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Abstract

In-Context Learning (ICL) is a widely em-
braced paradigm for eliciting task-specific ca-
pabilities from large language models (LLMs).
Present-day LLMs with ICL have shown ex-
ceptional performance on several English NLP
tasks, but their utility on other languages is
still underexplored. Our work investigates their
effectiveness for NLP tasks in low-resource
languages (LRLs), especially for cross-lingual
transfer, where task-specific training data for
one or more related languages is available.

We propose Self-Supervised Prompting for
Cross-Lingual Transfer (SSP-CLT), a novel ap-
proach for zero-shot cross-lingual transfer to
LRLs. SSP-CLT works in two stages and has 2
variants. In first variant, in Stage I, for a given
target test instance, exemplars are retrieved
from source training data and included in the
LLM prompt for ICL — this obtains an initial la-
beling. Once all test data instances are labeled,
Stage II repeats the whole process, but draws
exemplars from Stage I labelings of other test
datapoints in the target language. The second
variant of SSP-CLT uses a fine-tuned model for
stage 1 predictions, while stage 2 uses an Inte-
ger Linear Programming (ILP)-based exemplar
selection that balances similarity, confidence
and label coverage. Experiments on 3 tasks and
3 language families demonstrate that SSP-CLT
strongly outperforms supervised baselines and
also other prompting approaches.

1 Introduction

Recent Large Language Models (LLMs) such as
GPT-3.5-Turbo & GPT-4 (Ouyang et al., 2022;
Achiam et al., 2023) show exceptional perfor-
mance on a variety of NLP and reasoning tasks
via In-Context Learning (ICL) (Brown et al., 2020;
Chowdhery et al., 2022). ICL feeds a task-specific
instruction along with few exemplars, appended
with the test input, to the LLM. As LLMs can be
highly sensitive to selection and ordering of exem-

plars (Lu et al., 2022; Zhao et al., 2021), exemplar
retrieval is a crucial component of ICL.

LLMs show excellent performance on English
tasks, but their utility on other languages is rel-
atively underexplored. In particular, we study
zero-shot cross-lingual transfer to low-resource
languages (LRLs) — a setting where labeled task
data from one or more related languages is avail-
able, but no training data exists for the target LRL.

Cross-lingual transfer has been addressed
through standard fine-tuning (Muller et al., 2021;
Alabi et al., 2022), and language adapters (Pfeif-
fer et al., 2020; Ustiin et al., 2020; Rathore et al.,
2023), but there is limited work on cross-lingual
ICL. There are two exceptions (Ahuja et al., 2023;
Asai et al., 2023), where ICL is employed with ex-
emplars from a source language, but they use ran-
dom sampling for exemplar selection, resulting in
performance inferior to cross-lingually fine-tuned
models, such as mBERT and XLM-R (Devlin et al.,
2019; Conneau et al., 2020).

In response, we present Cross-Lingual Self-
Adaptive Prompting (SSP-CLT) — a two stage
method for cross-lingual transfer to LRLs. In Stage
I, SSP-CLT dynamically retrieves exemplars from
source language(s) training data, based on the test
sentence. The LLM labels the test input based on
ICL over the retrieved exemplars in the prompt.
In this fashion, all test data points get preliminary
labels. In Stage II, SSP-CLT-SIM repeats the same
process, but this time, the exemplars are retrieved
from the test set itself using similarity as a metric,
and are presented to LLM with their Stage I labels.
The hypothesis is that an LLM can benefit further
from similar sentences in the same language, even
if the labels are not entirely accurate.

Noting that SSP-CLT-SIM labels each test in-
stance via an LLM twice, we replace LLM-
based Stage I with existing (non-ICL) approaches
for cross-lingual transfer. In our work, we use
ZGUL (Rathore et al., 2023), which uses language



adapters in mBERT, to make preliminary predic-
tions for a test sentence. These labelings are di-
rectly to be used in Stage II, i.e., LLM prompt uses
labels from ZGUL. This cuts down expensive LLM
calls by half. Finally, to select the best exemplars,
we develop a novel Integer Linear Programming
(ILP) based approach, called SSP-CLT-ILP, which
balances the various objectives of (1) similarity
with test sentence, (2) confidence in predictions,
and (3) coverage of the various labels in the task.

We perform experiments on sequence labeling
tasks (POS and NER), and natural language infer-
ence (NLI) — a text classification task. Our datasets
encompass three typologically diverse language
families: African, Germanic and Americas. Our
experiments show consistent and substantial im-
provements over existing supervised as well as sim-
pler ICL-based approaches. We will make both our
codebase and prompts publicly accessible.

Our contributions are summarized as follows:

1. We investigate In-Context Learning (ICL)
strategies for the task of zero-shot cross-
lingual transfer to low-resource languages, uti-
lizing the labeled data from related languages.

2. We propose SSP-CLT, a two-stage self-
adaptive prompting paradigm for this task,
where first stage may be done by an LLM
or other cross-lingual transfer models.

3. We introduce a framework for exemplar se-
lection utilizing an ILP. The ILP incorporates
similarity to test input along with confidence
of prediction (when available), and enforces
label coverage constraints for better selection.

4. Our results show improved F1 scores across
3 tasks and 3 language families, as compared
to both existing fine-tuning and LLM-based
SoTA models.

2 Related Work

Cross-lingual ICL: In general, the cross-lingual
ICL remains systematically unexplored in litera-
ture. Previous approaches for cross-lingual ICL
rely on the utilization of random input-output pairs
for prompt construction (Zhang et al., 2021; Winata
et al., 2021; Ahuja et al., 2023; Asai et al., 2023).
Recent methods (Agrawal et al., 2022; Tanwar
et al., 2023) aim to fill this void by utilizing se-
mantic similarity for cross-lingual retrieval from
a high-resource language’s labeled data as candi-
dates, given the target LRL’s instance as query.

