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Abstract

In-Context Learning (ICL) is a widely em-001
braced paradigm for eliciting task-specific ca-002
pabilities from large language models (LLMs).003
Present-day LLMs with ICL have shown ex-004
ceptional performance on several English NLP005
tasks, but their utility on other languages is006
still underexplored. Our work investigates their007
effectiveness for NLP tasks in low-resource008
languages (LRLs), especially for cross-lingual009
transfer, where task-specific training data for010
one or more related languages is available.011

We propose Self-Supervised Prompting for012
Cross-Lingual Transfer (SSP-CLT), a novel ap-013
proach for zero-shot cross-lingual transfer to014
LRLs. SSP-CLT works in two stages and has 2015
variants. In first variant, in Stage I, for a given016
target test instance, exemplars are retrieved017
from source training data and included in the018
LLM prompt for ICL – this obtains an initial la-019
beling. Once all test data instances are labeled,020
Stage II repeats the whole process, but draws021
exemplars from Stage I labelings of other test022
datapoints in the target language. The second023
variant of SSP-CLT uses a fine-tuned model for024
stage 1 predictions, while stage 2 uses an Inte-025
ger Linear Programming (ILP)-based exemplar026
selection that balances similarity, confidence027
and label coverage. Experiments on 3 tasks and028
3 language families demonstrate that SSP-CLT029
strongly outperforms supervised baselines and030
also other prompting approaches.031

1 Introduction032

Recent Large Language Models (LLMs) such as033

GPT-3.5-Turbo & GPT-4 (Ouyang et al., 2022;034

Achiam et al., 2023) show exceptional perfor-035

mance on a variety of NLP and reasoning tasks036

via In-Context Learning (ICL) (Brown et al., 2020;037

Chowdhery et al., 2022). ICL feeds a task-specific038

instruction along with few exemplars, appended039

with the test input, to the LLM. As LLMs can be040

highly sensitive to selection and ordering of exem-041

plars (Lu et al., 2022; Zhao et al., 2021), exemplar 042

retrieval is a crucial component of ICL. 043

LLMs show excellent performance on English 044

tasks, but their utility on other languages is rel- 045

atively underexplored. In particular, we study 046

zero-shot cross-lingual transfer to low-resource 047

languages (LRLs) – a setting where labeled task 048

data from one or more related languages is avail- 049

able, but no training data exists for the target LRL. 050

Cross-lingual transfer has been addressed 051

through standard fine-tuning (Muller et al., 2021; 052

Alabi et al., 2022), and language adapters (Pfeif- 053

fer et al., 2020; Üstün et al., 2020; Rathore et al., 054

2023), but there is limited work on cross-lingual 055

ICL. There are two exceptions (Ahuja et al., 2023; 056

Asai et al., 2023), where ICL is employed with ex- 057

emplars from a source language, but they use ran- 058

dom sampling for exemplar selection, resulting in 059

performance inferior to cross-lingually fine-tuned 060

models, such as mBERT and XLM-R (Devlin et al., 061

2019; Conneau et al., 2020). 062

In response, we present Cross-Lingual Self- 063

Adaptive Prompting (SSP-CLT) – a two stage 064

method for cross-lingual transfer to LRLs. In Stage 065

I, SSP-CLT dynamically retrieves exemplars from 066

source language(s) training data, based on the test 067

sentence. The LLM labels the test input based on 068

ICL over the retrieved exemplars in the prompt. 069

In this fashion, all test data points get preliminary 070

labels. In Stage II, SSP-CLT-SIM repeats the same 071

process, but this time, the exemplars are retrieved 072

from the test set itself using similarity as a metric, 073

and are presented to LLM with their Stage I labels. 074

The hypothesis is that an LLM can benefit further 075

from similar sentences in the same language, even 076

if the labels are not entirely accurate. 077

Noting that SSP-CLT-SIM labels each test in- 078

stance via an LLM twice, we replace LLM- 079

based Stage I with existing (non-ICL) approaches 080

for cross-lingual transfer. In our work, we use 081

ZGUL (Rathore et al., 2023), which uses language 082
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adapters in mBERT, to make preliminary predic-083

