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Abstract

Many fundamental properties of a quantum system are captured by its
Hamiltonian and ground state. Despite the significance, ground states
preparation (GSP) is classically intractable for most large-scale Hamiltoni-
ans. Quantum neural networks (QNNs), which exert the power of modern
quantum machines, have emerged as a leading protocol to conquer this is-
sue. As such, the performance enhancement of QNNs becomes the core in
GSP. Empirical evidence showed that QNNs with handcraft symmetric an-
sätze generally experience better trainability than those with asymmetric
ansätze, while theoretical explanations remain vague. To fill this knowledge
gap, here we propose the effective quantum neural tangent kernel (EQNTK)
and connect this concept with over-parameterization theory to quantify the
convergence of QNNs towards the global optima. We uncover that the ad-
vance of symmetric ansätze attributes to their large EQNTK value with low
effective dimension, which requests few parameters and quantum circuit
depth to reach the over-parameterization regime permitting a benign loss
landscape and fast convergence. Guided by EQNTK, we further devise a
symmetric pruning (SP) scheme to automatically tailor a symmetric ansatz
from an over-parameterized and asymmetric one to greatly improve the per-
formance of QNNs when the explicit symmetry information of Hamiltonian
is unavailable. Extensive numerical simulations are conducted to validate
the analytical results of EQNTK and the effectiveness of SP.

1 Introduction

The law of quantum mechanics advocates that any quantum system can be described by a
Hamiltonian, and many important physical properties are reflected by its ground state. For
this reason, the ground state preparation (GSP) of Hamiltonians is the key to understanding
and fabricating novel quantum matters. Due to the intrinsic hardness of GSP (Poulin &
Wocjan, 2009; Carleo et al., 2019), the required computational resources of classical methods
are unaffordable when the size of Hamiltonian becomes large. Quantum computers, whose
operations can harness the strength of quantum mechanics, promise to tackle this problem
with potential computational merits. In the noisy intermediate-scale quantum (NISQ) era
(Preskill, 2018), quantum neural networks (QNNs) (Farhi & Neven, 2018; Cong et al., 2019;
Cerezo et al., 2021a) are leading candidates toward this goal. The building blocks of QNNs,
analogous to deep neural networks, consist of variational ansätze (also called parameterized
quantum circuits) and classical optimizers. In order to enhance the power of QNNs in
GSP, great efforts have been made to design advanced ansätze with varied circuit structures
(Peruzzo et al., 2014; Wecker et al., 2015; Kandala et al., 2017).
Despite the achievements aforementioned, recent progress has shown that QNNs may suffer
from severe trainability issues when the circuit depth of ansätze is either shallow or deep.
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Namely, for the deep ansätze, the magnitude of the gradients exponentially decays with
the increased system size (McClean et al., 2018; Cerezo et al., 2021b). This phenomenon,
dubbed the barren plateau, hints at the difficulty of optimizing deep QNNs, where an
exponential runtime is necessitated for convergence. The wisdom to alleviate barren plateaus
is exploiting shallow ansätze to accomplish learning tasks (Grant et al., 2019; Skolik et al.,
2021; Zhang et al., 2020; Pesah et al., 2021), while the price to pay is incurring another
serious trainability issue—convergence (Boyd & Vandenberghe, 2004; Du et al., 2021). The
trainable parameters may get stuck into sub-optimal local minima or saddle points with
high probability because of the unfavorable loss landscape (Anschuetz, 2021; Anschuetz &
Kiani, 2022). Orthogonal to these negative results, several studies pointed out that when
the depth of ansätze becomes overwhelmingly deep and surpasses a critical point, the over-
parameterized QNNs embrace a benign landscape and permit fast convergence towards good
local minima (Kiani et al., 2020; Wiersema et al., 2020; Larocca et al., 2021b). Nevertheless,
the criteria to reach such a critical point is stringent, i.e., the number of parameterized gates
or the circuit depth scales exponentially with the problem size, which hurdles the application
of over-parameterized QNNs in practice.
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Figure 1: The critical point of the
over-parameterized regime. When
the number of parameters is beyond
the critical point (the red circle), the
training error exponentially converges
to a nearly global minimum. Symmet-
ric ansätze (the blue curve) require few
parameters to reach the critical point
over the asymmetric ansätze.

Empirical evidence sheds new light on exploiting over-
parameterized QNNs to tackle GSP. QNNs with sym-
metric ansätze only demand a polynomial number of
trainable parameters and the circuit depth with the
problem size to reach the over-parameterized region
and achieve a fast convergence rate (Herasymenko &
O’Brien, 2021; Gard et al., 2020; Zheng et al., 2021;
2022; Shaydulin & Wild, 2021; Mernyei et al., 2022;
Marvian, 2022; Meyer et al., 2022; Larocca et al., 2022;
Sauvage et al., 2022). A common feature of these sym-
metric ansätze is capitalizing on the symmetric prop-
erties underlying the problem Hamiltonian to shrink
the solution space and facilitate seeking near-optimal
solutions. Unfortunately, current symmetric ansätze
are inapplicable to a broad class of Hamiltonians
whose symmetry is implicit, since their constructions
rely on the explicit information for the symmetry of
Hamiltonians. Besides, it is unknown whether the
symmetry contributes to lowering the critical point to
reach the over-parameterization regime.
Here we fill the above knowledge gap from both theo-
retical and practical aspects. Concretely, we develop
a novel notion—effective quantum neural tangent ker-
nel (EQNTK) to capture the training dynamic of var-
ious ansätze via their effective dimension. In do-
ing so, we expose that compared with the asymmetric
ansätze, the symmetric ansätze possess dramatically lower effective dimensions and the
required number of parameters and circuit depth to reach the over-parameterization may
polynomially scale with the problem size (see Fig. 1 for an intuition). By leveraging EQNTK,
we next prove that when the condition of over-parameterization is satisfied, the trainable
parameters of QNNs with symmetric ansätze can exponentially converge to the global
optima with the increased iterations. Taken together, our analysis recognizes that over-
parameterized QNNs with symmetric ansätze is a possible solution toward large-scale GSP
tasks. Envisioned by EQNTK and pruning techniques in deep neural networks (Han et al.,
2015; Blalock et al., 2020; Frankle et al., 2020; Wang et al., 2022), we further devise a
symmetric pruning scheme (SP) to automatically tailor a symmetric ansatz from an
over-parameterized and asymmetric one with the enhanced trainability and applicability.
Conceptually, SP continuously eliminates the redundant quantum gates from the given
asymmetric ansatz and correlates parameters to assign different types of symmetries on the
slimmed ansatz. In this way, SP generates a modest-depth symmetric ansatz with a fast
convergence guarantee and thus improves the hardware efficiency. Extensive simulations
on many-body physics and combinatorial problems validate the theory of EQNTK and the
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efficacy of SP. These results deepen our understating about how to merge symmetry with
over-parameterization theory and indicate the signification of designing symmetric ansätze.
Contributions. We summarize our main contributions as follows:

1. We propose the notion of EQNTK to quantify the training dynamics of QNNs with
symmetric ansätze, which reconciles the QNTK theory with the symmetry of
the problem Hamiltonian (see Sec. 2.2). As shown in Fig. 1, since the train-
ing dynamic between symmetric and asymmetric ansätze is evidently disparate,
our results provide a deep understanding towards QNNs with symmetric ansätze,
especially for unraveling how the structure information effects the convergence rate.

2. Our key technical contribution is achieving a tighter convergence bound of QNNs
with various symmetric ansätze (see Theorem 2 and Lemma 1). Particularly, our
bound yields γ = O(poly(LK, deff

−1)), where LK is the number of parameters and
deff is the effective dimension. The comparison with prior results is summarized
in Table 1. Our results not only greatly reduce the threshold in reaching over-
parameterization but promise an improved convergence rate. These two conclusions
are indispensable in applying over-parameterized QNNs to solve practical problems.

Larocca et al. (2021b) Anschuetz (2021) You et al. (2022) Liu et al. (2022b) Our results
C Ω(poly(deff)) Ω(exp(n)) O(poly(deff)) O(exp(n)) O(poly(deff))

T % % O(log(deff) log( 1
ε )) O(

4n log( 1
ε

)
LK ) O(

d2
eff log( 1

ε
)

LK )

Table 1: A comparison of the convergence rate for over-parameterized QNNs. The label
‘C’ and ‘T’ refers to the critical point and ϵ-convergence rate respectively. The label “%” denotes
that the paper did not study certain regimes. Note that the achieved results in Ref. (Larocca
et al., 2021b) do not exhibit how the problem Hamiltonian effects deff .

3. Our last contribution is devising SP, an automatic scheme to identify the implicit
symmetries of the problem Hamiltonian and utilize them to design a symmetric
ansatz (see Section 3). An attractive feature of SP is its flexibility, where any
heuristic that has the ability to capture certain symmetries of the problem Hamil-
tonian can be seamlessly embedded into SP to further boost its performance.

2 Effective QNTK allows an improved convergence of QNNs

Here we establish foundations about why symmetric ansätze have the ability to enhance the
trainability of QNNs in ground state preparation (GSP) tasks. To do so, we propose a novel
concept—effective quantum neural tangent kernel (EQNTK), to reconcile the QNTK theory
with the symmetry of the problem Hamiltonian. Attributed to EQNTK, we uncover that the
advance of symmetric ansätze originates from their ability to dramatically decrease the over-
parameterization threshold. For elucidating, we first interpret the necessary backgrounds in
Sec. 2.1 and then present our main theoretical results in Sec. 2.2.

