
Under review as a conference paper at ICLR 2024

DOUBLE MOMENTUM METHOD FOR LOWER-LEVEL
CONSTRAINED BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel optimization (BO) has recently gained prominence in many machine learn-
ing applications due to its ability to capture the nested structure inherent in these
problems. Recently, many gradient-based methods have been proposed as effective
solutions for solving large-scale problems. However, current methods for the
lower-level constrained bilevel optimization (LCBO) problems lack a solid analysis
of the convergence rate. What’s worse, existing methods require either double-loop
updates, which are sometimes less efficient. To solve this problem, in this paper,
we propose a novel single-loop single-timescale method with theoretical guarantees
for LCBO problems. Specifically, we leverage the Gaussian smoothing to design
an approximation of the hypergradient. Then, using this hypergradient, we propose
a single-loop single-timescale algorithm based on the double-momentum method
and adaptive step size method. Theoretically, we demonstrate that our methods can
return a stationary point with Õ(d22ϵ

−4) iterations. In addition, experiments on two
applications also demonstrate the superiority of our proposed method.

1 INTRODUCTION

Bilevel optimization (BO) (Bard, 2013; Colson et al., 2007) plays a central role in various significant
machine learning applications including hyper-parameter optimization (Pedregosa, 2016; Bergstra
et al., 2011; Bertsekas, 1976), meta-learning (Feurer et al., 2015; Franceschi et al., 2018; Rajeswaran
et al., 2019), reinforcement learning (Hong et al., 2020; Konda & Tsitsiklis, 2000). Generally
speaking, the BO can be formulated as follows,

min
x∈X

F (x) = f(x, y∗(x)) s.t. y∗(x) = argmin
y∈Y

g(x, y), (1)

where X and Y are convex subsets in Rd1 and Rd2 , respectively. It involves a competition between
two parties or two objectives, and if one party makes its choice first, it will affect the optimal choice
of the other party.

Recently, gradient-based methods have shown great effectiveness in solving various large-scale
bilevel optimization problems, where there is no constraint in the lower-level objective, i.e., Y = Rd2 .
Specifically, Franceschi et al. (2017); Pedregosa (2016); Ji et al. (2021) proposed several double-loop
algorithms to solve the BO problems. They first apply the gradient methods to approximate the
solution to the lower-level problem and then implicit differentiable methods (Pedregosa, 2016; Ji
et al., 2021) or explicit differentiable methods (Franceschi et al., 2017) can be used to approximate
the gradient of the upper-level objective w.r.t x, namely hypergradient, to update x. However, in
some real-world applications, such as in a sequential game, the problems must be updated at the same
time Hong et al. (2020), which makes these methods unsuitable. To solve this problem, Hong et al.
(2020) propose a single-loop two-timescale method, which updates y and x alternately with stepsize
ηy and ηx, respectively, designed with different timescales as limk→∞ ηx/ηy = 0. However, due to
the nature of two-timescale updates, it incurs the sub-optimal complexity O(ϵ−5) (Chen et al., 2021).
To further improve the efficiency, Huang & Huang (2021); Khanduri et al. (2021); Chen et al. (2021);
Guo et al. (2021a) proposed single-loop single-timescale methods, where ηx/ηy is a constant. These
methods have the complexity of Õ(ϵ−4) (Õ means omitting logarithmic factors) or better (Õ(ϵ−3))
to achieve the stationary point. However, all these methods are limited to the bilevel optimization
problem with unconstrained lower-level problems and require the upper-level objective function to

1



Under review as a conference paper at ICLR 2024

Table 1: Several representative hypergradient approximation methods for the lower-level constrained
BO problem. The final column shows iteration numbers to find a stationary point ∥∇F (x)∥ ≤ ϵ
(Here d2 denotes the dimension of the lower-level variable, δ is the smoothing parameter.).

Method Reference Loop Timescale LL Constraint UL Constraint Iterations (Upper)
AiPOD (Xiao et al., 2023) Double × Affine sets Affine sets Õ(ϵ−4)
IG-AL (Tsaknakis et al., 2022) Double × Half space × ×

IAPTT-GM (Liu et al., 2021) Double × Convex set Convex set ×
RMD-PCD (Bertrand et al., 2022) Double × Norm set × ×

JaxOpt (Blondel et al., 2022) Double × Convex set × ×
DMLCBO Ours Single Single Convex set Convex set Õ(d22ϵ

−4)

be differentiable. They cannot be directly applied when constraints are present in the lower-level
optimization, i.e., Y ̸= Rd2 , as the upper-level objective function is naturally non-smooth (Xu & Zhu,
2023).

To solve the lower-level constrained bilevel optimization problem, various methods have been
proposed to approximate the hypergradient, as shown in Table 1. Specifically, Xiao et al. (2023)
reformulate the affine-constrained lower-level problem into an unconstrained problem, and then
solve the new lower-level problem and use the implicit differentiable method to approximate the
hyper-gradient. However, their convergence analysis only focuses on the affine-constrained problem
and cannot be extended to a more general case. Tsaknakis et al. (2022) solve the inner problem with
projection gradient and use the implicit differentiable method to approximate the hyper-gradient for
the half-space-constrained BO problem. However, they only give the asymptotic convergence analysis
for this special case. Since many methods of calculating the Jacobian of the projection operators have
been proposed (Martins & Astudillo, 2016; Djolonga & Krause, 2017; Blondel et al., 2020; Niculae
& Blondel, 2017; Vaiter et al., 2013; Cherkaoui et al., 2020), the explicit or implicit methods can also
be used to approximate the hypergradient in the LCBO problems, such as Liu et al. (2021); Bertrand
et al. (2020; 2022); Blondel et al. (2022). However, these methods lack solid convergence analysis.
What’s worse, these methods can not be utilized to solve the sequential game which is mentioned
above. Therefore, it is still an open challenge to design a single-loop single-timescale method with
convergence rate analysis for the lower-level constrained bilevel optimization problems.

To overcome these problems, we propose a novel single-loop single-timescale method with a conver-
gence guarantee for the lower-level constrained BO problems. Specifically, we leverage the Gaussian
smoothing to design a hypergradient. Then, using our new hypergradient, we propose a single-loop
single-timescale algorithm based on the double-momentum method and adaptive step size method
to update the lower- and upper-level variables simultaneously. Theoretically, we prove our methods
can return a stationary point with Õ(d22ϵ

−4) iterations. In addition, we compare our method with
three state-of-the-art methods for the lower-level constrained BO problems in data hypercleaning
and training data poison attack. The experimental results in these two applications demonstrate the
efficiency and effectiveness of our proposed method.

We summarized our contributions as follows.

1. We propose a new method to approximate the hypergradient using the Gaussian smoothing
for the constrained bilevel problem. Using this hypergradient, we propose a single-loop
single-timescale algorithm for the lower-level constrained BO problems, while existing
methods are all double-loop methods.

2. Existing methods for solving the lower-level constrained BO problems usually lack theoreti-
cal analysis on convergence rate. We prove our methods can return a stationary point with
Õ(d22ϵ

−4) iterations.

3. We compare our method with several state-of-the-art methods for the lower-level constrained
BO problems on two applications. The experimental results demonstrate the superiority of
our proposed method in terms of training time and accuracy.

2



Under review as a conference paper at ICLR 2024

2 PRELIMINARIES

Notations. Here we give several important notations used in this paper. ∥ · ∥ denotes the ℓ2
norm for vectors and spectral norm for matrices. Id denotes a d-dimensional identity matrix. A⊤

denotes transpose of matrix A. Given a convex set X , we define a projection operation to X as
PX (x′) = argminx∈X 1/2∥x− x′∥2.

2.1 PROBLEM SETTING OF THE LOWER-LEVEL CONSTRAINED BILEVEL OPTIMIZATION
PROBLEM

In this paper, we consider the following BO problems where both upper- and lower-level problems
have the convex constraints,

min
x∈X⊆Rd1

F (x) = f(x, y∗(x)) s.t. y∗(x) = argmin
y∈Y⊆Rd2

g(x, y). (2)

Then, we introduce several mild assumptions on the Problem (2).

Assumption 1. The upper-level function f(x, y) satisfies the following conditions:

1. ∇xf(x, y) is Lf -Lipschitz continuous w.r.t. (x, y) ∈ X ×Y and ∇yf(x, y) is Lf -Lipschitz
continuous w.r.t (x, y) ∈ X × Y , where Lf ≥ 0 .

2. For any x ∈ X and y ∈ Y , we have ∥∇yf(x, y)∥ ≤ Cfy .

Assumption 2. The lower-level function g(x, y) satisfies the following conditions:

1. For any x ∈ X and y ∈ Y , g(x, y) is twice continuously differentiable in (x, y).

2. Fix x ∈ X , ∇yg(x, y) is Lg-Lipschitz continuous w.r.t y ∈ Y for some Lg ≥ 1.

3. Fix x ∈ X , for any y ∈ Y , g(x, y) is µg-strongly-convex in y for some µg > 0.

4. ∇2
xyg(x, y) is Lgxy-Lipschitz continuous w.r.t (x, y) ∈ X × Y and ∇2

yyg(x, y) is Lgyy-
Lipschitz continuous w.r.t (x, y) ∈ X × Y , where Lgxy ≥ 0 and Lgyy ≥ 0.

5. For any x ∈ X and y ∈ Y , we have ∥∇2
xyg(x, y)∥ ≤ Cgxy .

These assumptions are commonly used in bilevel optimization problems (Ghadimi & Wang, 2018;
Hong et al., 2020; Ji et al., 2021; Chen et al., 2021; Khanduri et al., 2021; Guo et al., 2021a).

2.2 REVIEW OF UNCONSTRAINED BILEVEL OPTIMIZATION METHODS

For the upper-level objective, we can naturally derive the following gradient w.r.t x using the chain
rule (which is defined as hypergradient),

∇F (x) = ∇xf(x, y
∗(x)) + (∇y∗(x))⊤∇yf(x, y

∗(x)). (3)

Obviously, the crucial problem of obtaining the hypergradient is calculating ∇y∗(x). If the lower-
level problem is unconstrained, using the implicit differentiation method and the optimal condition
∇yg(x, y

∗(x)) = 0, it is easy to show that for a given x ∈ Rd1 , the following equation holds
(Ghadimi & Wang, 2018; Hong et al., 2020; Ji et al., 2021; Chen et al., 2021; Khanduri et al., 2021)

∇y∗(x) = −[∇2
yyg(x, y

∗(x))]−1∇2
yxg(x, y

∗(x)). (4)

Substituting ∇y∗(x) into ∇F (x), we can obtain the hypergradient. Then, we update x and y
alternately using the gradient method.

2.3 HYPERGRDIENT OF LOWER-LEVEL CONSTRAINED BILEVEL OPTIMIZATION PROBLEM
For the constrained lower-level problem, one common method is to use the projection gradient
method, which has the following optimal condition,

y∗(x) = PY(y
∗(x)− η∇yg(x, y

∗(x))), (5)

3



Under review as a conference paper at ICLR 2024

where η > 0 denotes the step-size. By Rademacher’s theorem (Federer, 1969), the projection operator
is differentiable almost everywhere. Recently, based on Assumption 3, Blondel et al. (2022); Bertrand
et al. (2020; 2022) derive the following hypergradient for the lower-level constrained BO problem,

∇F (x) =∇xf(x, y
∗(x))

− η∇2
xyg(x, y

∗(x))H⊤ [Id2
− (Id2

− η∇2
yyg(x, y

∗(x))) ·H⊤]−1 ∇yf(x, y
∗(x)), (6)

where H = ∇PY(z
∗) and z∗ = y∗(x)− η∇yg(x, y

∗(x)). Note that the gradient of the projection
operator can be easily obtained using the method in (Martins & Astudillo, 2016; Djolonga & Krause,
2017; Blondel et al., 2020; Niculae & Blondel, 2017; Vaiter et al., 2013; Cherkaoui et al., 2020).
Assumption 3. a) If projection operator has a closed-form solution and z∗ = y∗(x) −
η∇yg(x, y

∗(x)) is not on the boundary of the constraint, then PY(z
∗) is continuously differentiable

in a neighborhood of z∗. In addition, in the neighborhood of z∗, PY(z
∗) has Lipshitz continuous

gradienet with constant L. b) y∗(x) is continuously differentiable on a neighborhood of x.

