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Abstract

Generative models in function spaces, situated at the intersection of generative modeling and
operator learning, are attracting increasing attention due to their immense potential in diverse
scientific and engineering applications. While functional generative models are theoretically
domain- and discretization-agnostic, current implementations heavily rely on the Fourier
Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains.
To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator
(MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a
principled, domain- and discretization-agnostic backbone for generative modeling in function
spaces. This advancement significantly expands the scope of such models to more diverse
applications in generative, inverse, and regression tasks. Furthermore, MINO provides a
unified perspective on integrating neural operators with general advanced deep learning
architectures. Finally, we introduce a suite of standardized evaluation metrics that enable
objective comparison of functional generative models, addressing another critical gap in the
field.

1 Introduction

Generative models are powerful tools for fields dealing with complex data distributions, with recent advances
in diffusion and flow matching models demonstrating impressive capabilities for synthesizing high-fidelity
images (Song et al., [2021; Ho et al.l |2020; |Lipman et al., 2023, audio (Liu et al., [2023; Huang et al., [2023), and
video ([Jin et al.| |2025). These models excel at learning highly complicated probability distributions in finite-
dimensional spaces. However, numerous fields in science and engineering—such as seismology, biomechanics,
astrophysics and atmospheric sciences—primarily deal with data that inherently reside in infinite-dimensional
function spaces. Moreover, in many cases, the data collected in these fields are functions sampled on
heterogeneous networks of sensors, or even on manifolds (e.g., global seismic networks or weather stations
on Earth’s surface). Functional generative models are especially important for these fields because they
routinely deal with several broad (sometimes overlapping) challenges: (i) uncertainty quantification in physical
units, (ii) the inherent non-uniqueness present in, e.g. solutions to inverse problems, and (iii) the need to
model stochastic or latent fields that are effectively unobservable, which are better handled probabilistically.
Together, these factors necessitate a paradigm shift towards generative models that operate directly in
function spaces.

Recent studies have generalized various generative paradigms to function spaces (Rahman et al., 2022;
Shi et al. [2024a;b} [Kerrigan et al., |2023a;b; [Lim et al., 2025; [Seidman et al., 2023) by leveraging neural
operators (Azizzadenesheli et al., |2024; [Kovachki et al., [2023) . Despite these advancements, two critical
bottlenecks hinder the broader adoption and rigorous evaluation of functional generative models. First,
current implementations are predominantly based on FNO (Li et al., [2021) as their backbone. However, FNO
implementations are restricted to regular grids on rectangular domains, thereby preventing the realization
of many key theoretical benefits. Second, prior studies rely on dataset-specific metrics, making it difficult
to compare functional generative models across datasets and to draw robust conclusions about generative
quality.

This study addresses the aforementioned limitations of functional generative models. Specifically, our
contributions are summarized as follows:
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Figure 1: Overview of the MINO architecture. The geometry encoder uses a GNO as a domain-agnostic
tokenizer, followed by several cross-attention blocks and an optional latent processor. The decoder then
employs a distinct cross-attention mechanism to map the latent representation back to the target locations.

e We introduce MINO, a domain-agnostic functional generative backbone. Our comprehensive ex-
periments show that MINO achieves state-of-the-art (SOTA) performance on a diverse suite of
benchmarks with regular and irregular grids.

o We demonstrate through analysis and experiments that Sliced Wasserstein Distance (SWD) and
Maximum Mean Discrepancy (MMD) are efficient, robust, dataset-independent metrics for evaluating
the performance of functional generative models on regular and irregular grids.

o We propose a novel framework that integrates operator learning with modern deep learning practice.
By using a graph neural operator as a domain-agnostic tokenizer and embedding tailored cross-
attention modules in both the encoder and decoder, our design avoids information bottlenecks present
in prior encoder-processor-decoder neural operators, allowing any powerful, finite-dimensional network
(e.g., U-Net or Transformer) to serve as the latent processor.

2 Preliminaries

Neural operators. Neural operators learn mappings between function spaces, extending deep learning beyond
the fixed-dimensional vectors handled by classical networks. This function space perspective is especially
important for scientific computing that is governed by partial differential equations (PDEs) (Kovachki
et al., 2023; [Li et al. [2021)). A core theoretical property of neural operator is discretization convergence
(agnosticism): as the mesh of input function is refined, the prediction approaches the unique continuous
solution (Kovachki et al., 2023). The Fourier Neural Operator (FNO) (Li et al. 2021 achieves this property
via spectral-domain convolutions, achieving quasi-linear complexity on regular grids. Its global mixing excels
at capturing long-range dependencies but may miss fine-scale detail (required for generative tasks) unless
many Fourier modes are retained (Liu-Schiaffini et al., 2024).

For handling functions on irregular grids, Graph Neural Operator (GNO) (Gilmer et al., [2017; |Li et al.,
2020) remains a powerful candidate. GNO shares the message-passing functionality of Graph Neural Network
(GNN), but differs in that the search radius for neighbors is defined in physical coordinates and made
consistent across resolutions to guarantee discretization convergence. This results in GNO having a local
receptive field, however it is computationally inefficient for certain tasks (Li et al.l 2023} |Liu-Schiaffini et al.
2024)) and often struggles to learn the high-frequency information required for many generative models. This
difficulty arises from the standard message-passing mechanisms, which tend to act as low-pass filters (Li et al.,
2018)). More recent work has focused on improved scalability and performance aspects of Neural Operators
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on irregular grids and non-rectangular physical domains, e.g., Geometry-Informed Neural Operator (GINO),
Universal Physical Transformer (UPT), Latent Neural Operator (LNO), and Transolver (Li et al., [2023; |Alkin
et al., [2025; [Wang & Wang) 2024; |Wu et al.| |2024). However, it remains unclear whether these architectures
will also be effective for functional generative modeling on irregular grids (see Appendix .