2.1 Problem setup

Ground state preparation. Given an n-qubit Hamiltonian H ∈ C2n×2n , GSP aims to find
the eigenvector |ψ∗⟩ ∈ C2n (i.e., the ground state) of H corresponding to its minimum eigen-
value. For any n-qubit state |ψ⟩, the variational principle ensures ⟨ψ∗|H |ψ∗⟩ ≤ ⟨ψ|H |ψ⟩
and the equality is satisfied iff |ψ⟩ = |ψ∗⟩. Since the dimension of |ψ∗⟩ scales exponentially
with n, GSP is classically intractable for a large n.
Quantum neural networks. A QNN can be described by a triplet (|ψ0⟩ , U(θ), H). When
it is applied to solve GSP, an ansatz U(θ) (i.e., a parameterized unitary) prepares a varia-
tional state |ψ(θ)⟩ = U(θ) |ψ0⟩ with a fixed input state |ψ0⟩. The parameters θ are optimized
by minimizing the loss function

L(θ) = 1
2
(
⟨ψ0|U(θ)†HU(θ) |ψ0⟩ − E0

)2
, (1)
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where E0 = ⟨ψ∗|H |ψ∗⟩ refers to the ground state energy of H. The optimization follows
an iterative manner, i.e., the classical optimizer continuously leverages the output of the
quantum circuits to update θ and the update rule is θ(t+1) = θ(t) − η∂L(θ(t))/∂θ, where η
refers to the learning rate. See Appendix A for details.
Remark. We adopt E0 to facilitate the convergence analysis and our results cover general
loss functions where E0 is replaced by C ∈ R with C ≤ E0. See Appendix B for details.
Constructions of (symmetric) ansätze. The power of QNNs depends on the employed
ansatz U(θ). A general form of U(θ) covering many typical ansätze such as Hamiltonian
variational ansatz (HVA) and hardware efficient ansatz (HEA) (Bharti et al., 2022; Qian
et al., 2021) yields

U(θ) =
L∏

ℓ=1
Uℓ(θℓ), Uℓ(θℓ) =

K∏
k=1

e−iGkθℓk , (2)

where L refers to the layer number, θ = (θ1, · · · ,θL) ∈ Θ ⊆ RLK is trainable parameters
living in the parameter space Θ, θℓ = (θℓ1, · · · ,θℓK) is trainable parameters at the ℓ-th layer,
and A = {G1, · · · , GK} is a set of Hermitian traceless operators called an ansatz design.
Given Θ and A, a set of ansätze forms a subgroup of SU(2n) with UA = ∪∞

L=0{U(θ) :
θ ∈ Θ}. The difference of ansätze originates from the varied Θ and A. Given a Hermitian
matrix Σ, the ansatz U(θ) is said to be symmetric with respect to Σ if each element in
UA is commutable with Σ. Mathematically, denote Σ =

∑p
j=1

∑sj

k=1 λjvjk where λj is the
eigenvalue with λi ̸= λj for i ̸= j, vjk is the corresponding eigenvector, and

∑p
j=1 sj = 2n.

The explicit form of Σ leads to a direct sum decomposition H = ⊕p
j=1Vj of the quantum

state space, where Vj is the invariant subspace spanned by the eigenvectors {vj1, · · · ,vjsj
}.

Convergence of QNNs. A crucial metric to assess the performance of different QNNs is
the ϵ-convergence rate towards the global minimum L(θ∗) with θ∗ = minθ∈Θ L(θ).
Definition 1 (ϵ-convergence). A QNN instance (|ψ0⟩ , U(θ), H) achieves an ϵ-convergence
if the trained parameters after T iterations θ(T ) satisfy L(θ(T )) ≤ ϵ with ϵ ∈ R.

This quantity measures the distance between the estimated and the optimal loss values,
which can be derived via the quantum neural tangent kernel (QNTK)

Q(t) = ∇ε⊤
t ∇εt, (3)

where εt = ⟨ψ0|U(θ(t))†HU(θ(t)) |ψ0⟩ − E0 denotes the residual training error and ∇εt is
the gradients of εt with respect to θ. The following theorem describes the ϵ-convergence of
the over-parameterized QNN with an arbitrary ansatz.
Theorem 1 (Liu et al. (2022b)). Following notations in Eqns. (1)-(3), when U(θ) matches
the Haar distribution up to the fourth moment, the number of parameters satisfies LK ≫ 1,
and the learning rate η ≪ 1, the training dynamics of a QNN instance (|ψ0⟩ , U(θ), H) yields

εt ≈ (1 − ηQ̄)tε0 ≈ e−γtε0. (4)
where γ = ηQ̄ is the indicator of the decay rate and Q̄ = O(LK Tr(H2)/4n) refers to the
expectation of Q on Haar average.

It indicates that the critical point to reach the over-parameterization region is |θ| ∼
O(4n/(ηTr(H2))). In this setting, the exponent in Eqn. (4) meets γ ∼ O(1) and promises
an exponential convergence. Besides, Eqn. (4) hints that the convergence rate of QNNs is
continuously enhanced by increasing the value of QNTK, which can be achieved by growing
the number of parameters or decreasing the system size.

2.2 Effective Quantum Neural Tangent Kernel

The exponential scaling behavior with the number of qubits n in Theorem 1 causes the
realization of the over-parameterized QNNs to be impractical for large systems. Moreover,
the corresponding convergence rate is independent of the refined structure informa-
tion of ansätze. This contradicts with the empirical evidence such that symmetric ansätze
outperform asymmetric ansätze with fast convergence in training QNNs. It thus highly
demands carrying out new theories to stress these issues.
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Optimization path

Figure 2: Training dynam-
ics of QNNs with symmetric an-
sätze. The left and right panels
illustrate the dynamic of variational
states corresponding to the asymmet-
ric and symmetric ansätze, respectively.
The shadow region means the solu-
tion space, which is the whole Hilbert
space for asymmetric ansatz, and the re-
stricted invariant subspace for symmet-
ric ansatz.

Here we propose a novel concept—effective QNTK
(EQNTK) to resolve the above dilemma and exhibit
how symmetry improves the trainability of QNNs.
As shown in Fig. 2, given a QNN (|ψ0⟩ , U(θ), H)
whose input state |ψ0⟩ and the ground state |ψ∗⟩ live
in the same subspace V ∗ ⊂ C2n and V ∗ is invari-
ant with the employed symmetric ansatz U(θ), the
training dynamics of |ψ(θ)⟩ = U(θ) |ψ0⟩ can be
exactly captured by V ∗, a much smaller space than
the whole state space. Suppose that the state space
H under the symmetric ansatz design A can be de-
composed into H = ⊕p

j=1Vj and there exists j∗ ∈ [p]
such that Vj∗ = V ∗ includes the input state |ψ0⟩, the
ground state |ψ∗⟩, and all possible variational states
{|ψ(θ)⟩ |θ ∈ Θ}. Then the dynamics of |ψ(θ)⟩ can be
derived by the dimension of this subspace deff = |V ∗|,
dubbed the effective dimension of the QNN.
Definition 2 (Effective dimension). Consider a
QNN instance (|ψ0⟩ , U(θ), H) with symmetric ansatz design A. Suppose V ∗ is the in-
variant subspace covering |ψ0⟩, {|ψ(θ)⟩ |θ ∈ Θ}, and |ψ∗⟩. Then the effective dimension of
this QNN is deff = |V ∗|. The projection on this subspace is defined as Π = PP †, where
P ∈ Cd×deff is an arbitrary set of orthonormal basis.

As a result, for symmetric ansätze, Q(t) and Q̄ in Theorem 1 should be controlled by deff
instead of 2n. This integration of the effective dimension transforms QNTK in Eqn. (3) to
EQNTK, which reduces the threshold to reach over-parameterization and accelerates the
convergence (see Fig. 1). The following theorem establishes the convergence theory of QNNs
with symmetric ansätze under EQNTK, whose proof is deferred to Appendix C.
Theorem 2. Consider the QNN instance (|ψ0⟩ , U(θ), H) with the effective dimension deff .
Following notations in Eqns. (1)-(3), when the distribution of U(θ) constrained to the in-
variant subspace with projection Π = PP † matches the Haar distribution up to the fourth
moment, the number of parameters satisfies LK ≫ 1, the learning rate η ≪ 1, and denoting
H∗ = PHP †, the training dynamics of a QNN instance (|ψ0⟩ , U(θ), H) yields

εt ≈ (1 − ηQ̄S)tε0 ≈ e−γtε0. (5)

where Q̄S = O(LK Tr((H∗)2)/d2
eff) refers to the expectation of EQNTK QS on Haar average.

The above results indicate that when the number of trainable parameters scales with LK ∼
O(d2

eff/(ηTr((H∗)2))), the adopted symmetric ansatz reaches the over-parameterization
regime. Compared with QNTK, the reduction of parameters in the order of (2n/deff)2

not only ensures the practical utility of over-parameterized QNNs, but also explains the em-
pirical observations that symmetric ansätze require fewer parameters to reach the critical
point than that of the asymmetric ansätze. More importantly, unlike prior results arguing
that the trainability can always be improved by over-parameterization, our bound suggests
that involving more parameters beyond the critical point may degrade the convergence since
the underlying symmetry may be broken and the effective dimension deff could be large.
Remark. (i) The derived EQNTK can be used to diagnose the barren plateaus of QNNs.
Particularly, the quantity QS/(LK) amounts to the variance of the gradient whose average
is zero under the 4-design assumption. In other words, when the number of parameters LK
is fixed, a large EQNTK value is preferred to avoid barren plateaus. (ii) The effective di-
mension can be quantified by other metrics beyond the dimension of the invariant subspace.
An alternative is the dynamical Lie algebra (DLA) (Larocca et al., 2021b), which measures
the controllability of the quantum system. The following lemma shows the convergence of
QNNs with symmetric ansätze under this measure, whose proof is given in Appendix D.
Proposition 1 (Informal). Following notations in Theorem 2, denote the dynamical Lie
algebra of the QNN instance (|ψ0⟩ , U(θ), H) as g, and assume that the number of parameters
LK ≫ 1 and the learning rate η ≪ 1. If there exists an invariant subspace Vg with dimension
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dg under the DLA g including the input state |ψ0⟩ and the ground state |ψ∗⟩, the DLA-based
EQNTK QD corresponding to the ansatz U(θ) leads to the training dynamics

εt ≈ (1 − ηQ̄D)tε0 ≈ e−γtε0. (6)

where Q̄D = O(LK Tr((H∗)2)/d2
g) refers to the expectation of QD on Haar average.