In many complicated machine learning problems, the probability that z∗ falls exactly on the constraint
boundary is very low. This means that, in many problems, when we obtain the optimal solution, the
constraint may be not active or ∥∇yg(x, y)∥ > 0. In these two cases, the projection operator can be
viewed as differentiable in the neighborhood of z∗.

To derive a convergence rate of finding the stationary point, traditional methods (Khanduri et al., 2021;
Hong et al., 2020; Chen et al., 2021; Huang & Huang, 2021) need the hypergradient ∇F (x) to be
Lipschitz continuous (i.e., ∥∇F (x1)−∇F (x2)∥ ≤ LF ∥x1 − x2∥, where LF ≥ 0). This condition
can be easily obtained if the lower-level problem is unconstrained. However, if the lower-level
objective is constrained, obtaining the above condition needs the projection operator to be smooth
(i.e., ∥∇PY(z

∗
1)−∇PY(z

∗
2)∥ ≤ LP ∥z∗1 − z∗2∥, where LP ≥ 0, z∗1 = y(x1)− η∇g(x1, y

∗(x1)) and
z∗2 = y(x2)− η∇g(x2, y

∗(x2))). Obviously, most projection operators are nonsmooth (Martins &
Astudillo, 2016; Djolonga & Krause, 2017; Blondel et al., 2020; Niculae & Blondel, 2017; Vaiter
et al., 2013; Cherkaoui et al., 2020) which makes the above condition not satisfied and difficult to
obtain the convergence analysis.

3 PROPOSED METHOD

In this section, we propose a new method to approximate the hypergradient using Gaussian smoothing
that makes convergence analysis possible. Then, equipped with this hypergradient, we propose our
single-loop single-timescale method to find a stationary point of the lower-level constrained bilevel
problem.

3.1 GAUSSIAN SMOOTHING

Inspired by the strong ability of Gaussian smoothing to deal with nonsmooth problems, in this
subsection, we use this method to handle the non-smoothness of the projection operator. Given a non-
expansive projection operator (Moreau, 1965) PY(z) and a distribution P = N (0, Id2), we define
the smoothing function as PYδ(z) = Eu∼P[PY(z + δu)]. Then, we have the following proposition.
Proposition 1. Let PYδ(z) = Eu∼P[PY(z + δu)] where P = N (0, Id2

). Since that PY is non-

expansive, we have (1) ∥∇PYδ(z
∗) − ∇PY(z

∗)∥ ≤ δL

2
(d2 + 3)3/2 on the neighborhood of z∗,

where z∗ = y∗(x)− η∇yg(x, y
∗(x)), and (2) PYδ(z) is differentiable and 1-Lipschitz continuous

with the LPδ
= 2

√
d/δ-Lipschitz gradient.

Using this Gaussian smoothing function, we can approximate the hypergradient as follows,

∇Fδ(x)

=− η∇2
xyg(x, y

∗(x))∇PYδ(z
∗)⊤

[
Id2 − (Id2 − η∇2

yyg(x, y
∗(x)))∇PYδ(z

∗)⊤
]−1 ∇yf(x, y

∗(x))

+∇xf(x, y
∗(x)). (7)

where z∗ = y∗(x) − η∇yg(x, y
∗(x)). For this hypergradient estimation, we have the following

conclusion.
Lemma 1. Under Assumptions 1, 2, we have ∇Fδ(x) is Lipschitz continuous w.r.t x.

4



Under review as a conference paper at ICLR 2024

Remark 1. Lemma 1 indicates we can discuss the convergence performance on the approximated
function Fδ(x) whose gradient is ∇Fδ(x). Once we can obtain the errors between ∇Fδ(x) and
∇F (x), we can obtain the convergence result of the original problem.

3.2 APPROXIMATION OF HYPERGRADIENT

To calculate the hypergradient ∇Fδ(x), we need the optimal solution y∗(x), which is usually difficult.
What’s worse, we need to compute the matrix inverse, which has O(d32) time complexity. Thus, in
this subsection, we discuss how to calculate the hypergradient approximation in an efficient method.

As shown in (Huang & Huang, 2021; Khanduri et al., 2021; Chen et al., 2021; Hong et al., 2020),
one proper method is to use y to approximate y∗(x). Using this method, we can approximate the
hypergradient at (x, y) as follows,

∇fδ(x, y) = ∇xf(x, y)− η∇2
xyg(x, y)∇PYδ(z)

⊤ [Id2 − (Id2 − η∇2
yyg(x, y))∇PYδ(z)

⊤]−1 ∇yf(x, y).

where z = y − η∇yg(x, y)

To efficiently approximate the matrix inverse, the following well-known result can be used in our
method (Ghadimi & Wang, 2018; Meyer, 2000).
Lemma 2. Let A ∈ Rd×d be a matrix with ∥A∥ < 1, then we have (Id −A)−1 =

∑∞
i=0 A

i.

To utilize this lemma to approximate
[
Id2

− (Id2
− η∇2

yyg(x, y))∇PYδ(z)
⊤]−1

, one crucial step
is to ensure ∥(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤∥ ≤ 1. Fortunately, since the projection operator is

non-expansive, we have ∥PYδ(z)∥ ≤ 1 (See Proposition 1). Then, setting η ≤ 1

Lg
, we can easily

obtain ∥Id2
− η∇2

yyg(x, y)∥ ≤ 1. Thus, we can further approximate the hypergradient as follows,

∇̄fδ(x, y) =∇xf(x, y)− η∇2
xyg(x, y)∇PYδ(z)

⊤
Q−1∑
i=0

(
(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤)i ∇yf(x, y).

In addition, we can use the following unbiased estimator of the gradient ∇PYδ(z) to replace
∇PYδ(z),

H̄(z;u) =
1

δ
(PY(z + δu)− PY(z))u

⊤. (8)

For H̄(z;u), we have the following conclusion.

Lemma 3. We have Eu

[
H̄(z;u)

]
= ∇PYδ(z) and Eu

[∥∥H̄(z;u)−∇PYδ(z)
∥∥2] ≤ (d2 +4)2 +2.

To further reduce the complexity caused by calculating multiple Jacobian-vector products, we
can introduce an additional stochastic layer on the finite sum. Specifically, assume we have a
parameter Q > 0 and a collection of Q+2 independent samples ξ̄ := {u0, · · · , uQ−1, c(Q)}, where
c(Q) ∼ U {0, · · · , Q− 1}. Then, we can approximate the gradient as follows,

∇̄fδ(x, y; ξ̄)

=∇xf(x, y)− ηQ∇2
xyg(x, y)H̄(z;u0)⊤

c(Q)∏
i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)
∇yf(x, y), (9)

where we have used the the convention
∏0

i=1 A = I . We can conclude that the bias of the gradient
estimator ∇̄fδ(x, y; ξ̄) decays exponentially fast with Q, as summarized below:

Lemma 4. Under Assumptions 1, 2and Lemma 3, setting
1

µg
(1 − 1

d2 + 4
) ≤ η ≤ 1

µg
, for any

x ∈ Rd1 , y ∈ Y , we have
∥∥∇fδ(x, y)− E[∇̄fδ(x, y; ξ̄)]

∥∥ ≤ CgxyCfy

µg
(1−ηµg)

Q. Furthermore, the

variance of ∇̄fδ(x, y; ξ̄) is bounded as E
[∥∥∇̄fδ(x, y; ξ̄)− E

[
∇̄fδ(x, y; ξ̄)

]∥∥2] ≤ σ2
f (d2), where

σ2
f (d2) is defined in Appendix D.

5



Under review as a conference paper at ICLR 2024

Algorithm 1 DMLCBO

Input: Initialize x1 ∈ X , y1 ∈ Y , w1 = ∇̄fδ(x1, y1; ξ̄1), v1 = g(x1, y1), ηk, τ , γ, β, α, Q and η.
1: for k = 1, · · · ,K do
2: Update xk+1 = (1− ηk)xk + ηkPX (xk − γ√

∥wk∥+G0

wk).

3: Update yk+1 = (1− ηk)yk + ηkPY(yk − τ√
∥vk∥+G0

vk)

4: Calculate the hyper-gradient ∇̄fδ(xk+1, yk+1; ξ̄k+1) according to Eqn. (9).
5: Update wk+1 = (1− α)wk + α∇̄fδ(xk+1, yk+1; ξ̄k+1).
6: Update vk+1 = (1− β)vk + β∇yg(xk+1, yk+1).
7: end for

Output: xr where r ∈ {1, · · · ,K} is uniformly sampled.

3.3 DOUBLE-MOMENTUM METHOD FOR LOWER-LEVEL CONSTRAINED BILEVEL
OPTIMIZATION

Equipped with the hypergradient ∇̄fδ(x, y; ξ̄), our next endeavor is to design a single-loop single-
timescale algorithm to solve the constrained bilevel optimization problem (2). Our main idea is to
adopt the double-momentum-based method and adaptive step-size method developed in (Huang &
Huang, 2021; Khanduri et al., 2021; Shi et al., 2022). Our algorithm is summarized in Algorithm 1.
Since we use the double-momentum method to solve the lower-level constrained bilevel optimization
problem, we denote our method as DMLCBO.

Define α ∈ (0, 1) and β ∈ (0, 1). For the lower-level problem, we can utilize the following projected
gradient method with the momentum-based gradient estimator and adaptive step size to update y,

yk+1 = (1− ηk)yk + ηkPY(yk − τ√
∥vk∥+G0

vk), vk+1 = (1− β)vk + β∇yg(xk, yk),

where ηk > 0, τ > 0. G0 > 0 is used to avoid to prevent the molecule from being equal to 0. Here,
we initialize v1 = g(x1, y1). Similarly, for the upper-level problem, we can utilize the following
gradient method with the momentum-based gradient estimator and adaptive step size to update x,

xk+1 = (1− ηk)xk + ηkPX (xk − γ√
∥wk∥+G0

wk), wk+1 =(1− α)wk + α∇̄fδ(xk, yk; ξ̄k),

and we initialize w1 = ∇̄fδ(x1, y1; ξ̄1).

4 CONVERGENCE ANALYSIS
In this section, we discuss the convergence performance of our DMLCBO (All the detailed proofs are
presented in our Appendix). We follow the theoretical analysis framework in (Huang & Huang, 2021;
Huang et al., 2020; Shi et al., 2022; Khanduri et al., 2021) (For easy understanding, we also provide
a route map of the analysis in Appendix E). Before proceeding to the main results, we present an
additional assumption and a useful lemma.

Assumption 4. We have cl ≤ 1/(
√
∥vk∥+G0) ≤ cu and cl ≤ 1/(

√
∥wk∥+G0) ≤ cu.

The above assumption is used to bind the adaptive terms in our method which has been widely used
in convergence analysis (Shi et al., 2022; Guo et al., 2021b). Since the gradient estimation is bounded,
we can easily bound v and u for fixed momentum parameters. Even if the condition in Assumption
4 is not satisfied, we can also use the clipping method to make v and u bounded and finally make
Assumption 4 hold.

