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Abstract

Machine learning force fields (MLFFs) are emerging as a
key player in accurate simulations of materials systems. De-
spite this, their internal logic remains rather opaque—a crit-
ical barrier to both trust and scientific discovery. We in-
troduce DUAL-X, a Dual-Level Explainability Framework
that bridges model reasoning with human understanding.
DUAL-X unites two complementary perspectives: a model-
centric level identifying which atoms and local environments
in the structure the model should focuses its attention on, and
a human-centric level revealing what physically meaning-
ful interactions it prioritizes. Implemented with Grad-CAM
for spatial attribution and SHAP-on-SOAP for physical in-
terpretation, DUAL-X provides a general, human-in-the-loop
paradigm for interpretable scientific AI.
Applied to dopant migration (Miskin et al. 2025) in
a crystalline 2D material—a challenging task for
MLFFs—DUAL-X reveals that different training strate-
gies lead to models that capture different aspects of the
underlying chemical physics. Multi-temperature fine-tuned
MACE models exhibit over 102× stronger selectivity for
Cr–Cr f -type (l = 3) angular correlations than ones trained
from scratch, emphasizing that complex and contextually
relevant 3D coordination motifs are essential for accuracy.
Models with sharper Grad-CAM focus also display coherent
SHAP importance for dopant clustering, revealing consistent
internal reasoning across scales.
By aligning model logic with human physical knowledge,
DUAL-X transforms opaque predictors into interpretable
scientific partners—advancing trustworthy, explainable, and
insight-driven AI for materials discovery.

Code — https://github.com/yicao-elina/X-FORCE.git

Introduction
Machine learning force fields (MLFFs) promise to rev-
olutionize computational materials science by achieving
quantum-mechanical accuracy at a fraction of the cost of
traditional simulations (Behler and Parrinello 2007; Batatia
et al. 2022). However, as these models transition into stud-
ies using large, complex neural networks (Chen and Ong
2022), their inherently black-box nature imposes a critical
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Figure 1: Our hierarchical XAI framework transforms
opaque MLFFs into interpretable tools that reveal how train-
ing strategies shape chemical intuition.

barrier to scientific progress. This gap between predictive
power and physical reasoning creates a crisis of trust and
discovery: without understanding the physical principles un-
derlying a prediction, researchers cannot trust MLFFs in
high-stakes applications, diagnose their failures, or extract
the latent scientific insights they may have learned (Rudin
2019). Indeed, while all MLFFs are sophisticated curve-
fitting engines, their learned representations often encode
non-trivial physical relationships. Uncovering these repre-
sentations transforms MLFFs from mere interpolators into
partners for scientific discovery. Thus, interpretability is not
an auxiliary goal but a prerequisite for turning predictive ac-
curacy into genuine understanding.

The core challenge lies in reconciling two fundamentally
distinct explanatory modes: model-centric attribution and
human-centric scientific rationale. The former asks, Ac-
cording to the model’s learned representation, which atomic
features drive a given prediction? The latter asks, Do these
learned structure–property relationships align with known
physical or chemical principles? Existing explainable AI
(XAI) approaches primarily address the first mode, offering
post-hoc justifications without grounding them in scientific
theory (Doshi-Velez and Kim 2017; Molnar 2020). Bridg-
ing this divide is essential for interpretable and trustworthy
scientific ML.
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To address this gap, we introduce DUAL-X, a Dual-Level
Explainability Framework that unifies these two explana-
tory perspectives. DUAL-X provides a hierarchical, physi-
cally grounded understanding of MLFFs by sequentially an-
swering two key questions:

1. Model-Centric Locus: Where in the atomic structure
does the model focus its attention to make predictions?
(The ”Where”)

2. Human-Centric Mechanism: What physically mean-
ingful interactions within those regions does the model
prioritize? (The ”What”)

In this work, we instantiate the DUAL-X hierarchy by
synergistically combining two complementary techniques.
To identify the model-centric locus (the “where”), we im-
plement this level using a Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) method, (Selvaraju et al. 2017)
which back-propagates gradients to reveal which atoms
learned the embeddings that most influence the final predic-
tion. To uncover the human-centric mechanism (the “what”),
we apply SHapley Additive exPlanations (SHAP) (Lund-
berg and Lee 2017) to a basis of Smooth Overlap of Atomic
Positions (SOAP) descriptors. (Bartók, Kondor, and Csányi
2013) By analyzing SHAP values on these physical descrip-
tors, we decompose the model’s decision-making process
into interpretable geometric and chemical components.

We demonstrate DUAL-X using a state-of-the-art MACE
force field (Batatia et al. 2022) to study a common material
problem, namely doping, which is technologically important
in the semiconductor industry, for instance. Our analysis re-
veals how different training strategies instill distinct physi-
cal intuitions into the model, providing a route toward inter-
pretable and scientifically grounded MLFF development.

Our main contributions are threefold:

• Methodological: We propose DUAL-X, the first two-tier
XAI framework for MLFFs that explicitly bridges in-
ternal, model-centric attributions with external, human-
centric scientific rationales.

• Scientific: Applied to a 2D material doping task (Cr-
doped Sb2Te3), DUAL-X uncovers the physical mecha-
nism learned by the MLFF, revealing that predictive ac-
curacy arises from a spatial focus on Cr dopant clusters
(the ”where”) and the prioritization of specific high-order
angular correlations (the ”what”).

• Practical: We demonstrate that multi-temperature fine-
tuning produces MACE-based MLFFs with more ro-
bust and physically selective representations than either
a “vanilla” foundation model or training a model from
scratch (completely user-defined), offering a principled
approach to building reliable and interpretable models.

Related Work
The Accuracy–Interpretability Trade-off in
MLFFs
So far, the evolution of MLFFs has been marked by a persis-
tent tension between predictive accuracy and interpretabil-
ity. Early architectures such as the Behler–Parrinello neu-

ral network used hand-crafted, physically motivated descrip-
tors like Atom-Centered Symmetry Functions (ACSFs) and
Smooth Overlap of Atomic Positions (SOAP) (Behler and
Parrinello 2007; Bartók, Kondor, and Csányi 2013). While
these fixed bases offered interpretability, they constrained
model expressiveness, meaning the models were limited in
their ability to represent complex, high-dimensional interac-
tions beyond the predefined descriptor space. This restric-
tion often prevented capturing subtle many-body or long-
range effects that are crucial in chemically and structurally
heterogeneous systems.

Subsequent end-to-end graph neural networks (GNNs),
including SchNet and DimeNet++ (Schütt et al. 2017;
Gasteiger et al. 2020), shifted this paradigm by learn-
ing representations directly from atomic coordinates. This
trend culminated in equivariant architectures such as
MACE (Batatia et al. 2022), which constructs high-order
tensor features respecting physical symmetries and achieve
unprecedented accuracy. However, these advances come at
the cost of transparency: learned representations are no
longer tied to human-defined physical quantities but emerge
from optimization, making them difficult to interpret. Re-
solving this accuracy–interpretability trade-off is the cen-
tral motivation of our work. To contextualize this challenge,
Table 2 provides a comparative overview of existing ex-
plainable AI approaches for MLFFs, highlighting both their
methodological advances and inherent limitations across in-
terpretability paradigms.

Paradigms in Scientific Interpretability
Interpretability methods in scientific ML have evolved along
three major paradigms, corresponding to model-centric,
human-centric, and intrinsic interpretability.