3 Symmetrical pruning with EQNTK

Algorithm 1: Symmetric pruning (SP)
Input : Problem Hamiltonian

H̃ = (
∑q

j=1 αjHj) ⊗ I⊗m, the
ansatz design A and the
parameter space Θ in Eqn. (2).

Step 1. Initialize an over-parameterized
and asymmetric ansatz via A and Θ;

Step 2. Symmetry identification:
2-1. Remove the gates on wires

corresponding to the redundant part of H̃
in A, i.e., I⊗m.

2-2. Remove the gates such that the
pruned ansatz design Apr = {H1, · · · , Hq}.

2-3. Assign the spatial symmetry of Apr
by correlating some parameters and
obtain Θpr ⊆ Θ.

Output: Pruned ansatz design Apr and
parameter space Θpr.

Beyond analyzing the convergence rate,
another ad-hoc topic in GSP is design-
ing advanced ansätze to improve the
trainability of QNNs. Although over-
parameterization and contemporary sym-
metric ansätze partially address this prob-
lem, both of them have evident caveats.
The former may request exponential pa-
rameters to satisfy the condition of over-
parameterization, while the latter requires
explicit information for the symmetries of
the problem Hamiltonian. To compensate
for these deficiencies, here we devise sym-
metrical pruning (SP), an automatic
scheme to design symmetric ansätze with
the enhanced trainability of QNNs. Con-
ceptually, SP distills a symmetric over-
parameterized ansatz from an asymmet-
ric over-parameterized ansatz. Supported
by the EQNTK theory, the extracted
ansatz is resource-friendly in implementa-
tion since it holds a small effective dimen-
sion and only needs a few trainable parameters to compass the over-parameterization.
The Pseudo code of SP is summarized in Alg. 1 and its schematic illustration is shown
in Fig. 3. Suppose the problem Hamiltonian is H̃ = H ⊗ I⊗m, where H =

∑q
j=1 αjHj ,

αj is the real coefficient and Hj is the tensor product of Pauli matrices on n qubits, SP
builds the symmetric ansatz of H̃ with two primary steps, i.e., initialization and symmetry
identification. The initialization step is choosing an initial over-parameterized QNN by
setting down the ansatz design A and the parameter space Θ. Note that A should contain
all Pauli terms in H and Θ should ensure an ϵ-convergence of QNNs, e.g., a possible choice
is adopting a sufficient deep hardware efficient ansatz. Next, the symmetry identification
step iteratively discovers the system symmetry, structure symmetry, and spatial symmetry,
which is completed by three sub-steps. Step 2-1 symmetrically prunes the qubit wires. That
is, all qubit gates interact with the redundant part of H̃, i.e., the identity term I⊗m, are
removed. Step 2-2 symmetrically prunes the structure. This step drops the parameterized
single-qubit gates and the two-qubit gates so that the pruned ansatz design Apr can be block
diagonalized under the projection on the eigenspace of H =

∑q
j=1 αjHj . A possible solution

is setting Apr = {H1, · · · , Hq} and the pruned ansatz Upr(θ) takes the form of Eqn. (2)
with Uℓ(θℓ) = Πq

k=1e
−iHkθℓk . Step 2-3 correlates symmetric parameters to demystify the

spatial symmetry of H, which is accomplished by a heuristic related to identifying the graph
automorphism group (Stoichev, 2019). See Appendix E for more details.
Remark. (i) We emphasize that although both SP and the pruning techniques used in
deep neural networks orient to remove redundant parameters and (quantum) neurons, they
are fundamentally different. This is because classical pruning methods generally leverage
the magnitude of weights or the gradient information to recognize such redundancy, which
is impermissible in QNNs (refer to Appendix F for elaborations). (ii) SP is a flexible
framework. Besides three symmetric properties in Alg. 1, SP can effectively integrate with
other symmetry identification methods in the second step.
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Figure 3: Schematic of symmetric pruning. The proposed symmetric pruning (SP) distills
the symmetric ansatz from a given asymmetric ansatz, completed by removing the redundant gates
(highlighted by the red dashed boxes) and correlating the parameters in the gate respecting the
spatial symmetry (highlighted by the solid boxes with the same color).

4 Experiments

We carry out numerical simulations to explore the theoretical properties of EQNTK and
validate the effectiveness of the SP scheme in GSP. Two typical problem Hamiltonians in
many-body physics and combinatorial optimization are considered. The omitted details are
postponed to Appendix G.
Problem Hamiltonian. Let us first recap the two problem Hamiltonians.
1) Transverse-field Ising model. Transverse-field Ising model (TFIM) has been em-
ployed to explore many interesting quantum systems. An n-qubit Hamiltonian of 1D TFIM
with an open boundary condition is defined as HTFIM = −

∑n−1
j=1 σ

z
jσ

z
j+1 −h

∑n
j=1 σ

x
j , where

σµ
j denotes the µ-Pauli matrix (with µ = x, z) acting on the j-th qubit, and h is the strength

of the transverse field. For simplicity, we set h = 1 in the following simulations.
2) Maximum cut. Maximum cut (MaxCut) problem aims to partition the set of nodes
V in a graph G = (V,E) into two parts such that the number of edges spanning multiple
parts is maximized. The MaxCut problem can be recast to GSP. Namely, the objective of
an n-node graph is encoded by an n-qubit Hamiltonian HMC = 1

2
∑

(u,v)∈E(I − σz
uσ

z
v) and

the optimal solution corresponds to the ground state of HMC as formulated in Eqn. (1).
Here we focus on the Erdos-Renyi graphs, which are generated by randomly connecting any
pair nodes among n nodes with probability p = 0.6.
To verify the effectiveness of SP, the above problem Hamiltonians are modified as an (n+m)-
qubit Hamiltonian H = HM ⊗ Im(HM = HTFIM, HMC) with n = 6 and m = 2.
Initialization of QNNs. The hardware efficient ansatz (HEA) with the form of Eqn. (2)
is used as the initial ansatz, which is over-parameterized and asymmetric. The layer number
is set as L ∈ {4, 6, 8 · · · , 28} and L ∈ {4, 6, 10, · · · , 36} for TFIM and MaxCut, respectively.
For each problem Hamiltonian, the input state is set as |ψ0⟩ = |0⟩. The parameters θ are
uniformly sampled from the uniform distribution [−π, π]. The variational ansatz is trained
by the Adam optimizer where the learning rate is 0.001 and the rest hyper-parameters follow
the default settings. The training of QNNs stops when the loss value is less than 10−8 or
when the change in the loss function is less than 10−8 three times in a row. The maximum
number of iterations is set as T = 10000. The ϵ value in Definition 1 is set as 10−5 for both
TFIM and MaxCut. Each setting is repeated with 5 times to collect the statistical results.
Evaluation metrics. We utilize three metrics to assess the convergence rate of QNNs,
i.e., (1) the loss value L(θ(T )) at the convergence stage; (2) the number of iteration steps
T (ϵ) ≤ T required to achieve the ϵ-convergence; (3) the minimum number of parameterized
gates required to achieve ϵ-convergence, which can also be interpreted as the threshold to
achieve the over-parameterization regime. Additionally, we record the norm of the gradient
at the initialization to verify the effectiveness of EQNTK in predicting the convergence.

4.1 Simulation results

EQNTK at initialization. Fig. 4(b) and Fig. 5(b) show that each symmetric pruning
step in Alg. 1 (i.e., the sub-steps 2-1, 2-2, and 2-3 refer to ‘SP1’, ‘SP2’, ‘SP3’, respectively)
constantly improves the squared norm of gradients (i.e., the EQNTK value QS) for both
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Figure 4: Results for TFIM model under symmetric pruning. The panels (a)-(c) plot
the EQNTK value QS at initialization, the loss value after convergence L(θ(T )), and the iteration
number to achieve the ϵ-convergence T (ε) versus the number of parameters LK, respectively. The
labels ‘SP0’-‘SP3’ refer to the initial ansatz, the pruned ansatz after system symmetric pruning,
structure symmetric pruning, and spatial symmetric pruning, respectively.