tions for a test sentence. These labelings are di-084

rectly to be used in Stage II, i.e., LLM prompt uses085

labels from ZGUL. This cuts down expensive LLM086

calls by half. Finally, to select the best exemplars,087

we develop a novel Integer Linear Programming088

(ILP) based approach, called SSP-CLT-ILP, which089

balances the various objectives of (1) similarity090

with test sentence, (2) confidence in predictions,091

and (3) coverage of the various labels in the task.092

We perform experiments on sequence labeling093

tasks (POS and NER), and natural language infer-094

ence (NLI) – a text classification task. Our datasets095

encompass three typologically diverse language096

families: African, Germanic and Americas. Our097

experiments show consistent and substantial im-098

provements over existing supervised as well as sim-099

pler ICL-based approaches. We will make both our100

codebase and prompts publicly accessible.101

Our contributions are summarized as follows:102

1. We investigate In-Context Learning (ICL)103

strategies for the task of zero-shot cross-104

lingual transfer to low-resource languages, uti-105

lizing the labeled data from related languages.106

107 2. We propose SSP-CLT, a two-stage self-108

adaptive prompting paradigm for this task,109

where first stage may be done by an LLM110

or other cross-lingual transfer models.111

3. We introduce a framework for exemplar se-112

lection utilizing an ILP. The ILP incorporates113

similarity to test input along with confidence114

of prediction (when available), and enforces115

label coverage constraints for better selection.116

117 4. Our results show improved F1 scores across118

3 tasks and 3 language families, as compared119

to both existing fine-tuning and LLM-based120

SoTA models.121

2 Related Work122

Cross-lingual ICL: In general, the cross-lingual123

ICL remains systematically unexplored in litera-124

ture. Previous approaches for cross-lingual ICL125

rely on the utilization of random input-output pairs126

for prompt construction (Zhang et al., 2021; Winata127

et al., 2021; Ahuja et al., 2023; Asai et al., 2023).128

Recent methods (Agrawal et al., 2022; Tanwar129

et al., 2023) aim to fill this void by utilizing se-130

mantic similarity for cross-lingual retrieval from131

a high-resource language’s labeled data as candi-132

dates, given the target LRL’s instance as query.133

This is facilitated with embedding-based multi- 134

lingual retrievers such as multilingual sentence- 135

transformers (Reimers and Gurevych, 2020). More 136

recently, OpenAI-based embeddings have been 137

used effectively for cross-lingual retrieval (Nambi 138

et al., 2023). 139

In above works, the prompting is done in a 140

high-resource language, mostly English. This is 141

called cross-lingual (CL) prompting. This is in 142

contrast to in-language (IL) prompting, in which 143

exemplars are also retrieved from the training data 144

of the target language. In our setting, we assume no 145

availability of labeled training data for target LRLs, 146

making only CL prompting applicable in our 147

scenario. However, we do conduct comparisons 148

with the IL prompting skyline methods to validate 149

our approaches. 150

151

Self-Adaptive Prompting: (Wan et al., 2023) pro- 152

posed Universal Self-Adaptive (USP) framework, 153

which utilizes an external unlabeled dataset of 100 154

instances and labels them using LLM in stage 1. It 155

then performs Chain-of-thought (CoT) sampling to 156

estimate the logits using the same LLM and then 157

utilizes the entropy of logits for exemplar selection 158

in stage 2. Their approach is significantly different 159

from ours in that it is (a) costly- requires multiple 160

runs of LLM to estimate logits, (b) has been shown 161

effective for only English tasks, and (c) uses only 162

Task Description in stage 1 and doesn’t assume 163

any labeled data (while in our setting, labeled data 164

from source languages is assumed) for ICL.1 165

166

Task-Specific prompting: A prompt con- 167

sists of (1) Task Description: To facilitate the 168

understanding of task, (2) Labeled Input-Output 169

pairs: Written sequentially in order of their 170

relevance to input query, and (3) Input itself, all 171

appended in the order of their mentions. 172

Recent studies have shown sensitivity of the out- 173

put to the template/format of input-output pairs 174

written in the prompt (Sclar et al., 2023; Voronov 175

et al., 2024). We follow the best template given in 176

Sclar et al. (2023) for NLI task, while for sequence 177

labeling, we explore various templates on our own 178

and report our results on the best one. We refer 179

to Appendix section B for details and the exact 180

templates used for each of our tasks. 181

1These 3 key differences make our technique not directly
comparable with the USP.
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Figure 1: SSP-CLT Paradigm for Cross-Lingual Transfer to target low-resource language

3 Methodology182

We propose 2 variants of SSP-CLT as explained in183

subsections 3.1 and 3.2.184

3.1 SSP-CLT-SIM: Similarity-based185

Self-Supervised Prompting186

In this method, LLM is used for obtaining stage 1187

predictions, explained as follows:188

Stage 1: Cross-Lingual Transfer using189

similarity-based retrieval(CLT-SIM)190

The idea is to leverage labeled training data from191

MRLs and retrieve a set of similar ICL exemplars192

for each test instance in the target LRL. The193

retrieval process involved sampling top-K labeled194

exemplars from the source languages’ combined195

training set based on cosine similarity of Ada-002196

embeddings. The selected exemplars, arranged in197

descending order of similarity scores, are appended198

into the prompt between the Task Description (TD)199

and the input test instance.200

201

Stage 2: Self-Supervised Prompting using202

CLT-SIM predictions (SSP-CLT-SIM)203

Since no labeled data for target languages is204

assumed available, we utilize stage 1 predictions as205

silver target exemplars to enhance performance. In206

stage 2, we sub-select a few in-language exemplars207

to be given into the prompt, without assuming any208

labeled data in the target language. This involves209

computing Ada-002-based cosine similarity scores210

between a test instance and the other test instances211

(excluding itself). Utilizing Stage 1 predictions212

as silver labels, these exemplars are fed into the213

prompt.214

We name stages 1 and 2 as SSP-CLT and215

SSP-CLT-SIM, respectively. 216

3.2 SSP-CLT-ILP: Integer Linear 217

Programming (ILP)-based selection 218

framework for Self-Supervised Prompting 219

To diversify our exemplar selection process, we 220

seek to incorporate other aspects such as qual- 221

ity and diversity. We hypothesize that the pure 222

similarity-based retrieval is sub-optimal since this 223

doesn’t consider the label information into account 224

while retrieval. Morover, the exemplars retrieved 225

independently based on purely embedding-based 226

similarity are often redundant as a whole set (Gupta 227

et al., 2023). In response, we introduce 2 additional 228

factors into our selection process as discussed be- 229

low - 230

• Confidence: We seek to utilize the label con- 231

fidence elicited from a smaller model, whose 232

logits are accessible unlike OpenAI models. 233

The hypothesis is that confident predictions 234

are also accurate, assuming the model is well- 235

calibrated and can serve as quality exemplars 236

in the prompt. 237

• Label Coverage: We also hypothesize that 238

ensuring coverage of all the labels (available 239

in the label set) in the selected exemplars’ set 240

can be more effective in terms of performance. 241

We formulate the above factors into an ILP with
primary and secondary objectives discussed as fol-
lows:

maximise
∑
i∈T

yi ∗ si

s.t.
∑
i∈T

yi = M
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∀i ∈ T, yi ∗ (τ − ŷi) ≤ 0