Functional generative models. Classical generative models learn a mapping from a simple base distribution
(e.g., multi-variate Gaussian) to a target finite dimensional data distribution. Alternatively, the functional
perspective frames this problem in infinite-dimensional spaces. A sample function f; : D — Rfeim  with
D denoting the domain of the function, is treated as a sample from a target probability measure u; over
a function space. The discrete samples are formed by evaluating f; on a set of grid points of locations.
Functional generative models often aim to learn a mapping between function spaces by training a neural
operator to transform a function fy sampled from a simple base measure p (typically a Gaussian random
field measure A/ (0, C)) into a function f; that follows the target measure p1. The distribution of the discrete
data is thus a finite-dimensional marginal of the true data measure pu;.

Adopting this perspective, functional generative models offer several key benefits not generally available in
their traditional finite-dimensional counterparts:

e Flexible domain geometries: The function domain D is not required to be rectangular; it could be
an irregular domain or even a manifold. Such flexibility is ideal for many real-world scenarios in
science and engineering, such as modeling rainfall over a city with an irregular boundary, or modeling
weather patterns on the Earth’s surface.

o Discretization agnosticism (mesh invariance): By learning a probability measure over functions, func-
tional generative models can be trained on samples with varying discretizations and can subsequently
generate new function samples at any desired discretization in a zero-shot manner.

o Inference-time control and guidance in function space: Functional diffusion/flow models enable the
incorporation of inference-time scaling rules and precise guidance signals directly within function
spaces. For instance, this facilitates the development of probabilistic PDE solvers that can rigorously
enforce hard boundary conditions or other external controls during generation (Cheng et al.l 2024;
Yao et al.l [2025)).

o Universal functional regression via stochastic process learning: By leveraging invertible trajectories
derived from neural operators, it is possible to perform functional regression with learned (non-
Gaussian) stochastic process priors (Shi et al., |2024a; [2025). These learned distributions are capable
of providing exact prior and posterior density estimation for a general stochastic process.

Flow matching in Hilbert space. Recent work has established a rigorous mathematical framework for
extending flow matching to Hilbert spaces (Kerrigan et al., 2023b)), Functional Flow Matching (FFM), where
a velocity field is learned to transport a base Gaussian measure to a target measure. This was further built
upon by Operator Flow Matching (OFM) (Shi et al., |2025|), which extended the paradigm to stochastic
processes and incorporated a dynamic optimal-transport path.

The core idea of FFM/OFM is to learn a continuous path of functions, f; for t € [0, 1], that transforms samples
fo from a base Gaussian measure pg into samples f; from a target data measure p;. This transformation is
governed by an Ordinary Differential Equation (ODE) whose velocity field, vg, is parameterized by a neural
operator with weights 6:

B ot 1)

For training, OFM draws pairs of functions (fy, f1) from a mini-batch optimal coupling (1o, pt1), which is
achieved by minimizing the 2-Wasserstein distance between po and p1. The base measure, p, is typically a
Gaussian measure N (0, C), where C is a trace-class covariance operator. The framework then defines the
path f; as a linear interpolation between fy and fi, i.e., fy = (1 —t)fo +¢f1. fi induces a time-dependent
probability measure py, such that at ¢ = 0, us = po and ¢t = 1, uy = py. This specific choice yields a simple
ground truth expression for the velocity, vy = f1 — fo. The training objective is then to minimize the Mean
Squared Error (MSE) between the parameterized velocity field vg(f:,t) and this target v;. To generate



Under review as submission to TMLR

a new sample, one draws fy ~ pg and solves the learned ODE numerically. While functional diffusion
models offer a related framework, they typically rely on Stochastic Differential Equations (SDEs), which
introduce an additional perturbation term with longer generation time and inferior performance compared
to ODE-based flow matching (Lim et al., 2025} |[Kerrigan et al., |2023a)). A fundamental property of both
paradigms is domain alignment: for a given trajectory, all evolving functions f; must be defined on the
same fixed spatial domain D. (y; € P(L?*(D;R/4m))). Crucially, the theory allows this domain D to be
geometrically complex; it is not restricted to a rectangular shape and can be a domain with an irregular
boundary or even a manifold. However, this theoretical flexibility has been underutilized in practice, as
existing implementations predominantly rely on FNO, which restricts them to domains discretized by regular
grids.

Grid-Based Architectures. The modern U-Net architecture used in diffusion models (Rombach et al.
2022) has become a de-facto standard for generative tasks on grid-like data. These advanced U-Nets are
distinct from the variant used in some earlier neural operators (Rahman et al., [2023), the U-Net can effectively
capture multi-scale information through their hierarchical structure, skip connections, and integration of
attention and residual blocks. Nevertheless, they remain constrained to regular grids due to their reliance
on standard convolutional neural network kernels. Another prominent line of work involves Transformer-
based architectures. Standard Vision Transformers (ViTs) and Diffusion Transformers (DiTs) (Dosovitskiy,
et al.l |2021; |Peebles & Xiel |2023)), first "patchify" the input into non-overlapping blocks and then apply full
self-attention, incurring O(Np,.,) time complexity. For images, Npaien < H x W (Height and Width), yet
the patchify operation creates discontinuities at block borders that can lead to checkerboard artifacts (Fang
et al 2022). Moreover, both ViT and DiT presuppose a fixed rectangular grid so that patchification is well
defined.

Table 1: Comparison of MINO with other architectures. "local — global" receptive field gathers global context
through stacked local operations. "local + global" receptive field combines local and global information
directly. A detailed discussion is provided in Appendix |§|

Architecture Efficient Receptive field Irregular grid Discretization convergent Frequency learnt
GNN X local v X low

GNO X local v v low

FNO v global X v low + high
U-Net v local — global X X low + high
ViT/DiT v global X X low + high
GINO v local — global v v low

UPT v local — global v v low
MINO [Ours] v local + global v v low + high

3 Methods

Our proposed architecture, MINO, provides an effective solution for functional generative models on non-
rectangular domains with irregular grids. It integrates powerful deep learning backbones with neural operators
in a manner that is tailored for improving functional generative performance. Specifically, this is achieved
by combining GNO with cross-attention mechanisms (see Table . As illustrated in Figure [1} the GNO in
the encoder can be viewed as a domain- and discretization-agnostic alternative to the "patchify" operation.
By injecting the input function representation into both the encoder and the cross-attention decoder, our
framework benefits from both local and global receptive fields.