TFIM and MaxCut. This implicates that SP is capable of accelerating convergence of
QNNs and alleviating barren plateaus based on Theorem 2. Notably, the EQNTK QS of
the pruned ansatz (labeled by ‘SP3’) is improved by 20 (or 14) times compared to the initial
over-parameterized ansatz (labeled by ‘SP0’) in the problem of TFIM (or MaxCut).
Critical point of QNNs. Fig. 4(c) and Fig. 5(c) illustrate that when the number of
parameters surpasses a threshold, QNNs experience a computational phase transition where
the loss value L(θ(T )) at the convergence stage sharply drops by an order of the magnitude.
Moreover, the minimum number of parameters required to reach the over-parameterization
regime, highlighted by the ‘critical point’, is dramatically reduced by SP. Specifically, the
number of parameters of naive QNNs at the critical point in TFIM (or MaxCut), i.e., labeled
by ‘SP0’, scales exponentially with the system size. By contrast, it is gradually reduced from
800 (or 1000) to 300 (or 300) after SP1, then to 120 (or 150) after SP2, and finally to 50
(or 100) after SP3, which scales polynomially with the system size and is resource-friendly
for modern quantum devices (see Appendix G for hardware efficiency analysis).
Convergence of QNNs. Fig. 4(d) and Fig. 5(d) reflect that SP dramatically improves
the convergence of QNNs. In the common over-parameterization regime of ‘SP1’–‘SP3’ (i.e.,
LK ≥ 300), the total iterations required to achieve ϵ-convergence can be reduced by up to
6000 steps for TFIM and 5000 steps for MaxCut. For the same ansatz design, increasing
the number of parameters linearly improves the convergence, which echoes with Theorem 2.
EQNTK and trainability of QNNs. Fig. 4 and Fig. 5 indicate the relation between the
EQNTK value and the trainability of QNNs. That is, the convergence rate and the number of
parameters around the critical point decrease with the increased EQNTK value. In MaxCut,
when the number of parameters LK ≈ 450 reaches the over-parameterization regime in the
cases of ‘SP1’–‘SP3’, the corresponding EQNTK value yields Q1 : Q2 : Q3 ≈ 1 : 2 : 4 and
the iteration steps T (ϵ) follows T1 : T2 : T3 ≈ 4 : 2 : 1 (Tj and Qj refer to T (ϵ) and QS in
‘SPj’ with j ∈ [3]). A similar phenomenon is observed in the task of TFIM. These results
accord with Theorem 2 such that EQNTK can guide the trainability of QNNs.

5 Related work

Prior literature related to our work can be cast into two categories: the trainability theories
of QNNs and the design of symmetric ansätze.
Trainability of QNNs. McClean et al. (2018) first discovered the barren plateau of QNNs.
Since then, a line of research is uncovering intrinsic reasons leading to this phenomenon.
Current progress has revealed that these reasons include high entanglement of QNNs (Mar-
rero et al., 2021), the used global measurements (Cerezo et al., 2021b), and the presence
of noise (Wang et al., 2021). To mitigate barren plateaus, two popular ways are adopting
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Figure 5: Results for MaxCut under SP. The notations are identical to those in Fig. 4.

shallow QNNs with local measurements (Uvarov & Biamonte, 2021; Pesah et al., 2021; Du
et al., 2022a; Zhang et al., 2020) and correlating parameters (Volkoff & Coles, 2021).
Another crucial line of research is investigating the convergence rate of QNNs. Several
empirical studies have observed that over-parameterized QNNs promise faster convergence,
and the trained parameters are near-optimal (Kiani et al., 2020; Wiersema et al., 2020;
Zhang & Cui, 2020). Afterward, initial attempts have been made to theoretically explain the
superiority of over-parameterized QNNs. Specifically, Larocca et al. (2021b) and Anschuetz
(2021) separately leveraged the tools of dynamical Lie algebra and random matrix theory to
quantify the critical point of over-parameterized QNNs; You et al. (2022) extended the result
of Xu et al. (2018) to the quantum regime and proved the exponential convergence rate of
over-parameterized QNNs; Liu et al. (2022c;b;d;a) proposed the quantum neural tangent
kernel to exhibit an exponential convergence rate of over-parameterized QNNs. A common
caveat of prior literature is that their convergence analysis either requires an exponential
circuit depth for reaching over-parameterization or omits the factor of the circuit depth. By
contrast, EQNTK greatly reconciles the harsh requirement to reach over-parameterization
and allows a tighter convergence rate for the symmetric ansatz.
Ansätze with symmetric properties. Previous studies focus on unearthing inherent
symmetry behind the problem Hamiltonian to design problem-specific ansätze. The main-
stream approaches contain arranging the layout of ansätze (Liu et al., 2019; Seki et al.,
2020; Gard et al., 2020; Zheng et al., 2021; 2022), correlating trainable parameters (Shay-
dulin et al., 2021; Shaydulin & Wild, 2021; Sauvage et al., 2022), and utilizing results from
the geometric deep learning (Shaydulin et al., 2021; Shaydulin & Wild, 2021; Sauvage et al.,
2022; Meyer et al., 2022), where the symmetry comes from the training data. Compared
with asymmetric ansätze, these ansätze enable better trainability in GSP. However, none
of the previous proposals can identify the implicit symmetry of the problem Hamiltonian.
Moreover, although there is numerical evidence that symmetric ansätze can accelerate con-
vergence, theoretical analysis is still rare. EQNTK readily compensates these issues, which
provides an efficient measure to compare the trainability of various ansätze and allows an
automatic method (symmetric pruning) to design symmetrical ansatz with fast convergence.

6 Conclusions

In this study, we investigate the training performance of QNNs for the GSP problem by
developing a novel tool—EQTNK, which is capable of capturing the training dynamics of
various ansätze via their effective dimension. We prove that a symmetric ansatz design with
a small effective dimension enables an improved trainability of QNNs, including alleviating
the barren plateaus and reducing the number of parameters and the circuit depth required
to reach the over-parameterization regime. Besides, we propose a novel symmetric pruning
algorithm to automatically extract the symmetric ansatz from an over-parameterized and
asymmetric ansatz. Empirical results confirm the effectiveness of SP. A future research
direction is extending the results of EQNTK from GSP to the regime of machine learning
and exploring whether over-parameterized QNNs can simultaneously attain good trainability
and generalization (Abbas et al., 2021; Du et al., 2022b; Caro et al., 2022).
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A Optimization of QNNs in GSP

In this section, we separately elaborate the elementary notions in quantum computing, the
preliminary of Hamiltonian and the ground state preparation (GSP), and the optimization
strategy of QNNs in the task of GSP.
Basics of quantum computation. The elementary unit of quantum computation is
qubit (or quantum bit), which is the quantum mechanical analogue of a classical bit. A
qubit is a two-level quantum-mechanical system described by a unit vector in the Hilbert
space C2. In Dirac notation, a qubit state is defined as |ϕ⟩ = c0 |0⟩ + c1 |1⟩ ∈ C2 where
|0⟩ = [1, 0]⊤ and |1⟩ = [0, 1]T specify two unit bases and the coefficients c0, c1 ∈ C yield
|c0|2 + |c1|2 = 1. Similarly, the quantum state of n qubits is defined as a unit vector in
C2n , i.e., |ψ⟩ =

∑2n

j=1 cj |ej⟩, where |ej⟩ ∈ R2n is the computational basis whose j-th entry
is 1 and other entries are 0, and

∑2n

j=1 |cj |2 = 1 with cj ∈ C. Besides Dirac notation, the
density matrix can be used to describe more general qubit states. For example, the density
matrix of the state |ψ⟩ is ρ = |ψ⟩ ⟨ψ| ∈ C2n×2n , where ⟨ψ| = |ψ⟩† refers to the complex
conjugate transpose of |ψ⟩. For a set of qubit states {pj , |ψj⟩}m

j=1 with pj > 0,
∑m

j=1 pj = 1,
and |ψj⟩ ∈ C2n for j ∈ [m], its density matrix is ρ =

∑m
j=1 pjρj with ρj = |ψj⟩ ⟨ψj | and

Tr(ρ) = 1.
A quantum gate is an unitary operator which can evolve a quantum state ρ to another
quantum state ρ′. Namely, an n-qubit gate U ∈ U(2n) obeys UU† = U†U = I2n , where
U(2n) refers to the unitary group in dimension 2n. Typical single-qubit quantum gates
include the Pauli gates, which can be written as Pauli matrices:

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (7)

The more general quantum gates are their corresponding rotation gates RX(θ) =
e−i θ

2 X , RY (θ) = e−i θ
2 Y , and RZ(θ) = e−i θ

2 Z with a tunable parameter θ, which can be
written in the matrix form as

RX(θ) =
[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]
, RY (θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, RZ(θ) =

[
e−i θ

2 0
0 ei θ

2

]
.