This is facilitated with embedding-based multi-
lingual retrievers such as multilingual sentence-
transformers (Reimers and Gurevych, 2020). More
recently, OpenAl-based embeddings have been
used effectively for cross-lingual retrieval (Nambi
et al., 2023).

In above works, the prompting is done in a
high-resource language, mostly English. This is
called cross-lingual (CL) prompting. This is in
contrast to in-language (IL) prompting, in which
exemplars are also retrieved from the training data
of the target language. In our setting, we assume no
availability of labeled training data for target LRLs,
making only CL prompting applicable in our
scenario. However, we do conduct comparisons
with the IL prompting skyline methods to validate
our approaches.

Self-Adaptive Prompting: (Wan et al., 2023) pro-
posed Universal Self-Adaptive (USP) framework,
which utilizes an external unlabeled dataset of 100
instances and labels them using LLM in stage 1. It
then performs Chain-of-thought (CoT) sampling to
estimate the logits using the same LL.M and then
utilizes the entropy of logits for exemplar selection
in stage 2. Their approach is significantly different
from ours in that it is (a) costly- requires multiple
runs of LLM to estimate logits, (b) has been shown
effective for only English tasks, and (c) uses only
Task Description in stage 1 and doesn’t assume
any labeled data (while in our setting, labeled data
from source languages is assumed) for ICL.!

Task-Specific prompting: A prompt con-
sists of (1) Task Description: To facilitate the
understanding of task, (2) Labeled Input-Output
pairs: Written sequentially in order of their
relevance to input query, and (3) Input itself, all
appended in the order of their mentions.

Recent studies have shown sensitivity of the out-
put to the template/format of input-output pairs
written in the prompt (Sclar et al., 2023; Voronov
et al., 2024). We follow the best template given in
Sclar et al. (2023) for NLI task, while for sequence
labeling, we explore various templates on our own
and report our results on the best one. We refer
to Appendix section B for details and the exact
templates used for each of our tasks.

'These 3 key differences make our technique not directly
comparable with the USP.
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Figure 1: SSP-CLT Paradigm for Cross-Lingual Transfer to target low-resource language

3 Methodology

We propose 2 variants of SSP-CLT as explained in
subsections 3.1 and 3.2.

3.1 SSP-CLT-SIM: Similarity-based
Self-Supervised Prompting

In this method, LLM is used for obtaining stage 1
predictions, explained as follows:

Stage 1:  Cross-Lingual Transfer using
similarity-based retrieval(CLT-SIM)

The idea is to leverage labeled training data from
MRLs and retrieve a set of similar ICL exemplars
for each test instance in the target LRL. The
retrieval process involved sampling top-K labeled
exemplars from the source languages’ combined
training set based on cosine similarity of Ada-002
embeddings. The selected exemplars, arranged in
descending order of similarity scores, are appended
into the prompt between the Task Description (TD)
and the input test instance.

Stage 2: Self-Supervised Prompting using
CLT-SIM predictions (SSP-CLT-SIM)

Since no labeled data for target languages is
assumed available, we utilize stage 1 predictions as
silver target exemplars to enhance performance. In
stage 2, we sub-select a few in-language exemplars
to be given into the prompt, without assuming any
labeled data in the target language. This involves
computing Ada-002-based cosine similarity scores
between a test instance and the other test instances
(excluding itself). Utilizing Stage 1 predictions
as silver labels, these exemplars are fed into the
prompt.

We name stages 1 and 2 as SSP-CLT and

SSP-CLT-SIM, respectively.

3.2 SSP-CLT-ILP: Integer Linear
Programming (ILP)-based selection
framework for Self-Supervised Prompting

To diversify our exemplar selection process, we
seek to incorporate other aspects such as qual-
ity and diversity. We hypothesize that the pure
similarity-based retrieval is sub-optimal since this
doesn’t consider the label information into account
while retrieval. Morover, the exemplars retrieved
independently based on purely embedding-based
similarity are often redundant as a whole set (Gupta
et al., 2023). In response, we introduce 2 additional
factors into our selection process as discussed be-
low -

» Confidence: We seek to utilize the label con-
fidence elicited from a smaller model, whose
logits are accessible unlike OpenAl models.
The hypothesis is that confident predictions
are also accurate, assuming the model is well-
calibrated and can serve as quality exemplars
in the prompt.

* Label Coverage: We also hypothesize that
ensuring coverage of all the labels (available
in the label set) in the selected exemplars’ set
can be more effective in terms of performance.

We formulate the above factors into an ILP with
primary and secondary objectives discussed as fol-
lows:
maximise Z Yi * S
€T

S-t-zyi =M

€T



VieT,yx(1—9;) <0

Vj € LabelSet, Zyl « count(label;) > ¢;
icT

Where T represents indices of target test samples,
y; denotes binary variable which is 1 if i sample
of T is selected and 0 0.w., s; denotes similarity
score of i*" sample with the query, M denotes the
no. of exemplars in prompt, ¢; represents the con-
fidence (probability) of i*" instance’s prediction
using fine-tuned model, 7 is the confidence thresh-
old (a hyperparameter), label; denotes 4§ label
in the label set and c; denotes it’s corresponding
threshold count (another hyperparameter) in the
entire set of selected exemplars.

We set M = 8, ¢j=1(V])), 7= 90" percentile prob.
value (obtained from fine-tuned model) for a par-
ticular label and language, for all our experiments.

4 Experiments

4.1 Tasks and Datasets

We experiment on 3 tasks - POS tagging, NER
and Natural Language Inference (NLI). The cho-
sen language families and datasets are: Universal
Dependency (Nivre et al., 2020) for Germanic POS
tagging, MasakhaNER (Adelani et al., 2021) for
African NER and AmericasNLI (Ebrahimi et al.,
2022) for NLI task on Indigenous languages of
Americas. We randomly sample 100 test samples
for each target language for NER and POS tasks,
while 99 test samples (33 for each class - ‘entail-
ment’, ‘contradiction’ and ‘neutral’) for the NLI
task. The source (train) and target (test) sets of
languages for each task are presented in App. C.