Human-Centric Explanations via Feature Attribution.
This approach explains model outputs in terms of pre-
defined, physically meaningful features. Methods such
as LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017) assign importance scores
to input descriptors, allowing mechanistic interpretation.
In materials science, SHAP has been used to identify key
bond lengths, angles, or solvent effects governing predic-
tions (Wang and Chen 2024; Schütt et al. 2019). However,
these approaches rely on fixed, human-defined bases and as-
sume feature independence—limitations that make them ill-
suited for explaining correlated, emergent features in mod-
ern end-to-end MLFFs.

Model-Centric Explanations via Spatial Attribution.
This paradigm probes internal representations directly, iden-
tifying which input regions most influence predictions.
Gradient-based methods such as Saliency Maps (Simonyan,
Vedaldi, and Zisserman 2013), Grad-CAM (Selvaraju et al.
2017), and GNN-specific tools like GNNExplainer (Ying
et al. 2019) reveal the model’s spatial “attention.” More re-
cent variants, such as EquiGX, adapt these techniques to ten-
sor operations in equivariant GNNs. While such methods in-
dicate where the model focuses, they cannot alone explain
what physical principles drive those attentions.
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Intrinsic Interpretability via Model Design. An alter-
native approach builds transparency into the model itself.
Symbolic regression, for example, can distill GNN knowl-
edge into compact analytical expressions. Architectures like
SchNet4AIM directly predict physically rigorous quantities
(e.g., atomic charges, delocalization indices), yielding inher-
ently interpretable outputs (Schütt et al. 2017). These meth-
ods, however, often require new architectures and may sac-
rifice peak accuracy.

Our Contribution in Context
Prior work has largely treated these paradigms as mutu-
ally exclusive: researchers were forced to choose between
human-centric explanations (the ”what”) for simpler mod-
els, model-centric attributions (the ”where”) for complex
ones, or intrinsically interpretable but less-performant archi-
tectures.

Our work, DUAL-X, resolves this false dichotomy, in
terms of a hierarchical framework that systematically uni-
fies these perspectives. It first uses a model-centric approach
to identify the locus of prediction—the specific atoms or re-
gions that the model deems critical (the ”where”). It then
employs a human-centric approach to decode the physical
mechanism—the interpretable chemical or geometric fea-
tures the model prioritizes within that high-attention locus
(the ”what”).

In this paper, we implement DUAL-X by synthesizing
Grad-CAM for spatial attribution and SHAP-on-SOAP for
mechanistic decomposition. This synthesis leverages the
strengths of both paradigms, transforming state-of-the-art
MLFFs from opaque predictors into transparent and trust-
worthy tools for scientific discovery.

A Hierarchical Framework for MLFFs
Interpretability

To bridge the gap between the predictive accuracy of mod-
ern MLFFs and their physical interpretability, we introduce
DUAL-X—a dual-level hierarchical framework designed to
translate model decisions into physically meaningful ex-
planations. It first locates where in an atomic structure the
model focuses its attention during prediction (Level 1), and
then decomposes what physical interactions within those
regions govern this focus (Level 2). Figure 1 schemati-
cally summarizes this “Where–then–What” interpretability
pipeline.

Level 1: Spatial Attribution via Grad-CAM (“The
Where”)
The first level identifies which atoms are most influen-
tial to the MLFF’s prediction of the total energy. We
adapt Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al. 2017), originally developed for con-
volutional neural networks, to the setting of equivariant
graph neural networks (GNNs) used in atomistic modeling.

Target Model and Embedding Extraction. Our analysis
employs the MACE architecture (Batatia et al. 2022), a state-
of-the-art equivariant GNN that encodes many-body interac-
tions through tensorial message passing. After L interaction

blocks, MACE produces a set of atomic embeddings{
A

(L)
i ∈ RK

}N
i=1

,

for a system of N atoms, where K denotes the embedding
dimensionality. These vectors encapsulate high-order geo-
metric and chemical correlations within each atom’s local
environment.

To probe spatial importance, we attach PyTorch hooks
to the final embedding layer—the most comprehensive en-
vironmental representation before aggregation into the total
energy Etotal. A forward pass yields both Etotal and {A(L)

i }.

Grad-CAM Attribution. We compute the gradient of
Etotal with respect to each embedding component:

∂Etotal

∂A
(L)
ik

,

where A(L)
ik denotes the k-th channel of atom i’s embedding.

The Grad-CAM importance αi for atom i is then defined as

αi = ReLU

(
K∑

k=1

∂Etotal

∂A
(L)
ik

A
(L)
ik

)
.

A larger αi indicates that atom i’s local environment ex-
hibits both strong activation and high gradient sensitiv-
ity—implying a strong positive contribution to the predicted
energy. The resulting set {αi} forms a spatial importance
map highlighting the structural regions that the model prior-
itizes when evaluating the total energy. This “attention map”
constitutes the model-centric perspective of DUAL-X, ad-
dressing the question: “Where in the atomic structure does
the model focus to make its prediction?”

Level 2: Mechanistic Decomposition via Surrogate
Modeling and SHAP (“The What”)
Having localized the atoms most influential to the model’s
decision, the second level of DUAL-X reveals why these re-
gions matter by identifying the underlying physical interac-
tions that govern prediction quality. Directly applying SHAP
to large GNNs like MACE is computationally prohibitive;
we therefore employ a surrogate modeling approach that
maps human-defined physical descriptors to the model’s pre-
dictive behavior.

Descriptor Construction. To capture global geometric
signatures, each atomic configuration is represented by a
rotationally invariant Smooth Overlap of Atomic Positions
(SOAP) descriptor (Bartók, Kondor, and Csányi 2013).
While Level 1 focuses on localized spatial saliency, Level 2
abstracts to global structural motifs, providing complemen-
tary insight into the physical origins of the model’s fo-
cus. SOAP vectors are computed using the dscribe pack-
age (Himanen et al. 2020) with the average="inner"
setting to obtain global power spectra:

s = {snl}n,l,
where the radial index n and angular index l define the res-
olution of structural features, with larger l values capturing
higher-order many-body correlations.
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Surrogate Model Training. We treat the pre-trained
MACE model as an oracle to generate labeled data. For each
configuration, we compute its SOAP descriptor s and the ab-
solute energy prediction error

|∆E| = |EMACE − EDFT|.
We then train a GradientBoostingRegressor (Fried-
man 2001) to learn the mapping

fsur : s → |∆E|,
thereby modeling how structural motifs influence the reli-
ability of MACE predictions. This reframes interpretability
from “What features predict energy?” to the more actionable
“What structural motifs predict model failure?”

SHAP-Based Mechanistic Analysis. Once
trained, the surrogate model is analyzed using
TreeExplainer (Lundberg and Lee 2017), which
computes exact SHAP values for tree-based models. For
each SOAP feature snl, the corresponding SHAP value ϕnl

quantifies its marginal contribution to fsur(s), satisfying
local accuracy and consistency. Aggregating ϕnl across
structures yields a ranked spectrum of geometric and
chemical importance, revealing which motifs are most
associated with model unreliability.

This mechanistic decomposition of model error comple-
ments Level 1’s focus analysis, providing a human-centric
perspective on what physical interactions the model has im-
plicitly learned. By jointly interpreting the Grad-CAM spa-
tial maps and SHAP-based feature spectra, DUAL-X estab-
lishes a coherent bridge between model logic and physical
intuition—turning black-box MLFFs into interpretable sci-
entific instruments.