(8)
They are equivalent to rotating a tunable angle θ around x, y, and z axes of the Bloch
sphere, and recovering the Pauli gates X, Y , and Z when θ = π. Moreover, a multi-qubit
gate can be either an individual gate (e.g., CNOT gate) or a tensor product of multiple
single-qubit gates.
The quantum measurement refers to the procedure of extracting classical information from
the quantum state. It is mathematically specified by a Hermitian matrix H called the
observable. Applying the observable H to the quantum state |ψ⟩ yields a random variable
whose expectation value is ⟨ψ|H |ψ⟩.
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Hamiltonian and GSP. In quantum computation, a Hamiltonian is a Hermitian matrix
that is used to characterize the evolution of a quantum system or as an observable to extract
the classical information from the quantum system. Specifically, under the Schrödinger
equation, a quantum gate has the mathematical form of U = e−itH , where H is a Hermitian
matrix, called the Hamiltonian of the quantum system, and t refers to the evolution time of
the Hamiltonian. Typical single-qubit Hamiltonians include the Pauli matrices defined in
Eqn. (7). As a result, the evolution time t refers to the tunable parameter θ in Eqn. (8). Any
single-qubit Hamiltonian can be decomposed as the linear combination of Pauli matrices,
i.e., H = a1I + a2X + a3Y + a4Z with aj ∈ C. In the same way, a multi-qubit Hamiltonian
is denoted by H =

∑4n

j=1 ajPj , where Pj ∈ {I,X, Y, Z}⊗n is the tensor product of Pauli
matrices. In quantum chemistry and quantum many-body physics, the Hermitian matrix
describing the quantum system to be solved is denoted as the problem Hamiltonian.
When taking the problem Hamiltonian as the observable, the quantum state |ψ∗⟩ is said to
be the ground state of problem Hamiltonian H if the expectation value ⟨ψ∗|H |ψ∗⟩ takes
the minimum eigenvalue of H, which is called the ground energy. GSP refers to preparing
the ground state of the problem Hamiltonian. A popular protocol for GSP is to employ a
parameterized unitary U(θ) to prepare a variational quantum state |ψ(θ)⟩ = U(θ) |ψ0⟩ with
a fixed input state |ψ0⟩ and then optimize the parameters θ by minimizing a predefined loss
function such as the Eqn. (1).
Optimization of QNNs. The optimization of the loss function L(θ) in Eqn. (1) can
be completed by gradient-based methods. A plethora of optimizers has been designed to
estimate the optimal parameters θ∗ = minθ L(θ). Here we introduce the implementation of
the first-order gradient-based optimizer for self-consistency. Refer to Cerezo et al. (2021a)
for a comprehensive review.
Based on Eqn. (2), the trainable parameters of QNNs are denoted by θ = (θ⊤

1 , · · · ,θ⊤
L )⊤

with θℓ = (θℓ1, · · · , θℓK)T , where the subscript ‘ℓk’ refers to the k-th parameter of the ℓ-th
layer Uℓ for ∀k ∈ [K] and ∀ℓ ∈ [L]. Recall the loss function takes the form

L(θ) = 1
2
(
⟨ψ0|U(θ)†HU(θ) |ψ0⟩ − E0

)2
,

and the corresponding update rule at the t-th iteration ∀t ∈ [T ] is

θ(t+1)

= θ(t) − η
∂L(θ(t))
∂θ

= θ(t) − η
(

⟨ψ0|U(θ(t))†HU(θ(t)) |ψ0⟩ − E0

) ∂ (⟨ψ0|U(θ(t))†HU(θ(t)) |ψ0⟩ − E0
)

∂θ
,

where η refers to the learning rate. The derivative in the last equality can be calculated via
the parameter shift rule Mitarai et al. (2018). Mathematically, the derivative with respect
to the parameter θℓk for ∀ℓ ∈ [L] and ∀k ∈ [K] is

∂
(
⟨ψ0|U(θ)†HU(θ) |ψ0⟩ − E0

)
∂θℓk

= 1
2 sinα

[ (
⟨ψ0|U(θ+)†HU((θ+) |ψ0⟩ − E0

)
−
(
⟨ψ0|U((θ−)†HU((θ−) |ψ0⟩ − E0

) ]
,

where θ+ = θ + αeℓk, θ− = θ − αeℓk, eℓk is the unit vector along the θℓk axis and α can
be any real number but the multiple of π because of the diverging denominator.

B Equivalent training dynamics under the mean square error
loss

In the main text, to facilitate the convergence analysis, the loss function L(θ) in Eqn. (1)
adopts the term E0, as the ground state energy of the problem Hamiltonian. Here we
elucidate how to extend our results to a more general loss function in which E0 is replaced
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by any C ∈ R with C ≤ E0. More specifically, the general mean square error loss function
is defined as

L(θ, C) = 1
2
(
⟨ψ0|U(θ)†HU(θ) |ψ0⟩ − C

)2 ≡ 1
2ε(θ, C)2, (9)

where
ε(θ, C) = ⟨ψ0|U(θ)†HU(θ) |ψ0⟩ − C

refers to the training error associated with C. For clarity, we denote the training error at the
t-th iteration as εt(θ(t), C). Given two loss functions L(θ, C) and L(θ, C ′) with C,C ′ ≤ E0,
their convergence behavior or training dynamics is said to be equivalent if the variational
quantum state |ψ(θ)⟩ converges to a same quantum state with the same convergence rate.
More concretely, for the same initial state |ψ(0)⟩, the evolved state |ψ(t)⟩ at each iteration t
for ∀t ∈ [T ] is the same.
The following lemma indicates the equivalent training dynamic of QNNs under the loss
functions L(θ, C) and L(θ, C ′) with C,C ′ ≤ E0.
Lemma 1. Under the framework of the quantum neural tangent kernel in Eqn. (3), given
any loss function L(θ, C) in Eqn. (9) with C ≤ E0, QNN obeys the same convergence rate
with L(θ, E0) and the optimized variational quantum state |ψ(θ)⟩ converges to the ground
state of the problem Hamiltonian H.

Proof of Lemma 1. In the same manner with Eqn. (3), the QNTK of the loss function in
Eqn. (9) can be denoted by

QC = ∇ε(θ, C)⊤∇ε(θ, C).
According to the explicit form of ε(θ, C) in Eqn. (9), the QNTK QC and QC′ is the same
for any given constant C and C ′ as ∇ε(θ, C) = ∇ε(θ, C ′). For this reason, in the following,
we use Q to refer the QNTK with any constant C.
Recall the results of Theorem 1, i.e., in the case of C = E0, the training error ε(θ, E0)
decays as

εt(θ(t), E0) ≈ e−ηQtε0(θ(0), E0).
Moreover, due to εt(θ(t), E0) = εt(θ(t), C) + (C − E0) for ∀t ∈ [T ], the training error of
QNNs under the loss L(θ, C) is

εt(θ(t), C) + (C − E0) ≈ e−ηQt
(
ε0(θ(t), C) + (C − E0)

)
. (10)

Since the right-hand side tends to be zero with a sufficiently large number t, this suggests
εt(θ(t), C)+(C−E0) ≈ 0. In other words, ε(θ, C) converges to the minimal value of E0 −C
with the decay rate ηQ. Supported by the variational principle, the optimized variational
quantum state U(θ(T )) |ψ0⟩ at the converging stage is exactly the ground state in which the
corresponding energy estimates E0.

C Proof of Theorem 2

The proof of Theorem 2 employs the following two lemmas whose proofs are given in the
subsequent two subsections.
Lemma 2 (Adapted from You et al. (2022), Lemma D.1). Following Definition 2, let UA be
a matrix subgroup of SU(d) where each element in UA commutes with a Hermitian matrix
Σ. The corresponding direct decomposition is denoted by V =

∑p
j=1 Vj with projection Πj.

Let V ∗ be the subspace of interest which includes the input state |ψ0⟩ and ground state |ψ∗⟩.
Denote Π∗ = P †P as the projection on V ∗. Then for any Hermitian W and any unitary
matrix U in the group UA, we have

Π∗UWU†Π∗ = Π∗UΠ Π∗WΠ∗ Π∗U†Π∗. (11)
Lemma 3. Following notations in Lemma 2, denote

U−,ℓk ≡
ℓ−1∏
ℓ′=1

Uℓ′(θℓ′)
k−1∏
k′=1

e−iθℓk′ Gk′ , U+,ℓk ≡
K∏

k′=k

e−iθℓk′ Gk′

L∏
ℓ′=ℓ+1

Uℓ′(θℓ′), (12)
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the EQNTK takes the form

QS = −
L∑

ℓ=1

K∑
k=1

〈
ψ∗

0

∣∣∣(U∗
+,ℓk)† [G∗

k, (U∗
−,ℓk)†H∗U∗

−,ℓk

]
U∗

+,ℓk

∣∣∣ψ∗
0

〉2
, (13)

where |ψ∗
0⟩ = P |ψ∗⟩ and A∗ = PAP † with A ∈ {U+,ℓk, Gk, U−,ℓk, H}.

Proof of Theorem 2. Following the gradient descent optimizer in Eqn. (1) with the learning
rate η ≤ 1, the change of the training error of QNN can be expressed as

đε =
∑
ℓ,k

∂ε

∂θℓk
đθℓk = −η

∑
ℓ,k

∂ε

∂θℓk

∂ε

∂θℓk
ε = −ηQSε. (14)

where đε = εt+1 − εt and đθℓk = θ
(t+1)
ℓk − θ

(t)
ℓk , the second equality comes from the update

rule with đθℓk = ηε∂ε/∂θℓk, and the third equality uses the definition of QNTK in Eqn. (3).