4.2 Comparison Models

Baselines: We compare our approach with the
SOTA supervised models as well LLM-based ICL
methods using naive random exemplar selection
strategy or the one with no exemplar selection at
all. For supervised baselines, we use both publicly
available SOTA models (in case applicable) as
well as fine-tune our own models on the source
languages’ data and test zero-shot on the target
LRLs.

Skyline: For comprehensively evaluating
our approach, we utilize the available training
data for target languages and perform few-shot
in-language similarity-based (using Ada-002 em-
beddings) retrieval for in-language prompting to

the LLM. This enables analyzing the performance
gap due to non-assumption of labeled training data
for the target LRLs.

Ablations: We perform 3 ablations of SST-CLT-
ILP selection strategy - (a) without confidence
thresholding, (b) without label coverage and (c)
without both i.e. pure similarity-based retrieval.
The ablation results have been shown with the best
performing underlying LLM i.e. GPT-4x.

LLMs and fine-tuned models: We evaluate our
method with a series of SOTA open-sourced and
closed-sourced LLMs - GPT3.5-turbo (Ouyang
et al., 2022), GPT-4x (GPT-4/GPT-4-Turbo)
(Achiam et al.,, 2023), and LLAMA-2-70b
(Touvron et al., 2023) for each task. For supervised
baselines, we fine-tune ZGUL(Rathore et al., 2023)
- mBERT Language Adapter-based SOTA model
for NER and POS, mDeBERTa (He et al., 2021)
for NLI. We further utilize the publicly available
NLI model mDeBERTa-v3-base-xnli-multilingual-
nli-2mil7 (Laurer et al., 2022) for NLI evaluation.
We term our fine-tuned model as mDeBERTa®”
and the puclic model as mDeBERTa'"?, as it was
trained on 100 languages. We note that GPT-4 has
been used instead of GPT-4-Turbo for the POS task
due to the inability of GPT-4-Turbo to follow the
instructions and give output that was compatible
with the verbalizer used across all the experiments.

S Results and Analysis

We present the results for all tasks in tables 1, 2
and 3. We categorize the results as follows (in the
specified order): Fine-tuned (cross-lingual) model,
SSP-CLT-SIM approach with LLama-2, GPT3.5,
and GPT4x LLMs, SSP-CLT-ILP approach with
the same LLMs, ablations of SSP-CLT-ILP with
GPT4x LLM, and finally, a skyline approach em-
ploying few-shot in-language retrieval (using Ope-
nAl Ada) along with their gold labels in prompt to
the GPT4x. We do not embolden skyline results be-
cause they are not comparable with our approaches,
which do not use target gold labels in anyway. Our
observations are as follows:

SSP-CLT-SIM achieves gains over CLT-SIM:
We observe that The SSP-CLT-SIM method has
improved gains over CLT-SIM strategy across all
tasks and language families for GPT3.5 and GPT4.
For LLaMa-2, the increase in average precision
(65.6 to 70.3) was offset by a decrease in average



Model Hau | Ibo | Kin | Lug | Luo | Avg.
ZGUL 522 | 56 | 537|545 |444 | 522
CLT-SIM (Llama-2-70b) 64.3 | 61.2 | 59.2 | 60.1 | 47.3 | 584
SSP-CLT-SIM (Llama-2-70b) 57.6 | 62.6 | 56.0 | 57.6 | 43.1 | 554
CLT-SIM (GPT-3.5-turbo) 545 | 69.2 | 57.8 | 63.7 | 46.4 | 58.3
SSP-CLT-SIM (GPT-3.5-turbo) 62.8 | 684 | 64.0 | 63.8 | 47.6 | 61.3
CLT-SIM (GPT-4-turbo) 64.7 | 80.8 | 64.6 | 71.0 | 53.3 | 66.9
SSP-CLT-SIM (GPT-4-turbo) 67.2 | 79.6 | 63.3 | 74.1 | 544 | 67.7
SSP-CLT-ILP (Llama-2-70b) 68.4 | 58 | 56.1 | 54.7 | 423 | 559
SSP-CLT-ILP (GPT-3.5) 61.1 | 689 | 62.1 | 67.1 | 51.4 | 62.1
SSP-CLT-ILP (GPT-4-turbo) 725 | 79.8 | 714 | 774 | 55.1 | 71.2
w/o Conf. thresholding 713 | 81.9 | 69.2 | 7T4.6 | 52.7 | 69.9
w/o Label Coverage 71.1 | 79.8 | 7114 | 774 | 551 | 71

w/o both (sim-based) 70.3 | 81.8 | 68 | 74.8 | 51.9 | 694
Few-shot in-language (GPT-4-turbo) | 75.5 | 85.9 | 70.7 | 73.6 | 67.2 | 74.6

Table 1: African NER: Ablations of SSP-CLT-ILP strategy shown for GPT-4-Turbo

Model Fo | Got | Gsw | Avg
ZGUL 772 | 21.1 | 65 | 544
CLT-SIM (Llama-2-70b) 79.1 | 36.0 | 71.8 | 62.3
SSP-CLT-SIM (Llama-2-70b) 78.5 | 379 | 73.5 | 63.3
CLT-SIM (GPT-3.5 First Stage) | 81.2 | 37.9 | 72.2 | 63.8
SSP-CLT-SIM (GPT-3.5) 824 | 632|794 | 75.0
CLT-SIM (GPT-4 First Stage) 81.3 | 66.5 | 82.3 | 76.7
SSP-CLT-SIM (GPT-4) 81.8 | 73.7 | 85.4 | 80.3
SSP-CLT-ILP (Llama-2-70b) 81.1 | 27.1 | 73.5 | 60.6
SSP-CLT-ILP (GPT-3.5) 83.2 | 543 | 79.5 | 723
SSP-CLT-ILP (GPT-4) 82.2 | 63.8 | 85.6 | 77.2
w/o Conf. thresholding 82.8 | 57 | 81.4 | 73.7
w/o Label Coverage 822|639 | 85.6 | 77.2
w/o both (sim-based) 82.4 | 55.8 | 82.3 | 73.5
Few-shot in-language (GPT-4) | 93.5 | 80.7 | 89.9 | 88