Then, we discuss the metric used to evaluate the convergence performance. When dealing
with constrained optimization problems, one proper method is to utilize G (xk,∇F (xk), γ̂) =
1

γ̂
(xk − PX (xk − γ̂∇F (xk))) as a metric to assess the convergence performance, where γ̂ =

γ/(
√
∥wk∥+G0). We can bound G (xk,∇F (xk), γ̂) in following lemma,

Lemma 5. Define metric G (xk,∇F (xk), γ̂) =
1

γ̂
(xk − PX (xk − γ̂∇F (xk))), and let γ̂ =

γ√
∥wk∥+G0

and L0 = max(L1(

√
d2
δ

), L2(

√
d2
δ

)) and Rk = ∇fδ(x, y) − E[∇̄fδ(x, y; ξ̄)], we

6



Under review as a conference paper at ICLR 2024

have

∥G (xk,∇F (xk), γ̂) ∥ ≤Mk, (10)

where Mk = ∥wk − ∇f(xk, yk) − Rk∥ + ∥Rk∥ + L0∥y∗(xk) − yk∥ +
1

γcl
∥xk − x̃k+1∥ +

δL

2µg
Cgxy(d2 + 3)3/2Cfy(1 +

1

µg
(1− ηµg)) and x̃k+1 = PX (xk − γ√

∥wk∥+G0

wk).

Hence, using the above lemma, we can define a new metric Mk to discuss the convergence
of our method. In the scenario where Mk tends towards zero, we can easily observe that
∥G(xk,∇F (xk), γ̂)∥ also tends towards zero.

Then, turning back to the convergence analysis, using the above assumptions and lemmas, we can
obtain the following theorem (For ease of reading, some parameter Settings are omitted here. The
specific parameters can be found in Appendix G.2):

Theorem 1. Under Assumptions 1, 2 4 and Lemma 3, setting Q =
1

µgη
ln

CgxyCfyK

µg
, ηk =

t

(m+ k)1/2
, α = c1ηk, β = c2ηk, t > 0, we have

1

K

K∑
k=1

E[
1

2
Mk] ≤

2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
+

δL

4µg
Cgxy(d2 + 3)3/2Cfy(1 +

1

µg
(1− ηµg)), (11)

where c1,c2 and G are defined in the appendix.

Remark 2. Let t = O(1), a = 0, m = O(1) and ln(m +K) = Õ(1), we have
√
G = Õ(

√
d2).

In addition, let δ = O(ϵd
−3/2
2 ). Thus, our proposed DMLCBO can converge to a stationary

point at the rate of Õ(

√
d2

K1/4
). Then, let a =

1

8
, r randomly sampled from {0, 1, · · · ,K}, and

E[
1

2
Mr] =

1

K

∑K
k=1 E[

1

2
Mk] = Õ(

√
d2

K1/4
) ≤ ϵ, we have K = Õ(

d22
ϵ4

).

5 EXPERIMENTS
In this section, we compare the performance of our method with SOTA methods for LCBO in two
applications. (Detailed settings are given in Appendix.)
5.1 BASELINES

In this paper, we compare our method with the following state-of-the-art LCBO methods.

1. PDBO. The method proposed in (Sow et al., 2022) which uses the value function method to
solve the bilevel optimization problem.

2. RMD-PCD. The method proposed in (Bertrand et al., 2022) which uses the reverse method
to calculate the hyper-gradient.

3. Approx. The method proposed in (Pedregosa, 2016) which solves a linear optimization
problem to calculate the hypergradient.

For the fairness of the experiments, we use the same rules to update x, and we implement all the
methods by Pytorch (Paszke et al., 2019). Since JaxOpt (Blondel et al., 2022) is implemented by JAX
(Bradbury et al., 2018), for a fair comparison, we use Approx with the Jacobian calculating methods
in (Martins & Astudillo, 2016; Djolonga & Krause, 2017; Blondel et al., 2020; Niculae & Blondel,
2017; Vaiter et al., 2013; Cherkaoui et al., 2020) as a replacement of JaxOpt, which uses the same
method to calculate the hypergradient. We run all the methods 10 times on a PC with four 1080Ti
GPUs.
5.2 APPLICATIONS

Data hyper-cleaning. In this experiment, we evaluate the performance of all the methods in the
application named data hyper-cleaning. In many real-world applications, the training set and testing

7



Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000
Time (s)

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(a) FashionMNIST 8vs9

0 500 1000 1500 2000
Time (s)

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(b) Gisette

0 500 1000 1500
Time (s)

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(c) MNIST 1vs7

0 500 1000 1500 2000
Time (s)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(d) CodRNA

Figure 1: Test accuracy against training time of all the methods in data hyper-cleaning.

Table 2: Test accuracy (%) with standard variance of all the methods in data hyper-cleaning. The
second column shows the test accuracy of the model directly trained from the noisy data. (Higher is
better.)

Datasets Noisy DMLCBO RMD-PCD Approx PDBO
FashionMNIST 8vs9 90.72± 2.25 96.63 ± 0.69 95.47± 0.31 95.70± 0.26 94.87± 0.06
Gisette 69.23± 3.86 86.17 ± 1.02 84.67± 0.89 86.00± 1.66 82.93± 0.05
MNIST 1vs7 91.39± 0.99 93.45 ± 1.58 92.96± 0.69 92.94± 0.69 92.66± 0.88
CodRNA 77.65± 0.27 80.86 ± 0.02 79.56± 0.18 79.29± 0.43 80.52± 0.08

set may have different distributions. To reduce the discrepancy between the two distributions, each
data point will be given an additional importance weight, which is called data hyper-clean. This
problem can be formulated as

min
x∈Rd1

∑
Dval

ℓ
(
y∗(x)⊤ai, bi

)
s.t. y∗(x) = argmin

∥y∥1≤r

∑
Dtr

[σ(x)]iℓ
(
y⊤ai, bi

)
,

where r > 0, Dtr and Dval denote the training set and validation set respectively; ai denotes the data
instance; bi ∈ {−1,+1} denotes the label of ai; σ(·) := 1/(1 + exp(−·)) is the Sigmoid function.
In this experiment, an additional ℓ1 is added to the lower-level problem to ensure the sparsity of the
model.

In this experiment, we evaluate all the methods on the datasets MNIST, FashionMNIST, CodRNA,
and Gisette. For MNIST and FashionMNIST, we choose two classes to conduct a binary classification.
In addition, we flip 30% of the labels in the training set as the noisy data. We set r = 1 for all the
datasets. For all the methods, we search the step size from the set {100, 10, 1, 10−1, 10−2, 10−3}.
Following the default setting in (Ji et al., 2021), we set Q = 3 and η = 1 for our method. In addition,
we set ηk = 1/

√
100 + k, c1 = 9 and c2 = 9 for our method. For PDBO, RMD-PCD, and Approx,

we set the inner iteration number at 3 for fair comparison. We run all the methods for 10000 iterations
and evaluate the test accuracy for every 100 iteration.

Training data poison attack. In this experiment, we evaluate the performance of all the methods in
training data poisoning. Assume we have pure training data Dtr = {ai, bi}Ntr

i=1 with several poisoned
points Dpoi = {âj , b̂i}

Npoi

j=1 assigned the targeted labels. In this task, we search the poisoned data that
can hurt the performance of the model on the targeted class. This problem can be formulated as

max
∥x∥∞≤ϵ′

1

N tar
val

∑
Dtar

val

ℓ(θ(aj ; y
∗(x)), bj) s.t. y∗(x) = argmin

∥y∥≤r

1

N

∑
Dtr

⋃
Dpoi

ℓ(θ(ai; y), bi),

where ϵ′ > 0, r > 0, N = Ntr +Npoi and Dtar
val = {aj , b̂j}

Ntar
val

j=1 denote the validation dataset with
targeted labels.

In this experiment, we evaluate all the methods on the datasets MNIST and Cifar10. For MNIST,
we set ϵ′ = 0.1 and r = 10 and we choose label 8 and 9 as the targeted label. For Cifar10, we set
ϵ′ = 0.1 and r = 10 and we choose the label 4 and 6 as the targeted label. We use a network with
two convolution layers and two fully-connected-layer layers for MNIST and a network with three

8



Under review as a conference paper at ICLR 2024

0 1000 2000 3000 4000
Time (s)

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

DMLCBO
Approx
RMD-PCD
PDBO

(a) MNIST 8

0 1000 2000 3000 4000
Time (s)

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

DMLCBO
Approx
RMD-PCD
PDBO

(b) MNIST 9

0 1000 2000 3000 4000
Time (s)

0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y

DMLCBO
Approx
RMD-PCD
PDBO

(c) Cifar10 4

0 1000 2000 3000 4000
Time (s)

0

20

40

60

80

Te
st

 A
cc

ur
ac

y

DMLCBO
Approx
RMD-PCD
PDBO

(d) Cifar10 6

Figure 2: Test accuracy against training time of all the methods in training data poison attack .

Table 3: Test accuracy (%) with standard variance of the target class in training data poison attack.
The second column shows the test accuracy of the model trained on the clean data. (Lower is better.)

Datasets Target Train DMLCBO RMD-PCD Approx PDBO
MNIST 8 98.17± 0.15 71.05 ± 6.26 72.09± 1.17 74.69± 0.23 74.71± 0.56
MNIST 9 98.07± 0.15 56.94 ± 8.44 68.81± 1.36 76.08± 0.35 76.14± 0.19
Cifar10 4 68.43± 1.29 0.48 ± 0.40 0.74± 0.96 0.66± 0.38 0.80± 1.10
Cifar10 6 77.08± 5.52 4.28± 3.20 2.56 ± 2.09 4.42± 4.99 3.50± 1.10

convolution layers and three fully-connected-layer layers for Cifar10, where the Relu function is used
in each layer. For all the methods, we first train the model on clean data and use it as an initialization
for the attack. Then, following the setting in (Mehra & Hamm, 2021; Shi & Gu, 2021), in each x
update iteration, we sample 200 data samples from Dtr and Dpoi and 100 data samples from Dtar

val to
perform all the methods. We run all the methods for 50 epochs. We search the step size from the
set {10, 1, 10−1, 10−2} for all the methods. Following the default setting in (Ji et al., 2021), we set
Q = 3 and η = 1. In addition, we set ηk = 1/

√
100 + k, c1 = 9 and c2 = 9 for our method. For

PDBO, RMD-PCD, and Approx, we set the inner iteration number at T = 3. We train a new model
using the clean data and the poison data every epoch and evaluate the performance of the test data
with the targeted loss.

5.3 RESULTS
We have presented the test accuracy results for all methods in Tables 2 and 3, and visualized the
testing performance as a function of training time in Figures 1 and 2. Upon closer examination of the
data presented in Tables 2 and 3, it becomes evident that our method consistently achieves superior
results when compared to alternative approaches in both of these application scenarios. One possible
reason is that using a small inner iteration number in RMD-PCD, Approx, and PDBO to solve the
lower-level problem may lead to a model with poor performance which affects the hypergradient
and the final performance of the model. Our DMLCBO sometimes has a large variance which is
caused by the large variance of ZO estimation of the Jacobian of the projection operator. From all
these results, we can conclude that our DMLCBO outperforms other methods in terms of accuracy
and efficiency.

6 CONCLUSION

In this paper, we leverage Gaussian smoothing to design a hypergradient for the lower-level con-
strained BO problem. Then, using our new hypergradient, we propose a single-loop single-timescale
algorithm based on the double-momentum method and adaptive step size method which updates the
lower- and upper-level variables simultaneously. Theoretically, we prove our methods can converge
to the stationary point with Õ(d22ϵ

−4). The experimental results in data hyper cleaning and poison
training data attack demonstrate the efficiency and effectiveness of our proposed method.

REFERENCES

Jonathan F Bard. Practical bilevel optimization: algorithms and applications. Springer Science &
Business Media, 2013.