Synthetic Experimental Setup
System and Ab Initio Dataset
We investigate Cr-doped Sb2Te3, a prototypical layered
phase-change material widely studied for topological and
thermoelectric applications. Reference data were gener-
ated using Density Functional Theory (DFT) with the
Perdew–Burke–Ernzerhof (PBE) functional and Grimme’s
D3 dispersion correction, as implemented in QUAN-
TUM ESPRESSO (Giannozzi et al. 2009; Perdew, Burke,
and Ernzerhof 1996). A total of ∼20,000 atomic config-
urations were sampled from ab initio molecular dynamics
(AIMD) trajectories of a 120-atom, two-quintuple-layer su-
percell containing varying Cr dopant concentrations. Simu-
lations were performed at 300 K, 600 K, and 1200 K to en-
sure broad thermal diversity across the potential energy sur-
face. The dataset was randomly divided into training (80%),
validation (10%), and test (10%) subsets. Detailed computa-
tional parameters and AIMD protocols are provided in Ap-
pendix .

MLFFs Training Protocols
MLFFs were trained using the MACE architecture (Batatia
et al. 2022) with a 6.0 Å cutoff radius. To probe how pre-
training and data diversity influence learned representations,
we compared four models:

1. Scratch: A MACE-trained model from a random initial-
ization using the full AIMD dataset.

2. Foundation: A pre-trained MACE-MP-0 model (Batatia
et al. 2022) evaluated in a zero-shot setting without fine-
tuning (constituting an as-is “vanilla” model).

3. FT-600K: A foundation model that has been fine-tuned
on 600 K AIMD data to assess single-temperature trans-
ferability.

4. FT-MultiT: A foundation model that has been fine-tuned
on combined data from three different temperatures,
300–1200 K, of AIMD data to encourage temperature-
aware generalization.

All models employed a dual-branch output head for si-
multaneous energy and force prediction. Hyperparameters
and training details are summarized in Appendix.

Hierarchical Interpretability Protocol
To evaluate model explainability, we applied the proposed
DUAL-X (Dual-Level Explainability) framework to 200 rep-
resentative test configurations spanning different dopant
concentrations, structural motifs, and thermal conditions.

Level 1: “Where” — Spatial Attribution Grad-CAM
was used to compute atom-wise importance scores (αi), in-
dicating which atomic regions most strongly influenced the
energy predicted by the MLFF. We further analyzed the
chemical identity and coordination environment of the top-
10 most influential atoms across test samples to characterize
each model’s attention patterns.

Level 2: “What” — Mechanistic Decomposition Fol-
lowing spatial attribution, a SHAP analysis was performed
to reveal which geometric motifs drive model prediction er-
rors defined as ∆E = EMACE − EDFT. For each model
variant, a Gradient Boosting Regressor was trained to ap-
proximate ∆E using global SOAP descriptors (nmax = 4,
lmax = 4). Feature-wise SHAP values quantified each de-
scriptor’s marginal contribution to the surrogate model’s
prediction, thereby linking Grad-CAM-derived spatial im-
portance (“Where”) to descriptor-level physical mechanisms
(“What”).

Together, these two interpretability levels establish a uni-
fied mechanistic understanding of MLFF behavior.

Results and Discussion
We structure our results to follow the DUAL-X framework:
We first apply Level 1 to identify the model-centric lo-
cus (“where” the models focus) and then apply Level 2 to
uncover the human-centric mechanism (“what” they have
learned).

Level 1: Model-Centric Locus of Prediction and
Architectural Paradigms
Applying the Level 1 (Grad-CAM) analysis to our test
set immediately reveals that the different training protocols
(Scratch, Foundation, FT-MultiT) instill fundamentally dis-
tinct spatial attention mechanisms for processing chemical
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Figure 2: Grad-CAM visualization reveals model-specific
attention mechanisms. (a–c) Spatial activation maps for
DFT-relaxed Cr-doped Sb2Te3: (a) The foundation model
exhibits diffuse Sb-centered attention; (b) The scratch model
shows sharply localized Cr-centric responses; (c) The fine-
tuned Multi-T model displays minimal activation, indi-
cating internalized equilibrium knowledge. (d–f) Element-
wise analyses demonstrate distinct chemical selectivity as
follows: Sb-dominant behavior (Foundation), Cr-dominant
behavior (Scratch), and a more balanced behavior (Fine-
tuned)—reflecting progressive specialization across learning
stages.

information (Figure 2). When analyzing DFT-relaxed equi-
librium structures, these differences are particularly stark.

The vanilla, as parameterized, Foundation model ex-
hibits diffuse, low-intensity activation (max score: 0.20)
with a clear preference for giving its attention to Sb atoms
in the host matrix (see Figure 2a). This pattern suggests that
it predicts the system’s energy by integrating collective ma-
trix behavior, treating Cr dopants as minor perturbations. In
contrast, the Scratch model, with its training focused on the
dopant movement, displays intense, spatially-localized ac-
tivation (max score: 1.00) that sharply targets Cr dopants
and their immediate coordination environments (see Fig-
ure 2b). This dopant-centric focus indicates it has learned
these specific sites are critical decision points for energy
prediction. Most remarkably, the FT-MultiT model shows
virtually zero activation on the same equilibrium structures
(Figure 2c), implying it has successfully internalized these
stable patterns and requires minimal feature extraction—an
optimal state for well-characterized regimes.

This divergence in spatial attention is mirrored by
element-specific chemical intelligence (Figure 2e). The
Scratch model’s pronounced focus on Cr-selectivity (mean
importance: 0.985) and the Foundation model’s strong
bias towards Sb atoms (0.110) confirm their respective
dopant-centric versus matrix-dominated learning dynamics.
The overall importance score hierarchy—Scratch (0.185)
> Foundation (0.045) > FT-MultiT (0.001) (Figure 2f)—
directly correlates with the degree of model specialization.

While the fine-tuned models appear dormant on equilib-
rium structures, they correctly reactivate when processing
high-energy, non-equilibrium configurations from AIMD
trajectories (SI Figure 6). This demonstrates a sophisti-

Cr-Te_n12_l4
Cr-Sb_n21_l1
Cr-Sb_n12_l0
Sb-Sb_n43_l3
Sb-Te_n33_l3
Sb-Sb_n31_l4
Sb-Te_n34_l3
Sb-Sb_n21_l3
Cr-Sb_n13_l0
Cr-Cr_n32_l4
Cr-Sb_n11_l3
Cr-Cr_n14_l3
Cr-Te_n42_l0
Cr-Te_n33_l4
Sb-Sb_n11_l4
Sb-Sb_n44_l1
Sb-Te_n34_l2
Sb-Sb_n24_l3
Cr-Te_n41_l1
Sb-Te_n41_l1

0.0 0.1 0.2
 |SHAP Value|

Sb-Sb_n11_l4
Sb-Te_n11_l3
Sb-Te_n11_l0
Sb-Te_n33_l3
Cr-Te_n41_l0
Cr-Sb_n13_l0
Cr-Te_n42_l0
Sb-Sb_n43_l3
Cr-Cr_n34_l0
Cr-Te_n22_l4
Sb-Sb_n12_l2
Sb-Sb_n31_l4
Cr-Cr_n14_l4
Sb-Te_n34_l2
Sb-Sb_n43_l1
Sb-Sb_n12_l1
Sb-Sb_n12_l0
Sb-Sb_n11_l1
Sb-Sb_n44_l1
Sb-Sb_n44_l4