Table 2: Germanic POS: Ablations of SSP-CLT-ILP strategy shown for GPT-4

Model Aym | Quy | Nah | Gn | Avg
mDeBerta!' 404 | 455 | 434 | 43.4 | 432
mDeBerta®” 394 | 444 | 414 | 46.5 | 429
CLT-SIM (GPT-4-turbo) 347 | 429 | 449 | 55.1 | 444
SSP-CLT-SIM (GPT-4-turbo) 374 | 53.5 | 455 | 62.6 | 49.8
SSP-CLT-ILP (Llama-2-70b) 30.6 | 374 | 343 | 343 | 342
SSP-CLT-ILP (GPT-3.5-turbo) 424 | 485 | 414 | 475 | 45

SSP-CLT-ILP (GPT-4-turbo) 434 | 52.5 | 49.5 | 62.6 | 52

w/o Conf. thresh-holding 47.5 | 52.5 | 424 | 657 | 52

w/o Label Coverage 43.4 | 54.5 | 46.5 | 52.5 | 49.2
w/o both (i.e. sim-based) 404 | 455 | 444 | 66.7 | 49.3
Few-shot in-language (GPT-4-turbo) | 43.4 | 56.6 | 51.5 | 61.6 | 53.3

Table 3: Americas NLI: Ablations of SSP-CLT-ILP strategy shown for GPT-4-Turbo



recall (53.2 to 46.2) in african NER, explaining
the decrease in overall F1. We also obtain gains
in POS tagging across all languages and models.
This demonstrates that CLT-SIM can provide de-
cent silver labels from stage 1, which along with
their respective in-target retrieved sentences can
serve as effective ICL exemplars for the next stage
to the same LLM. More detailed analysis on this
follows in sec. 5.1.

SSP-CLT-ILP approach is effective across the
board: Our SSP-CLT-ILP method consistently out-
performs supervised models (ZGUL for NER, POS,
and DeBerta for NLI) across all three tasks, achiev-
ing up to a 19-point F1 gain in African NER. In
NLI, we observe a statistically significant gain of
approximately 9 F1 points compared to the De-
berta cross-lingual baseline. These gains carry over
to both GPT-3.5-Turbo and LLama-2-70b models,
highlighting the robustness of our selection algo-
rithm beyond GPT-4x.

Ablation analysis underscores the significance
of confidence-thresholding and label coverage
constraints, with their impact varying across
tasks. Confidence-thresholding proves crucial for
sequence-labeling tasks (NER and POS), while
label coverage is critical for the NLI task. De-
tailed analyses of these findings are provided
later. Removing both components results in a pure
similarity-based retrieval approach, using the fine-
tuned model’s labels as silver labels for stage 2.
This leads to a consistent performance drop across
all three tasks (up to 4 points in POS), emphasizing
the importance of diversity in exemplars induced
by our ILP technique and its positive impact on
downstream performance.

SSP-CLT-ILP v/s SSP-CLT-SIM: We addition-
ally compare SSP-CLT-ILP and SSP-CLT-SIM,
finding that the average F1 performance is supe-
rior for the ILP variant in African and Americas
language families, but slightly inferior in the Ger-
manic family. This discrepancy arises due to the
notably poor performance of the fine-tuned model
ZGUL on the specific language Got (Gothic). Con-
sequently, utilizing ZGUL’s labels has a dispropor-
tionately negative impact on this language. We
defer a thorough investigation into whether GPT-4
has encountered this language during pre-training
to future research.

Label coverage is crucial for NLI: We observe
average gains of 2.8 F1 points over AmericasNLI
task compared to the ablation that does not ensure
label coverage as a constraint. To investigate fur-

Model ‘ Neu. ‘ Ent. ‘ Con.
DeBerta®’ 21.8 | 745 | 323
SSP-CLT-ILP | 57.6 | 47.7 | 50.72
(w/o Label) | 35.6 | 43.9 | 68.2

Table 4: Labelwise Recall for fine-tuned model
(DeBerta-based) and ILP variants w. and w/o Label
coverage (GPT-4-Turbo)

ther, we compute average no. of exemplars for each
label that’s covered in the prompt for both methods
alongwith their label-wise F1 scores (details in Fig.
2). We observe that the ‘neutral’ label is not sam-
pled in any of the w/o label coverage variant, while
exactly one ‘neutral’ label is sampled in the SSP-
CLT-ILP (w. label constraint). This so happens as
the smaller fine-tuned model i.e. DeBerta-CL has
poor recall (22 points) for ‘neutral’ class and hence
the ILP solver has tendency to not sample this la-
bel, unless enforced via constraint. The class-wise
scores for DeBerta®”Z, SSP-CLT-ILP and SSP-CLT-
ILP w/o label coverage are presented in table 4. We
observe a difference of 22 recall points for ‘neutral’
class (57.6 vs 35.6) between the 2 ILP variants.
An example depicting this behaviour in terms of
the exemplars selected by both methods has been
shown in Figure 6.

Confidence thresholding is helpful for NER and
POS: We observe that, contrary to the observation
of label coverage being crucial in NLI, the confi-
dence thresholding plays the key role in sequence
labeling tasks NER and POS. This is validated from
ablation results in tables 1 and 2, wherein removing
confidence thresholding constraint from ILP leads
to 3.5 points drop for POS tagging (Germanic) and
1.3 points for NER. The drop is particularly signifi-
cant (around 7 F1 points) for Gothic (Got), showing
that not utilizing the confidence scores of ZGUL
leads to drastic drop. This is despite the fact that
the performance of ZGUL was already poor on Got
(21 F1 points), even then utilizing it’s confidence
scores leads to huge improvements. More insights
into this follows in the next point.