9



Under review as a conference paper at ICLR 2024

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, pp. 2546–2554, 2011.

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, and
Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter optimization. In
International Conference on Machine Learning, pp. 810–821. PMLR, 2020.

Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaiter, Alexan-
dre Gramfort, Joseph Salmon, JA Chevalier, TB Nguyen, B Thirion, et al. Implicit differentiation
for fast hyperparameter selection in non-smooth convex learning. Journal of Machine Learning
Research, 23(149):1–43, 2022.

Dimitri P Bertsekas. On penalty and multiplier methods for constrained minimization. SIAM Journal
on Control and Optimization, 14(2):216–235, 1976.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In International Conference on Machine Learning, pp. 950–959. PMLR, 2020.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances
in Neural Information Processing Systems, 35:5230–5242, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization method.
arXiv preprint arXiv:2102.04671, 2021.

Hamza Cherkaoui, Jeremias Sulam, and Thomas Moreau. Learning to solve tv regularised problems
with unrolled algorithms. Advances in Neural Information Processing Systems, 33:11513–11524,
2020.

Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
operations research, 153(1):235–256, 2007.

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. Advances in
Neural Information Processing Systems, 30, 2017.

Herbert Federer. Die grundlehren der mathematischen wissenschaften, 1969.

Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian hyperparameter opti-
mization via meta-learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, pp. 1128–1135, 2015.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation methods
for nonconvex stochastic composite optimization. Mathematical Programming, 155(1):267–305,
2016.

Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-reduced
methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021a.

10

http://github.com/google/jax


Under review as a conference paper at ICLR 2024

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-average
estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021b.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020.

Feihu Huang and Heng Huang. Biadam: Fast adaptive bilevel optimization methods. arXiv preprint
arXiv:2106.11396, 2021.

Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Accelerated zeroth-order and first-order
momentum methods from mini to minimax optimization. arXiv preprint arXiv:2008.08170, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Nonasymptotic analysis and faster
algorithms. In International Conference on Machine Learning (ICML), 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in
neural information processing systems, 34:30271–30283, 2021.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014. Citeseer, 2000.

Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimization
with non-convex followers and beyond. Advances in Neural Information Processing Systems, 34:
8662–8675, 2021.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International conference on machine learning, pp. 1614–1623.
PMLR, 2016.

Akshay Mehra and Jihun Hamm. Penalty method for inversion-free deep bilevel optimization. In
Asian Conference on Machine Learning, pp. 347–362. PMLR, 2021.

Carl D Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France, 93:273–299, 1965.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17:527–566, 2017.

Vlad Niculae and Mathieu Blondel. A regularized framework for sparse and structured neural
attention. Advances in neural information processing systems, 30, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pp. 737–746. PMLR, 2016.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. arXiv preprint arXiv:1909.04630, 2019.

Wanli Shi and Bin Gu. Improved penalty method via doubly stochastic gradients for bilevel hy-
perparameter optimization. Proceedings of the AAAI Conference on Artificial Intelligence, 35
(11):9621–9629, May 2021. doi: 10.1609/aaai.v35i11.17158. URL https://ojs.aaai.org/index.php/
AAAI/article/view/17158.

Wanli Shi, Hongchang Gao, and Bin Gu. Gradient-free method for heavily constrained nonconvex
optimization. In International Conference on Machine Learning, pp. 19935–19955. PMLR, 2022.

11

https://ojs.aaai.org/index.php/AAAI/article/view/17158
https://ojs.aaai.org/index.php/AAAI/article/view/17158


Under review as a conference paper at ICLR 2024

Daouda Sow, Kaiyi Ji, Ziwei Guan, and Yingbin Liang. A constrained optimization approach to
bilevel optimization with multiple inner minima. arXiv preprint arXiv:2203.01123, 2022.

Ioannis Tsaknakis, Prashant Khanduri, and Mingyi Hong. An implicit gradient-type method for
linearly constrained bilevel problems. In ICASSP 2022 - 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5438–5442, 2022. doi: 10.1109/
ICASSP43922.2022.9747013.

Samuel Vaiter, Charles-Alban Deledalle, Gabriel Peyré, Charles Dossal, and Jalal Fadili. Local behav-
ior of sparse analysis regularization: Applications to risk estimation. Applied and Computational
Harmonic Analysis, 35(3):433–451, 2013.

Tristan Van Leeuwen and Aleksandr Y Aravkin. Variable projection for nonsmooth problems. SIAM
journal on scientific computing, 43(5):S249–S268, 2021.

Quan Xiao, Han Shen, Wotao Yin, and Tianyi Chen. Alternating projected sgd for equality-constrained
bilevel optimization. In International Conference on Artificial Intelligence and Statistics, pp. 987–
1023. PMLR, 2023.

Siyuan Xu and Minghui Zhu. Efficient gradient approximation method for constrained bilevel
optimization. arXiv preprint arXiv:2302.01970, 2023.

12



Under review as a conference paper at ICLR 2024

APPENDIX FOR “DOUBLE MOMENTUM METHOD FOR LOWER-LEVEL
CONSTRAINED BILEVEL OPTIMIZATION”

A ABLATION STUDY

Here we give the results of all the methods in hyper-clean with a larger iteration number to show the
convergence performance. For our method, we set the iteration number at 100000. The result are
presented in Figurer 3.

In this section, we conduct ablation experiments on the hyper-parameters Q and η. To control the
variables, we explore the effect of each hyper-parameter while keeping the other hyper-parameters as
default as shown in the experimental setups. We search the step size of both x and y. We present the
results in Tables 4, 5, 6, 7. We can find that increasing Q will lead to a long training time. In addition,
setting Q = 1 usually leads to the worst results, which is because setting Q = 1 means ignoring the
inverse of the Hessian matrix in our hypergradient and may not converge to our stationary point.

0 1000 2000 3000
Time (s)

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(a) FashionMNIST 8vs9

0 1000 2000 3000
Time (s)

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(b) Gisette

0 1000 2000 3000
Time (s)

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(c) MNIST 1vs7

0 500 1000 1500 2000
Time (s)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Te
st

 A
cc

ur
ac

y 
(%

)

DMLCBO
Approx
RMD-PCD
PDBO

(d) CodRNA

Figure 3: Test accuracy against training time of all the methods in data hyper-cleaning.

Table 4: Test accuracy (%) of our method with different Q in data hyper-cleaning. (Higher is better.)

Datasets Q=1 Q=3 Q=5 Q=7
FashionMNIST 8vs9 96.24± 0.85 96.63 ± 0.69 96.66± 0.21 96.45± 0.36
Gisette 86.12± 0.33 86.17± 1.02 86.45± 0.64 87.04 ± 0.35
MNIST 1vs7 93.33± 1.13 93.45± 1.58 94.54± 0.23 94.25 ± 0.25
CodRNA 80.51± 0.08 80.86 ± 0.02 80.62± 0.21 81.87± 2.37

Table 5: Test accuracy (%) of our method with different η in data hyper-cleaning. (Higher is better.)

Datasets η = 1 η = 0.1 η = 0.01
FashionMNIST 8vs9 96.63 ± 0.69 96.24± 0.17 96.35± 0.18
Gisette 86.17± 1.02 86.05± 1.36 86.34 ± 0.24
MNIST 1vs7 93.45 ± 1.58 93.25± 0.87 92.74± 1.12
CodRNA 80.86 ± 0.02 80.62± 1.12 80.55± 0.25

13



Under review as a conference paper at ICLR 2024

Table 6: Test accuracy (%) of our method with different Q in training data poison attack. (lower is
better.)

Datasets Target Q = 1 Q = 3 Q = 4 Q = 5
MNIST 8 71.60± 7.11 71.05± 6.26 71.15± 3.35 69.27 ± 3.23
MNIST 9 57.26± 1.82 56.94 ± 8.44 61.21± 4.50 58.28± 3.73
Cifar10 4 2.30± 0.69 0.48 ± 0.40 0.73± 0.54 0.63± 0.69
Cifar10 6 7.93± 1.02 4.28± 3.20 3.60± 1.70 0.55 ± 0.05

Table 7: Test accuracy (%) of our method with different η in training data poison attack. (lower is
better.)

Datasets Target η = 1 η = 0.1 η = 0.01
MNIST 8 71.05 ± 6.26 71.56± 3.39 71.22± 1.41
MNIST 9 56.94 ± 8.44 62.99± 8.93 62.56± 3.56
Cifar10 4 0.48 ± 0.40 0.49± 0.12 0.48± 0.21
Cifar10 6 4.28 ± 3.20 4.40± 1.38 4.38± 0.75

B PROOF OF PROPOSITION 1

Proof. According to Nesterov & Spokoiny (2017), for the first statement, since PY(z
∗) has Lipschitz

continuous gradient, we have

∥∇PYδ(z
∗)−∇PY(z

∗)∥

≤ 1

κδ

∫
∥PYδ(z

∗ + δu)− PYδ(z
∗)− δ⟨∇PYδ(z

∗), u⟩∥ · ∥u∥e
−
1

2
∥u∥2

du

≤2δL

κ

∫
∥u∥3e

−
1

2
∥u∥2

du

≤δL

2
(d2 + 3)3/2 (12)

In addition, since the projection operator is nonexpansive, we have

∥PYδ(z)− PYδ(z
′)∥

= ∥Eu[PY(z + δu)− PY(z
′ + δu)]∥

≤Eu[∥PY(z + δu)− PY(z
′ + δu)∥]

≤∥z − z′∥ (13)

In addition, we have

∥∇PYδ(z)−∇PYδ(z
′)∥

≤ 1

κδ

∫
∥PY(z + δu)− PY(z) + PY(z

′)− PY(z
′ + δu)∥ · ∥u∥e

−
1

2
∥u∥2

du

≤ 1

κδ

∫
(∥PY(z + δu)− PY(z

′ + δu)∥+ ∥PY(z
′)− PY(z)∥) ∥u∥e

−
1

2
∥u∥2

du

≤ 2

κδ
∥z − z′∥

∫
∥u∥e

−
1

2
∥u∥2

du

=
2
√
d2
δ

∥z − z′∥ (14)

14



Under review as a conference paper at ICLR 2024

C PROOF OF LEMMA 3

Proof. From Nesterov & Spokoiny (2017), we can easily obtain Eu

[
H̄(z;u)

]
= ∇PYδ(z). In

addition, we have
Eu

[
∥H̄(z;u)∥2

]
=

1

δ2
Eu

[
∥PY(z + δu)− PY(z)∥2∥u∥2

]
≤Eu

[
∥u∥4

]
≤(d2 + 4)2 (15)

Then, we can easily obtain

Eu

[∥∥H̄(z;u)−∇PYδ(z)
∥∥2] ≤ 2Eu

[∥∥H̄(z;u)
∥∥2]+ 2Eu

[
∥∇PYδ(z)∥2

]
≤ (d2 + 4)2 + 2

(16)

D PROOF OF LEMMA 4

Proof. For convenience, define Ḡyy = Q
∏c(Q)

i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)
and Gyy =[

Id2 − (Id2 − η∇2
yyg(x, y))∇PYδ(z)

⊤]−1
. We set η ≤ 1

Lg
We have

Eξ̄[∇̄fδ(x, y; ξ̄)] = ∇xf(x, y)− η∇2
xyg(x, y)∇PYδ(z)

⊤E
[
Ḡyy

]
∇yf(x, y) (17)

We have ∥∥∇fδ(x, y)− E[∇̄fδ(x, y; ξ̄)]
∥∥

=
∥∥η∇2

xyg(x, y)∂zPYδ(z)
⊤ {E [Ḡyy

]
−Gyy

}
∇yf(x, y)

∥∥
≤ηCgxyCfy

∥∥E [Ḡyy

]
−Gyy

∥∥ (18)
where the third inequality is due to the non-expansive of the projector operation.