∀j ∈ LabelSet,
∑
i∈T

yi ∗ count(labelj) ≥ cj

Where T represents indices of target test samples,242

yi denotes binary variable which is 1 if ith sample243

of T is selected and 0 o.w., si denotes similarity244

score of ith sample with the query, M denotes the245

no. of exemplars in prompt, ŷi represents the con-246

fidence (probability) of ith instance’s prediction247

using fine-tuned model, τ is the confidence thresh-248

old (a hyperparameter), labelj denotes jth label249

in the label set and cj denotes it’s corresponding250

threshold count (another hyperparameter) in the251

entire set of selected exemplars.252

We set M = 8, cj=1 (∀ j), τ = 90th percentile prob.253

value (obtained from fine-tuned model) for a par-254

ticular label and language, for all our experiments.255

4 Experiments256

4.1 Tasks and Datasets257

We experiment on 3 tasks - POS tagging, NER258

and Natural Language Inference (NLI). The cho-259

sen language families and datasets are: Universal260

Dependency (Nivre et al., 2020) for Germanic POS261

tagging, MasakhaNER (Adelani et al., 2021) for262

African NER and AmericasNLI (Ebrahimi et al.,263

2022) for NLI task on Indigenous languages of264

Americas. We randomly sample 100 test samples265

for each target language for NER and POS tasks,266

while 99 test samples (33 for each class - ‘entail-267

ment’, ‘contradiction’ and ‘neutral’) for the NLI268

task. The source (train) and target (test) sets of269

languages for each task are presented in App. C.270

4.2 Comparison Models271

Baselines: We compare our approach with the272

SOTA supervised models as well LLM-based ICL273

methods using naive random exemplar selection274

strategy or the one with no exemplar selection at275

all. For supervised baselines, we use both publicly276

available SOTA models (in case applicable) as277

well as fine-tune our own models on the source278

languages’ data and test zero-shot on the target279

LRLs.280

281

Skyline: For comprehensively evaluating282

our approach, we utilize the available training283

data for target languages and perform few-shot284

in-language similarity-based (using Ada-002 em-285

beddings) retrieval for in-language prompting to286

the LLM. This enables analyzing the performance 287

gap due to non-assumption of labeled training data 288

for the target LRLs. 289

290

Ablations: We perform 3 ablations of SST-CLT- 291

ILP selection strategy - (a) without confidence 292

thresholding, (b) without label coverage and (c) 293

without both i.e. pure similarity-based retrieval. 294

The ablation results have been shown with the best 295

performing underlying LLM i.e. GPT-4x. 296

297

LLMs and fine-tuned models: We evaluate our 298

method with a series of SOTA open-sourced and 299

closed-sourced LLMs - GPT3.5-turbo (Ouyang 300

et al., 2022), GPT-4x (GPT-4/GPT-4-Turbo) 301

(Achiam et al., 2023), and LLAMA-2-70b 302

(Touvron et al., 2023) for each task. For supervised 303

baselines, we fine-tune ZGUL(Rathore et al., 2023) 304

- mBERT Language Adapter-based SOTA model 305

for NER and POS, mDeBERTa (He et al., 2021) 306

for NLI. We further utilize the publicly available 307

NLI model mDeBERTa-v3-base-xnli-multilingual- 308

nli-2mil7 (Laurer et al., 2022) for NLI evaluation. 309

We term our fine-tuned model as mDeBERTaCL 310

and the puclic model as mDeBERTa100, as it was 311

trained on 100 languages. We note that GPT-4 has 312

been used instead of GPT-4-Turbo for the POS task 313

due to the inability of GPT-4-Turbo to follow the 314

instructions and give output that was compatible 315

with the verbalizer used across all the experiments. 316

5 Results and Analysis 317

We present the results for all tasks in tables 1, 2 318

and 3. We categorize the results as follows (in the 319

specified order): Fine-tuned (cross-lingual) model, 320

SSP-CLT-SIM approach with LLama-2, GPT3.5, 321

and GPT4x LLMs, SSP-CLT-ILP approach with 322

the same LLMs, ablations of SSP-CLT-ILP with 323

GPT4x LLM, and finally, a skyline approach em- 324

ploying few-shot in-language retrieval (using Ope- 325

nAI Ada) along with their gold labels in prompt to 326

the GPT4x. We do not embolden skyline results be- 327

cause they are not comparable with our approaches, 328

which do not use target gold labels in anyway. Our 329

observations are as follows: 330

SSP-CLT-SIM achieves gains over CLT-SIM: 331

We observe that The SSP-CLT-SIM method has 332

improved gains over CLT-SIM strategy across all 333

tasks and language families for GPT3.5 and GPT4. 334

For LLaMa-2, the increase in average precision 335

(65.6 to 70.3) was offset by a decrease in average 336
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Model Hau Ibo Kin Lug Luo Avg.
ZGUL 52.2 56 53.7 54.5 44.4 52.2
CLT-SIM (Llama-2-70b) 64.3 61.2 59.2 60.1 47.3 58.4
SSP-CLT-SIM (Llama-2-70b) 57.6 62.6 56.0 57.6 43.1 55.4
CLT-SIM (GPT-3.5-turbo) 54.5 69.2 57.8 63.7 46.4 58.3
SSP-CLT-SIM (GPT-3.5-turbo) 62.8 68.4 64.0 63.8 47.6 61.3
CLT-SIM (GPT-4-turbo) 64.7 80.8 64.6 71.0 53.3 66.9
SSP-CLT-SIM (GPT-4-turbo) 67.2 79.6 63.3 74.1 54.4 67.7
SSP-CLT-ILP (Llama-2-70b) 68.4 58 56.1 54.7 42.3 55.9
SSP-CLT-ILP (GPT-3.5) 61.1 68.9 62.1 67.1 51.4 62.1
SSP-CLT-ILP (GPT-4-turbo) 72.5 79.8 71.4 77.4 55.1 71.2
w/o Conf. thresholding 71.3 81.9 69.2 74.6 52.7 69.9
w/o Label Coverage 71.1 79.8 71.4 77.4 55.1 71
w/o both (sim-based) 70.3 81.8 68 74.8 51.9 69.4
Few-shot in-language (GPT-4-turbo) 75.5 85.9 70.7 73.6 67.2 74.6