0.0 0.1 0.2
 |SHAP Value|

Cr-Cr_n21_l1
Sb-Te_n34_l4
Cr-Te_n41_l1
Sb-Sb_n12_l0
Sb-Te_n24_l0
Sb-Sb_n43_l1
Sb-Sb_n42_l3
Sb-Sb_n11_l4
Cr-Cr_n21_l3
Cr-Cr_n22_l3

Sb-Sb_n31_l4
Cr-Te_n21_l0
Cr-Sb_n44_l0
Cr-Te_n41_l0
Cr-Te_n42_l0
Cr-Cr_n21_l2

Sb-Sb_n44_l4
Cr-Sb_n11_l2
Sb-Te_n23_l1
Sb-Sb_n44_l1

0.0 0.1 0.2
 |SHAP Value|

Cr-Cr_n13_l3
Cr-Sb_n13_l3
Sb-Sb_n31_l3
Cr-Cr_n14_l1
Cr-Te_n42_l3
Cr-Te_n41_l3
Cr-Cr_n14_l3
Cr-Cr_n22_l1
Cr-Sb_n41_l3
Sb-Te_n13_l2
Sb-Sb_n34_l2
Cr-Te_n42_l1
Cr-Te_n22_l1
Cr-Cr_n34_l1
Cr-Sb_n12_l0
Sb-Te_n22_l1
Cr-Te_n43_l3
Sb-Sb_n41_l0
Cr-Cr_n31_l1
Cr-Sb_n44_l1

0.0 0.1 0.2
 |SHAP Value|

Foundation Scratch  FT - 600K FT - Multi-T
Top 20 Feature Importance by Model

a) b) c)

1

11

4

4

4
11

8

Foundation

FT - 600K

Scratch

1012 8

FoundationScratch

2 18

Multi-T

 Foundati
on

 Scra
tch

 FT - M
ulti-

T

 FT - 6
00

K

 FT - 600K

 FT - Multi-T

 Foundation

 Scratch 8

2

5

20 8

0

8

20

2

0

0

20

5

8

0

20 5.0

0.0

20.0

15.0

10.0

N
um

be
r o

f S
ha

re
d 

Fe
at

ur
es

d)

Figure 3: SHAP analysis reveals distinct feature im-
portance hierarchies across MLFFs architectures. (a–b)
Venn diagrams and (c) overlap matrix show limited shared
top features among models. (d) Feature rankings high-
light divergent chemical focus: Foundation (Cr–Te, Sb–Te),
Scratch (Sb–Sb), FT-600K (Cr–Sb mix), and FT-Multi-T
(Cr-dominant).

cated, selective processing ability to distinguish stable states
from challenging dynamic regimes. However, this special-
ization is not without risk; we also observe concerning ac-
tivations on seemingly random Sb atoms in distorted struc-
tures, suggesting possible overfitting to training-specific ar-
tifacts. This phenomenon aligns with previously reported
“catastrophic forgetting” in naively fine-tuned MACE mod-
els, wherein excessive specialization can degrade generaliz-
ability. (Luo et al. 2023; Kirkpatrick et al. 2017)

This Grad-CAM analysis successfully answers the first
question of our framework: where the models focus. We
have established three distinct processing paradigms: Dis-
tributed (Foundation), Localized (Scratch), and Selective
(Fine-tuned). We know, for instance, that the specialized
models learn that the Cr-dopant environment is the critical
locus of prediction, while the generalist Foundation model
relies on the Sb-Te matrix. However, this spatial map alone
does not explain what physical or chemical information the
models extract from these regions to make their predictions.
To bridge the gap from model-centric attribution to scien-
tific rationale, we must now apply Level 2 of our framework.
We proceed with a SHAP-based analysis to decompose the
models’ decisions into physically meaningful geometric and
chemical components, thereby uncovering what specific in-
teractions the models have learned to prioritize.

Level 2: The Human-Centric Mechanism Reveals
Divergent Physics
Having established the model-centric locus (the “where”)
with Level 1, we now apply Level 2 of the DUAL-X frame-
work to uncover the human-centric mechanism (the “what”).
This analysis immediately reveals a paradox: While the fine-
tuned and scratch models achieve similar predictive accu-
racy (MAE: 0.5–1.4 eV) (Table 3), they rely on fundamen-
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tally different geometric feature hierarchies for decision-
making. This exposes the profound limitations of using per-
formance metrics, like MAE, alone to assess model quality.

This mechanistic divergence is illustrated by the mini-
mal consensus among models regarding critical geometric
features (Figure 3a,b). In a three-way comparison of the
Foundation, Scratch, and FT-600K models, only four fea-
tures are shared among all variants, representing just 20%
of each model’s top-20 features. The pairwise overlap ma-
trix (Figure 3c) quantifies this divergence, revealing that the
FT-Multi-T model shares zero top features with the Scratch
model and only two with the Foundation model. Given their
similar predictive accuracy, this lack of consensus is remark-
able and unexpected. The FT-Multi-T model exhibits 18
unique features (90% of its top-20) not prioritized by other
variants, proving that multi-temperature training fundamen-
tally reshapes the model’s geometric feature space rather
than simply optimizing it.

Analysis of the top-ranked features (Figure 3d) reveals the
distinct “chemical intelligence” patterns that explain this di-
vergence:

• Foundation Model: This model exhibits mixed chemi-
cal priorities, emphasizing both dopant-host interactions
(e.g., Cr-Te n12 l4) and matrix correlations (e.g.,
Sb-Te n43 l3). Its diverse angular complexities (l =
1–4) reflect the broad structural sensitivity inherited from
its generalist pre-training.

• Scratch Model: Demonstrates a pronounced matrix-
centric bias, with 12 of its top 20 features involving Sb-
Sb interactions. Its focus on high-order host-host motifs
(e.g., Sb-Sb n11 l4) means it achieves accuracy while
largely missing the critical dopant-specific physics.

• FT-Multi-T Model: This model exhibits the most chem-
ically sophisticated hierarchy, with 13 of its top 20 fea-
tures involving Cr interactions. It establishes a system-
atic, dopant-centric framework absent in the others, pri-
oritizing: (1) Cr-Cr clustering (e.g., Cr-Cr n13 l3,
Cr-Cr n31 l1) to capture direct dopant correla-
tions; (2) Cr-matrix coupling (e.g., Cr-Sb n44 l1,
Cr-Te n43 l3) to encode dopant-host perturbations;
and (3) Extended Cr networks (e.g., Cr-Cr n34 l1).

The emergent hierarchy in the FT-Multi-T model is
the key scientific finding. Its highest-importance feature,
Cr-Cr n13 l3, represents f -type angular correlations cor-
responding to direct Cr-Cr bonding and next-nearest Cr in-
teractions, capturing the extended dopant network forma-
tion critical for phase-switching behavior (Wang et al. 2016).
(Here, “f -type” strictly refers to the geometric angular de-
scriptor and does not imply the presence of f -electrons on
Cr, which has no occupied f -orbitals.) This chemical narra-
tive, which progresses from local dopant clustering to global
Cr-matrix coupling, reflects a deep understanding of the hi-
erarchical mechanism for the dopant interaction within 2D
material interface. This entire physical picture is completely
absent in the Scratch model.