Following the results in Liu et al. (2022c, Theorem 1), when the EQNTK value Q(t)
S is a

constant, the training error decays with

εt ≈ (1 − ηQ
(t)
S )tε0 ≈ e−ηQ

(t)
S

tε0, (15)

which guarantees an exponential convergence towards the global optima. To this end, the
proof of Theorem 2 amounts to proving that when the number of parameters satisfies |θ| =
LK ≫ 1, the EQNTK can be regarded as a constant. This can be achieved by deriving an
analytical solution of Q(t)

S on average as well as the fluctuations around the average for all
iterations.
Following the above explanations, we next analyze the average of Q(t)

S . When no confusion
arises, the superscript (t) of Q(t)

S and U(θ(t)) are dropped in the subsequent analysis. By
leveraging Lemmas 2 and 3, the Haar average of EQNTK yields

Q̄S = −
L∑

ℓ=1

K∑
k=1

∫
dU+,ℓkdU−,ℓk

〈
ψ∗

0

∣∣∣(U∗
+,ℓk)† [G∗

k, (U∗
−,ℓk)†H∗U∗

−,ℓk

]
U∗

+,ℓk

∣∣∣ψ∗
0

〉2
,

= −
L∑

ℓ=1

K∑
k=1

∫
dU∗

+,ℓkdU
∗
−,ℓk Tr

(
ρ∗

0(U∗
+,ℓk)†M−,ℓkU

∗
+,ℓkρ

∗
0(U∗

+,ℓk)†M−,ℓkU
∗
+,ℓk

)
,

= −
L∑

ℓ=1

K∑
k=1

∫
dU∗

+,ℓk

(
Tr2 (M−,ℓk) Tr

(
(ρ∗

0)2)
d2

eff − 1 +
Tr
(
(M−,ℓk)2)Tr

(
(ρ∗

0)2)
d2

eff − 1

+ Tr2 (M−,ℓk) Tr2 (ρ∗
0)

deff − d3
eff

+
Tr
(
(M−,ℓk)2)Tr

(
(ρ∗

0)2)
deff − d3

eff

)

= −
L∑

ℓ=1

K∑
k=1

∫
dU∗

+,ℓk

Tr
(
(M−,ℓk)2)

d2
eff + deff

= −
L∑

ℓ=1

K∑
k=1

∫
dU∗

+,ℓk

2 Tr
((

G∗
k(U∗

−,ℓk)†H∗U∗
−,ℓk

)2
)

− 2 Tr
(

(G∗
k)2((U∗

−,ℓk)†H∗U∗
−,ℓk)2

)
d2

eff + deff

= 2
d2

eff + deff

(
deff Tr((H∗)2 − Tr2(H∗))

d2
eff − 1

)
Tr
(
L

K∑
k=1

(G∗
k)2

)

≈ LK Tr ((H∗)2)
d2

eff
. (16)

where the second equality employs the assumption such that U∗
−,ℓk and U∗

+,ℓk match the Haar
distribution on the group SU(deff) up to the second moment, ρ∗

0 = |ψ∗
0⟩ ⟨ψ∗

0 | is the projection
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of ρ0 = |ψ0⟩ ⟨ψ0| on the subspace V ∗, and M−,ℓk = [G∗
k, (U∗

−,ℓk)†H∗U∗
−,ℓk], the third equality

exploits the RTNI package (Fukuda et al., 2019) to calculate the integration with respect
to the Haar measure, the fourth equality uses the fact Tr((ρ∗

0)2) = Tr(ρ∗
0) = 1 with ρ∗

0 being
the pure state, the fifth equality utilizes Tr([A,B]2) = 2 Tr(ABAB) − 2 Tr(A2B2), the last
second equality uses the RTNI package again, and the last equality utilizes the fact

Tr((G∗
k)2) = Tr(GkΠ∗GkΠ∗)∑p

j=1 Tr(GkΠjGkΠj)
Tr(G2

k) ≈ deff

2n
· 2n = deff (17)

with Tr(G2
k) = Tr(I) = 2n.

The fluctuation of EQNTK can be expressed as ∆Q2
S = E(Q2

S) − Q̄2
S , i.e.,

∆Q2
S =2

∑
ℓ1,k1<ℓ2,k2

∫
dU∗

+,ℓ1k1
dU∗

+,ℓ2k2
dU∗

−,ℓ1k1
dU∗

−,ℓ2k2
×

 Tr
(
ρ∗

0(U∗
+,ℓ1k1

)†M−,ℓ1k1(U∗
+,ℓ1k1

)†ρ∗
0U

∗
+,ℓ1k1

M−,ℓ1k1U
∗
+,ℓ1k1

)
×

Tr
(
ρ∗

0(U∗
+,ℓ2k2

)†M−,ℓ2k2(U∗
+,ℓ2k2

)†ρ∗
0U

∗
+,ℓ2k2

M−,ℓ2k2U
∗
+,ℓ2k2

) 
+
∑
ℓ,k

∫
dU∗

+,ℓkdU
∗
−,ℓk

 Tr
(
ρ∗

0(U∗
+,ℓk)†M−,ℓk(U∗

+,ℓk)†ρ∗
0U

∗
+,ℓkM−,ℓkU

∗
+,ℓk

)
×

Tr
(
ρ∗

0(U∗
+,ℓk)†M−,ℓk(U∗

+,ℓk)†ρ∗
0U

∗
+,ℓkM−,ℓkU

∗
+,ℓk

) 
− Q̄2

S

=LK

d4
eff

(
8 Tr2((H∗)2) + 12 Tr((H∗)4)

)
+

LK

d5
eff

(
16 Tr((H∗)2) Tr2(H∗) + 48 Tr((H∗)3) Tr(H∗) + 40 Tr2((H∗)2) + · · ·

≈LK

d4
eff

(
8 Tr2((H∗)2) + 12 Tr((H∗)4)

)
, (18)

where ℓ1, k1 < ℓ2, k2 refers to ℓ1K + k1 < ℓ2K + k2, the derivation of the second equality
mainly follows the results of Liu et al. (2022b, Appendix C), and the approximation comes
from the truncation and the preservation of the leading order term.
Taken together, when the number of parameters LK ≫ 1 such that QS/∆QS ≈ 1√

LK
≪ 1,

the EQNTK can be viewed as a constant and Eqn. (15) is satisfied.

C.1 Proof of Lemma 2

Proof of Lemma 2. The two conditions in the lemma, i.e., (i) any unitary U in UA commutes
with the Hermitian matrix Σ and (ii) Σ leads to the decomposition V = ⊕p

j=1Vj with
projection Πj , imply that U is block-diagonal under the projection {Πj}p

j=1. In other words,
we have Πj′UΠj = 0 for j ̸= j′ and ∀U ∈ UA. This observation gives the following results,
i.e.,

Π∗UWU†Π∗

=Π∗U

p∑
j=1

ΠjW

p∑
j′=1

Πj′U†Π∗

=
∑

j,j′∈[p]

(Π∗UΠj)W
(
Πj′U†Π∗)

=Π∗UΠ∗WΠ∗ U†Π∗

=Π∗UΠ∗Π∗WΠ∗ Π∗U†Π∗, (19)

where the first equality employs the fact of I =
∑p

j=1 Πj and the last equality uses the
property of projections Π2

j = Πj .
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C.2 Proof of Lemma 3

Proof of Lemma 3. The explicit form of the training error ε(θ) = ⟨ψ0|U(θ)†HU(θ) |ψ0⟩−E0
leads to the explicit form of QNTK, i.e.,

Q = (∇ε(θ))⊤∇ε(θ)

= −
L∑

ℓ=1

K∑
k=1

〈
ψ0

∣∣∣U†
+,ℓk

[
Gk, U

†
−,ℓkHU−,ℓk

]
U+,ℓk

∣∣∣ψ0

〉2
. (20)

Similarly, for the symmetric ansatz U(θ) with the projection Π∗ = PP †, the EQNTK yields

QS = −
L∑

ℓ=1

K∑
k=1

Tr
(∣∣∣ψ0

〉〈
ψ0

∣∣∣U†
+,ℓk

[
Gk, U

†
−,ℓkHU−,ℓk

]
U+,ℓk

)2

= −
L∑

ℓ=1

K∑
k=1

Tr
(

Π∗ρ0Π∗U†
+,ℓk

[
Gk, U

†
−,ℓkHU−,ℓk

]
U+,ℓk

)2

= −
L∑

ℓ=1

K∑
k=1

Tr
(

Π∗ρ0Π∗U†
+,ℓk

[
Gk, U

†
−,ℓkOU−,ℓk

]
U+,ℓkΠ∗

)2

= −
L∑

ℓ=1

K∑
k=1

Tr
(

Π∗ρ0Π∗U†
+,ℓkΠ∗

[
Gk, U

†
−,ℓkOU−,ℓk

]
Π∗U+,ℓkΠ∗

)2

= −
L∑

ℓ=1

K∑
k=1

Tr
(

Π∗ρ0Π∗U†
+,ℓkΠ∗

[
Π∗GkΠ∗,Π∗U†

−,ℓkΠ∗HΠ∗U−,ℓkΠ∗
]

Π∗U+,ℓkΠ∗
)2

= −
L∑

ℓ=1

K∑
k=1

Tr
(
P †ρ0PP

†U†
+,ℓkP

[
P †GkP, P

†U†
−,ℓkPP

†HPP †U−,ℓkP
]
P †U+,ℓkP

)2

= −
L∑

ℓ=1

K∑
k=1

Tr
(
ρ∗

0(U∗
+,ℓk)† [G∗

k, (U∗
−,ℓk)†H∗U∗

−,ℓk

]
U∗

+,ℓk

)2

= −
L∑

ℓ=1

K∑
k=1

〈
ψ∗

0

∣∣∣(U∗
+,ℓk)† [G∗

k, (U∗
−,ℓk)†H∗U∗

−,ℓk

]
U∗

+,ℓk

∣∣∣ψ∗
0

〉2
, (21)

where the second equality utilizes the assumption such that |ψ0⟩ lies in V ∗, the third, fourth,
and fifth equalities employ the property of projection operator (Π∗)2 = Π∗ and Lemma 2,
the final equality follows from the definitions with |ψ∗

0⟩ = P † |ψ0⟩ and A∗ = P †AP with
A ∈ {U−,ℓk, U+,ℓk, Gk, H, ρ0} .

D Proof of Proposition 1

Before moving to elaborate on the proof of Proposition 1, we first briefly review the definition
of dynamical Lie algebra (DLA).
Definition 3 (Definition 3, Larocca et al. (2021a)). Given an ansatz design A, the dynam-
ical Lie algebra (DLA) g is generated by the repeated nested commutators of the operators
in A. That is

g = span ⟨iG1, · · · , iGK⟩Lie (22)
where span ⟨S⟩Lie denotes the Lie closure, i.e., the set obtained by repeatedly taking the
commutator of the elements in S.