Table 1: African NER: Ablations of SSP-CLT-ILP strategy shown for GPT-4-Turbo

Model Fo Got Gsw Avg
ZGUL 77.2 21.1 65 54.4
CLT-SIM (Llama-2-70b) 79.1 36.0 71.8 62.3
SSP-CLT-SIM (Llama-2-70b) 78.5 37.9 73.5 63.3
CLT-SIM (GPT-3.5 First Stage) 81.2 37.9 72.2 63.8
SSP-CLT-SIM (GPT-3.5) 82.4 63.2 79.4 75.0
CLT-SIM (GPT-4 First Stage) 81.3 66.5 82.3 76.7
SSP-CLT-SIM (GPT-4) 81.8 73.7 85.4 80.3
SSP-CLT-ILP (Llama-2-70b) 81.1 27.1 73.5 60.6
SSP-CLT-ILP (GPT-3.5) 83.2 54.3 79.5 72.3
SSP-CLT-ILP (GPT-4) 82.2 63.8 85.6 77.2
w/o Conf. thresholding 82.8 57 81.4 73.7
w/o Label Coverage 82.2 63.9 85.6 77.2
w/o both (sim-based) 82.4 55.8 82.3 73.5
Few-shot in-language (GPT-4) 93.5 80.7 89.9 88

Table 2: Germanic POS: Ablations of SSP-CLT-ILP strategy shown for GPT-4

Model Aym Quy Nah Gn Avg
mDeBerta100 40.4 45.5 43.4 43.4 43.2
mDeBertaCL 39.4 44.4 41.4 46.5 42.9
CLT-SIM (GPT-4-turbo) 34.7 42.9 44.9 55.1 44.4
SSP-CLT-SIM (GPT-4-turbo) 37.4 53.5 45.5 62.6 49.8
SSP-CLT-ILP (Llama-2-70b) 30.6 37.4 34.3 34.3 34.2
SSP-CLT-ILP (GPT-3.5-turbo) 42.4 48.5 41.4 47.5 45
SSP-CLT-ILP (GPT-4-turbo) 43.4 52.5 49.5 62.6 52
w/o Conf. thresh-holding 47.5 52.5 42.4 65.7 52
w/o Label Coverage 43.4 54.5 46.5 52.5 49.2
w/o both (i.e. sim-based) 40.4 45.5 44.4 66.7 49.3
Few-shot in-language (GPT-4-turbo) 43.4 56.6 51.5 61.6 53.3

Table 3: Americas NLI: Ablations of SSP-CLT-ILP strategy shown for GPT-4-Turbo
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recall (53.2 to 46.2) in african NER, explaining337

the decrease in overall F1. We also obtain gains338

in POS tagging across all languages and models.339

This demonstrates that CLT-SIM can provide de-340

cent silver labels from stage 1, which along with341

their respective in-target retrieved sentences can342

serve as effective ICL exemplars for the next stage343

to the same LLM. More detailed analysis on this344

follows in sec. 5.1.345

SSP-CLT-ILP approach is effective across the346

board: Our SSP-CLT-ILP method consistently out-347

performs supervised models (ZGUL for NER, POS,348

and DeBerta for NLI) across all three tasks, achiev-349

ing up to a 19-point F1 gain in African NER. In350

NLI, we observe a statistically significant gain of351

approximately 9 F1 points compared to the De-352

berta cross-lingual baseline. These gains carry over353

to both GPT-3.5-Turbo and LLama-2-70b models,354

highlighting the robustness of our selection algo-355

rithm beyond GPT-4x.356

Ablation analysis underscores the significance357

of confidence-thresholding and label coverage358

constraints, with their impact varying across359

tasks. Confidence-thresholding proves crucial for360

sequence-labeling tasks (NER and POS), while361

label coverage is critical for the NLI task. De-362

tailed analyses of these findings are provided363

later. Removing both components results in a pure364

similarity-based retrieval approach, using the fine-365

tuned model’s labels as silver labels for stage 2.366

This leads to a consistent performance drop across367

all three tasks (up to 4 points in POS), emphasizing368

the importance of diversity in exemplars induced369

by our ILP technique and its positive impact on370

downstream performance.371

SSP-CLT-ILP v/s SSP-CLT-SIM: We addition-372

ally compare SSP-CLT-ILP and SSP-CLT-SIM,373

finding that the average F1 performance is supe-374

rior for the ILP variant in African and Americas375

language families, but slightly inferior in the Ger-376

manic family. This discrepancy arises due to the377

notably poor performance of the fine-tuned model378

ZGUL on the specific language Got (Gothic). Con-379

sequently, utilizing ZGUL’s labels has a dispropor-380

tionately negative impact on this language. We381

defer a thorough investigation into whether GPT-4382

has encountered this language during pre-training383

to future research.384

Label coverage is crucial for NLI: We observe385

average gains of 2.8 F1 points over AmericasNLI386

task compared to the ablation that does not ensure387

label coverage as a constraint. To investigate fur-388

Model Neu. Ent. Con.
DeBertaCL 21.8 74.5 32.3
SSP-CLT-ILP 57.6 47.7 50.72
(w/o Label) 35.6 43.9 68.2