In the following, we outline the MINO architecture. We specifically focus on its use in the flow matching
paradigm to learn velocity fields, as illustrated in Fig. 2l Although our primary application is generative
modeling, the MINO architecture is general-purpose and can be used for other operator learning tasks, such
as solving PDEs, with minor adjustments.

Problem Formulation. Within the flow matching paradigm, MINO takes three primary inputs: a noisy
function f;, the set of its observation positions fyos, and the corresponding time step t, along with any
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Figure 2: Inference and zero-shot Generation with MINO. (a) MINO gradually transforms a GP sample to
the data sample under flow matching paradigm. (b) Zero-shot generation at varying spatial scales by directly
transforming finer GP samples to finer data samples.

optional conditioning variables. Specifically, the input function f; is represented by its values at IVj, discrete
locations, fpos = {pz}f\i‘i These locations are a discretization of a continuous domain D C RF4m_ Note that
Nin can be different per sample. The codomain (channel) of f; has dimension fgin, resulting in an input
tensor of function values with shape [fqim, Nin]. The output is another function (velocity field v;) at these
same locations. In the context of flow matching or diffusion, the output dimension matches the input, so the
target output also has a shape of [gdim, Nin], where gdim = fdim-

The MINO framework is inspired by the encoder-processor-decoder structure of prior architectures like
GINO and UPT. Our model consists of three main components: (i) a geometry encoder, (ii) an (optional)
latent-space processor, and (iii) a cross-attention decoder. We introduce several key modifications to this
design that significantly improve performance on functional generative tasks, as detailed in the following
subsections.
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Geometry Encoder. First, we apply sinusoidal embeddings (Vaswani et al., 2023} [Peebles & Xie, [2023) to
the time step t and the observation positions fyes, yielding temb and pemb respectively, as shown in Eq.
The input function f; is then concatenated with the embedded positions pemp along the codomain before
being passed to a GNO layer; this maps the function from its potentially irregular discretization {p,-}f-v;li to a
latent representation on a predefined regular grid of query points {p?uery}jy:“i“. The GNO mapping is based
on neighbor-searching within a fixed radius r, where Npo4e < Niy. Following this GNO layer, a linear layer

projects its output f£ into hE of shape [Laim, Nnode]-

This initial latent representation hf is then processed by M; blocks of Multi-Head Cross-Attention (MHCA).
Importantly, the key-value (K'V) pair for all attention blocks is fixed as hE, while the query (Q) is the
output of the previous MHCA layer hJE_l, and the time embedding temp is used for conditioning. We found
this configuration yields better performance than the standard self-attention used in DiT, with comparisons

provided in Appendix [E] Thus, for this entire component of the architecture, we have the following,

Pemb = Emb(fpos)a temb = Emb(t) (2)
f& = GNO(f; + Pemb), h§ = Linear(fF) (3)
hP = MHCA(Q = hf® |, KV =hf,C = temnb), j=1,-+, M. (4)

The output of the geometry encoder has a fixed size of [Ldim, Nnode], Which is independent of the manner in
which the input function f; is discretized.

Latent-Space Processor. Given that the latent representation hEIl has a fixed size, any suitable neural
network (NN) can act as the processor. In our implementation, we use a Diffusion U-Net, known for being
a strong backbone in generative modeling. It is important to note that this processor is optional; MINO
remains a well-defined neural operator without it, although we found that its inclusion generally improves
performance. The processor’s input is conditioned on temp, whereas its output, h®, maintains the same shape
as its input,

h® = NN(hyy, , temb) (5)

Cross-Attention Decoder. The decoder employs a different cross-attention mechanism from that of
the encoder to enable mapping the latent representation back into the output velocity field at the original
observation locations. Specifically, f; is first processed by an MLP and then concatenated with pemp to form
f2. We stack My cross-attention blocks where f2 serves as the Q. The KV pair is taken from the output
of the (optional) processor hP (or hf,h if the processor is omitted). The time embedding temp is used for
conditioning. Finally, a LayerNorm and a linear transformation are applied to the output of the last attention
block to produce the estimated velocity field v.

f2 = MLP(concat(MLP(f;), Pemb)) (6)
hP = MHCA(Q = f2, KV =hP |, C = temp), =1, , My (7)
v¢ = Linear(LayerNorm(hy), ) (8)

A detailed comparison of the MINO framework to prior neural operator architectures is provided in Appendix[C]
with an ablation study of our model’s components in Appendix [E]

4 Experiments

In this section we empirically evaluate MINO and other baselines on a suite of functional generative benchmarks
under OFM (Shi et al., |2025) paradigm due to its concise formulation and SOTA performance among functional
generative paradigms. For each task we parameterize the velocity field vg(f:,¢) with different neural-operator
backbones to study how the choice of architecture affects performance. The benchmarks cover both regular
and irregular grids, providing a comprehensive assessment. To the best of our knowledge, this is the first
systematic comparison of modern neural-operator architectures on function-generation problems. We evaluate
two variants of our proposed architecture: (i) MINO-U: a Diffusion U-Net as the latent space processor, and
(ii) MINO-T: a pure Transformer-based variant without the latent space processor, where the encoder receives
additional cross-attention blocks.
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Table 2: Summary of experimental benchmarks, covering diverse domains with both regular and irregular
grids

Geometry Datasets Domain Co-domain Mesh Training Samples Test Samples
Navier Stokes D C R? 1 4,096 30,000 5,000
Regular Grid  Shallow Water D C R? 1 4,096 30,000 5,000
Darcy Flow D CcR? 1 4,096 8,000 2,000
Cylinder Flow D C R? 3 1,699 30,000 5,000
Trregular Grid MeshGP D Cc R? 1 3,727 30,000 5,000
Global Climate S? c R? 1 4,140 9,676 2,420