SSP-CLT-ILP effectively samples high-
precision exemplars: We investigate the precision
of the exemplars being selected by SSP-CLT-ILP
as well all it’s ablation variants. We compute the
label-wise precision of all MxN (M=8, N=no.
of test instances) for each target language and
compute their macro-average. It is observed for
NLI task (Fig. 2) that the macro-precision of
selected exemplars by SSP-CLT-ILP strategy is
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Figure 2: Label-wise statistics for AmericasNLI: Top row - Precision of ICL exemplars, Label-wise count per
prompt, Bottom row - Label-wise Precision, Recall and F1 results using different selection strategies (GPT-4-Turbo)

consistently higher than it’s other ablation variants,
the least value being of w/o both (similarity-based)
variant. This implies that the ILP is able to
effectively sample high-precision exemplars which,

in turn, are translated into superior F1 performance ~ Label-wise Precision of Selected Exemplars (NER)

W ILP M ILP wio label ILP wio conf M Sim-based

of SSP-CLT-ILP compared to other strategies. 7
For completeness, we also showcase the exem- w“
plar precision statistics for NER (label-wise) and £
POS (overall, for brevity) in Figure 3. The trends 2%
hold similar in the sense-that ‘w/o confidence’ and £ 1
‘similarity-based’ variants have significantly lower an I
precision than SSP-CLT-ILP. This is expected be-  DATE Loc ORG PER  Overall
cause both the ‘w/o confidence’ and ‘similarity- Label

Overall Precision of Selected Exemplars (POS)

based’ variants don’t take into account the qual- -

ity of predicted labels and are likely to sample

sentences with incorrectly predicted labels, owing ”
to high sentence similarity. This gap in precision *
of selected exemplars is translated into the down- 2 =
stream performance, as evident in tables 1 and 2. 5
On the other hand, the ‘w/o label’ variant is com- 52 .
petitive, unlike in NLI, in terms of both exemplars’ 50

ILP wio label ILP wlo conf  Sim-based
Selection strategy

Precision

precision as well as downstream performance for

sequence labeling tasks.
L . Figure 3: Top:Label-wise and overall precision of se-
5.1 Qualitative Analysis: SSP-CLT-SIM lected exemplars for Arican NER, Bottom: Overall pre-

We present the analysis for the gains obtained cision of selected exemplars for Germanic POS

via SSP-CLT-SIM for Germanic POS in Figure
4. The confusion matrix difference between SSP-
CLT-SIM and CLT-SIM suggests that the model
misclassifies auxiliary verbs as verbs in CLT-SIM,
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Figure 4: Difference in confusion matrices between
SSP-CLT-SIM and CLT-SIM for the POS task, summed
across all languages (tags with less than 100 instances
have been omitted). The increase in correct tags is visi-
ble along the diagonal, and misclassifications between
VERB and AUX tags / NOUN and VERB tags have also
improved.

and this is corrected in SSP-CLT-SIM. These errors
are a consequence of the labels on the in-context
exemplars the model receives, and not the tokens
of the language itself.

We highlight this via the two Swiss-German POS
examples in Figure 5. The misclassified verbs are
corrected by SSP-CLT-SIM, and these labels are
again misclassified when more than half of the
labels in the in-context exemplars are corrupted.

6 Conclusions and Future Work

We present a novel SSP-CLT framework for Self-
Supervised Prompting in Cross-Lingual Transfer
settings. Our goal is to utilize target low-resource
language’s test instances (while not utilizing the
gold labels) in a self-supervised fasion. We develop
on top of Ada-002-embedding-based retrieval for
cross-lingual prompting in stage 1, followed by in-
language prompting in stage 2, while utilizing stage
1 labels as stage 2 exemplars. We observe consis-
tent gains of stage 2 over stage 1 results across 3
LLMs - LLama-2-70b, GPT-3.5-Turbo and GPT-4x
models. We term this method SSP-CLT-SIM.

We next seek to utilize the smaller fine-tuned
models for stage 1. For this purpose, we addition-
ally leverage their prediction probabilities (based
on logits) from stage 1 along with the Ada-002 sim-
ilarity scores. Moreover, we enforce the coverage
of all labels for the given task in the selected ex-
emplars via an Integer Linear Programming (ILP)

framework that maximizes the aggregated similar-
ity scores of selected exemplars, while ensuring
their confidence scores being higher than a thresh-
old (heuristically set to 90" percentile probabilty
score for each label), and each label being cov-
ered at least once. The results show consistent
gains of SSP-CLT-ILP compared to SSP-CLT-SIM,
despite incurring half the cost of LLM inference.
The ablations show that each component of SSP-
CLT-ILP is useful across tasks - Label coverage
being crucial for NLI and Confidence threshold-
ing being for NER and POS. Our detailed analysis
show that ILP approach is able to effectively sam-
ple more high-precision exemplars compared to
other retrieval strategies across tasks, and this, in
turn, results in the overall superior performance for
the downstream task at hand.

In future, we seek to extend our technique to
more non-trivial applications such as cross-lingual
generation, semantic parsing, etc. We also posit
that smaller fine-tuned models, when calibrated
properly, can result in more efficient selection of
exemplars to an LLM, as compared to poorly cal-
ibrated counterparts, in terms of downstream per-
formance. We leave a careful and systematic in-
vestigation into this hypothesis for future work.
Moreover, we currently cover the languages having
roman scripts, but we seek to extend our work for
non-roman script languages as well in future.