Table 4: Labelwise Recall for fine-tuned model
(DeBerta-based) and ILP variants w. and w/o Label
coverage (GPT-4-Turbo)

ther, we compute average no. of exemplars for each 389

label that’s covered in the prompt for both methods 390

alongwith their label-wise F1 scores (details in Fig. 391

2). We observe that the ‘neutral’ label is not sam- 392

pled in any of the w/o label coverage variant, while 393

exactly one ‘neutral’ label is sampled in the SSP- 394

CLT-ILP (w. label constraint). This so happens as 395

the smaller fine-tuned model i.e. DeBerta-CL has 396

poor recall (22 points) for ‘neutral’ class and hence 397

the ILP solver has tendency to not sample this la- 398

bel, unless enforced via constraint. The class-wise 399

scores for DeBertaCL, SSP-CLT-ILP and SSP-CLT- 400

ILP w/o label coverage are presented in table 4. We 401

observe a difference of 22 recall points for ‘neutral’ 402

class (57.6 vs 35.6) between the 2 ILP variants. 403

An example depicting this behaviour in terms of 404

the exemplars selected by both methods has been 405

shown in Figure 6. 406

Confidence thresholding is helpful for NER and 407

POS: We observe that, contrary to the observation 408

of label coverage being crucial in NLI, the confi- 409

dence thresholding plays the key role in sequence 410

labeling tasks NER and POS. This is validated from 411

ablation results in tables 1 and 2, wherein removing 412

confidence thresholding constraint from ILP leads 413

to 3.5 points drop for POS tagging (Germanic) and 414

1.3 points for NER. The drop is particularly signifi- 415

cant (around 7 F1 points) for Gothic (Got), showing 416

that not utilizing the confidence scores of ZGUL 417

leads to drastic drop. This is despite the fact that 418

the performance of ZGUL was already poor on Got 419

(21 F1 points), even then utilizing it’s confidence 420

scores leads to huge improvements. More insights 421

into this follows in the next point. 422

SSP-CLT-ILP effectively samples high- 423

precision exemplars: We investigate the precision 424

of the exemplars being selected by SSP-CLT-ILP 425

as well all it’s ablation variants. We compute the 426

label-wise precision of all M×N (M=8, N=no. 427

of test instances) for each target language and 428

compute their macro-average. It is observed for 429

NLI task (Fig. 2) that the macro-precision of 430

selected exemplars by SSP-CLT-ILP strategy is 431
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Figure 2: Label-wise statistics for AmericasNLI: Top row - Precision of ICL exemplars, Label-wise count per
prompt, Bottom row - Label-wise Precision, Recall and F1 results using different selection strategies (GPT-4-Turbo)

consistently higher than it’s other ablation variants,432

the least value being of w/o both (similarity-based)433

variant. This implies that the ILP is able to434

effectively sample high-precision exemplars which,435

in turn, are translated into superior F1 performance436

of SSP-CLT-ILP compared to other strategies.437

For completeness, we also showcase the exem-438

plar precision statistics for NER (label-wise) and439

POS (overall, for brevity) in Figure 3. The trends440

hold similar in the sense-that ‘w/o confidence’ and441

‘similarity-based’ variants have significantly lower442

precision than SSP-CLT-ILP. This is expected be-443

cause both the ‘w/o confidence’ and ‘similarity-444

based’ variants don’t take into account the qual-445

ity of predicted labels and are likely to sample446

sentences with incorrectly predicted labels, owing447

to high sentence similarity. This gap in precision448

of selected exemplars is translated into the down-449

stream performance, as evident in tables 1 and 2.450

On the other hand, the ‘w/o label’ variant is com-451

petitive, unlike in NLI, in terms of both exemplars’452

precision as well as downstream performance for453

sequence labeling tasks.454

5.1 Qualitative Analysis: SSP-CLT-SIM455

We present the analysis for the gains obtained456

via SSP-CLT-SIM for Germanic POS in Figure457

4. The confusion matrix difference between SSP-458

CLT-SIM and CLT-SIM suggests that the model459

misclassifies auxiliary verbs as verbs in CLT-SIM,460

Figure 3: Top:Label-wise and overall precision of se-
lected exemplars for Arican NER, Bottom: Overall pre-
cision of selected exemplars for Germanic POS
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Predicted

A
D
J

A
D
P

A
D
V

A
U
X

C
C
O
N
J

D
ET

N
O
U
N

PR
O
N

PR
O
PN

PU
N
C
T

VE
R
B

X

G
ol
d

ADJ -2 0 0 0 0 2 -5 4 0 0 1 1

ADP -2 6 -3 0 0 0 0 -3 0 0 -1 4

ADV -5 -3 28 0 1 -6 -1 -5 0 0 -6 -4

AUX 0 -1 -2 17 0 0 0 -1 -1 0 -13 1

CCONJ 0 -4 -1 0 7 0 1 -3 0 0 -1 0

DET 1 1 -4 0 0 9 0 -3 -4 0 0 0

NOUN 2 0 0 -1 0 -2 7 -3 0 0 -3 1

PRON -3 -3 -5 -1 0 2 -3 24 -4 0 -4 -2

PROPN 0 0 0 0 0 0 -2 0 -1 0 0 3

PUNCT 0 0 0 0 0 0 0 0 0 -2 0 -1

VERB 0 -1 0 4 0 -1 -15 0 0 0 15 -2

X 0 0 0 0 0 0 0 0 -1 -1 0 1

Figure 4: Difference in confusion matrices between
SSP-CLT-SIM and CLT-SIM for the POS task, summed
across all languages (tags with less than 100 instances
have been omitted). The increase in correct tags is visi-
ble along the diagonal, and misclassifications between
VERB and AUX tags / NOUN and VERB tags have also
improved.

