bicubic interpolation, which
distinguishes them from the functional generative paradigm discussed here.

C.2 Architectural Comparison to Other Neural Operators
The MINO architecture builds upon insights from previous work, including GINO and UPT (Li et al., 2023;
Alkin et al., 2024), but introduces several key modifications to address their limitations in the context of
functional generative tasks.

Comparison with GINO. GINO adopts a GNO encoder and decoder with an FNO processor. However,
since a GNO acts as a low-pass filter (Laplacian smoothing) (Li et al., 2018), which creates an information
bottleneck for decoding. The GNO decoder receives only the low-frequency output from the FNO processor,
making it structurally difficult to reconstruct the high-frequency details essential for high-fidelity generative
modeling, which is supported by our experiments (see Appendix E).

Comparison with UPT. The UPT model uses a GNN for super-node pooling, a choice we identify as
suboptimal for operator learning for three primary reasons. First, as the input discretization becomes finer,
the GNN converges to a pointwise operator, which decouples it from the discretization convergence property
required of a neural operator. Second, GNN can also be viewed as a low pass filter in the generative tasks,
which has the same issue of GNO. Third, UPT relies on random subsampling to define super-nodes is
ill-suited for adaptive meshes common in PDE tasks, where important regions with low grid density may be
undersampled. For instance, on a dense mesh of the Earth, random subsampling would likely over-concentrate
super-nodes in the polar regions that of less interest. Furthermore, UPT’s decoder uses a single-layer,
perceiver-style (Jaegle et al., 2022) cross-attention where the queries are derived only from the output
positions, which struggles to reconstruct the high-frequency information (Dong et al., 2021). We found that
for generative tasks, it is crucial to use a combination of the input function and its position as the query to
the cross attention decoder and to use multiple attention layers as shown in the ablation study (Appendix E).
In Table 8, we present a detailed architectural comparison between MINO and GINO/UPT.

Comparison with Transolver. Key differences lie in the receptive field and latent-space design of MINO.
Transolver employs a purely global receptive field, whereas our architecture integrates both local and global
information processing. In addition, MINO follows the modern, highly scalable, and efficient DiT paradigm
by replacing the grid-dependent “patchify” operation with a domain-agnostic GNO encoder. Finally, because
the slicing and de-slicing operations in Transolver act on every point, and these operations happen in every
Transolver layer, which can be inefficient. In contrast, MINO performs encoding and decoding only once and
can be viewed as a reduced-order operator; its decoder is shallow, consisting of one cross-attention block
followed by a single self-attention block. As shown in our experiments, MINO is markedly more efficient than
Transolver in both training and inference.

C.3 Designing neural operators with general deep learning architectures
The composition of multiple neural operators remains a valid neural operator (Wang et al., 2025). Previous
works such as GINO and UPT adopt the standard encoder–processor–decoder paradigm. However, directly
replacing the processor with a generic neural network is sub-optimal: it forces the decoder to rely solely on a
fixed-size latent representation, whereas the desired output lives in an infinite-dimensional function space. To
overcome this limitation, we design the decoder via cross attention to take both the latent representation
and the original input function as inputs, thereby circumventing the bottleneck imposed by a fixed latent
shape.

D Additional Results
In this part, we present additional qualitative results to further demonstrate the performance of MINO
compared to baseline models. As shown in Figure 5, MINO generates realistic samples for the Navier-Stokes
benchmark that closely match the ground truth. In contrast, both GINO and UPT capture only the general,
low-frequency trends of the solution, failing to reconstruct the high-frequency information essential for
high-fidelity generation. This difficulty arises because generative models must learn a velocity field with
correct high-frequency components to successfully transform high-frequency Gaussian noise into structured
data samples. We provide further qualitative results for MINO on the Darcy Flow, Shallow Water, and

18

Published in Transactions on Machine Learning Research (10/2025)

Table 8: Architectural Comparison: MINO vs. GINO / UPT

Feature MINO (Mesh-Informed Neural Op-
erator)

GINO / UPT Frameworks

Primary Goal Probabilistic Functional Generative
Modeling (learning distributions via flow
matching).

Deterministic Physics Simulation:
GINO—solving PDEs on varying geome-
tries; UPT—scalable temporal simulation
(latent rollouts).

Encoder Strategy Learned Resampling onto a Grid: a
Graph Neural Operator (GNO) projects
from Nin irregular points to a fixed, regu-
lar Nnode grid.