Due to the independency of u, c(Q), we have
E
[
Ḡyy

]
=E

Q c(Q)∏
i=1

(
(Id2 − η∇2

yyg(x, y))H̄(z;ui)⊤
)

=QEc(Q)

Eu

c(Q)∏
i=1

(
(Id2

− η∇2
yyg(x, y))H̄(z;ui)⊤

)
=QEc(Q)

[
(Id2 − η∇2

yyg(x, y))∇PYδ(z)
⊤]c(Q)

=

Q−1∑
i=0

[
(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]i (19)

In addition, we have
Gyy

=
[
Id2

− (Id2
− η∇2

yyg(x, y))∇PYδ(z)
⊤]−1

=

∞∑
i=0

[
(Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]i
=E

Q c(Q)∏
i=1

(
(Id2 − η∇2

yyg(x, y))H̄(z;ui)⊤
)+

∞∑
i=Q

[
(Id2 − η∇2

yyg(x, y))∇PYδ(z)
⊤]i

(20)

15



Under review as a conference paper at ICLR 2024

where z = y − η∇yg(x, y), which implies that

∥∥E [Ḡyy

]
− Ḡyy

∥∥
=

∥∥∥∥∥∥[(Id2
− (Id2

− η∇2
yyg(x, y))∇PYδ(z)

⊤]−1 − E

Q c(Q)∏
i=1

(
(Id2

− η∇2
yyg(x, y; ζ

i))H̄(z;ui)⊤
)∥∥∥∥∥∥

≤
∞∑

i=Q

∥∥(Id2 − η∇2
yyg(x, y))∇PYδ(z)

⊤∥∥i
≤

∞∑
i=Q

∥∥Id2 − η∇2
yyg(x, y))

∥∥i ∥∇PYδ(z)∥i

≤ 1

ηµg
(1− ηµg)

Q (21)

Thus, we have

∥∥∇fδ(x, y)− E[∇̄fδ(x, y; ξ̄)]
∥∥ ≤ CgxyCfy

µg
(1− ηµg)

Q (22)

Then, we prove the bound on the variance. we have

E
[∥∥∇̄fδ(x, y; ξ̄)− E

[
∇̄fδ(x, y; ξ̄)

]∥∥2]
=E

[∥∥η∇2
xyg(x, y)H̄(z;u0)⊤Ḡyy∇yf(x, y)− η∇2

xyg(x, y)∇PYδ(z)
⊤E[Ḡyy]∇yf(x, y)

∥∥2]
≤2η2

∥∥∇2
xyg(x, y)

∥∥2 E [∥∥H̄(z;u0)−∇PYδ(z)
∥∥2]E [∥∥Ḡyy

∥∥2] ∥∇yf(x, y)∥2

+ 2η2 ∥∇xyg(x, y)∥2 ∥∇PYδ(z)∥2 E
[∥∥Ḡyy − E[Ḡyy]

∥∥2] ∥∇yf(x, y)∥2 (23)

For the first term in the above inequality, we have

E
[∥∥H̄(z;u0)−∇PYδ(z)

∥∥2] ≤ (d2 + 4)2 + 2 (24)

For E[∥Ḡyy∥2], we have

E[∥Ḡyy∥2] =
Q−1∑
q=0

E

∥∥∥∥∥
q∏

i=1

(
(Id2 − η∇2

yyg(x, y))H̄(z;ui)⊤
)∥∥∥∥∥

2


≤
Q−1∑
q=0

((1− ηµg))
q

≤ 1

1− (1− ηµg)(d2 + 4)
(25)

where C = d2 + 4 is the bound of E[∥H̄(z;ui)∥] given in Nesterov & Spokoiny (2017) and the last

inequality is obtained by setting
1

µg
(1− 1

d2 + 4
) ≤ η ≤ 1

µg
.

16



Under review as a conference paper at ICLR 2024

We can also derive that ∥∥E [Ḡyy

]∥∥
=∥

Q−1∑
i=0

[
(Id2 − η∇2

yyg(x, y))∇PYδ(z)
⊤]i ∥

≤
Q−1∑
i=0

∥(Id2
− η∇2

yyg(x, y))∇PYδ(z)
⊤∥i

≤
Q−1∑
i=0

(1− ηµg)
i

≤ 1

ηµg
(26)

Then, we have

E
[
∥Gyy − E[Gyy]∥2

]
≤ 2

1− (1− ηµg)(d2 + 4)
+

2

η2µ2
g

(27)

Therefore, combining the above inequalities, we can bound the variance as follows,

E
[∥∥∇̄f(x, y; ξ̄)− E

[
∇̄f(x, y; ξ̄)

]∥∥2]
≤2η2C2

gxy((d2 + 4)2 + 2)C2
fy

1

1− (1− ηµg)(d2 + 4)

+ 2η2C2
gxy(

2

1− (1− ηµg)(d2 + 4)
+

2

η2µ2
g

)C2
fy (28)

That completes the proof.

E ROUTE MAP OF OUR CONVERGENCE ANALYSIS

Here we give a simple route map of our convergence analysis.

Figure 4: Route map of convergence analysis.

F LIPSCHITZ CONTINUOUSNESS OF ∇Fδ(x)

Here, we prove ∇Fδ(x) is Lipschitz continuous. We first give several useful lemmas.
Lemma 6. (Lipschitz continuous of the optimal solution to the lower-level problem.) Under
Assumptions 2, we have

∥y∗(x1)− y∗(x2)∥ ≤ Ly∥x1 − x2∥ (29)

where Ly =
Lg

µg
.

17



Under review as a conference paper at ICLR 2024

Proof. Here, we follow the proof in Van Leeuwen & Aravkin (2021). For given x1 and x2, we
have the corresponding unique optimal solutions y∗(x1) and y∗(x2). For the constrained lower-level
problem, we have the following optimal conditions

0 ∈ ∇yg(x1, y
∗(x1)) + ∂δY(y

∗(x1)), 0 ∈ ∇yg(x2, y
∗(x2)) + ∂δY(y

∗(x2)) (30)

where δY (·) is the identify function of the constriant.

For any given x̃, we have

µg∥y∗(x1)− y∗(x2)∥2 ≤ ⟨(∇yg(x̃, y
∗(x1)) + h1)− (∇yg(x̃, y

∗(x2)) + h2) , y
∗(x1)− y∗(x2)⟩

(31)

where h1 ∈ ∂δY(y
∗(x1)) and h2 ∈ ∂δY(y

∗(x2)). Make the particular choices h1 =
−∇yg(x1, y

∗(x1)) ∈ ∂δY(y
∗(x1)) and h2 = −∇yg(x2, y

∗(x2)) ∈ ∂δY(y
∗(x2)), we have

µg∥y∗(x1)− y∗(x2)∥2

≤⟨∇yg(x̃, y
∗(x1))−∇yg(x1, y

∗(x1)), y
∗(x1)− y∗(x2)⟩

+ ⟨∇yg(x2, y
∗(x2))−∇yg(x̃, y

∗(x2)), y
∗(x1)− y∗(x2)⟩ (32)

Then, setting x̃ = x1, we have

µg∥y∗(x1)− y∗(x2)∥2

≤⟨∇yg(x2, y
∗(x2))−∇yg(x1, y

∗(x2)), y
∗(x1)− y∗(x2)⟩

≤∥∇yg(x2, y
∗(x2))−∇yg(x1, y

∗(x2))∥∥y∗(x1)− y∗(x2)∥
≤Lg∥x1 − x2∥∥y∗(x1)− y∗(x2)∥ (33)

where the last inequality is due to Assumption 2. Rearrange above inequality, we have

∥y∗(x1)− y∗(x2)∥ ≤ Lg

µg
∥x1 − x2∥ (34)

That completes the proof.

Lemma 7. (Lipschitz continuous of the approximation of hypergradient on x and y.) Under
Assumptions 1, 2, ∇fδ(x, y) is Lipschitz continuous on y ∈ Y and x ∈ X , respectively, such that we
have

∥∇fδ(x, y1)−∇fδ(x, y2)∥ ≤ L1(

√
d2
δ

)∥y1 − y2∥ (35)

∥∇fδ(x1, y)−∇fδ(x2, y)∥ ≤ L2(

√
d2
δ

)∥x1 − x2∥ (36)

where L1(

√
d2
δ

) = Lf +
LgxyCfy

µg
+

CgxyCfy

µg
(
2
√
d2
δ

+ η
2
√
d2
δ

Lg) + CgxyCfy
1

ηµ2
g

(
2
√
d2
δ

+

η
2
√
d2
δ

Lg)(1−ηµg)+
Lgyy

µ2
g

+
Cgxy

µg
Lf and L2(

√
d2
δ

) = Lf +
LgxyCfy

µg
+

CgxyCfy

µg
η
2
√
d2
δ

Lg+

CgxyCfy

(
η
1

µ2
g

2
√
d2
δ

Lg(1− ηµg) +
Lgyy

µ2
g

)
+

Cgxy

µg
Lf

18



Under review as a conference paper at ICLR 2024

Proof. Using the definition of ∇fδ(x, y), z1 = y1−∇yg(x, y1) and z2 = y2−∇yg(x, y2), we have
∥∇fδ(x, y1)−∇fδ(x, y2)∥

=∥∇xf(x, y1)− η∇2
xyg(x, y1)∇PYδ(z1)

⊤ [(Id2 − (Id2 − η∇2
yyg(x, y1))∇PYδ(z1)

⊤]−1 ∇yf(x, y1)

−∇xf(x, y2) + η∇2
xyg(x, y2)∇PYδ(z2)

⊤ [(Id2 − (Id2 − η∇2
yyg(x, y2))∇PYδ(z2)

⊤]−1 ∇yf(x, y2)∥
≤∥∇xf(x, y1)−∇f(x, y2)∥

+ η∥∇2
xyg(x, y2)−∇2

xyg(x, y1)∥∥∇PYδ(z2)∥∥
[
Id2

− (Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x, y2)∥

+ η∥∇2
xyg(x, y1)∥∥∇PYδ(z2)−∇PYδ(z1)∥∥

[
Id2

− (Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x, y2)∥

+ η∥∇2
xyg(x, y1)∥∥∇PYδ(z1)∥∥

[
Id2 − (Id2 − η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1

−
[
Id2 − (Id2 − η∇2

yyg(x, y1))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x, y2)∥

+ η∥∇2
xyg(x, y1)∥∥∇PYδ(z1)∥∥

[
Id2

− (Id2
− η∇2

yyg(x, y1))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x, y2)−∇yf(x, y1)∥

(37)
We have

∥∇xf(x, y1)−∇xf(x, y2)∥ ≤ Lf∥y1 − y2∥, (38)
∥∇yf(x, y1)−∇yf(x, y2)∥ ≤ Lf∥y1 − y2∥, (39)

∥∇2
xyg(x, y2)−∇2

xyg(x, y1)∥ ≤ Lgxy∥y2 − y1∥, (40)

∥∇PYδ(z1)∥ ≤ 1, ∥∇f(x, y2)∥ ≤ Cfy, ∥∇2
xyg(x, y1)∥ ≤ Cgxy (41)

Since ∥(Id2 − η∇2
yyg(x, y2))∇PYδ(z2)

⊤∥ ≤ ∥∇PYδ(z2)∥∥Id2 − η∇2
yyg(x, y2)∥ ≤ 1 − ηµg ≤ 1

we have

∥
[
Id2

− (Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 ∥

≤ 1

1− ∥(Id2
− η∇2

yyg(x, y2))∇PYδ(z2)⊤∥

≤ 1

ηµg
(42)