Datasets. We curated a benchmark of six challenging functional datasets to evaluate performance across
different domain types: (i) Rectangular Domains and Regular Grids: We use Navier-Stokes (Li et al., 2021)),
Shallow Water equation (Takamoto et all 2024), and Darcy Flow (Takamoto et al, [2024) datasets. (ii)
Irregular Domains and Grids: We use the Cylinder Flow dataset (Han et all |2022), a synthetic Mesh-GP
dataset on irregular meshes (Zhao et al., 2022)), and a real-world global climate dataset (Dupont et al.l
2022). These datasets are summarized in Table [2| Detailed descriptions of the datasets and their associated
preparation are provided in Appendix [A]

Baselines. To ensure a thorough comparison, we selected several state-of-the-art neural operators tailored
to different domains : (i) For irregular grids, we benchmark against leading architectures including the
Universal Physical Transformer (UPT) (Alkin et al., [2025]), Latent Neural Operator (LNO) (Wang & Wang}
2024)), Transolver (Wu et al., 2024)), and Geometry-Informed Neural Operator (GINO) (Li et al, 2023). (ii)
For regular grids, we further include the Fourier Neural Operator (FNO) as a strong, established baseline.
To ensure a fair assessment, the parameter counts (or computational budgets) of all baseline models were
carefully matched to our variants. It is important to note that, with the exception of FNO, all evaluated
models (including our MINO variants) are designed to be domain-agnostic and process regular and irregular
grids identically. A detailed description of the the baseline implementation is provided in Appendix [A]

Metrics. A significant current challenge in the field of functional generative models is the lack of standardized
evaluation protocols. Previous studies often rely on dataset-specific metrics, which prohibits fair and direct
comparison between models (Rahman et al.l |2022; Kerrigan et al., [2023a; [Shi et al., [2024a; |Lim et al.|, 2025).
To address this gap, our work validates two robust and general metrics suitable for estimating the distance
between the learned probability measure v (from which generated samples X are drawn) and the target
probability measure p (from which test samples (dataset) Y are drawn).

The first metric is the Sliced Wasserstein Distance (SWD) (Bonneel et al.l [2015; [Hanl [2023). SWD provides a
computationally efficient yet powerful alternative to the exact Wasserstein distance, which is often intractable
in high dimensions. It works by projecting high-dimensional distributions onto random 1D lines and then
averaging the simpler 1D Wasserstein distances. This approach converges to the true Wasserstein distance as
the number of projections increases and provides a robust way to compare the geometric structure of two
probability measures. For two measures p and v in Hilbert space, SWD is defined as (Definition 2.5 of [Han
(2023)):

p

o/ W;’(e#u,e#vm(de)) 9)
le]l=1

7s(9)

SWDJ (p,v) = <

Where base measure v, is strictly positive Borel measure defined on a sphere S, W, is the Wasserstein-p
distance, and 04, 0 xv denote the pushforward measure of 11, v under the projection 6 separately. Further
details are provided in Appendix

The second metric is the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012). Let X = L2(D;R/aim)
and choose a bounded, characteristic kernel k : X x X — R with reproducing-kernel Hilbert space (RKHS)
(Hk, ¢, )x). Denote the mean embeddings m,, = E[k(X, )], m, = E[k(Y,-)]. Then MMD is defined as

MMDy(X,Y) = || m, — m#HHk (10)
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Because k is characteristic, MMDy, = 0 if and only if 4 = v. In Appendix [B] we show how to calculate SWD
and MMD given discretized function samples, and empirically verify that these metrics are valid, robust, and
sample-efficient for functional generative models.

Results. A visualization of the performance of MINO is provided in Figure [3]and as shown in Table [d] on
regular grid benchmarks, our MINO variants achieve SOTA performance: MINO-U achieves best performance
on the Navier-Stokes and Shallow Water datasets, while MINO-T excels on the Darcy Flow benchmark.
In contrast, several baseline neural operators (GINO, LNO, UPT) perform poorly. Further analysis in
Appendix [C] [D] suggests this is because these models primarily learn low-frequency information and fail to
capture the high-frequency components essential for these generative tasks. FNO and Transolver achieve
comparable, albeit inferior, results to our models. Notably, beyond superior accuracy, our MINO variants
are also significantly more efficient than Transolver. As detailed in Table [5] they require substantially less
computation to train, are more GPU memory-efficient, and achieve up to a 2.9x speedup during inference,
demonstrating the efficiency of the MINO architecture.

For tasks on irregular grids, our models continue to demonstrate top performance. MINO-U achieves the best
results on the Cylinder Flow and Global Climate benchmarks, while MINO-T is the top performer on the
Mesh-GP benchmark. Notably, MINO-U outperforms Transolver in all cases with less or equal computation
(see Appendix . Last, We perform an ablation study, which confirm the effectiveness the each component
of our architecture, as detailed in Appendix [E]

A/
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Figure 3: Visualization of generation and zero-shot super-resolution by MINO-U. (a) Navier-Stokes samples
generated on the original mesh (4,096 nodes) and a finer mesh (25,600 nodes). (b) Global Climate sample
generated on the original mesh (4,140 nodes) and a finer mesh (16,560 nodes).

Table 3: Generation performance on benchmarks with irregular grids. Best performance in bold

Dataset — Cylinder Flow Mesh-GP Global Climate
Model | Metric — SWD MMD SWD MMD SWD MMD
GINO 46-107Y 31-107' 11-10° 36-100' 6.9-107' 51-1071
UPT 7.3-107Y  54-107'  42-107' 28-107' 74-100' 54-107!
Transolver 25-1072  24-1072 9.1-1072 4.6-1072 28-1072 29-1072
LNO 5.3-107!  38-107' 35-100' 24-100' 6.7-100' 4.9-107!

MINO-T (ours)  3.0-1072 3.0-1072 6.0-1072 2.3-107%2 35-1072 3.7-1072
MINO-U (ours) 2.2-1072 1.7-1072 88-1072 34-1072 25-1072 24-.-1072
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Table 4: Generation performance on benchmarks with regular grids. Evaluation metrics include the Sliced
Wasserstein Distance (SWD), Maximum Mean Discrepancy (MMD), and Mean Squared Error (MSE) for
spectra, autocovariance, and point-wise density. Best performance is indicated in bold.