GINO: GNO maps points to a regu-
lar grid and augments them with geo-
metric features (signed-distance function).
UPT: a GNN pools information from Nin
points onto a smaller, fixed set of S “super-
nodes.”

Latent Representation Structured Feature Map (Grid): a
tensor of shape (H × W × C), compatible
to CNNs.

GINO: structured feature map (grid).
UPT: unstructured set of vectors
(tokens) of shape (Ntokens × Dhidden).

Core Processor SOTA diffusion-style U-Net (or Trans-
former).

GINO: Fourier Neural Operator (FNO)
for efficient global processing on the latent
grid.
UPT: Transformer (Approximator) for
modeling temporal transitions between la-
tent tokens.

Decoder Mechanism Cross-Attention with Input Bypass:
Query (Q) comes from the original input
function ft and its positions; Key/Value
(KV) come from the processed latent
state. Prevents an information bottleneck
and preserves high-frequency details.

No Input Bypass (Information Bot-
tleneck): GINO projects directly from
latent grid to query points. UPT uses
Perceiver-style cross-attention where Q is
derived from output positions only. All
information must be reconstructed solely
from the compressed latent state.

Uncertainty Inherent & Computationally Cheap:
being generative, the model learns a dis-
tribution; Monte-Carlo dropout can pro-
vide epistemic uncertainty with a single
trained network.

Computationally Expensive: uncer-
tainty is not a primary target; estimating
it usually requires training an ensemble
of models (multiple runs with different
seeds).

Mesh-GP benchmarks in Figures 6, 7, and 8, respectively, which visually confirm the effectiveness of our
approach.

19

Published in Transactions on Machine Learning Research (10/2025)

Gr
ou

nd
 Tr

ut
h

2

1

0

1

2

M
IN

O-
T

2

1

0

1

2

M
IN

O-
U

2

1

0

1

2

GI
NO

2

1

0

1

2

UP
T

2

1

0

1

2

LN
O

2

1

0

1

2

Figure 5: Generation of Navier-Stokes samples under different baselines

Gr
ou

nd
 Tr

ut
h

M
IN

O-
T

M
IN

O-
U

Figure 6: Generation of Darcy-Flow samples

20

Published in Transactions on Machine Learning Research (10/2025)

Gr
ou

nd
 Tr

ut
h

0.0

0.5

1.0

1.5

2.0

M
IN

O-
T

0.0

0.5

1.0

1.5

2.0

M
IN

O-
U

0.0

0.5

1.0

1.5

2.0

Figure 7: Generation of Shallow Water samples

Figure 8: Generation of Mesh GP samples

21

Published in Transactions on Machine Learning Research (10/2025)

E Ablation Study

We conduct an ablation study to validate the effectiveness of the specific cross-attention mechanisms used
in the encoder and decoder of our MINO architecture. We take the standard MINO-T as our baseline and
evaluate its performance against two architectural variants:

Self-Attention Encoder: We replace the cross-attention mechanism in the encoder with a standard
self-attention mechanism. In this setup, the Key-Value (KV) pair for each attention block is derived from the
output of the previous block, rather than being fixed as the initial latent representation from the GNO.

Position-Only Decoder: We modify the decoder’s query to be derived only from the function’s observation
positions, similar to the decoder design in prior works like UPT, GINO. This removes the explicit dependency
on the input function’s values in the query.

The results of this study, presented in Table 12, confirm that our proposed design choices are critical for
achieving high performance. The standard MINO-T consistently and significantly outperforms both ablated
variants across all datasets and metrics. The performance degradation is most severe in the Position-Only
Decoder variant. By relying only on positional queries, the decoder struggles to reconstruct fine-grained
details. This result highlights the importance of conditioning the decoder’s queries on the input function’s
values for high-fidelity generative tasks. The Self-Attention Encoder variant also performs worse than our
standard model, which suggests that using the initial latent representation as a fixed context for iterative
refinement in the encoder is a more effective strategy than a standard self-attention approach.