This cross-model analysis identifies two distinct cate-
gories of features: Stable Universal Features (e.g., funda-
mental Sb-Te n34 l2 matrix interactions) that capture es-

sential bonding patterns, and Training-Specific Specialized
Features (see Figure 8). The Multi-T model’s unique em-
phasis on high-order Cr-Cr correlations represents the lat-
ter (namely, TSS features): It demonstrates a learned sophis-
tication, enabled by diverse thermal sampling, that single-
temperature models fail to develop.

This mechanistic divergence proves that traditional ac-
curacy metrics, such as RMSE, are insufficient for eval-
uating MLFF quality. Our DUAL-X framework demon-
strates that models can achieve correct predictions while
learning fundamentally different physics. This has critical
implications for reliability and transferability, as models
reasoning differently will likely fail differently under out-
of-distribution conditions. Multi-temperature training thus
emerges as an essential strategy for developing chemically
meaningful and physically robust representations in com-
plex doped systems.

DUAL-X Deep Dive: Cr-Cr f -type Correlations as
Emergent Chemical “Intelligence”
Our Level 2 (Human-Centric Mechanism) analysis estab-
lished that the FT-Multi-T model develops a unique, dopant-
centric feature hierarchy. We now perform a “deep dive”
on its single most dominant descriptor: the Cr-Cr n13 l3
feature. This feature, which represents f -type angular corre-
lations (l = 3) between chromium atoms, exemplifies how
the DUAL-X framework can uncover sophisticated, emer-
gent chemical intelligence that captures the essential physics
of dopant-mediated phase transitions.

An analysis of this feature’s physical basis confirms its
chemical significance. SOAP field strength visualizations
(Figure 3b–c) demonstrate pronounced spatial localization,
with high-intensity regions across representative z-slices
concentrated exclusively around the Cr dopant sites (marked
by white circles). This spatial selectivity is not an artifact;
3D structural analysis (Figure 3d) reveals the feature’s high
importance is driven by a dominant Cr-Cr interaction at
4.34 Å. This geometrically significant distance corresponds
to dopants in adjacent octahedral sites, the critical separation
wherein Cr atoms begin to form the extended networks that
facilitate collective phase-switching behavior. The feature’s
f -type angular character (l = 3) is thus essential for en-
coding the complex directional correlations that distinguish
random dopant distributions from these ordered, functional
clustering patterns.

The emergence of this feature’s dominance is entirely
dependent on the training strategy. We observe a dramatic
170-fold enhancement in Cr-Cr n13 l3 importance in
the FT-Multi-T model (0.0332) compared to the Scratch
model (0.0002) (Figure 3e). This enhancement is not a sim-
ple byproduct of performance tuning; it signifies a qualita-
tive shift in the model’s internal representation. The Scratch
model, lacking this focus, develops a “democratic” attention
allocation, leading to a flat feature importance distribution
(Figure 3a) that prioritizes common matrix (Sb-Sb) interac-
tions but fails to isolate the critical dopant physics.

In contrast, multi-temperature fine-tuning fundamen-
tally reshapes this attention landscape. By exposing the
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model to diverse thermal conditions, it learns to distin-
guish temperature-dependent matrix fluctuations (noise)
from temperature-invariant dopant-dopant correlations (sig-
nal). This selective pressure drives the Cr-Cr n13 l3
feature to hierarchical dominance—exceeding the second-
ranked feature by a factor of 2.1—as the model correctly
identifies this specific, complex correlation as the most ro-
bust predictor of system energy across all thermal regimes.

Ultimately, the identification of Cr-Cr n13 l3 as the
key chemical descriptor provides the actionable, human-
centric insight that the DUAL-X framework is designed
to find. The 4.34 Å interaction distance suggests that opti-
mal material performance requires controlled dopant spac-
ing within this critical range. The f -type angular depen-
dence further indicates that not just distance but geometric
arrangement is critical. This analysis bridges the gap be-
tween the black-box model and physical intuition, demon-
strating how our Level 2 analysis extracts chemically mean-
ingful design rules and provides a quantitative metric for
assessing the “chemical sophistication” of a given training
strategy.

Angular Momentum (l) Patterns Reveal Systematic
Geometric Preferences
The dominance of the specific l = 3 Cr-Cr feature, detailed
in the previous section, is not an isolated artifact. Rather,
it indicates a systematic geometric preference learned by
the FT-Multi-T model. Broadening our Level 2 (Human-
Centric Mechanism) analysis to the full angular momentum
(l) distribution across all top-ranked SHAP features provides
crucial insights into each model’s geometric sophistication
(Figure 4).

The FT-Multi-T model exhibits a pronounced bimodal
angular preference, with 30% of its key features utilizing
l = 1 (p-type) correlations and another 30% utilizing l = 3
(f-type) correlations. This selective emphasis on directional
(l = 1) and complex octahedral (l = 3) geometries shows
the model has learned that the phase-change behavior de-
pends on specific coordination environments, not merely on
simple radial distances (which would correspond to l = 0).

Conversely, the Scratch model shows a more uniform an-
gular distribution, with a significant reliance on l = 4 cor-
relations (30% of features). This suggests a dependency on
high-order mathematical correlations that may not map di-
rectly to physically meaningful bonding patterns. The Foun-
dation model demonstrates intermediate behavior (25% l =
1, 20% l = 3, 25% l = 4), reflecting its generalist pre-
training on diverse materials.

The scientific interpretation of these patterns, uncov-
ered by our DUAL-X framework, is clear: The FT-Multi-T
model’s l = 1/l = 3 bimodal preference directly corre-
sponds to the known crystallography of Cr-doped Sb2Te3.
The l = 1 correlations capture directional Cr-Sb bonding
at heterointerfaces, while the l = 3 correlations encode
the octahedral coordination environments that Cr atoms
adopt when substituting into the layered chalcogenide struc-
ture. This geometric selectivity represents a form of learned
chemical knowledge, confirming that the model, guided by
multi-temperature training, discovered the specific coordi-
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Figure 4: Angular momentum feature distribution. Multi-
T model shows strong preference for f-type (l = 3) corre-
lations, while Scratch model exhibits uniform distribution
across all angular channels.

nation symmetries most predictive of this system’s func-
tional properties.

DUAL-X Synthesis and Implications for MLFF
Development

Our DUAL-X framework has sequentially answered the
model-centric locus (the “where”) and the human-centric
mechanism (the “what”). We now integrate these two per-
spectives to construct a unified mechanistic picture. This
synthesis reveals that the locus and the mechanism are
deeply intertwined, providing a powerful lens through which
to evaluate model reliability, guide development, and under-
stand the fundamental trade-offs between pre-training and
task-specific fine-tuning.

A Unified Picture: Pre-training Bias vs.
Task-Specific Specialization
The divergence in learned physics begins with the locus of
prediction. The Foundation model’s distributed attention on
the Sb-Te matrix (the “where”) is a direct consequence of its
pre-training heritage on diverse chalcogenides where such
bonds dominate energetics. This creates a systematic bias to-
ward a generalist, matrix-dominated strategy. Consequently,
its mechanistic priorities (the “what”) are a diverse ensem-
ble of SOAP features reflecting broad structural correlations.
This approach is thermodynamically sound for predicting
a collective property like total energy, but it is mechanisti-
cally incomplete for understanding dopant-driven phenom-
ena, treating the critical Cr atoms as mere perturbations.