Datasets | Model | Metric —| SWD MMD Spectra-MSE Autocovariance-MSE Density-MSE
GINO 46-10-1 3.7.1071 1.9 - 102 4.6-10~¢ 1.9.10—2
UPT 6.0-10"1 4.7.10°1 2.5-103 1.5.1072 4.0-1073
Transolver 53-1072 5.1-1072 1.1-102 6.7-10~% 2.0-10*
Navier-Stokes LNO 5.2.10"1 3.8.10"1 2.0 10% 1.1-10"1 5.0-1074
FNO 32.1072 2.6-10"2 5.1-10! 2.2.-107% 6.9-105
MINO-T (Ours) | 4.0-10=2 3.1-1072 3.9-10! 3.6-107% 5.6-107°
MINO-U (Ours) [3.0-1072 2.2-1072  5.0-10! 1.7-1074 44-107°
GINO 7.3-1071 5.1-1071 1.5 - 102 1.8-1071 9.9-1071
UPT 86-10-1 5.9.10"1 3.1-102 4.0-103 1.0-109
Transolver 1.7-1072 1.8-1072 2.0-10"2 1.2-10°6 9.0-10~%
Shallow Water LNO 8.7-107! 6.5-10"1 2.1-102 14-100 1.0-109
FNO 1.0-1072 94-107% 79.10°3 2.8.10~6 1.0-10~4
MINO-T (Ours) | 83-1072 6.9-1073  4.4.1072 5.9-10"6 1.6-107°
MINO-U (Ours) [6.3-1073 3.3.1073 2.9.1072 6.3-10°7 2.2-107°
GINO 40-1071 3.0-1071 5.5-102 5.4-.103 1.8-1073
UPT 8.7-10~1 4.6-1071 6.0- 10 4.0-10° 7.5-1073
Transolver 2.2.1071 8.9.10°2 4.8.103 3.4.1071 3.0-10¢
Darcy Flow LNO 55-10"1 3.8.10"1 2.7-103 2.4-1071 1.0-1073
FNO 1.1-1071 3.6-102 1.2-103 8.4-102 8.9.10~°
MINO-T (Ours) |7.5-1072 2.3-1072 4.7-102 2.3-102 7.2.10°5
MINO-U (Ours) | 7.9-1072 4.8-1072 5.3 102 3.8-1072 2.0-107%

Table 5: Computational efficiency and performance comparison between MINO variants and Transolver
during training and inference on Shallow Water benchmark.

Training Phase—  Params GPU memory (per sample) Training time (per epoch) Speedup

Transolver 15.0 M 0.913 GB 734 s 1x
MINO-T (ours) 21.5 M 0.429 GB 277 s 2.6x
MINO-U (ours) 19.2 M 0.419 GB 320 s 2.3%

Inference Phase — SWD MMD Generation time (per sample)  Speedup

Transolver 0.017 0.018 1.49 s 1x
MINO-T (ours) 0.0083 0.0069 0.51 s 2.9x
MINO-U (ours) 0.0063 0.0033 0.57 s 2.6x

5 Conclusions

In this paper, we introduce the Mesh-Informed Neural Operator (MINO), a novel backbone for functional
generative models that leverages graph neural operators and cross-attention mechanisms. MINO operates
directly on arbitrary meshes, addressing the reliance on grid-dependent architectures like FNO and thereby
enabling high-fidelity generation on complex and irregular domains. To complement this architectural
advance, we validate the Sliced Wasserstein Distance (SWD) and Maximum Mean Discrepancy (MMD) as
general-purpose metrics for fair and standardized model comparison. Qur comprehensive experiments confirm
the success of this approach: MINO variants achieve state-of-the-art performance across a diverse suite of
benchmarks while being substantially more computationally efficient than strong competitors.

Additionally, the MINO framework helps bridge the gap between math-driven operator learning and modern
deep learning practice, unlocking the potential to apply high-fidelity generative modeling to a broader range
of complex scientific problems. We believe our contributions will foster more rigorous and rapid advancement
in the field of functional generative modeling.
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A Experimental setup

A.1 Datasets description

We curated a benchmark of six challenging functional datasets to evaluate performance across different
domain types, as summarized in Table [T}

Navier-Stokes. This dataset contains solutions to the 2D Navier-Stokes equations on a torus at a resolution
of 64 x 64. Following the pre-processing of previous work (Kerrigan et al.l 2023b; [Shi et al., 2025), we use
30,000 samples for training and 5,000 for testing, drawn from the original dataset introduced in (Li et al.l
2021)).

Shallow Water. This dataset contains solutions to the shallow-water equations for a 2D radial dam-break
scenario on a square domain, from PDEBench (Takamoto et al., [2024]). Each of the 1,000 simulations has
1,000 time steps at 128 x 128 resolution; we downsample spatially to 64 x 64 for efficiency and treat each
time step as an independent snapshot. We randomly select 30,000 snapshots for training and 5,000 for
testing

Darcy Flow. This dataset contains steady-state solutions of 2D Darcy Flow over the unit square, obtained
directly from the PDEBench benchmark (Takamoto et al. [2024]). We downsample the original 128 x 128
resolution to 64 x 64. The dataset contains 10,000 samples and we split it into 8,000 samples for training and
2,000 for testing.

Cylinder Flow. We use the Cylinder Flow dataset of Han et al.| (2022), which describes flow past a cylinder
on a fixed mesh of 1,699 nodes. Each sample is a 3-channel function (x-velocity, y-velocity, pressure). From
101 simulations x 400 time steps, we ignore temporal order and treat each time step as an independent
sample, randomly selecting 30,000 training and 5,000 testing samples.

Mesh GP. This is a synthetic dataset generated on a fixed irregular mesh of 3,727 nodes provided by (Zhao
et al., [2022). We generate function samples from a Gaussian Process (GP) with a Matérn kernel (length scale
= 0.4, smoothness factor = 1.5) given the domain, creating a training set of 30,000 samples and a test set of
5,000 samples.