∥∇PYδ(z2)−∇PYδ(z1)∥

≤2
√
d2
δ

∥z2 − z1∥

=
2
√
d2
δ

∥y2 − η∇yg(x, y2)− y1 + η∇yg(x, y1)∥

≤2
√
d2
δ

∥y2 − y1∥+ η
2
√
d2
δ

∥∇yg(x, y1)− η∇yg(x, y2)∥

≤(
2
√
d2
δ

+ η
2
√
d2
δ

Lg)∥y2 − y1∥ (43)

Using the inequality ∥H−1
2 −H−1

1 ∥ ≤ ∥H−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H−1

1 ∥∥H1 −H2∥∥H−1
2 ∥, we

have

∥
[
Id2 − (Id2 − η∇2

yyg(x, y2))∇PYδ(z2)
⊤]−1 −

[
Id2 − (Id2 − η∇2

yyg(x, y1))∇PYδ(z1)
⊤]−1 ∥

≤ 1

η2µ2
g

∥(Id2
− η∇2

yyg(x, y2))∇PYδ(z2)
⊤ − (Id2

− η∇2
yyg(x, y1))∇PYδ(z1)

⊤∥

≤ 1

η2µ2
g

∥∇PYδ(z2)−∇PYδ(z1)∥∥Id2
− η∇2

yyg(x, y2)∥

+
1

η2µ2
g

∥∇PYδ(z1)∥∥Id2
− η∇2

yyg(x, y2)− Id2
+ η∇2

yyg(x, y1)∥

≤
(

1

η2µ2
g

(
2
√
d2
δ

+ η
2
√
d2
δ

Lg)(1− ηµg) +
Lgyy

ηµ2
g

)
∥y2 − y1∥ (44)

19



Under review as a conference paper at ICLR 2024

Therefore, using the above inequalities, we obtain

∥∇fδ(x, y1)−∇fδ(x, y2∇fδ(x, y))∥

≤Lf +
LgxyCfy

µg
+

CgxyCfy

µg
(
2
√
d2
δ

+ η
2
√
d2
δ

Lg)

+ CgxyCfy

(
1

ηµ2
g

(
2
√
d2
δ

+ η
2
√
d2
δ

Lg)(1− ηµg) +
Lgyy

µ2
g

)
+

Cgxy

µg
Lf∥y2 − y1∥ (45)

For the second statement, let z1 = y −∇yg(x1, y) and z2 = y −∇yg(x2, y), we have

∥∇fδ(x1, y)−∇fδ(x2, y)∥

=∥∇xf(x1, y)− η∇2
xyg(x1, y)∇PYδ(z1)

⊤ [Id2 − (Id2 − η∇2
yyg(x1, y))∇PYδ(z1)

⊤]−1 ∇yf(x1, y)

−∇xf(x2, y) + η∇2
xyg(x2, y)∇PYδ(z2)

⊤ [Id2 − (Id2 − η∇2
yyg(x2, y))∇PYδ(z2)

⊤]−1 ∇yf(x2, y)∥
≤∥∇xf(x1, y)−∇f(x2, y)∥

+ η∥∇2
xyg(x2, y)−∇2

xyg(x1, y)∥∥∇PYδ(z2)∥∥
[
Id2

− (Id2
− η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x2, y)∥

+ η∥∇2
xyg(x1, y)∥∥∇PYδ(z2)−∇PYδ(z1)∥∥

[
Id2

− (Id2
− η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1 ∥∥∇yf(x2, y)∥

+ η∥∇2
xyg(x1, y)∥∥∇PYδ(z1)∥∥

[
Id2 − (Id2 − η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1

−
[
Id2 − (Id2 − η∇2

yyg(x1, y))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x2, y)∥

+ η∥∇2
xyg(x1, y)∥∥∇PYδ(z1)∥∥

[
Id2

− (Id2
− η∇2

yyg(x1, y))∇PYδ(z1)
⊤]−1 ∥∥∇yf(x2, y)−∇yf(x1, y)∥

(46)

We have

∥∇xf(x1, y)−∇xf(x2, y)∥ ≤ Lf∥x2 − x1∥ (47)
∥∇yf(x1, y)−∇yf(x2, y)∥ ≤ Lf∥x2 − x1∥ (48)

∥∇2
xyg(x2, y)−∇2

xyg(x1, y)∥ ≤ Lgxy∥x2 − x1∥ (49)

∥∇PYδ(z2)−∇PYδ(z1)∥

≤2
√
d2
δ

∥z2 − z1∥

=
2
√
d2
δ

∥y − η∇yg(x2, y)− y + η∇yg(x1, y)∥

≤η
2
√
d2
δ

∥∇yg(x1, y)− η∇yg(x2, y)∥

≤η
2
√
d2
δ

Lg∥x1 − x2∥ (50)

∥
[
Id2 − (Id2 − η∇2

yyg(x2, y))∇PYδ(z2)
⊤]−1 −

[
Id2 − (Id2 − η∇2

yyg(x1, y))∇PYδ(z1)
⊤]−1 ∥

≤ 1

η2µ2
g

∥(Id2 − η∇2
yyg(x1, y))∇PYδ(z1)

⊤ − (Id2 − η∇2
yyg(x2, y))∇PYδ(z2)

⊤∥

≤ 1

η2µ2
g

∥∇PYδ(z1)−∇PYδ(z2)∥∥Id2 − η∇2
yyg(x1, y)∥

+
1

η2µ2
g

∥∇PYδ(z2)∥∥Id2 − η∇2
yyg(x1, y)− Id2 + η∇2

yyg(x2, y)∥

≤
(

1

ηµ2
g

2
√
d2
δ

Lg(1− ηµg) +
Lgyy

ηµ2
g

)
∥x1 − x2∥ (51)

20



Under review as a conference paper at ICLR 2024

Therefore, we have
∥∇fδ(x1, y)−∇fδ(x2, y)∥

≤(Lf +
LgxyCfy

µg
+

CgxyCfy

µg
η
2
√
d2
δ

Lg + CgxyCfy

(
η
1

µ2
g

2
√
d2
δ

Lg(1− ηµg) +
Lgyy

µ2
g

)
+

Cgxy

µg
Lf )∥x1 − x2∥ (52)

F.1 PROOF OF LEMMA 1

Here we first give a detailed version of Lemma 1 and then give the proof.
Lemma 8. (Lipschitz continous of ∇Fδ(x).) Under Assumptions 1, 2 and Lemma 3, we have
∇Fδ(x) is Lipschitz continuous w.r.t x, such that

∥∇Fδ(x1)−∇Fδ(x2)∥ ≤ LFδ
(

√
d2
δ

)∥x1 − x2∥ (53)

where LFδ
(

√
d2
δ

) =
Lg

µg
L1(

√
d2
δ

) +L2(

√
d2
δ

), L1(

√
d2
δ

) = Lf +
LgxyCfy

µg
+

CgxyCfy

µg
(
2
√
d2
δ

+

η
2
√
d2
δ

Lg) +CgxyCfy(
1

ηµ2
g

(
2
√
d2
δ

+ η
2
√
d2
δ

Lg)(1− ηµg) +
Lgyy

µ2
g

) +
Cgxy

µg
Lf and L2(

√
d2
δ

) =

Lf +
LgxyCfy

µg
+

CgxyCfy

µg
η
2
√
d2
δ

Lg + CgxyCfy(η
1

µ2
g

2
√
d2
δ

Lg(1− ηµg) +
Lgyy

µ2
g

) +
Cgxy

µg
Lf .

Proof. We have
∥∇Fδ(x1)−∇Fδ(x2)∥

=∥∇fδ(x1, y
∗(x1))−∇fδ(x2, y

∗(x2))∥
≤∥∇fδ(x1, y

∗(x1))−∇fδ(x1, y
∗(x2))∥+ ∥fδ(x1, y

∗(x2))− fδ(x2, y
∗(x2))∥ (54)

For the first term, we have

∥∇fδ(x1, y
∗(x1))−∇fδ(x1, y

∗(x2))∥ ≤ L1(

√
d2
δ

)∥y∗(x1)− y∗(x2)∥ ≤ Lg

µg
L1(

√
d2
δ

)∥x1 − x2∥

(55)

Thus, we have

∥∇Fδ(x1)−∇Fδ(x2)∥ ≤
(
L2(

√
d2
δ

) +
Lg

µg
L1(

√
d2
δ

)

)
∥x1 − x2∥ (56)

G DERIVING THE CONVERGENCE METRIC

In this section, we give a detailed analysis to derive the metric. Based on the Lipshitz continuous of
∇Fδ(x), we have the following lemma,
Lemma 9. Under Assumptions 1, 2 and Lemma 3, we have

∥∇Fδ(xk)− wk∥2 ≤ 2L2
1(

√
d2
δ

)∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk∥2. (57)

Proof. We have
∥∇Fδ(xk)− wk∥2

=∥∇fδ(xk, y
∗(xk))−∇fδ(xk, yk) +∇fδ(xk, yk)− wk∥2

≤2∥∇fδ(xk, y
∗(xk))−∇fδ(xk, yk)∥2 + 2∥∇fδ(xk, yk)− wk∥2

≤2L2
1(

√
d2
δ

)∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk∥2 (58)

21



Under review as a conference paper at ICLR 2024

Then, we give the proof of Lemma 5

Proof. We have
∥G (xk,∇F (xk), γ̂) ∥

=
1

γ̂
∥xk − PX (xk − γ̂∇Fδ(xk)) + PX (xk − γ̂∇Fδ(xk))− PX (xk − γ̂∇F (xk))∥

=
1

γ̂
∥xk − PX (xk − γ̂∇Fδ(xk))∥+

1

γ̂
∥PX (xk − γ̂∇Fδ(xk))− PX (xk − γ̂∇F (xk))∥

≤ 1

γ̂
∥xk − PX (xk − γ̂∇Fδ(xk))∥+ ∥∇Fδ(xk)−∇F (xk)∥

(59)
where the last inequality is due to the non-expansive of the projection operator.

Using Proposition 1 of Ghadimi et al. (2016), we can obtain
∥∇Fδ(xk)−∇F (xk)∥

=∥η∇2
xyg(x, y

∗(x))∇PY(z
∗)⊤

[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x)))∇PY(z

∗)⊤
]−1 ∇yf(x, y

∗(x))

− η∇2
xyg(x, y

∗(x))∇PYδ(z
∗)⊤

[
Id2 − (Id2 − η∇2

yyg(x, y
∗(x)))∇PYδ(z

∗)⊤
]−1 ∇yf(x, y

∗(x))∥

≤η∥∇2
xyg(x, y

∗(x))∥∥∇PY(z
∗)−∇PYδ(z

∗)∥∥
[
Id2 − (Id2 − η∇2

yyg(x, y
∗(x)))∇PY(z

∗)⊤
]−1 ∥∥∇yf(x, y

∗(x))∥

+ η∥∇2
xyg(x, y

∗(x))∥∥∇PYδ(z
∗)∥∥

[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x)))∇PY(z

∗)⊤
]−1

−
[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x)))∇PYδ(z

∗)⊤
]−1 ∥∥∇yf(x, y

∗(x))∥

≤ηCgxy
δL

2
(d2 + 3)3/2Cfy∥

[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x)))∇PY(z

∗)⊤
]−1 ∥

+ ηCgxyCfy∥
[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x)))∇PY(z

∗)⊤
]−1

−
[
Id2 − (Id2 − η∇2

yyg(x, y
∗(x)))∇PYδ(z

∗)⊤
]−1 ∥ (60)

Since ∥(Id2−η∇2
yyg(x, y

∗(x)))∇PY(z
∗)⊤∥ ≤ ∥∇PY(z

∗)∥∥Id2−η∇2
yyg(x, y

∗(x))∥ ≤ 1−ηµg ≤
1 we have

∥
[
(Id2

− η∇2
yyg(x, y

∗(x)))∇PY(z
∗)⊤
]−1 ∥

≤ 1

1− ∥(Id2
− η∇2

yyg(x, y
∗(x)))∇PY(z∗)⊤∥

≤ 1

ηµg
(61)