and this is corrected in SSP-CLT-SIM. These errors461

are a consequence of the labels on the in-context462

exemplars the model receives, and not the tokens463

of the language itself.464

We highlight this via the two Swiss-German POS465

examples in Figure 5. The misclassified verbs are466

corrected by SSP-CLT-SIM, and these labels are467

again misclassified when more than half of the468

labels in the in-context exemplars are corrupted.469

6 Conclusions and Future Work470

We present a novel SSP-CLT framework for Self-471

Supervised Prompting in Cross-Lingual Transfer472

settings. Our goal is to utilize target low-resource473

language’s test instances (while not utilizing the474

gold labels) in a self-supervised fasion. We develop475

on top of Ada-002-embedding-based retrieval for476

cross-lingual prompting in stage 1, followed by in-477

language prompting in stage 2, while utilizing stage478

1 labels as stage 2 exemplars. We observe consis-479

tent gains of stage 2 over stage 1 results across 3480

LLMs - LLama-2-70b, GPT-3.5-Turbo and GPT-4x481

models. We term this method SSP-CLT-SIM.482

We next seek to utilize the smaller fine-tuned483

models for stage 1. For this purpose, we addition-484

ally leverage their prediction probabilities (based485

on logits) from stage 1 along with the Ada-002 sim-486

ilarity scores. Moreover, we enforce the coverage487

of all labels for the given task in the selected ex-488

emplars via an Integer Linear Programming (ILP)489

framework that maximizes the aggregated similar- 490

ity scores of selected exemplars, while ensuring 491

their confidence scores being higher than a thresh- 492

old (heuristically set to 90th percentile probabilty 493

score for each label), and each label being cov- 494

ered at least once. The results show consistent 495

gains of SSP-CLT-ILP compared to SSP-CLT-SIM, 496

despite incurring half the cost of LLM inference. 497

The ablations show that each component of SSP- 498

CLT-ILP is useful across tasks - Label coverage 499

being crucial for NLI and Confidence threshold- 500

ing being for NER and POS. Our detailed analysis 501

show that ILP approach is able to effectively sam- 502

ple more high-precision exemplars compared to 503

other retrieval strategies across tasks, and this, in 504

turn, results in the overall superior performance for 505

the downstream task at hand. 506

In future, we seek to extend our technique to 507

more non-trivial applications such as cross-lingual 508

generation, semantic parsing, etc. We also posit 509

that smaller fine-tuned models, when calibrated 510

properly, can result in more efficient selection of 511

exemplars to an LLM, as compared to poorly cal- 512

ibrated counterparts, in terms of downstream per- 513

formance. We leave a careful and systematic in- 514

vestigation into this hypothesis for future work. 515

Moreover, we currently cover the languages having 516

roman scripts, but we seek to extend our work for 517

non-roman script languages as well in future. 518

7 Limitations 519

We show all our results and ablations on the recent 520

state-of-the-art LLMs including GPT4. The infer- 521

ence for these LLMs is expensive, and makes the 522

model deployment infeasible. Other potential limi- 523

tations are extending our method to tasks such as 524

fact checking, in which the LLMs suffer from hal- 525

lucinations and overprediction issues. The reason 526

why we don’t use LLM logits in ILP framework is 527

because they are not openly released by OpenAI 528

and hence, there becomes a need to rely on smaller 529

fine-tuned models - which can potentially lead to 530

sub-optimal downstream performance, in case the 531

fine-tuned models are poorly calibrated. Another 532

serious implication of using LLMs for non-roman 533

script languages is unreasonably high fertility (to- 534

kens per word split) of the LLM tokenizers, which 535

increases the cost as well as strips the input prompt, 536

which is not desirable. 537
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A Implementation and Hyperparameter723