The proof of Lemma 1 employs the following Lemma.
Lemma 4. Consider the QNN instance (|ψ0⟩ , U(θ), H) whose DLA is g. If there exists an
invariant subspace Vg including the input state |ψ0⟩ and the ground state |ψ∗⟩ with dimension
dg under g, then the effective dimension of this ansatz design A yields deff = dg.
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Proof of Lemma 4. We first demonstrate the equivalence between the group UA =
∪∞

L=0{U(θ) : θ ∈ RLK} and the group generated by the elements in g, i.e.,

UA = {eV , V ∈ g}. (23)

UA ⇒ {eV , V ∈ g}. To facilitate understanding, we consider a single-layer unitary U(θ) with
L = 1 and the ansatz design A = {G1, G2}. From the Baker-Campbell-Hausdorff formula,
we have

U(θ) = eiθ1G1eiθ2G2 = eJ1(θ), (24)
where

J1(θ) = i

(
θ1G1 + θ2G2 + iθ1θ2

2 [G1, G2] − θ2
1θ2

12 [G1, [G1, G2]] + · · ·
)
. (25)

Eqn. (25) implies that by merging eiθ1G1 and eiθ2G2 into a single term, the new evolution
is generated by an operator J1(θ) depending on both θ1 and θ2, which contains a nested
commutator between G1 and G2. Therefore, we have J1(θ) ∈ g and U(θ) ∈ {eV , V ∈ g}.

For the case of multiple layers, i.e., U(θ) =
∏L

ℓ=1 e
iθℓ1 G1eiθℓ2 G2 , we have U(θ) = eJL(θ) ∈

{eV , V ∈ g} by recursively applying the Baker-Campbell-Hausdorff formula to reformulate
U(θ) by the JL(θ) ∈ g.
UA ⇐ {eV , V ∈ g}. Since each element in g is a linear combination of the nested commuta-
tors in Eqn. (25), there always exists θ ∈ R2L for any V ∈ g such that JL(θ) = V and thus
eJL(θ) = U(θ) ∈ ∪∞

L=0{U(θ) : θ ∈ RLK}.
Taken together, we obtain Eqn. (23) in the case of K = 2. The results for the ansatz design
A with more than two elements can be derived in the same manner. More details can be
found in Section IV of Larocca et al. (2021b).
The equivalence of UA and {eG : G ∈ g} indicates that for any G ∈ g and U ∈ UA, G and
U commutes with the same Hermitian matrix Σ since U can be expressed as eG and hence
has the same Eigen-space with G. This implies that the invariant subspace induced by UA
is the same with the one induced by g and thus d = dg.

Proof of Proposition 1. Following Lemma 4, the DLA-based EQNTK is the same as the
EQNTK discussed in Theorem 2 because the corresponding U(θ) induces the same invariant
subspace. Hence, the results achieved in Theorem 2 can be applied to the DLA-based
EQNTK by replacing the effective dimension deff with dg.

E Implementation details of the symmetric pruning algorithm

In this section, we elucidate Steps 2-1, 2-2, and 2-3 of the proposed SP in Alg. 1. Recall
the considered problem Hamiltonian is expressed as H̃ = H ⊗ I⊗m with H =

∑q
j=1 αjHj ,

where αj is the real coefficient and Hj is the tensor product of Pauli matrices on n qubits.
A symmetry S of a Hamiltonian H̃ is a unitary operator leaving H̃ invariant, i.e.,

SH̃S† = H̃. (26)

All of these symmetries form a symmetry group S where for any two symmetries S1, S2 ∈ S,
their compositions S1 ◦S2 or S2 ◦S1 and their inverses S−1

1 and S−1
2 are also symmetries in

S. In SP, these symmetries are classified into three categories, namely, the system symmetry
(Step 2-1), the structure symmetry (Step 2-2), and the spatial symmetry (Step 2-3). Suppose
that the initialized asymmetric ansatz is U(θ), SP adopts the following methods to tailor
this ansatz to obey the above symmetries.
System symmetry. System symmetry considers the symmetry on qubit wires. Specifically,
since the problem Hamiltonian H̃ can be decomposed into a tensor product of Pauli terms,
the symmetry condition in Eqn. (26) holds for any unitary of the form Ssys = I⊗n⊗U , where
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U is an arbitrary unitary in SU(2m). All such unitaries are called the system symmetry and
form a subgroup of the symmetry group S, i.e.,

Ssys = {Ssys = I⊗n ⊗ U : U ∈ SU(2m)}.

The system symmetry of a unitary V can be recognized if SsysV S
†
sys = V . With this regard,

SP assigns the system symmetry to U(θ) by removing the redundant parameterized gates
and the two-qubit gates associated with the last m qubit wires. In doing so, the pruned
ansatz has the form

UPr(θ) = U1(θ) ⊗ I⊗m,

which yields Ssys(U1(θ) ⊗ I⊗m)S†
sys = U1(θ) ⊗ I⊗m, where U1(θ) is the unitary extracted

from U(θ) (the gates applied on the first n qubit wires).
Structure symmetry. The structure symmetry Sstr refers to the symmetry for the effec-
tive Hamiltonian H, which satisfies

SstrHS
†
str = H.

Moreover, an ansatz V (θ) is said to be structure symmetric to the problem Hamiltonian H
if there exists a non-trivial symmetry Sstr (i.e., not the identity operation) and θ ∈ Θ\{0}
such that SstrV (θ)S†

str = V (θ). A feasible solution of constructing the structure symmetric
ansatz is restricting the corresponding ansatz design that only contains the Pauli terms of
H. Given the pruned ansatz UPr returned by Step 2-1, SP (Step 2-2) assigns the structure
symmetry on it by removing specific the single-qubit gates and the two-qubit gates so that
the pruned ansatz design follows A = {H1, · · · , Hq}. The tailored ansatz returned by Step 2-
2 coincides with HVA, i.e., U1(θ) transforms to the new ansatz whose ℓ-th layer is expressed
as
∏q

j=1 e
−iθℓjHj for ∀l ∈ [L].

Spatial symmetry. Spatial symmetry is a discrete symmetry considering the permutation
invariance for the sites of the problem Hamiltonian, which tightly relates to the problem of
graph automorphism that has been widely studied in graph theory. For this reason, here we
introduce the spatial symmetry from the graphical perspective and elucidate the implemen-
tations of Step 2-3 in Alg. 1. The key in this step is leveraging the algorithms developed in
graph theory to automatically identify the spatial symmetry of problem Hamiltonians.
From the graphical view, an n-qubit Hamiltonian H refers to a graph G = (V,E) with n
vertices, where the j-th node vj ∈ V represents the j-th site (qubit) of H and the edge
Ei,j ∈ E characterizes the interaction strength of the i-th and the j-th sites (qubits). This
graph can further be described by an adjacency matrix D.
Recall that a spatial symmetry π of a Hamiltonian H is a permutation over the sites leaving
H invariant, i.e., πHπ−1 = H (or equivalently [π,H] = 0). In other words, the spatial
symmetry π preserves the topology invariance of G such that for any (u, v) ∈ E, we have

(π(v), π(u)) ∈ E, and πDπ−1 = D.

In GSP, the action of π on an n-qubit state |ψ⟩ → π |ψ⟩ means permuting the indices of
qubits. For instance, a permutation π with π(1) = 3, π(2) = 1, π(3) = 2 acting on the state
|ψ1⟩ |ψ2⟩ |ψ3⟩ yields π(|ψ1⟩ |ψ2⟩ |ψ3⟩) = |ψ3⟩ |ψ1⟩ |ψ2⟩. All these permutations form a discrete
group of symmetries Sn with the cardinality O(n!). Particularly, the spatial symmetries of
the Hamiltonian is the automorphism group of its corresponding graph, defined as

Aut(H) = {πa ∈ Sn|πaHπ
−1
a = H},

or equivalently Aut(H) = {πa ∈ Sn|πaDπ
−1
a = D}. The qubits (or qubit-pairs) in the

ansatz corresponding to the nodes (or edges) that can be swapped are called equivalent
qubits (or qubit-pairs). More precisely, for any node (or edges) u ∈ V (or (u, v) ∈ E), if
there exists π ∈ Aut(H) such that π(u) = x (or π(u, v) = (x, y)), then the qubits (or qubit-
pairs) corresponding to the node (or edge) u (or (u, v)) and x (or (x, y)) are called equivalent
qubits (or qubit-pairs). Given the ansatz returned by Step 2-2, Step 2-3 assigns the spatial
symmetry on it by correlating the single-qubit parameterized gates on the equivalent qubits
or the two-qubit parameterized gates on the equivalent qubit-pairs.
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Figure 6: Evolution of ansatz structure during symmetric pruning From left to right shows
the initial hardware efficient ansatz and ansatz structure at different stages of symmetric pruning,
where ‘SP1’, ‘SP2’, ‘SP3’ refer to the sub-steps 2-1, 2-2, and 2-3 in Alg. 1 respectively and L′ < L.
The symbol ‘RX’ (‘RY’, ‘RZ’) refers to the single qubit rotation around the x (y, z)-axis and I refers
to the identity gate. The rotation gates with the same color of the pruned ansatz are correlated by
one individual parameter per layer.