Conversely, the FT-Multi-T model, fine-tuned specifically
on the Cr-doped system, learns a specialized, dopant-centric
strategy. Its attention is sharply localized on Cr atoms (the
“where”), correctly identifying them as the critical decision
points. This spatial focus enables it to discover and prior-
itize the specific, high-order Cr-Cr n13 l3 feature (the
“what”) that governs the material’s phase-change behavior.
The model moves beyond general thermodynamic intuition
and learns the precise kinetic pathways driven by dopant
clustering.
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The Right Tool for the Scientific Question:
Task-Dependent Reliability
This divergence in learned physics implies that no single
model is universally optimal; its suitability depends criti-
cally on the scientific question being asked.
• For Total Energy Prediction, a property governed by

collective behavior, the Foundation model’s distributed
processing is superior. By integrating contributions from
the entire matrix, it captures the bulk energetics more ro-
bustly, even if it misses the specific dopant chemistry.

• For Migration Energy Barriers, a phenomenon driven
by local atomic events, the scratch model’s localized at-
tention is essential. Migration kinetics are determined by
subtle changes in the Cr coordination environment dur-
ing transition states. The model’s focused “where” and
specific “what” allow it to accurately capture these local
perturbations, while the Foundation model’s distributed
approach averages out the very signals that define the
energy barrier. (See the benchmark of the migration en-
ergy of different models in our previous paper (Cao and
Clancy 2025b,a)

This highlights a fundamental principle for scientific ma-
chine learning: the optimal model architecture depends not
just on the chemical system but on the specific physical phe-
nomenon under investigation.

Actionable Insights for Principled Model
Development
This DUAL-X synthesis provides a clear, actionable frame-
work for the development and assessment of MLFFs, mov-
ing beyond opaque accuracy metrics:
1. Evaluating Model Convergence and Sophistication.

The evolution from a distributed “where” and mixed
“what” (Foundation/Scratch) to a localized “where” and
specific “what” (FT-Multi-T) serves as a diagnostic tool.
The emergence of zero-importance scores on stable
structures, combined with a sharp, physically meaning-
ful SHAP hierarchy, signals that a model has achieved a
state of efficient, specialized chemical intelligence.

2. Guiding Principled Active Learning. Our framework
provides a blueprint for targeted data collection. Configu-
rations with high Grad-CAM importance identify regions
of the potential energy surface where the model is uncer-
tain. SHAP analysis can then reveal which specific chem-
ical motifs within those regions are under-represented,
allowing for the targeted generation of new training data
to improve model generalization and robustness.

3. Predicting Generalizability and Failure Modes. The
attention profile is a strong predictor of transferability.
Models showing extreme selectivity (like FT-Multi-T)
are likely to excel at their specific task but may fail on
novel configurations outside their learned dopant chem-
istry. Conversely, the Foundation model’s distributed
sensitivity suggests better (though less precise) general-
ization. This understanding allows for a more informed
selection of models for deployment in new chemical
spaces.

In conclusion, by developing the DUAL-X framework, we
have moved beyond treating MLFFs as black boxes. Our
framework establishes an interpretable methodology to vali-
date that a model has not only found the right answer but has
done so for the right scientific reasons, paving the way for
the development of truly reliable and physically-grounded
models for materials discovery.

Conclusions and Future Work
In this work, we introduced DUAL-X, a dual-level explain-
ability framework, and demonstrated that predictive accu-
racy is a poor proxy for physical fidelity. By hierarchically
bridging the model-centric locus (“where” models focus)
with the human-centric mechanism (“what” they learn), we
established that training strategy is the critical determinant
of a model’s learned chemical intuition.

Our work provides three key contributions:

1. DUAL-X reveals how training strategy shapes intu-
ition. We demonstrate that multi-temperature fine-tuning
on foundation models cultivates a specialized, dopant-
centric focus (the “where”), which is absent in scratch-
trained models.

2. DUAL-X uncovers the learned physical mechanisms.
By decoding the human-centric “what,” our framework
shows that the model’s predictive accuracy is governed
by high-order f -type (l = 3) angular correlations, not
simpler geometric descriptors.

3. DUAL-X provides actionable scientific insights.
DUAL-X identifies the specific Cr-Cr n13 l3 inter-
action as the dominant predictor, extracting actionable
chemical knowledge that traditional accuracy metrics
completely obscure.

While this work establishes the DUAL-X paradigm, its
current implementation is limited to a single material sys-
tem. Future work should therefore extend the framework to
other complex material classes (e.g., catalysts, battery elec-
trodes) and integrate alternative XAI techniques for the lo-
cus and mechanism levels, building a more robust multi-
method consensus. This reinforces the generalizability of
DUAL-X, as its core philosophy is independent of the spe-
cific tools (like Grad-CAM or SHAP). Most importantly, the
mechanistic insights DUAL-X provides can guide targeted
synthesis and experimental validation, transforming MLFFs
from “black-box” predictors into active tools for in silico
knowledge discovery and establishing a principled path to-
ward automated materials discovery.
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Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K.-
R.; and Maurer, R. J. 2019. Unifying machine learning and
quantum chemistry with a deep neural network for molecu-
lar wavefunctions. Nature communications, 10(1): 5024.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on com-
puter vision, 618–626.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.
Wang, Q.; Jiang, M.; Liu, B.; Wang, Y.; Zheng, Y.; Song,
S.; Wu, Y.; Song, Z.; and Feng, S. 2016. Reversible phase
change characteristics of Cr-Doped Sb2Te3 films with dif-
ferent initial states induced by femtosecond pulses. ACS
Applied Materials & Interfaces, 8(32): 20885–20893.
Wang, S.; and Chen, Y. 2024. Improved yield prediction
and failure analysis in semiconductor manufacturing with
xgboost and shapley additive explanations models. In 2024
IEEE International Symposium on the Physical and Failure
Analysis of Integrated Circuits (IPFA), 01–08. IEEE.
Ying, Z.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph
neural networks. Advances in neural information processing
systems, 32.

Computational and Methodological Details
Ab Initio Simulation Details
All reference data were generated using DFT as imple-
mented in QUANTUM ESPRESSO (v6.8) (Giannozzi et al.
2009). The key computational settings are summarized be-
low:

• Exchange–Correlation Functional:
Perdew–Burke–Ernzerhof (PBE) (Perdew, Burke,
and Ernzerhof 1996).

• Dispersion Correction: Grimme’s DFT-D3
scheme (Grimme et al. 2010).

• Pseudopotentials: The SG15 collection of Optimized
Norm-Conserving Vanderbilt (ONCV) pseudopoten-
tials (Schlipf and Gygi 2015).

• Plane-Wave Cutoff: 400 eV for wavefunctions.
• k-Point Mesh: 4× 4× 1 Monkhorst–Pack grid.
• System Composition: 120-atom supercell doped with

1–7 Cr atoms (1/8–7/8 monolayer coverage) at substitu-
tional and interstitial van der Waals gap sites.

• Data Partitioning: Structures from the same AIMD tra-
jectory were kept within the same data split to avoid leak-
age.

MACE Model Training Hyperparameters
All models were trained using the public MACE implemen-
tation (GitHub: https://github.com/ACEsuit/mace). The ar-
chitectural and training parameters are listed in Table 1.