Table 9: Ablation study on key architectural components of MINO across four benchmarks. We compare
our standard MINO-T against two variants: one replacing the encoder’s cross-attention with self-attention,
and another using a simpler position-only decoder query similar to prior work like UPT. Lower SWD/MMD
scores are better; best results are in bold

Dataset → Navier Stokes Shallow Water Darcy Flow Cylinder Flow
Variants ↓ Metric → SWD MMD SWD MMD SWD MMD SWD MMD

Standard MINO-T 4.0 · 10−2 3.6 · 10−2 9.8 · 10−3 8.7 · 10−3 8.9 · 10−2 3.4 · 10−2 2.9 · 10−2 2.6 · 10−2

Self-Attention Encoder 5.2 · 10−2 5.1 · 10−2 1.7 · 10−2 1.7 · 10−2 2.0 · 10−1 7.6 · 10−2 3.7 · 10−2 3.5 · 10−2

Position-Only Decoder 5.7 · 10−1 4.5 · 10−1 8.4 · 10−1 5.7 · 10−1 8.3 · 10−1 4.4 · 10−1 7.2 · 10−1 5.3 · 10−1

F Empirical Analysis of Scaling and Stability

To evaluate performance consistency, we train both MINO-U and MINO-T with eight different random seeds
on the Navier-Stokes and Cylinder-Flow datasets. The results, summarized in Table 10, show that MINO-U
consistently outperforms MINO-T across both datasets and metrics. We also note that performance variance
across seeds is slightly higher on the Navier-Stokes task compared to the Cylinder-Flow task.

We next study data-scaling on Navier–Stokes benchmark by training on progressively larger subsets of the
full 30 k-sample dataset and evaluating on the same test split. Table 11 shows steady performance gains as
the training set grows, with improvements tapering off once roughly 18 k samples are reached.

Table 10: Performance comparison over eight random seeds. We report the mean ± standard deviation (in
the parentheses) for each metric. Lower is better.

Dataset → Navier Stokes Cylinder Flow
Model ↓ Metric → SWD MMD SWD MMD

MINO-T 3.7 · 10−2 (6.8 · 10−3) 3.1 · 10−2 (6.0 · 10−3) 2.9 · 10−2 (2.4 · 10−3) 2.6 · 10−2 (3.0 · 10−3)
MINO-U 3.3 · 10−2 (6.3 · 10−3) 2.7 · 10−2 (7.5 · 10−3) 2.1 · 10−2 (2.0 · 10−3) 1.9 · 10−2 (2.8 · 10−3)

22

Published in Transactions on Machine Learning Research (10/2025)

Table 11: Performance of MINO-U when trained on a subset of the Navier-Stokes dataset.

Metrics ↓ Samples → 6,000 12,000 18,000 24,000 30,000
SWD 4.3 · 10−2 3.9 · 10−2 2.8 · 10−2 3.0 · 10−2 2.8 · 10−2

MMD 4.0 · 10−2 3.2 · 10−2 2.2 · 10−2 3.1 · 10−2 1.9 · 10−2

G Comparison with Transolver under Identical Settings
To ensure a fair comparison with Transolver, we reduce the latent dimension of MINO from 256 to 192, and
use the same training configuration (200 epochs, batch size 48). This results in smaller models—MINO-U (S)
(13.5M parameters) and MINO-T (S) (12.1M)—compared to Transolver (15.0M). Notably, our models are
significantly faster, achieving a 3.1x speedup in training and a 3.5x speedup in inference while maintaining
superior performances.

Table 12: Performance comparison with Transolver under identical settings. Best Performance in bold

Dataset → Navier Stokes Mesh GP Cylinder Flow
Model ↓ Metric → SWD MMD SWD MMD SWD MMD

Transolver 5.3 · 10−2 5.1 · 10−2 9.1 · 10−2 4.6 · 10−2 2.5 · 10−2 2.4 · 10−2

MINO-T (S) 4.4 · 10−2 4.0 · 10−2 7.9 · 10−2 2.8 · 10−2 2.7 · 10−2 2.6 · 10−2

MINO-U (S) 2.9 · 10−2 2.5 · 10−2 6.1 · 10−2 3.0 · 10−2 2.5 · 10−2 2.3 · 10−2

23

	Introduction
	Preliminaries
	Methods
	Experiments
	Conclusions
	Experimental setup
	Datasets description
	Baselines description
	Hyperparameters for MINO
	Details for training and inference

	SWD and MMD as general metrics for functional generation tasks
	Connection and Difference to Prior Works
	Functional Generative Models vs. Surrogate PDE Solvers
	Architectural Comparison to Other Neural Operators
	Designing neural operators with general deep learning architectures

	Additional Results
	Ablation Study
	Empirical Analysis of Scaling and Stability
	Comparison with Transolver under Identical Settings