The flexibility of SP. The automorphism group for the graphs corresponding to the
Hamiltonians with the complicated topological structure is hard to compute manually. In
this work, we employ nauty to automatically recognize the automorphism group of graph
corresponding to the Hamiltonian nauty (McKay et al., 1981). Besides nauty , there are
many heuristic algorithms to compute the automorphism group, including Traces (McKay
& Piperno, 2014), saucy (Darga et al., 2004), Bliss (Junttila & Kaski, 2007) and canauto
(López-Presa et al., 2014). All of them can be easily integrated into SP. Moreover, these
heuristic algorithms are capable of solving most graphs for up to tens of thousands of nodes
in less than a second (McKay & Piperno, 2014).

F The limitations of applying classical pruning methods to
QNNs

Although both SP in Alg. 1 and the classical pruning techniques distill a smaller network
(or an ansatz) from an over-parameterized one in the view of algorithmic implementation,
the latter cannot be directly employed to enhance the power of QNNs.
Recall that a common feature of classical pruning methods is scoring each parameter or
network element and then removing those accompanied with low scores. Such scores gener-
ally correspond to the magnitude of parameters (Frankle & Carbin, 2018), the gradient of
parameters (Lee et al., 2018; Wang et al., 2020), and the Hessian matrix (LeCun et al., 1989;
Hassibi & Stork, 1992) at the initialization stage or the phase of terminal. Unfortunately,
Cerezo & Coles (2021) proved that the gradient information in QNNs with random deep
ansatz exponentially vanishes with the increased number of qubits. In other words, the
gradient information fails to provide any useful information to guide pruning. Meanwhile,
the output of QNNs can be regarded as a periodic function of parameters (Schuld et al.,
2021), which forbids employing the parameters’ magnitude as the metric to guide the prun-
ing. Therefore, it is inappropriate to straightforwardly apply classical pruning methods to
QNNs, where the extracted ansatz may not promise the enhanced trainability.
In contrast with classical pruning methods, our proposal does not require any gradient
information to construct the symmetric ansätze. Instead, it removes the redundant gates
and shrinks the solution space according to the information of the problem Hamiltonian.

G More numerical simulation details

In this section, we provide the simulation details omitted in the main text.
Hardware efficient ansatz. As shown in the left panel of Fig. 6, HEA yields the layer-
stacking structure following Eqn. (2), where each layer consists of multiple single-qubit Pauli
rotation gates and fixed two-qubit CNOT gates. In our numerical simulations, the ℓ-th layer
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Figure 7: Graph representation of problem Hamiltonian. The left panel and the right
panel depict the graph representation of the TFIM model and Erdos-Renyi graph with p = 0.6,
respectively.

of the employed HEA takes the form

Uℓ(θ) =U (1)
ent

n∏
j=1

RX(θℓ
j,1)RY (θℓ

j,2)RZ(θℓ
j,3)U (1)

ent

× U
(2)
ent

n∏
j=1

RX(θℓ
j,4)RY (θℓ

j,5)RZ(θℓ
j,6)U (2)

ent (27)

where Rµ(θℓ
j,k) = e−iθℓ

j,kµ with µ ∈ {X,Y, Z} denotes the parameterized single-qubit gate,

and U
(1)
ent =

∏⌊ n
2 ⌋

j=1 CNOT2j−1,2j and U
(2)
ent = ⊗⌊ n−1

2 ⌋
j=1 CNOT2j,2j+1 refer to the entangled

layers with ⌊a⌋ being the greatest integer no larger than a.
Transverse-field Ising model. A central problem in quantum many-body physics is
predicting the properties of these quantum systems from the first principles of quantum
mechanics. Transverse-field Ising model (TFIM) has been employed to explore many inter-
esting quantum systems. In our numerical simulation, we employ an n-qubit Hamiltonian
of 1D TFIM with an open boundary condition, i.e., HTFIM = −

∑n−1
j=1 σ

z
jσ

z
j+1 −

∑n
j=1 σ

x
j ,

where σµ
j denotes the µ-Pauli matrix (with µ = x, z) acting on the j-th qubit. The effective

dimension for HVA under this Hamiltonian is given by deff = n2 (Larocca et al., 2021a).
The Hamiltonian is graphically depicted in Fig. 7(a).
MaxCut. Although many important problems in statistical physics and operation research
(Wheeler, 2004) can be formulated as MaxCut, finding the optimal solution of MaxCut has
been proven to be NP-hard (Karp, 1972) and quantum computers are expected to attain
better approximated solutions than those of classical computers (Farhi et al., 2014; Zhou
et al., 2022).In this work, we consider the MaxCut problem of the Erdos-Renyi graphs whose
topology is less structured. An Erdos-Renyi (ER) graph on the vertex set V is a random
graph in which each pair of nodes (u, v) connects independently with probability p. Fig. 7(b)
shows the instance of the ER graph used in the numerical simulation with setting p = 0.6.
Evolution of ansätze. Here we present the evolution of the ansatz structure for the
transverse-field Ising model during symmetric pruning in Fig. 6, which serves as an example
for better understanding the learning dynamics of our proposal. Specifically, we adopt the
Hardware efficient ansatz as the initial over-parameterized ansatz, as shown in the left side
of Fig. 6. The gates on the last two wires corresponding to I⊗2 are first removed through
Step 2-1 (referred to ‘SP1’) in Alg. 1 to ensure the system symmetry. Subsequently, in Step
2-2, SP employs the symmetric information of problem Hamiltonian HTFIM to remove the
parameterized single-qubit gates and two-qubit gates on the first six wires such that the
pruned ansatz design is Apr = {σx

1 , · · · , σx
6 , σ

z
1σ

z
2 , · · ·σz

5σ
z
6}. Finally, in Step 2-3, the spatial

symmetry pruning correlates the parameterized gates on the equivalent qubits and qubit-
pairs through the returned automorphism by the package nauty. In the case of TIFM, the
package nauty returns a non-trivial automorphism π(j) = n + 1 − j that permutes qubits
from each side of the chain. This operation leads to a reduction of the number of free
parameters from 11 for the ansatz pruned by ‘SP2’ to 6 for the ansatz returned by ‘SP3’.
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TFIM MaxCut (ER graph) MaxCut (3- regular graph)

Figure 8: The quantum resource required for achieving ϵ-convergence. The left panel,
the middle panel, and the right panel depict the number of measurements required to complete
one optimization step and the circuit depth required to achieve the ϵ-convergence in the task of
TFIM, MaxCut for Erdos-Renyi graph, and MaxCut for 3-regular graph, respectively. Particularly,
the label ‘×s’ refers that the total number of shots M is the product of the displayed value in
the histogram and the number of shots for updating a single parameter s. The labels ‘SP0’-‘SP3’
refer to the initial ansatz, the pruned ansatz after system symmetric pruning, structure symmetric
pruning, and spatial symmetric pruning, respectively.

Hardware efficiency analysis. We use two standard metrics to quantify the hardware
efficiency, i.e., (1) the number of measurements (shots) M required to complete one opti-
mization step; (2) the circuit depth l(ϵ) required to reach the over-parameterization criteria
characterized by ϵ-convergence with ϵ = 10−5. Namely, the first metric concerns the runtime
cost in training QNNs, and the second metric evaluates the required quantum resources to
construct the quantum circuit. To facilitate the comparison of various ansätze under the
first metric, the number of shots for a single parameter update is set to be s, so that the
total number of measurements taken to complete one optimization step linearly scales with
the number of parameters, i.e., M = LKs. As depicted in Figure 8, in the task of TFIM,
compared with the initial over-parameterized asymmetric ansatz (labeled by ‘SP0’), the re-
quired number of measurements M for the pruned ansatz can be dramatically reduced by
14 times; meanwhile, the required circuit depth is reduced by 3 times. In the task of Max-
Cut, the hardware efficiency improvement is problem-dependent. In particular, the required
circuit depth is reduced by about 1.8 times and 2 times for the Erdos-Renyi graph and the
3-regular graph, respectively. For the Erdos-Renyi graph, compared to the ansatz returned
by ‘SP1’, the required circuit depth of the ansatz returned by ‘SP2’ slightly increases from
100 to 130. This increase originates from the fact that the Erdos-Renyi graph with a large
number of edges requires a relatively deep circuit depth to construct the symmetric ansatz
after SP1. Although the circuit depth is subtly increased, an evident benefit is a dramatic
reduction of the number of measurements M , i.e., compared with the initial ansatz, the re-
quired M for the pruned ansatz is reduced by 10 times than that of the initial ansatz. The
achieved numerical results confirm that the symmetric ansatz output by our proposal can
effectively improve hardware efficiency. As such, it can simultaneously reduce the required
quantum resource for reaching the regime of over-parameterization, enable an efficient im-
plementation on NISQ devices, and more importantly, improve the convergence rate so as
to reduce the number of access to the quantum devices.
Training dynamics analysis of symmetric ansatz. Here we numerically exhibit that
EQNTK has the ability to capture the training dynamics of QNNs with symmetrical ansatz.
The hyperparameter settings are as follows. In the task of TFIM, the number of qubits of
the Hamiltonian is set as n = 6. We employ the QNN with symmetric ansätze processed by
SP with the number of layers L = 80 to optimize the loss function defined in Eqn. (1). The
learning rate η and the maximum number of iteration T is set as 10−4 and 1000, respectively.
Figure 9 plots the theoretically predicted residual training error according to Theorem 2,
the practical residual training error ε with 30 independent random initializations, and their
average versus the gradient descent optimization steps. The numerical results show that
the residual error ε decays exponentially, which echos with the training dynamics derived
in Theorem 2.
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𝑡
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Figure 9: Residual training error ε versus the gradient descent steps t. The black dotted
curve, black solid curve, and red dotted curve correspond to the training dynamics of ε(t) for
30 different initializations, the theoretical prediction for the average dynamics of ε(t), and the
numerical values for the averaged ε(t), respectively.
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