Table 1: MACE Architecture and Training Hyperparame-
ters.

Parameter Value

Architecture
Interaction Layers (L) 1
Cutoff Radius (rmax) 6.0 Å
Feature Channels 32
Irreducible Representations 128×0e + 128×1o
Correlation Order 3

Training
Optimizer Adam
Learning Rate 1× 10−4

Batch Size (Train / Val) 32 / 16
Max Epochs 1000
SWA Start Epoch 200
Early Stopping Patience 20 epochs
Energy / Force Loss Weight 1.0 / 10.0
Stress Loss Weight 0.0
Fine-tuning Strategy Multi-head, all layers unfrozen
Foundation Model Checkpoint MACE-matpes-pbe-omat
Random Seed 123

The Scratch model was trained for 500–1000 epochs
or until convergence via early stopping. The FT-600K and
FT-MultiT models were fine-tuned for approximately 100
epochs.

Interpretability Protocol Implementation
Grad-CAM Analysis The hierarchical interpretability
framework was applied to a curated test set of 200 structures
encompassing all Cr dopant concentrations, site types, and
simulation temperatures. To probe model reliability, we in-
cluded the 20 structures with the highest and lowest absolute
prediction errors per model.

The surrogate Gradient Boosting Regressor used for
SHAP analysis achieved cross-validated R2 > 0.85 and
a mean absolute error below 0.5 meV/atom in predicting
∆E, confirming that the surrogate accurately reproduced
the MACE error distribution. This validates the subsequent
SHAP-based mechanistic decomposition as a faithful repre-
sentation of model uncertainty sources.

SHAP Analysis To understand the physical factors driv-
ing MACE model performance and identify failure modes,
we employed SHAP (SHapley Additive exPlanations) anal-
ysis using a model-agnostic surrogate approach. Since
MACE employs message-passing neural networks that are
computationally expensive for direct gradient-based expla-
nations, we developed a two-stage interpretability frame-
work.

Feature Engineering for Physical Interpretability. We
extracted physically meaningful descriptors of local atomic
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environments using the Smooth Overlap of Atomic Posi-
tions (SOAP) method(Bartók, Kondor, and Csányi 2013).
SOAP descriptors were computed with a cut-off radius of
5.0 Å, maximum radial basis functions nmax = 4, and maxi-
mum angular momentum lmax = 4, yielding rotationally and
translationally invariant representations of atomic neighbor-
hoods. These parameters capture the typical range of chemi-
cal bonding and coordination environments in our Cr-SbTe3
system. Each SOAP feature corresponds to specific physical
interactions: species pairs (Cr-Cr, Cr-Sb, Cr-Te, Sb-Sb, Sb-
Te, Te-Te), radial complexity (short-, medium-, and long-
range interactions), and angular character (spherical l = 0,
dipolar l = 1, quadrupolar l = 2, and higher-order multipo-
lar contributions).

Surrogate Model Training. For each MACE variant, we
trained gradient-boosting regressors (200 estimators, learn-
ing rate 0.05, maximum depth 8) to predict both absolute
prediction errors and signed prediction errors from SOAP
descriptors. This surrogate approach enables efficient SHAP
value computation, while maintaining the physical inter-
pretability of the original atomic descriptors. The surrogate
models achieved R2 > 0.7 for error prediction across all
MACE variants, validating their utility for feature impor-
tance analysis.

SHAP Value Computation and Analysis. We com-
puted TreeSHAP values(Lundberg and Lee 2017) for 500
randomly sampled structures per model to identify which
atomic environment features most strongly correlate with
prediction accuracy. SHAP values quantify each feature’s
contribution to the prediction error, with positive values in-
dicating features that increase prediction uncertainty. We
analyzed feature importance across multiple physical cate-
gories: interaction type (homo- vs. heteronuclear), distance
scale (short-, medium-, long-range), and angular complexity
(spherical vs. directional interactions).

Comparative Analysis Framework. To identify model-
specific strengths and failure modes, we performed cross-
model comparisons of feature importance patterns. We com-
puted the top 50 most influential SOAP features across all
models and analyzed their physical significance. Addition-
ally, we identified features showing high importance vari-
ability across models, indicating potential areas where dif-
ferent training strategies or architectural choices lead to dif-
ferent learned representations of the atomic environment.

Model Performance Analysis
Table 3 presents a comprehensive evaluation of the three
training strategies across train, validation, and test sets.
While all models demonstrate acceptable RMSE values for
both energy and force predictions, detailed analysis reveals
significant differences in their learning characteristics and
generalization capabilities.

The single temperature model (600 K) exhibits clear
signs of overfitting, with energy RMSE increasing from 0.4
meV/atom on the training set to 0.5 meV/atom on valida-
tion and test sets (25% degradation). More critically, the
RMSE in the force shows substantial deterioration from 13.3
meV/Å during training to 43.3 meV/Å and 37.9 meV/Å on
validation and test sets, respectively, representing a 225%
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Figure 6: Multi-T model Grad-CAM activation patterns
across different snapshots during the AIMD trajectory

performance degradation. This pattern indicates that the
model has memorized temperature-specific patterns rather
than learning generalizable interatomic interactions.

In contrast, the multi-temperature model demonstrates
superior generalization with consistent energy predictions
across all data splits (0.5 meV/atom) and more stable force
prediction performance (training: 20.3 meV/Å, test: 45.5
meV/Å, 124% increase). The “from-scratch” model, while
showing the most consistent train-test performance gaps,
achieves the poorest absolute accuracy with test set RMSE
values of 1.4 meV/atom for energy and 82.1 meV/Å for
forces.

Importantly, the observation that all models yield seem-
ingly acceptable RMSE values despite exhibiting funda-
mentally different learning behaviors highlights a critical
limitation of conventional evaluation metrics. RMSE alone
cannot reveal whether models violate physical principles,
maintain thermodynamic consistency, or capture the cor-
rect underlying physics. The apparent adequacy of these sta-
tistical measures may mask significant deficiencies in the
models’ understanding of interatomic interactions, force-
energy relationships, and transferability to unseen chemi-
cal environments. This limitation necessitates the develop-
ment of more sophisticated diagnostic approaches, including
physics-informed validation metrics, explainable AI tech-
niques for feature attribution analysis, and systematic un-
certainty quantification to truly assess model reliability and
physical fidelity.

Detailed Analysis
Effect of Dopant Spatial Arrangement on Scratch
Model Attention
While the main text establishes that the scratch model de-
velops a strong, localized attention on Cr dopants, a more
granular analysis reveals that this attention is highly sensi-
tive to the dopants’ spatial arrangement. Figure 7 illustrates
this phenomenon by comparing the scratch model’s Grad-
CAM activations across four distinct dopant configurations.

A clear dichotomy emerges between isolated and clus-
tered dopants. In configurations where the Cr dopants
are spatially isolated from one another (Figure 7a,b), the
model’s attention on the Cr atoms is present but relatively
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Table 2: Comparison of explainable AI methods for machine learning force fields.

Method Type Achievement Limitation

Linear B-splines Intrinsic Direct physical interpretation Limited expressiveness
Symbolic Regression Intrinsic Analytical formulas Requires distillation
SchNet4AIM Intrinsic Predicts physical descriptors Architecture-specific

SHAP Post-hoc Feature importance Assumes independence
GNNExplainer Post-hoc Identifies subgraphs Computationally expensive
Grad-CAM Post-hoc Spatial attribution No physical grounding

Table 3: Comprehensive performance comparison of MLFFs models across different training strategies.