7 Limitations

We show all our results and ablations on the recent
state-of-the-art LLMs including GPT4. The infer-
ence for these LLMs is expensive, and makes the
model deployment infeasible. Other potential limi-
tations are extending our method to tasks such as
fact checking, in which the LLMs suffer from hal-
lucinations and overprediction issues. The reason
why we don’t use LLM logits in ILP framework is
because they are not openly released by OpenAl
and hence, there becomes a need to rely on smaller
fine-tuned models - which can potentially lead to
sub-optimal downstream performance, in case the
fine-tuned models are poorly calibrated. Another
serious implication of using LLMs for non-roman
script languages is unreasonably high fertility (to-
kens per word split) of the LLM tokenizers, which
increases the cost as well as strips the input prompt,
which is not desirable.
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A Implementation and Hyperparameter
Details

We use Azure OpenAl service 2 for all experiments
involving GPT-3x and GPT-4x models. LLama-2-
70b has been inferred on AMD A100 node having
8 GPUs. We set temperature as 0.0 consistently
for all our experiments, making our results repro-
ducible. The max_tokens (max. no. of generated
tokens) parameter is set to 1024 for POS and NER
tasks, while 15 for the NLI. For all experiments,
the no. of exemplars (M) is set equal to 8 for fair
comparison.

B Prompt details

Prompts for the Named Entity Recognition (NER)
and Part of Speech Tagging (POS) tasks are pre-
sented in the tab separated format shown in B.0.2
and B.0.3 respectively.

Prompts for Natural Language Inference (NLI)
initially used the framework in Ahuja et al. (2023)
. To improve our performance, we changed the
prompt to use Sclar et al. (2023)’s framework,
where the authors performed an exhaustive search
over tokens used for a prompt in order to find the
prompt with optimal performance. This increased
Macro F1 score by atleast 10% across all the tested
languages. We use the same prompt across all mod-
els used in our experiments.

B.0.1 Natural Language Inference (NLI)

Task Description: You are an NLP assistant
whose purpose is to solve Natural Language
Inference (NLI) problems. NLI is the task of
determining the inference relation between two
(short, ordered) texts: entailment, contradiction,
or neutral. Answer as concisely as possible in the
same format as the examples below:

Input format:

{premise}

Question: Does this imply that {hypothesis}? Yes,
No, or Maybe?

Output format:

Answer: {output}

Verbalizer:

Yes: Entailment

No: Contradiction

Maybe: Neutral

Zhttps://azure.microsoft.com/en-in/products/ai-
services/openai-service
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B.0.2 Named Entity Recognition (NER)

Task Description: Tag the following sentence ac-
cording to the BIO scheme for the NER task, using
the tags PER (person), LOC (location), ORG (or-
ganization) and DATE (date). Follow the format
specified in the examples below:

Input format:

Sentence: wy ws ... wr

Output format:

Tags:

w1<TAB>0;

w2<TAB>02

wr<TAB>op

Verbalizer:

Extract the sequence of labels o1, 09, ...03 from
generated response.

B.0.3 Part of Speech (PoS) tagging

Task Description: Tag the following sentence ac-
cording to the Part of Speech (POS) of each word.
The valid tags are ADJ, ADP, ADV, AUX, CCONJ,
DET, INTJ, NOUN, NUM, PART, PRON, PROPN,
PUNCT, SCONIJ, SYM, VERB, X. Follow the for-
mat specified in the examples below:

Input format:

Sentence: wy ws ... W

Output format:

Tags:

w1<TAB>o0q

w2<TAB>02

wr<TAB>or

Verbalizer:

Extract the sequence of labels o1, 02, ...03 from
generated response.

B.1 Prompts for GSW Examples

The base SSP-CLT-SIM prompts for the GSW ex-
amples highlighted in Figure 5 are given below.
Labels which are misclassified in the in-context
exemplars are coloured in red, and the AUX la-
bels which are to be flipped in the ablations are
coloured in blue. It is interesting to note that exam-
ples 1 and 2 are similar, as example 1 is retrieved
as an in-context exemplar for example 2.

B.1.1 Example 1

Tag the following sentence according to the Part
of Speech (POS) of each word. The valid tags
are ADJ, ADP, ADV, AUX, CCONJ, DET, INT]J,
NOUN, NUM, PART, PRON, PROPN, PUNCT,


https://azure.microsoft.com/en-in/products/ai-services/openai-service
https://azure.microsoft.com/en-in/products/ai-services/openai-service

Ds Gueten isch immerhin gsi dass i ungerdesse s6fu mied bi gsi dass i andlech ha chénne go schlofe
CLT-SIM DET NOUN AUX ADV VERB PUNCT SCONJ PRON  ADV ~ VERB ADJ ADP VERB PUNCT SCONJ PRON ADV ~AUX AUX VERB VERB PUNCT
SSP-CLT-SIM DET NOUN AUX ADV ~ AUX PUNCT SCONJ PRON ADV ADV  ADJ ADP AUX PUNCT SCONJ PRON ADV ~AUX AUX PART VERB PUNCT
Sﬁ:'g';TVSEL':" DET NOUN AUX ADV ~ AUX PUNCT SCONJ PRON ADV ADV  ADJ ADP AUX PUNCT SCONJ PRON ADV ~AUX AUX PART VERB PUNCT
Sﬁ:‘gl;TVSEL'g DET NOUN VERB ADV  VERB PUNCT SCONJ PRON ADV ADV ADJ ADP VERB PUNCT SCONJ PRON ADV ~AUX AUX VERB VERB PUNCT
Gold DET NOUN AUX ADV  AUX PUNCT SCONJ PRON  ADV ADV  ADJ AUX AUX PUNCT SCONJ PRON ADV ~AUX AUX PART VERB PUNCT
1 cha der ihri  Telefonnummere ga de mou unverbi Kontakt uuf
CLT-SIM PRON VERB DET ADJ NOUN VERB PUNCT PRON VERB  ADV ADJ NOUN VERB PUNCT
SSP-CLT-SIM PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB  ADV ADJ NOUN ~ ADP PUNCT
Sﬁ:f&"’)\i‘ﬂ'g PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB  ADV ADJ NOUN  ADP PUNCT
SS(ZS;TVSEL':') PRON VERB PRON PRON NOUN VERB PUNCT DET VERB  ADV ADJ NOUN  ADP PUNCT
Gold PRON AUX PRON DET NOUN VERB PUNCT ADV ~ VERB  ADV ADJ NOUN  PART PUNCT

Figure 5: Label flips for CLT-SIM and SSP-CLT-SIM, for POS tagging in Swiss-German (gsw). Incorrect labels are
marked in red. SSP-CLT-SIM ablations include flipping half/all of the AUX labels in the prompt to VERB labels.