Details724

We use Azure OpenAI service 2 for all experiments725

involving GPT-3x and GPT-4x models. LLama-2-726

70b has been inferred on AMD A100 node having727

8 GPUs. We set temperature as 0.0 consistently728

for all our experiments, making our results repro-729

ducible. The max_tokens (max. no. of generated730

tokens) parameter is set to 1024 for POS and NER731

tasks, while 15 for the NLI. For all experiments,732

the no. of exemplars (M) is set equal to 8 for fair733

comparison.734

B Prompt details735

Prompts for the Named Entity Recognition (NER)736

and Part of Speech Tagging (POS) tasks are pre-737

sented in the tab separated format shown in B.0.2738

and B.0.3 respectively.739

Prompts for Natural Language Inference (NLI)740

initially used the framework in Ahuja et al. (2023)741

. To improve our performance, we changed the742

prompt to use Sclar et al. (2023)’s framework,743

where the authors performed an exhaustive search744

over tokens used for a prompt in order to find the745

prompt with optimal performance. This increased746

Macro F1 score by atleast 10% across all the tested747

languages. We use the same prompt across all mod-748

els used in our experiments.749

B.0.1 Natural Language Inference (NLI)750

Task Description: You are an NLP assistant751

whose purpose is to solve Natural Language752

Inference (NLI) problems. NLI is the task of753

determining the inference relation between two754

(short, ordered) texts: entailment, contradiction,755

or neutral. Answer as concisely as possible in the756

same format as the examples below:757

Input format:758

{premise}759

Question: Does this imply that {hypothesis}? Yes,760

No, or Maybe?761

Output format:762

Answer: {output}763

Verbalizer:764

Yes: Entailment765

No: Contradiction766

Maybe: Neutral767

768

2https://azure.microsoft.com/en-in/products/ai-
services/openai-service

B.0.2 Named Entity Recognition (NER) 769

Task Description: Tag the following sentence ac- 770

cording to the BIO scheme for the NER task, using 771

the tags PER (person), LOC (location), ORG (or- 772

ganization) and DATE (date). Follow the format 773

specified in the examples below: 774

Input format: 775

Sentence: w1 w2 ... wT 776

Output format: 777

Tags: 778

w1<TAB>o1 779

w2<TAB>o2 780

... 781

wT<TAB>oT 782

Verbalizer: 783

Extract the sequence of labels o1, o2, ...o3 from 784

generated response. 785

B.0.3 Part of Speech (PoS) tagging 786

Task Description: Tag the following sentence ac- 787

cording to the Part of Speech (POS) of each word. 788

The valid tags are ADJ, ADP, ADV, AUX, CCONJ, 789

DET, INTJ, NOUN, NUM, PART, PRON, PROPN, 790

PUNCT, SCONJ, SYM, VERB, X. Follow the for- 791

mat specified in the examples below: 792

Input format: 793

Sentence: w1 w2 ... wT 794

Output format: 795

Tags: 796

w1<TAB>o1 797

w2<TAB>o2 798

... 799

wT<TAB>oT 800

Verbalizer: 801

Extract the sequence of labels o1, o2, ...o3 from 802

generated response. 803

B.1 Prompts for GSW Examples 804

The base SSP-CLT-SIM prompts for the GSW ex- 805

amples highlighted in Figure 5 are given below. 806

Labels which are misclassified in the in-context 807

exemplars are coloured in red, and the AUX la- 808

bels which are to be flipped in the ablations are 809

coloured in blue. It is interesting to note that exam- 810

ples 1 and 2 are similar, as example 1 is retrieved 811

as an in-context exemplar for example 2. 812

B.1.1 Example 1 813

Tag the following sentence according to the Part 814

of Speech (POS) of each word. The valid tags 815

are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, 816

NOUN, NUM, PART, PRON, PROPN, PUNCT, 817
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Ds Gueten isch immerhin gsi , dass i ungerdesse söfu müed bi gsi , dass i ändlech ha chönne go schlofe .

CLT-SIM DET NOUN AUX ADV VERB PUNCT SCONJ PRON ADV VERB ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

SSP-CLT-SIM DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(All AUX->VERB)

DET NOUN VERB ADV VERB PUNCT SCONJ PRON ADV ADV ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

Gold DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ AUX AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

I cha der ihri Telefonnummere gä , de nimmsch mou unverbindlech Kontakt uuf .

CLT-SIM PRON VERB DET ADJ NOUN VERB PUNCT PRON VERB ADV ADJ NOUN VERB PUNCT

SSP-CLT-SIM PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(All AUX->VERB)

PRON VERB PRON PRON NOUN VERB PUNCT DET VERB ADV ADJ NOUN ADP PUNCT

Gold PRON AUX PRON DET NOUN VERB PUNCT ADV VERB ADV ADJ NOUN PART PUNCT

Figure 5: Label flips for CLT-SIM and SSP-CLT-SIM, for POS tagging in Swiss-German (gsw). Incorrect labels are
marked in red. SSP-CLT-SIM ablations include flipping half/all of the AUX labels in the prompt to VERB labels.
Gold labels are given for reference.