Training Strategy RMSE E (meV/atom) RMSE F (meV/Å) Relative F RMSE (%)

Train Valid Test Train Valid Test Train Valid Test

From Scratch 1.2 1.3 1.4 73.9 85.5 82.1 15.27 17.99 16.71
Fine-tuning (600 K) 0.4 0.5 0.5 13.3 43.3 37.9 2.67 8.56 7.59
Fine-tuning (Multi-T) 0.5 0.5 0.5 20.3 49.1 45.5 4.20 10.32 9.26
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Figure 7: Scratch Model’s Attention is Modulated by Cr
Dopant Clustering. Grad-CAM visualization of atomic en-
ergy contributions from the scratch MACE model for four
representative dopant configurations. (a, b) In configurations
with spatially isolated Cr dopants, the model exhibits weak
and diffuse activation on the dopant sites. (c, d) In contrast,
for configurations with clustered Cr dopants, the model dis-
plays intense, localized activation on the Cr atoms and, crit-
ically, in the interstitial region between them. This emergent
focus on the Cr-Cr interaction zone indicates the model has
learned to identify dopant clustering as an energetically sig-
nificant structural motif, consistent with its known physical
effects on the material’s electronic properties.

weak and diffuse. The activation intensity is low, suggesting

the model perceives these atoms as minor perturbations to
the host matrix.

In contrast, when the Cr dopants are clustered in close
proximity (Figure 7c,d), the model’s attention mechanism
changes dramatically. The Grad-CAM activation becomes
intense and sharply localized not only on the Cr atoms them-
selves but also in the interstitial region between them. This
emergent attention on the Cr-Cr interaction zone signifies
that the model has learned to recognize dopant clustering as
a distinct, energetically significant chemical feature.

This finding is particularly compelling as it aligns with
our independent ab initio investigations (Cao and Clancy
2025b), which show that Cr dopant clustering directly mod-
ulates the electronic properties of the Sb2Te3 host, includ-
ing its band structure. The scratch model, despite its less
refined strategy compared to the FT-Multi-T variant, has
thus learned a physically correct and non-trivial structure-
property relationship. This demonstrates the power of our
XAI framework to validate that the model is learning scien-
tifically sound principles directly from the training data.

Hierarchical Feature Learning in MACE Models
To elucidate how machine learning interatomic poten-
tials encode structural information, we performed an at-
tention flow analysis on the MACE model trained for the
Cr4Sb32Te48 supercell. This 84-atom system provides a rep-
resentative framework for analyzing hierarchical informa-
tion processing in layered chalcogenides.

Layer-specific information processing. The evolution of
mean attention magnitudes (Fig. 9b) reveals a 30-fold re-
duction from node embedding (3.41 ± 0.18) to radial em-
bedding (0.11 ± 0.11), signifying a transition from dense
atomic representations to sparse, chemically selective en-
codings. The high standard deviation in the node-embedding
stage reflects heterogeneous atomic environments inherent
to the mixed Cr–Sb–Te lattice. This pronounced attention
decay indicates that the model progressively distills struc-
tural complexity into compact, chemically relevant represen-
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Figure 8: Supplementary Analysis of Error Predictor
Performance and Feature Stability. (a) Parity plot compar-
ing predicted vs. ground truth energies for best (FT–Multi-
T) and worst (scratch) MACE models, showing significant
fine-tuning improvement. (b) Absolute prediction error dis-
tributions. The fine-tuned model shows lower mean error
and narrower distribution, indicating more reliable predic-
tions. (c) Feature stability across models. Average impor-
tance of 10 most stable (‘Consensus”) vs. 10 most unsta-
ble (‘Non-Consensus”) features, determined by SHAP value
coefficient of variation. Fine-tuning drives convergence on
consistent physically important features.

tations.
Chemical environment recognition. The pairwise

attention-weight heatmap (Fig. 9c) demonstrates that MACE
learns chemically intuitive patterns. Distinct Te–Te and
Sb–Sb blocks confirm element-specific bonding recognition,
while Cr atoms (80–83) display broad attention across both
Sb and Te species. This behavior aligns with Cr’s role as an
intercalant that perturbs local bonding symmetry and intro-

duces diverse coordination environments—consistent with
experimental observations of hybridization between Cr d-
orbitals and the host p-states.

Information complexity and feature specialization. En-
tropy analysis (Fig. 9d) shows a non-monotonic trend, with
information complexity increasing from node (7.72 bits) to
radial embeddings (9.69 bits). This counter-intuitive rise
suggests that radial embeddings capture higher-order geo-
metric relationships that require richer representations. Cor-
respondingly, effective-rank analysis (Fig. 9e) indicates that
radial layers encode a broader diversity of spatial correla-
tions despite reduced variance, highlighting the network’s
efficiency in compressing yet preserving chemical diversity.

Validation of chemical relevance. The distribution of
edge attention (Fig. 9f) displays three distinct peaks corre-
sponding to Te–Te (2.8 Å), Sb–Te (3.2 Å), and interlayer
(4.5 Å) distances, confirming that the model’s attention nat-
urally aligns with chemically meaningful bonding motifs.
Notably, these characteristic scales emerge without explicit
prior knowledge, underscoring the model’s ability to infer
structural chemistry directly from energy–force data.

Implications for interpretability and transferability.
Node embeddings exhibit high activation variance and neg-
ligible sparsity, suggesting efficient feature utilization and
minimal redundancy. As information flows to deeper layers,
variance decreases while effective rank increases, indicating
enhanced feature specialization. This hierarchical compres-
sion mirrors chemical bonding hierarchies—transitioning
from local atomic identity to extended structural correla-
tions—thereby enhancing both interpretability and general-
ization across temperature and composition domains.

Comparison with handcrafted descriptors. Unlike
conventional descriptors requiring manual definition, the
MACE attention weights act as dynamically learned,
system-specific structural fingerprints. Their emergent
chemical selectivity provides superior transferability and in-
sight into structure–property relationships. The hierarchical
attention patterns observed here establish that MACE not
only predicts energies with high accuracy but also encodes
chemically interpretable features directly linked to the un-
derlying bonding topology.

Overall, the attention flow analysis reveals that MACE
models develop a chemically grounded hierarchy of features
that capture both local coordination and long-range correla-
tions, providing a transparent framework for understanding
model decision-making in complex chalcogenide systems.
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Figure 9: MACE attention flow analysis reveals hierar-
chical information processing in Cr-doped SbTe3. (a) 2D
projection of the Cr4Sb32Te48 supercell showing atomic
species and connectivity within a 5.0 Å cutoff. (b) Layer-
wise decay of mean attention magnitude, indicating progres-
sive information compression. (c) Attention heatmap reveal-
ing element-specific correlations and Cr-mediated cross-
interactions. (d–e) Entropy and activation metrics demon-
strate transition from dense, high-variance node embeddings
to compact, diverse radial representations. (f) Edge attention
distribution aligns with characteristic Te–Te, Sb–Te, and in-
terlayer distances. (g) Schematic of the two-layer MACE ar-
chitecture. Together, these results highlight MACE’s hier-
archical encoding of both local coordination and long-range
structural correlations critical for accurate energy prediction.

14