Global Climate. We use the real-world global climate dataset from (Dupont et al., [2022), which contains
global temperature measurements over the last 40 years. Each data sample is a function defined on a grid
of 46 x 90 evenly spaced latitudes and longitudes. Follow the previous pipeline (Dupont et al., 2022)), we
convert the latitude-longitude pairs to Euclidean coordinates (R?®) before passing them to the models. The
dataset contains 9,676 training samples and 2,420 test samples.

A.2 Baselines description

For all baseline models, we adopt their official implementations to ensure reproducibility; the corresponding
code repositories are linked in the referenced papers. The key initialization hyperparameters for the baselines
: GINO (Li et all 2023), UPT (Alkin et al., |2025), Transolver (Wu et al.l [2024), LNO (Wang & Wang}, 2024)),
and FNO (Li et al., [2021)—are detailed in Table @ Note that a slightly different configuration was used for
the Global Climate experiment. For a complete understanding of all arguments, we refer the reader to the
official repository for each respective model (github link provided in all referred papers)

A.3 Hyperparameters for MINO

MINO-T. The GNO maps input functions to a latent representation on a 16 x 16 grid of query points,
defined over the [0, 1]2 domain. We set the GNO search radius to 0.07, the latent dimension Lgj,, to 256, and
the number of attention heads to 4. The encoder consists of M; = 5 cross-attention blocks and the decoder
has M, = 2 blocks. For the Global Climate dataset, which is defined on a spherical manifold S?, we adjust
the latent query positions to a 32 x 16 spherical grid and increase the GNO radius to 0.2 to account for
the different coordinate system; other hyperparameters remain unchanged. The total parameter count for
MINO-T is 21.5 M.

MINO-U. The GNO maps input functions to a latent representation on a 16 x 16 grid of query points,
defined over the [0,1]? domain. We set the GNO search radius to 0.07, the latent dimension Lgiy, to 256,
and the number of attention heads to 4. The encoder consists of M; = 2 cross-attention blocks and the
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Table 6: Hyperparameter settings for all baseline models.

Hyperparameter GINO UPT Transolver LNO FNO

Parameters 197 M 19.6 M 15.0 M 222 M 206 M
GNN radius - 0.07 - - -
GNO radius 0.06 - - - -
Width/Dim. 128 192 512 512 128
Blocks/Layers 4 12 10 8 x4 4
Attn. Heads - 3 6 8 -
Latent Grid 32 x 32 - - - -
Latent Tokens - 256 - 256 -
Fourier Modes 16 - - - 24

FNO Channels 180 - - - 128
Slice Number -

decoder has M> = 2 blocks. For its latent-space processor, we adopt a Diffusion U-Net architecture from the
torchcfm library (Tong et al., 2024), which operates on the [16, 16] latent tensor with 64 channels, 1 residual
block, and 4 attention heads for the processor. When applied to the Global Climate dataset, the number of
U-Net channels is increased to 96 to accommodate the larger 32 x 16 latent grid, while other settings remain
the same. This configuration results in a total model size of 26.9 M for Global Climate dataset and 19.2 M
for others.

A.4 Details for training and inference

Reference Measures. We choose jig as a Gaussian measure characterized by a Gaussian Process (GP)
with a Matérn kernel. Unless otherwise specified, the function domain is [0,1]? (or subset of it), and we
use a kernel length scale of 0.01 and a smoothness parameter of 0.5. For the Global Climate dataset, the
domain is a spherical manifold represented as a subset of [—1,1]3, and the kernel length scale is adjusted
to 0.05. Furthermore, for the GP on the sphere, we explored two distance metrics for the kernel. The first
uses the chordal distance (the Euclidean distance in the R? embedding space), while the second employs
the geodesic distance on S?, for which we leverage the GeometricKernels library (Mostowsky et al.l [2024).
Although both approaches yield a valid GP, the results presented in this paper are based on the chordal
distance implementation. We selected this method for two primary reasons: its superior computational speed
and to ensure consistency with other benchmarks. To facilitate further exploration, we will release the code
repository with both implementations. The variance is fixed at 1 for all GPs.

Training Details. We train all models for 300 epochs using the AdamW optimizer with an initial learning
rate of le-4. We employ a step learning rate scheduler that decays the learning rate by a gamma of 0.8 every
25 epochs. The default batch size is 96. However, Transolver consumes significantly more GPU memory
than other models. To accommodate it on a single NVIDIA RTX A6000 Ada GPU (48 GB memory), we
reduced its batch size to 48 and, to maintain a comparable training iteration (duration), limited its training
to 200 epochs. Despite these adjustments, Transolver still required approximately 1.76x and 1.53x more
total GPU-hours than MINO-T and MINO-U, respectively. The only exception was the Global Climate
experiment, where we explicitly matched the total GPU computation time of MINO variants to that of
Transolver by extending their training epochs to make a fair comparison. All experiments reported in Table []
and Table [3| were conducted three times, and we report the best performance (among the three) achieved for
each model.

Inference Details. To evaluate the models, we generate the same number of samples as contained in the
test set for each dataset shown in Table[2] All samples are generated by solving the learned ODE numerically
using the doprib solver from the torchdiffeq library (Chen et all 2019), with an error tolerance set to le-5
for all experiments.
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B SWD and MMD as general metrics for functional generation tasks

Unlike image generation, where established metrics like the Fréchet Inception Distance (FID) can leverage a
well pretrained models to compare distributions in a latent space, the field of functional generative models
lacks such standardized evaluation protocols. Functional data covers a wide range of modalities, often
without a common pretrained model, what’s more, the learnt objective is probability measure not probability
distribution, which requires the metrics should be consistent regardless of discretization of function sample.
This makes fair and direct comparison between models challenging, as previous studies frequently rely on
dataset-specific metrics. To address this gap, our work proposes and validates two general metrics that
directly estimate the distance between a learned probability measure, v, and a target measure, u, using
samples drawn from each.

We are given two sets of i.i.d. function samples, X = {x(j)};v:l drawn from v and Y = {y(j)}évzl drawn from
. Fach function is observed at the same N, locations. To compute the distance, each function sample is
first flattened into a single vector representation.