SCONJ, SYM, VERB, X. Follow the format818

specified in the examples below:819

Sentence: I main , das Ganze letscht Wuchä isch820

mier scho ächli iigfaarä .821

Tags:822

“‘823

I PRON824

main VERB825

, PUNCT826

das DET827

Ganze NOUN828

letscht ADJ829

Wuchä NOUN830

isch AUX831

mier PRON832

scho ADV833

ächli ADV834

iigfaarä VERB835

. PUNCT836

“‘837

Sentence: Du gsehsch uus , wi wenn de nöime no838

hättisch z trinken übercho .839

Tags:840

“‘841

Du PRON842

gsehsch VERB843

uus PRON844

, PUNCT845

wi SCONJ846

wenn SCONJ847

de DET848

nöime ADJ849

no ADV850

hättisch AUX851

z PART852

trinken VERB853

übercho VERB854

. PUNCT 855

“‘ 856

Sentence: Dir weit mer doch nid verzöue , di 857

Wäutsche heige vo eim Tag uf en anger ufghört 858

Chuttlen ässe . 859

Tags: 860

“‘ 861

Dir PRON 862

weit VERB 863

mer PRON 864

doch ADV 865

nid ADV 866

verzöue VERB 867

, PUNCT 868

di DET 869

Wäutsche NOUN 870

heige VERB 871

vo ADP 872

eim DET 873

Tag NOUN 874

uf ADP 875

en DET 876

anger ADJ 877

ufghört VERB 878

Chuttlen NOUN 879

ässe VERB 880

. PUNCT 881

“‘ 882

Sentence: es isch nämli echt usgstorbe gsi . 883

Tags: 884

“‘ 885

es PRON 886

isch AUX 887

nämli ADV 888

echt ADJ 889

usgstorbe VERB 890

gsi AUX 891
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. PUNCT892

“‘893

Sentence: Aso bini rächt uufgschmissä gsi und894

dem entschprächend fascht verzwiiflät .895

Tags:896

“‘897

Aso ADV898

bini AUX899

rächt ADV900

uufgschmissä VERB901

gsi AUX902

und CCONJ903

dem PRON904

entschprächend ADJ905

fascht ADV906

verzwiiflät VERB907

. PUNCT908

“‘909

Sentence: Der Ääschme wett nöd schaffe biin em .910

Tags:911

“‘912

Der DET913

Ääschme NOUN914

wett AUX915

nöd ADV916

schaffe VERB917

biin ADP918

em PRON919

. PUNCT920

“‘921

Sentence: Zerscht hends am Dani gsait , är söli922

dòch Hoochdütsch redä , das gängi denn grad gaar923

nöd , wenn är so redi , wiäner redi .924

Tags:925

“‘926

Zerscht ADV927

hends PRON928

am ADP929

Dani PROPN930

gsait VERB931

, PUNCT932

är PRON933

söli AUX934

dòch ADV935

Hoochdütsch ADJ936

redä VERB937

, PUNCT938

das PRON939

gängi VERB940

denn ADV941

grad ADV942

gaar ADV943

nöd ADV 944

, PUNCT 945

wenn SCONJ 946

är PRON 947

so ADV 948

redi VERB 949

, PUNCT 950

wiäner PRON 951

redi VERB 952

. PUNCT 953

“‘ 954

Sentence: Isch das e Sach gsi , bis mer se gfunge 955

hei gha . 956

Tags: 957

“‘ 958

Isch AUX 959

das PRON 960

e DET 961

Sach NOUN 962

gsi AUX 963

, PUNCT 964

bis SCONJ 965

mer PRON 966

se PRON 967

gfunge VERB 968

hei AUX 969

gha VERB 970

. PUNCT 971

“‘ 972

Sentence: Ds Gueten isch immerhin gsi , dass i 973

ungerdesse söfu müed bi gsi , dass i ändlech ha 974

chönne go schlofe . 975

Tags: 976

“‘ 977

978

B.1.2 Example 2 979

Tag the following sentence according to the Part 980

of Speech (POS) of each word. The valid tags 981

are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, 982

NOUN, NUM, PART, PRON, PROPN, PUNCT, 983

SCONJ, SYM, VERB, X. Follow the format 984

specified in the examples below: 985

Sentence: I ha ar Marie-Claire gseit , es sig mer 986

chli schlächt und i mög jetz nümm liire . 987

Tags: 988

“‘ 989

I PRON 990

ha AUX 991

ar PART 992

Marie-Claire PROPN 993

gseit VERB 994
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, PUNCT995

es PRON996

sig AUX997

mer PRON998

chli ADV999

schlächt ADJ1000

und CCONJ1001

i PRON1002

mög VERB1003

jetz ADV1004

nümm ADV1005

liire VERB1006

. PUNCT1007

“‘1008

Sentence: De Spanier hed de Kontakt vermettlet ,1009

d Rumäne sölled d Holländer ombrocht ha .1010

Tags:1011

“‘1012

De DET1013

Spanier NOUN1014

hed AUX1015

de DET1016

Kontakt NOUN1017

vermettlet VERB1018

, PUNCT1019

d DET1020

Rumäne NOUN1021

sölled AUX1022

d DET1023

Holländer PROPN1024

ombrocht VERB1025

ha AUX1026

. PUNCT1027

“‘1028

Sentence: Ds Gueten isch immerhin gsi , dass i1029

ungerdesse söfu müed bi gsi , dass i ändlech ha1030

chönne go schlofe .1031

Tags:1032

“‘1033

Ds DET1034

Gueten NOUN1035

isch AUX1036

immerhin ADV1037

gsi VERB1038

, PUNCT1039

dass SCONJ1040

i PRON1041

ungerdesse ADV1042

söfu VERB1043

müed ADJ1044

bi ADP1045

gsi VERB1046

, PUNCT 1047

dass SCONJ 1048

i PRON 1049

ändlech ADV 1050

ha AUX 1051

chönne AUX 1052

go VERB 1053

schlofe VERB 1054

. PUNCT 1055

“‘ 1056

Sentence: Isch das e Sach gsi , bis mer se gfunge 1057

hei gha . 1058

Tags: 1059

“‘ 1060

Isch AUX 1061

das PRON 1062

e DET 1063

Sach NOUN 1064

gsi AUX 1065

, PUNCT 1066

bis SCONJ 1067

mer PRON 1068

se PRON 1069

gfunge VERB 1070

hei AUX 1071

gha VERB 1072

. PUNCT 1073

“‘ 1074

Sentence: De Dialäkt muess zu de Gschecht und 1075

zum Inhaut vonere Werbig passe . 1076

Tags: 1077

“‘ 1078

De DET 1079

Dialäkt NOUN 1080

muess AUX 1081

zu ADP 1082

de DET 1083

Gschecht NOUN 1084

und CCONJ 1085

zum ADP 1086

Inhaut NOUN 1087

vonere ADP 1088

Werbig NOUN 1089

passe VERB 1090

. PUNCT 1091

“‘ 1092

Sentence: Mit der Zit hani mi mit mir säuber uf ei 1093

Schriibwiis pro Wort aafo einige . 1094

Tags: 1095

“‘ 1096

Mit ADP 1097

der DET 1098
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Zit NOUN1099

hani VERB1100

mi PRON1101

mit ADP1102

mir PRON1103

säuber ADJ1104

uf ADP1105

ei DET1106

Schriibwiis NOUN1107

pro ADP1108

Wort NOUN1109

aafo VERB1110

einige DET1111

. PUNCT1112

“‘1113

Sentence: Mit all denä Wörter hani natürli nüt1114

chönä aafangä .1115

Tags:1116

“‘1117

Mit ADP1118

all DET1119

denä DET1120

Wörter NOUN1121

hani PRON1122

natürli ADV1123

nüt ADV1124

chönä VERB1125

aafangä VERB1126

. PUNCT1127

“‘1128

Sentence: Aso bini rächt uufgschmissä gsi und1129

dem entschprächend fascht verzwiiflät .1130

Tags:1131

“‘1132

Aso ADV1133

bini AUX1134

rächt ADV1135

uufgschmissä VERB1136

gsi AUX1137

und CCONJ1138

dem PRON1139

entschprächend ADJ1140

fascht ADV1141

verzwiiflät VERB1142

. PUNCT1143

“‘1144

Sentence: I cha der ihri Telefonnummere gä , de1145

nimmsch mou unverbindlech Kontakt uuf .1146

Tags:1147

“‘1148

1149

C Source and Target Languages for each 1150

task 1151

Language Family Source languages Source size
Germanic {En,Is,De} 30000
African {En,Am,Sw,Wo} 19788
Americas {En,Es} 19998

Table 5: Combined Source (Training) languages’ data
size (# Sentences)

Language Family Test languages Test size
Germanic {Fo, Got, Gsw} 100
African {Hau,Ibo,Kin,Lug,Luo} 100
Americas {Aym,Gn,Quy,Nah} 99

Table 6: Combined Source (Training) languages’ data
size (# Sentences)

Code Language
En English
Am Amharic
Sw Swahili
Wo Wolof
Hau Hausa
Ibo Igbo
Kin Kinyarwanda
Lug Luganda
Luo Luo
Is Icelandic
De German
Fo Faroese
Got Gothic
Gsw Swiss German
Es Spanish
Aym Aymara
Gn Guarani
Quy Quechua
Nah Nahuatl

Table 7: Languages and their codes
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Figure 6: Correct case of ‘Neutral’ detected by ILP
(left), while ‘w/o label’ variant misses it (right). We
note that exact one ‘neutral’ class has been sampled by
ILP, while no ‘neutral’ is sampled in ‘w/o label’ version.
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