Gold labels are given for reference.

SCONIJ, SYM, VERB, X. Follow the format
specified in the examples below:
Sentence: I main , das Ganze letscht Wuchi isch
mier scho dchli iigfaard .

Tags:

I PRON

main VERB

, PUNCT

das DET

Ganze NOUN

letscht ADJ

Wuchi NOUN

isch AUX

mier PRON

scho ADV

dchli ADV

iigfaard VERB

. PUNCT

Sentence: Du gsehsch uus , wi wenn de néime no
hittisch z trinken iibercho .
Tags:

Du PRON

gsehsch VERB

uus PRON

, PUNCT

wi SCONJ

wenn SCONJ

de DET

noime AD]J

no ADV

hittisch AUX

z PART

trinken VERB

iibercho VERB
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. PUNCT
Sentence: Dir weit mer doch nid verzoue , di
Wiutsche heige vo eim Tag uf en anger ufghort
Chuttlen asse .
Tags:

Dir PRON

weit VERB

mer PRON

doch ADV

nid ADV

verzoue VERB

, PUNCT

di DET
Wiutsche NOUN
heige VERB

vo ADP

eim DET

Tag NOUN

uf ADP

en DET

anger ADJ
ufghort VERB
Chuttlen NOUN
dsse VERB

. PUNCT
Sentence: es isch ndmli echt usgstorbe gsi .
Tags:

es PRON

isch AUX

namli ADV

echt ADJ
usgstorbe VERB
gsi AUX



. PUNCT

Sentence: Aso bini rdcht uufgschmissd gsi und
dem entschprichend fascht verzwiiflét .
Tags:

Aso ADV

bini AUX

richt ADV

uufgschmissd VERB

gsi AUX

und CCONJ

dem PRON

entschprichend ADJ

fascht ADV

verzwiiflit VERB

. PUNCT

Sentence: Der Aischme wett néd schaffe biin em .
Tags:

Der DET

Aidschme NOUN

wett AUX

nod ADV

schaffe VERB

biin ADP

em PRON

. PUNCT

Sentence: Zerscht hends am Dani gsait , dr soli
doch Hoochdiitsch redd , das géngi denn grad gaar
nod , wenn ar so redi , widner redi .
Tags:

Zerscht ADV

hends PRON

am ADP

Dani PROPN

gsait VERB

, PUNCT

ir PRON

soli AUX

doch ADV

Hoochdiitsch ADJ

redd VERB

, PUNCT

das PRON

gingi VERB

denn ADV

grad ADV

gaar ADV
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ndd ADV

, PUNCT

wenn SCONJ

ir PRON

so ADV

redi VERB

, PUNCT

widner PRON

redi VERB

. PUNCT

Sentence: Isch das e Sach gsi , bis mer se gfunge
hei gha .

Tags:

Isch AUX

das PRON

e DET

Sach NOUN

gsi AUX

, PUNCT

bis SCONJ

mer PRON

se PRON

gfunge VERB

hei AUX

gha VERB

. PUNCT

Sentence: Ds Gueten isch immerhin gsi , dass i
ungerdesse sofu miied bi gsi , dass i dndlech ha
chonne go schlofe .

Tags:

1313

B.1.2 Example 2

Tag the following sentence according to the Part
of Speech (POS) of each word. The valid tags
are ADJ, ADP, ADV, AUX, CCONJ, DET, INT]J,
NOUN, NUM, PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X. Follow the format
specified in the examples below:

Sentence: I ha ar Marie-Claire gseit , es sig mer
chli schldcht und i mog jetz niimm liire .

Tags:

I PRON

ha AUX

ar PART

Marie-Claire PROPN

gseit VERB



, PUNCT

es PRON

sig AUX

mer PRON

chli ADV

schldacht ADJ

und CCONJ

i PRON

mog VERB

jetz ADV

niimm ADV

liire VERB

. PUNCT
Sentence: De Spanier hed de Kontakt vermettlet ,
d Rumiine solled d Holldnder ombrocht ha .
Tags:

De DET

Spanier NOUN
hed AUX

de DET

Kontakt NOUN
vermettlet VERB

, PUNCT

d DET

Rumine NOUN
solled AUX

d DET

Hollander PROPN
ombrocht VERB
ha AUX

. PUNCT
Sentence: Ds Gueten isch immerhin gsi , dass i
ungerdesse sofu miied bi gsi , dass i dndlech ha
chonne go schlofe .
Tags:

Ds DET

Gueten NOUN
isch AUX
immerhin ADV

gsi VERB

, PUNCT

dass SCONJ

i PRON
ungerdesse ADV
sofu VERB

miied ADJ

bi ADP

gsi VERB
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, PUNCT

dass SCONJ

i PRON

indlech ADV

ha AUX

chonne AUX

go VERB

schlofe VERB

. PUNCT

Sentence: Isch das e Sach gsi , bis mer se gfunge
hei gha .