Sliced Wasserstein Distance (SWD). In practice, we estimate the distance between two probability
measure, i, and v, using the discretized function samples in the datasets X and Y. To make the metric shown
in Eq. [0 computable, we need to derive the discretized version of it, which is achieved by choosing the base
measure v, to be the Haar measure (uniform surface measure) on the sphere R¢~! (d is the discreziation
of functions and d = Ny, if co-domain is 1 in our case) and replace the integral and normalization with
an expectation with respect to the probability measure defined by normalizing 7. Finally, we can get a
discretized version of Eq. [0}

SWD,0) =, B, | V(O] ) (1)

where 6 is a random direction on the unit sphere S¥~'. SWD converges to the exact p-Wasserstein distance
for two probability measures as the number of projections goes to infinity. In our experiments, we use the
official implementation from the POT library (Flamary et al.l |2021). We use the Sliced Wasserstein-2 distance
(p = 2) (Bonneel et al., [2015), the time complexity for SWD is O(L - N - Ny, + L - Nlog N), where L is the
number of projections.

Maximum Mean Discrepancy (MMD). For MMD (Gretton et al., [2012), the time complexity is
O(N?-N,,) we use the Gaussian RBF kernel k(-,-). Given the sample sets X and Y, we compute the squared
MMD using the standard unbiased U-statistic estimator:

mi(X,Y) Zk 2@ z()) Zk (@) sz )y @Dy (12)

1#] #J i=1j=1

A practical consideration for the SWD is that it relies on a Monte Carlo approximation over random
projections. This can introduce variance; calculating the SWD multiple times on the same two test datasets
may yield slightly different results. To ensure our evaluations are stable and meaningful, we must reduce
this variance to a negligible level. We propose a simple procedure we term averaged-SWD: instead of
a single SWD estimation, we perform n,,, independent estimations via Eq (each with a large number
of projections, L = 256 in our case) and report the mean, we would expect averaged-SWD has very small
variance introduced by the Monte Carlo approximation.

To validate this approach, we created two distinct Gaussian measures, characterized by GP, GP; (length
scale=0.3, smoothness=1.5) and GPs (length scale=0.01, smoothness=0.5), on a 64 x 64 regular grid. We
drawn 5,000 GP samples from each measure to create X,Y and then calculated the averaged-SWD between
them for varying n,,, and repeated this entire process 20 times to report the mean and standard deviation of
the averaged-SWD. As shown in Table[7] when n,,, = 10, the variance of the averaged-SWD is sufficiently
small. We therefore adopt n,., = 10 for all SWD computations in our experiments. In contrast, MMD is
deterministic for a given kernel and does not exhibit this variance.
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Metric Consistency Across Discretizations. A crucial property of a metric for functional data is its
consistency with respect to the discretization of the function domain. The computed distance between
two measures should be consistence regardless of the discretization for functions samples in two function
datasets drawn from the two probability measure. That is, if we draw anthor new function samples X;
and Y; from the same measures ;1 and v but observe them on a different set of locations, we expect
MMD(X;,Y;) =~ MMD(X,Y) and SWD(X;,Y;) = SWD(X,Y).

To verify this property, we calculated SWD and MMD in three representative scenarios while varying the
number of observation points by randomly sub-sampling the full discretization (N;,). The scenarios are: (i).
GP; vs. GPy. (ii). GP; vs. Navier-Stokes (test dataset) .(iii) GPy vs. Cylinder Flow (test dataset). For
each case, we will unify the observed position (discretization) of function samples

As shown in Fig. 4] both MMD and SWD remain highly consistent across different sub-sampling ratios of the
observation points. This analysis demonstrates that SWD and MMD are not only theoretically sound but
also empirically robust and sample-efficient evaluation metrics for functional generative models.

Table 7: Variance analysis of the averaged-SWD metric. We report the mean and standard deviation of the
averaged-SWD, calculated over 20 trials, for different numbers of averaging runs (n,un)-

Nrun 5 10 20 40 60
SWD (mean + std) 0.2482+0.0052 0.2485+0.0038 0.2494 £+ 0.0029 0.2497 £ 0.0017  0.2498 + 0.0014

GP, vs GP, GP; vs Navier Stokes GP; vs Cylinder Flow
1.0 1.0 O3
—o— swd o oo 000099
o 0.8 - mmd 0.8 1 0.8 -
3
T 0.6 1 0.6 A 0.6 -
=)
S 0.4 1 0.4 0.4
s
o—eo—0—0—0—90—0—09 00 —— ——
024 0.2 swd 0.2 swd
mmd mmd
0.0 . . . . 0.0 . . . . 0.0 : T T
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Figure 4: Consistency of SWD and MMD with respect to the number of discretization points. The metrics
remain stable as the number of observation points is varied for three comparison scenarios: two synthetic
GPs (left), a GP vs. a regular grid dataset (center), and a GP vs. an irregular mesh dataset (right).

C Connection and Difference to Prior Works

C.1 Functional Generative Models vs. Surrogate PDE Solvers

While both functional generative models and surrogate PDE solvers utilize neural operators as their backbone
architecture, the demands placed on the operator in these two settings are fundamentally different. A
surrogate PDE solver typically learns a one-step mapping between function states, such as mapping initial
conditions to a final solution . In contrast, a functional diffusion or flow model must learn to parameterize a
continuous transformation between two probability measures, and also requires many steps evaluation during
inference. This contrast is further highlighted by the signal frequencies involved: surrogate solvers often
map between smooth, low-frequency functions (Li et al., [2023), while functional generative models must
transform high-frequency noise into structured data samples. Consequently, designing a neural operator for
generative tasks is significantly more demanding, as the learning task itself is more challenging. There are
some finite-dimensional generative models (Havrilla et al, 2024; [Wang et al, 2024) can also achieve zero-shot
generation at arbitrary resolutions. However, these approaches do not explicitly learn a probability measure
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over the function space and the zero-shot generation is similar to the linear or bicubic interpolation, which
distinguishes them from the functional generative paradigm discussed here.