Using the inequality ∥H−1
2 −H−1

1 ∥ ≤ ∥H−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H−1

1 ∥∥H1 −H2∥∥H−1
2 ∥, we

have

∥
[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x)))∇PY(z

∗)⊤
]−1 −

[
Id2

− (Id2
− η∇2

yyg(x, y
∗(x)))∇PYδ(z

∗)⊤
]−1 ∥

≤ 1

η2µ2
g

∥(Id2 − η∇2
yyg(x, y

∗(x)))∇PY(z
∗)⊤ − (Id2 − η∇2

yyg(x, y
∗(x)))∇PYδ(z

∗)⊤∥

≤ 1

η2µ2
g

∥∇PYδ(z
∗)−∇PY(z

∗)∥∥Id2 − η∇2
yyg(x, y

∗(x))∥

≤ δL

2η2µ2
g

(d2 + 3)3/2(1− ηµg) (62)

Using the above inequalities, we have
∥G (xk,∇F (xk), γ̂) ∥

≤ 1

γ̂
∥xk − PX (xk − γ̂∇Fδ(xk))∥+

δL

2µg
Cgxy(d2 + 3)3/2Cfy(1 +

1

µg
(1− ηµg))

(63)

22



Under review as a conference paper at ICLR 2024

Let G (xk,∇Fδ(xk), γ̂) =
1

γ̂
(xk − PX (xk − γ̂∇Fδ(xk)))

∥G (xk,∇Fδ(xk), γ̂) ∥
≤∥G (xk,∇Fδ(xk), γ̂)− G(xt, wk, γ̂)∥+ ∥G(xt, wk, γ̂)∥
≤∥∇Fδ(xk)− wk∥+ ∥G(xt, wk, γ̂)∥

≤∥wk −∇f(xk, yk)−Rk∥+ ∥Rk∥2 + L0∥y∗(xk)− yk∥+
1

γcl
∥xk − x̃k+1∥. (64)

where L0 = max(L1(

√
d2
δ

), L2(

√
d2
δ

)) and Rk = ∇fδ(x, y)− E[∇̄fδ(x, y; ξ̄)].

Therefore, we have

G (xk,∇F (xk), γ̂) ≤∥wk −∇f(xk, yk)−Rk∥+ ∥Rk∥+ L0∥y∗(xk)− yk∥+
1

γcl
∥xk − x̃k+1∥

+
δL

2µg
Cgxy(d2 + 3)3/2Cfy(1 +

1

µg
(1− ηµg)). (65)

G.1 USEFULL LEMMAS IN CONVERGENCE RATE

Lemma 10. (Descent on the function value.) Under Assumptions 1, 2, and Lemma 3, let Fδ(x) be

an approximation function of F (x) and have the gradient ∇Fδ(xk), and γηk ≤ 1

2LFδ
(
d2
δ
)cl

, we

have

Fδ(xk+1) ≤ Fδ(xk) + ηkγcl∥∇Fδ(xk)− wk∥2 −
ηk
2γcl

∥x̃k+1 − xk∥2 (66)

Proof. Due to the smoothness of Fδ and x̃k+1 = PX (xk − γ√
∥wk∥+G0

wk), we have

Fδ(xk+1)

≤Fδ(xk) +∇Fδ(xk)
⊤(xk+1 − xk) +

1

2
LFδ

(

√
d2
δ

)∥xk+1 − xk∥2

=Fδ(xk) + ηk∇Fδ(xk)
⊤(x̃k+1 − xk) +

1

2
LFδ

(

√
d2
δ

)∥ηk(x̃k+1 − xk)∥2

=Fδ(xk) + ηk⟨wk, x̃k+1 − xk⟩+ ηk⟨∇Fδ(xk)− wk, x̃k+1 − xk⟩+
η2k
2
LFδ

(

√
d2
δ

)∥x̃k+1 − xk∥2

(67)

In our algorithm, we have x̃k+1 = PX (xk − γ√
∥wk∥+G0

wk) = argminx∈X
1

2
∥x − xk +

γ√
∥wk∥+G0

wk∥2. We have the following optimal condition,

⟨x̃k+1 − xk +
γ√

∥wk∥+G0

wk, x− x̃k+1⟩ ≥ 0, x ∈ X (68)

Set x = xk, we can obtain

γcl⟨wk, x̃k+1 − xk⟩ ≤
γ√

∥wk∥+G0

⟨wk, x̃k+1 − xk⟩ ≤ −∥x̃k+1 − xk∥2 (69)

Thus, we have

⟨wk, x̃k+1 − xk⟩ ≤ − 1

γcl
∥x̃k+1 − xk∥2 (70)

23



Under review as a conference paper at ICLR 2024

In addition, we can obtain
⟨∇Fδ(xk)− wk, x̃k+1 − xk⟩

≤∥∇Fδ(xk)− wk∥2∥x̃k+1 − xk∥2

≤γcl∥∇Fδ(xk)− wk∥2 +
1

4γcl
∥x̃k+1 − xk∥2 (71)

Then, setting γ ≤ 1

2LFδ
(
d2
δ
)clηk

, we can derive

Fδ(xk+1)

≤Fδ(xk) + ηkγcl∥∇Fδ(xk)− wk∥2 +
ηk
4γcl

∥x̃k+1 − xk∥2 −
ηk
γcl

∥x̃k+1 − xk∥2 +
η2k
2
LFδ

(

√
d2
δ

)∥x̃k+1 − xk∥2

≤Fδ(xk) + ηkγcl∥∇Fδ(xk)− wk∥2 −
ηk
2γcl

∥x̃k+1 − xk∥2 (72)

Lemma 11. (Error between the updates of y and the optimal solution y∗) Under Assumptions 1, 2,

4, and Lemma 3, let yk+1 = (1− ηk)yk + ηkPY(yk − τ√
∥vk∥+G0

vk), ηk ≤ 1, τ ≤ 1

6Lgcu
, we

have
∥yk+1 − y∗(xk+1)∥2

≤(1− ηkτµgcu
4

)∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2 (73)

Proof. Define ỹk+1 = PY(yk − τ√
∥vk∥+G0

vk). We have yk+1 = (1− ηk)yk + ηkỹk+1.

According to the strong convexity of g, we have
g(xk, y)

≥g(xk, yk) + ⟨∇yg(xk, yk), y − yk⟩+
µg

2
∥y − yk∥2

=g(xk, yk) + ⟨vk, y − ỹk+1⟩+ ⟨∇yg(xk, yk)− vk, y − ỹk+1⟩+ ⟨∇yg(xk, yk), ỹk+1 − yk⟩+
µg

2
∥y − yk∥2

(74)
According to the smoothness of g, we have

g(xk, ỹk+1) ≤ g(xk, yk) + ⟨∇yg(xk, yk), ỹk+1 − yk⟩+
Lg

2
∥ỹk+1 − yk∥2 (75)

Then, combining the above inequalities, we have

g(xk, y) ≥ g(xk, ỹk+1)−
Lg

2
∥ỹk+1 − yk∥2 + ⟨vk, y − ỹk+1⟩+ ⟨∇yg(xk, yk)− vk, y − ỹk+1⟩+

µg

2
∥y − yk∥2

(76)

In our Algorithm 1, we have

ỹk+1 =PY

(
yk − τ√

∥vk∥+G0

vk

)
= argmin

y∈Y

1

2

∥∥∥∥∥y − yk +
τ√

∥vk∥+G0

vk

∥∥∥∥∥
2

. (77)

Since Y is a convex set and the function
1

2

∥∥∥∥∥y − yk +
τ√

∥vk∥+G0

vk

∥∥∥∥∥
2

is convex, we have〈
ỹk+1 − yk +

τ√
∥vk∥+G0

vk, y − ỹk+1

〉
≥ 0, y ∈ Y (78)

24



Under review as a conference paper at ICLR 2024

Then we have

τcu⟨vk, y − ỹk+1⟩ ≥
τ√

∥vk∥+G0

⟨vk, y − ỹk+1⟩ ≥ ⟨ỹk+1 − yk, ỹk+1 − y⟩ (79)

Then we have

g(xk, y)

≥g(xk, ỹk+1)−
Lg

2
∥ỹk+1 − yk∥2 +

µg

2
∥y − yk∥2 + ⟨∇yg(xk, yk)− vk, y − ỹk+1⟩

+
1

τcu
⟨ỹk+1 − yk, ỹk+1 − y⟩ (80)

Let y = y∗(xk). Since g(xk, y
∗(xk)) ≤ g(xk, ỹk+1), we have

g(xk, ỹk+1) ≥ g(xk, y
∗(xk))

≥g(xk, ỹk+1)−
Lg

2
∥ỹk+1 − yk∥2 +

µg

2
∥y∗(xk)− yk∥2 + ⟨∇yg(xk, yk)− vk, y

∗(xk)− ỹk+1⟩

+
1

τcu
∥ỹk+1 − yk∥2 +

1

τcu
⟨ỹk+1 − yk, yk − y∗(xk)⟩ (81)

In addition, we have

⟨∇yg(xk, yk)− vk, y
∗(xk)− ỹk+1⟩

=⟨∇yg(xk, yk)− vk, y
∗(xk)− yk⟩+ ⟨∇yg(xk, yk)− vk, yk − ỹk+1⟩

≥ − ∥∇yg(xk, yk)− vk∥∥y∗(xk)− yk∥ − ∥∇yg(xk, yk)− vk∥∥yk − ỹk+1∥

≥ − 1

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥y∗(xk)− yk∥2 −

1

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥yk − ỹk+1∥2

≥− 2

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥y∗(xk)− yk∥2 −

µg

4
∥yk − ỹk+1∥2 (82)

The first inequality is due to ⟨a, b⟩ ≥ −∥a∥∥b∥ and the second inequality is due to the Young’s
inequality. We also have

∥yk+1 − y∗(xk)∥2

≤∥yk + ηk(ỹk+1 − yk)− y∗(xk)∥2

=∥yk − y∗(xk)∥2 + η2k∥ỹk+1 − yk∥2 + 2ηk⟨ỹk+1 − yk, yk − y∗(xk)⟩ (83)

Therefore, we have

⟨ỹk+1 − yk, yk − y∗(xk)⟩ ≥
1

2ηk
(∥yk+1 − y∗(xk)∥2 − ∥yk − y∗(xk)∥2 − η2k∥ỹk+1 − yk∥2)

(84)

Then, we have

0 ≥− Lg

2
∥ỹk+1 − yk∥2 +

µg

2
∥y∗(xk)− yk∥2 +

1

τcu
∥ỹk+1 − yk∥2

− 2

µg
∥∇yg(xk, yk)− vk∥2 −

µg

4
∥y∗(xk)− yk∥2 −

µg

4
∥yk − ỹk+1∥2

+
1

2ηkτcu
(∥yk+1 − y∗(xk)∥2 − ∥yk − y∗(xk)∥2 − η2k∥ỹk+1 − yk∥2) (85)

25



Under review as a conference paper at ICLR 2024

Hence we have

∥yk+1 − y∗(xk)∥2 ≤2ηkτcu(
Lg

2
− 1

τcu
+

µg

4
+

ηk
2τcu

)∥ỹk+1 − yk∥2

+ (1− µgηkτcu
2

)∥y∗(xk)− yk∥2 +
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2

≤(1− µgηkτcu
2

)∥y∗(xk)− yk∥2 +
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2

− 2ηkτcu(
1

2τcu
− 3Lg

4
)∥ỹk+1 − yk∥2

≤(1− µgηkτcu
2

)∥y∗(xk)− yk∥2 +
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 (86)

using ηk ≤ 1, µg ≤ Lg and τ ≤ 1

6Lgcu
.