Tags:

Isch AUX

das PRON

e DET

Sach NOUN

gsi AUX

, PUNCT

bis SCONJ

mer PRON

se PRON

gfunge VERB

hei AUX

gha VERB

. PUNCT

Sentence: De Dialdkt muess zu de Gschecht und
zum Inhaut vonere Werbig passe .
Tags:

De DET

Dialdkt NOUN

muess AUX

zu ADP

de DET

Gschecht NOUN

und CCONJ

zum ADP

Inhaut NOUN

vonere ADP

Werbig NOUN

passe VERB

. PUNCT

Sentence: Mit der Zit hani mi mit mir sduber uf ei
Schriibwiis pro Wort aafo einige .
Tags:

Mit ADP

der DET



Zit NOUN

hani VERB

mi PRON

mit ADP

mir PRON

sduber ADJ

uf ADP

ei DET

Schriibwiis NOUN

pro ADP

Wort NOUN

aafo VERB

einige DET

. PUNCT

Sentence: Mit all dend Worter hani natiirli niit
choni aafangi .

Tags:

Mit ADP

all DET

dend DET

Worter NOUN

hani PRON

natiirli ADV

niit ADV

chond VERB

aafangd VERB

. PUNCT

Sentence: Aso bini ridcht uufgschmissid gsi und
dem entschprichend fascht verzwiiflét .
Tags:

Aso ADV

bini AUX

richt ADV

uufgschmissid VERB

gsi AUX

und CCONJ

dem PRON

entschprichend ADJ

fascht ADV

verzwiiflit VERB

. PUNCT

Sentence: I cha der ihri Telefonnummere gi , de
nimmsch mou unverbindlech Kontakt uuf .
Tags:

1313
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C Source and Target Languages for each
task

Language Family | Source languages | Source size

Germanic {En,Is,De}
African {En,Am,Sw,Wo}
Americas {En,Es}

Table 5: Combined Source (Training) languages’ data
size (# Sentences)

30000
19788
19998

Language Family ‘ Test languages ‘ Test size
Germanic {Fo, Got, Gsw}
African {Hau,Ibo,Kin,Lug,Luo}
Americas {Aym,Gn,Quy,Nah}

Table 6: Combined Source (Training) languages’ data
size (# Sentences)

Code Language
En English
Am Ambharic
Sw Swahili
Wo Wolof
Hau Hausa
Ibo Igbo
Kin Kinyarwanda
Lug Luganda
Luo Luo
Is Icelandic
De German
Fo Faroese
Got Gothic
Gsw | Swiss German
Es Spanish
Aym Aymara
Gn Guarani
Quy Quechua
Nah Nahuatl

Table 7: Languages and their codes



Premise: Ah, huk chaypi allinga apakurga allin gawasgayga paniypa fiawpag
yuyariyninmi, chaypas hina hipa pampapim karga.

Hypothesis: Yuyaruniga hipa pampapi huk ima apakusgantam.

Answer: entailment

Premise: Yaykuykuptiykuga punkukunaga wichgasgam kachkarga.
Hypothesis: Punku wichgasqa kachkaptinpas yaykurganikum.
Answer: entailment

Premise: Yanapawadqniy atiq sispasmi hatun llagtapa waklawninpiraq tiyan.
Hypothesis: Yanapawagniy warmi warman 5 millas nisgan karupiraq tiyan.
Answer: neutral

Premise: Manam mayman risqanta yacharganikuchu.
Hypothesis: Mayman risqantam yacharganiku.
Answer: entailment

Premise: Chayna kaptinga hamutachkanim huktapiwan Ramonawan rimariyta.
Hypothesis: Ramonawanmi huktapiwan rimargani.
Answer: entailment

Premise: Ripukusgafiam hinaspam amafia llakikunaypaq niwarga.
Hypothesis: Ama llakikunaytam niwarga.
Answer: entailment

Premise: Ichapasya huk kag mana yachasgaymanta hamun ichaga
Hypothesis: Apurawtam hamun, ichaga maymanta hamusganta yachanim.
Answer: entailment

Premise: Locust Hill oh awriki, ari, kusa
Hypothesis: Locust Hill nisgaga allinmi.
Answer: contradiction

Premise: Oh, payllam isqun iskay iskayraq regulador nisgapi inyecciénta ginag
karga.

Hypothesis: Martes punchawtam inyector nisqata hinargani.

Answer: neutral

Figure 6: Correct case of ‘Neutral’ detected by ILP
(left), while ‘w/o label’ variant misses it (right). We
note that exact one ‘neutral’ class has been sampled by
ILP, while no ‘neutral’ is sampled in ‘w/o label’ version.

Premise: Ah, huk chaypi allinga apakurqa allin gawasgayga paniypa fiawpaqg
yuyariyninmi, chaypas hina hipa pampapim karga.

Hypothesis: Yuyaruniqa hipa pampapi huk ima apakusgantam.

Answer: entailment

Premise: Yaykuykuptiykuga punkukunaga wichgasgam kachkarga.
Hypothesis: Punku wichgasqa kachkaptinpas yaykurganikum.
Answer: entailment

Premise: Manam mayman risganta yacharganikuchu.
Hypothesis: Mayman risgantam yacharganiku.
Answer: entailment

Premise: Chayna kaptinga hamutachkanim huktapiwan Ramonawan rimariyta.
Hypothesis: Ramonawanmi huktapiwan rimargani.
Answer: entailment

Premise: Manam pachay kargachu ima kagpas ruranaypag.
Hypothesis: Mana pacha llapan ginanaypag haypawargachu
Answer: entailment

Premise: Ripukusgafiam hinaspam amafia llakikunaypaq niwarqga.
Hypothesis: Ama llakikunaytam niwarga.
Answer: entailment

Premise: Ichapasya huk kag mana yachasqaymanta hamun ichaga
Hypothesis: Apurawtam hamun, ichaga maymanta hamusganta yachanim.
Answer: entailment

Premise: Locust Hill oh awriki, ari, kusa
Hypothesis: Locust Hill nisgaga allinmi.
Answer: contradiction

Premise: Oh, payllam isqun iskay iskayraq regulador nisqapi inyeccidnta ginaq

karga. Hypothesis: Martes punchawtam inyector nisqata hinargani.
Answer: contradiction
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