C.2 Architectural Comparison to Other Neural Operators

The MINO architecture builds upon insights from previous work, including GINO and UPT (Li et al.l 2023}
Alkin et all, [2025]), but introduces several key modifications to address their limitations in the context of
functional generative tasks.

Comparison with GINO. GINO adopts a GNO encoder and decoder with an FNO processor. However,
since a GNO acts as a low-pass filter (Laplacian smoothing) (Li et al 2018), which creates an information
bottleneck for decoding. The GNO decoder receives only the low-frequency output from the FNO processor,
making it structurally difficult to reconstruct the high-frequency details essential for high-fidelity generative
modeling, which is supported by our experiments (see Appendix .

Comparison with UPT. The UPT model uses a GNN for super-node pooling, a choice we identify as
suboptimal for operator learning for three primary reasons. First, as the input discretization becomes
finer, the GNN converges to a pointwise operator, which decouples it from the discretization convergence
property required of a neural operator. Second, GNN can also be viewed as a low pass filter in the generative
tasks, which has the same issue of GNO. Thrid, UPT relies on random subsampling to define super-nodes
is ill-suited for adaptive meshes common in PDE tasks, where important regions with low grid density
may be undersampled. For instance, on a dense mesh of the Earth, random subsampling would likely
over-concentrate super-nodes in the polar regions that of less interest. Furthermore, UPT’s decoder uses a
single-layer, perceiver-style cross-attention where the queries are derived only from the output positions. We
found that for generative tasks, it is crucial to use a combination of the input function and its position as
the query to the cross attention decoder and to use multiple attention layers as shown in the ablation study
(Appendix [E)).

Comparison with Transolver. A key difference is that Transolver relies on a global receptive field, whereas
our architecture combines both local and global information processing. Moreover, MINO more closely
follows the modern, highly scalable, and efficient DiT architecture by replacing the grid-dependent “patchify”
operation with our domain-agnostic GNO encoder. As demonstrated in our experiments, MINO is significantly
more efficient than Transolver in both training and inference.

C.3 Designing neural operators with general deep learning architectures

The composition of multiple neural operators remains a valid neural operator (Wang et al.l 2025). Previous
works such as GINO and UPT adopt the standard encoder—processor—decoder paradigm. However, directly
replacing the processor with a generic neural network is sub-optimal: it forces the decoder to rely solely on a
fixed-size latent representation, whereas the desired output lives in an infinite-dimensional function space. To
overcome this limitation, we design the decoder via cross attention to take both the latent representation
and the original input function as inputs, thereby circumventing the bottleneck imposed by a fixed latent
shape.

D Additional Results

In this part, we present additional qualitative results to further demonstrate the performance of MINO
compared to baseline models. As shown in Figure [f] MINO generates realistic samples for the Navier-Stokes
benchmark that closely match the ground truth. In contrast, both GINO and UPT capture only the general,
low-frequency trends of the solution, failing to reconstruct the high-frequency information essential for
high-fidelity generation. This difficulty arises because generative models must learn a velocity field with
correct high-frequency components to successfully transform high-frequency Gaussian noise into structured
data samples. We provide further qualitative results for MINO on the Darcy Flow, Shallow Water, and
Mesh-GP benchmarks in Figures [6] [7} and [8] respectively, which visually confirm the effectiveness of our
approach.
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Ground Truth

Ground Truth

Figure 6: Generation of Darcy-Flow samples
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E Ablation Study

We conduct an ablation study to validate the effectiveness of the specific cross-attention mechanisms used
in the encoder and decoder of our MINO architecture. We take the standard MINO-T as our baseline and
evaluate its performance against two architectural variants:

Self-Attention Encoder: We replace the cross-attention mechanism in the encoder with a standard
self-attention mechanism. In this setup, the Key-Value (KV) pair for each attention block is derived from the
output of the previous block, rather than being fixed as the initial latent representation from the GNO.

Position-Only Decoder: We modify the decoder’s query to be derived only from the function’s observation
positions, similar to the decoder design in prior works like UPT, GINO. This removes the explicit dependency
on the input function’s values in the query.

The results of this study, presented in Table [8] confirm that our proposed design choices are critical for
achieving high performance. The standard MINO-T consistently and significantly outperforms both ablated
variants across all datasets and metrics. The performance degradation is most severe in the Position-Only
Decoder variant. By relying only on positional queries, the decoder struggles to reconstruct fine-grained
details. This result highlights the importance of conditioning the decoder’s queries on the input function’s
values for high-fidelity generative tasks. The Self-Attention Encoder variant also performs worse than our
standard model, which suggests that using the initial latent representation as a fixed context for iterative
refinement in the encoder is a more effective strategy than a standard self-attention approach.

Table 8: Ablation study on key architectural components of MINO across four benchmarks. We compare
our standard MINO-T against two variants: one replacing the encoder’s cross-attention with self-attention,
and another using a simpler position-only decoder query similar to prior work like UPT. Lower SWD/MMD
scores are better; best results are in bold

Dataset — Navier Stokes Shallow Water Darcy Flow Cylinder Flow
Variants | Metric — SWD MMD SWD MMD SWD MMD SWD MMD

Standard MINO-T  4.0-10-2 3.1-10"2 83-10"3 6.9-1073 75.1072 23.1072 3.0-10"2 3.0-10"2
Self-Attention Encoder 5.2-1072 5.1-1072 1.7-1072 1.7-1072 2.0-107' 7.6-1072 3.7-102 3.5-10°2
Position-Only Decoder 5.7-10~! 4.5-10"! 84-10-' 57-107! 83.10"! 44.10"' 72.-107! 5.3.107!

21



	Introduction
	Preliminaries
	Methods
	Experiments
	Conclusions
	Experimental setup
	Datasets description
	Baselines description
	Hyperparameters for MINO
	Details for training and inference

	SWD and MMD as general metrics for functional generation tasks
	Connection and Difference to Prior Works
	Functional Generative Models vs. Surrogate PDE Solvers
	Architectural Comparison to Other Neural Operators
	Designing neural operators with general deep learning architectures

	Additional Results
	Ablation Study