Then, we have
∥yk+1 − y∗(xk+1)∥2

=∥yk+1 − y∗(xk) + y∗(xk)− y∗(xk+1)∥2

≤(1 +
ηkτµgcu

4
)∥yk+1 − y∗(xk)∥2 + (1 +

4

ηkτµgcu
)∥y∗(xk)− y∗(xk+1)∥2

≤(1 +
ηkτµgcu

4
)∥yk+1 − y∗(xk)∥2 + (1 +

4

ηkτµgcu
)L2

y∥xk − xk+1∥2

≤(1 +
ηkτµgcu

4
)(1− µgηkτcu

2
)∥y∗(xk)− yk∥2 + (1 +

ηkτµgcu
4

)
4ηkτcu
µg

∥∇yg(xk, yk)− vk∥2

− (1 +
ηkτµgcu

4
)
3ηk
4

∥ỹk+1 − yk∥2 + (1 +
4

ηkτµgcu
)L2

y∥xk − xk+1∥2 (87)

Since ηk ≤ 1, µg ≤ Lg and τ ≤ 1

6Lgcu
, we have τ ≤ 1

6Lgcu
≤ 1

6µgcu
and ηk ≤ 1 ≤ 1

6τLgcu
.

Then, we can obtain

(1 +
ηkτµgcu

4
)(1− µgηkτcu

2
) =1− µgηkτcu

2
+

ηkτµgcu
4

−
η2kτ

2µ2
gc

2
u

8
≤ 1− ηkτµgcu

4
(88)

−(1 +
ηkτµgcu

4
)
3ηk
4

≤− 3ηk
4

(89)

(1 +
ηkτµgcu

4
)
4ηkτcu
µg

≤25ηkτcu
6µg

(90)

(1 +
4

ηkτµgcu
)L2

y ≤
25L2

y

6ηkτµgcu
(91)

Finally, we can obtain
∥yk+1 − y∗(xk+1)∥2

≤(1− ηkτµgcu
4

)∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 +
25L2

y

6ηkτµgcu
∥xk − xk+1∥2

≤(1− ηkτµgcu
4

)∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2 (92)

26



Under review as a conference paper at ICLR 2024

Lemma 12. (Descent in the gradient estimation error.(Huang & Huang, 2021)) Under Assumptions
1, 2, 4, and Lemma 4, if α ∈ (0, 1) and β ∈ (0, 1), we have

E[∥∇fδ(xk+1, yk+1) +Rk+1 − wk+1∥2]

≤(1− α)E[∥∇fδ(xk, yk) +Rk − wk∥2] + α2σ2
f (d2) +

3

α
(∥Rk∥2 + ∥Rk+1∥2)

+
3

α
L2
0η

2
k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2) (93)

E[∥∇g(xk+1, yk+1)− vk+1∥2]

≤(1− β)E[∥∇g(xk, yk)− vk∥2] +
2L2

g

β
η2k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2) (94)

where L0 = max(L1(

√
d2
δ

), L2(

√
d2
δ

)).

G.2 PROOF OF THE CONVERGENCE RATE IN THEOREM 1

Here we first give a detailed version of Theorem 1 and then present the proof.

Theorem 2. Under Assumptions 1, 2 4 and Lemma 3, with
1

µg
(1 − 1

d2 + 4
) ≤ η ≤ 1

µg
, Q =

1

µgη
ln

CgxyCfyK

µg
, γ ≤ min{ 1

L2−a
0

,
1

4cl

(
125La

0L
2
yclηk

3τ2µ2
gc

2
u

+ (
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

)cl

) , 1} 0 < τ <

15La
0

2µgcu

(
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

) ,, m ≥ max{t2, c21t2, c22t2}, α = c1ηk, β = c2ηk,
9

2
≤ c1 ≤ m1/2

t
,

125L2
0

3µ2
g

≤ c2 ≤ m1/2

t
, L0 = max(L1(

√
d2
δ

) > 1, L2(

√
d2
δ

)), Φ1 = Fδ(x1) +
10La

0cl
τµgcu

∥y1 −

y∗(x1)∥2 + cl(∥w1 −∇̄fδ(x1, yk+1)−R1∥2 + ∥∇yg(x1, y1)− v1∥2), G =
Φ1 − Φ∗

γcl
+

17t

4K2
(m+

K)1/2 +
4

3tK2
(m+K)3/2 + (mσ2

f (d2))t
2 ln(m+K), and ηk =

t

(m+ k)1/2
, t > 0, we have

1

K

K∑
k=1

E[
1

2
Mk] ≤

2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
+

δL

4µg
Cgxy(d2 + 3)3/2Cfy(1 +

1

µg
(1− ηµg)) (95)

Proof. Setting ηk =
t

(m+ k)1/2
and m ≥ t2, we have ηk ≤ 1. Due to m ≥ (c1t)

2, we have

α = c1ηk ≤ c1t

m1/2
≤ 1 . Due to m ≥ (c2t)

2, we have β = c2ηk ≤ c2t

m1/2
≤ 1. Also, we have

c1, c2 ≤ m1/2

t
. Then using the above lemmas, we have

27



Under review as a conference paper at ICLR 2024

E[∥∇fδ(xk+1, yk+1) +Rk+1 − wk+1∥2]− E[∥∇fδ(xk, yk) +Rk − wk∥2]

≤− αE[∥∇fδ(xk, yk) +Rk − wk∥2] + α2σ2
f (d2) +

3

α
(∥Rk∥2 + ∥Rk+1∥2)

+
3

α
L2
0η

2
k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)

≤− c1ηkE[∥∇fδ(xk, yk) +Rk − wk∥2] + c21η
2
kσ

2
f (d2) +

3

c1ηk
(∥Rk∥2 + ∥Rk+1∥2)

+
3

c1
L2
0ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)

≤− 9

2
ηkE[∥∇fδ(xk, yk) +Rk − wk∥2] +

m

t2
η2kσ

2
f (d2) +

2

3ηk
(∥Rk∥2 + ∥Rk+1∥2)

+
2

3
L2
0ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2) (96)

where the last inequality holds by
9

2
≤ c1 ≤ m1/2

t
.

E[∥∇g(xk+1, yk+1)− vk+1∥2]− E[∥∇g(xk, yk)− wk∥2]

≤− βE[∥∇g(xk, yk)− vk∥2] +
2L2

g

β
η2k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)

≤− c2ηkE[∥∇g(xk, yk)− vk∥2] +
2L2

g

c2
ηk(∥x̃k − xk+1∥2 + ∥ỹk − yk+1∥2)

≤− 125L2
0

3µ2
g

ηkE[∥∇g(xk, yk)− vk∥2] +
6µ2

gL
2
g

125L2
0

ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2) (97)

where the last inequality hold by
125L2

0

3µ2
g

≤ c2 ≤ m1/2

t
.

In addition, we have

Fδ(xk+1)− Fδ(xk)

≤ηkγcl

(
2L2

1(

√
d2
δ

)∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk∥2
)
− ηk

2γcl
∥x̃k+1 − xk∥2

≤2ηkγclL
2
0∥y∗(xk)− yk∥2 + 2ηkγcl∥∇fδ(xk, yk)− wk∥2 −

ηk
2γcl

∥x̃k+1 − xk∥2

≤2ηkγclL
2
0∥y∗(xk)− yk∥2 + 4ηkγcl∥∇fδ(xk, yk)− wk −Rk∥2 + 4ηkγcl∥Rk∥2 −

ηk
2γcl

∥x̃k+1 − xk∥2

(98)

We can also have

∥yk+1 − y∗(xk+1)∥2 − ∥y∗(xk)− yk∥2

≤− ηkτµgcu
4

∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2

− 3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2 (99)

Then, we define a Lyapunov function, for any k ≥ 1,

Φk+1

=E[Fδ(xk+1) +
10La

0cl
τµgcu

∥yk+1 − y∗(xk+1)∥2 + cl(∥wk+1 − ∇̄fδ(xk+1, yk+1)−Rk+1∥2

+ ∥∇yg(xk+1, yk+1)− vk+1∥2)] (100)

28



Under review as a conference paper at ICLR 2024

We have

Φk+1 − Φk

=E[Fδ(xk+1)− Fδ(xk)] +
10La

0cl
τµcu

E[∥yk+1 − y∗(xk+1)∥2 − ∥yk − y∗(xk)∥2]

+ clE[∥wk+1 − ∇̄f(xk+1, yk+1)−Rk+1∥2 − ∥wk − ∇̄f(xk, yk)−Rk∥2]
+ clE[∥∇yg(xk+1, yk+1)− vk+1∥2 − ∥∇yg(xk, yk)− vk∥2]

≤2ηkγclL
2
0∥y∗(xk)− yk∥2 + 4ηkγcl∥∇fδ(xk, yk)− wk −Rk∥2 + 4ηkγcl∥Rk∥2 −

ηk
2γcl

∥x̃k+1 − xk∥2

+
10La

0cl
τµgcu

(−ηkτµgcu
4

∥y∗(xk)− yk∥2 +
25ηkτcu
6µg

∥∇yg(xk, yk)− vk∥2 −
3ηk
4

∥ỹk+1 − yk∥2 +
25L2

yηk

6τµgcu
∥xk − x̃k+1∥2)

+ cl(−
9

2
ηkE[∥∇fδ(xk, yk) +Rk − wk∥2] +

m

t2
η2kσ

2
f (d2) +

2

3ηk
(∥Rk∥2 + ∥Rk+1∥2)

+
2

3
L2
0ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2))

+ cl(−
125L2

0

3µ2
g

ηkE[∥∇g(xk, yk)− vk∥2] +
6µ2

gL
2
g

125L2
0

ηk(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2))

≤(2ηkγclL
2
0 −

5La
0clηk
2

)∥y∗(xk)− yk∥2 + (4ηkγcl −
9cl
2
ηk)∥∇fδ(xk, yk)− wk −Rk∥2

+ (
125La

0clηk
3µ2

g

− cl
125L2

0

3µ2
g

ηk)∥∇yg(xk, yk)− vk∥2

+

(
− ηk
2γcl

+
125La

0L
2
yclηk

3τ2µ2
gc

2
u

+ (
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

)ηkcl

)
∥x̃k+1 − xk∥2

+

(
−15La

0clηk
2τµgcu

+ (
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

)ηkcl

)
∥ỹk+1 − yk∥2

+ 4ηkγcl∥Rk∥2 +
2γcl
3ηk

(∥Rk∥2 + ∥Rk+1∥2) +
m

t2
γclη

2
kσ

2
f (d2)

≤− L2
0γclηk
2

∥y∗(xk)− yk∥2 −
γcl
2

ηk∥∇fδ(xk, yk)− wk −Rk∥2

− ηk
4γcl

∥x̃k+1 − xk∥2 + 4ηkγcl∥Rk∥2 +
2γcl
3ηk

(∥Rk∥2 + ∥Rk+1∥2)

+
m

t2
γclη

2
kσ

2
f (d2)

(101)

where the last inequality is due to γ ≤ min{ 1

L2−a
0

,
1

4cl

(
125La

0L
2
yclηk

3τ2µ2
gc

2
u

+ (
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

)cl

) , 1}

0 < τ <
15La

0

2µgcu

(
2

3
L2
0 +

6µ2
gL

2
g

125L2
0

) and L0 > 1.

Then, rearranging the above inequality, we have

γclηk
4

(
2L2

0∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk −Rk∥2 + ∥Rk∥2 +
1

γ2c2l
∥x̃k+1 − xk∥2

)
≤17

4
ηkγcl∥Rk∥2 +

2γcl
3ηk

(∥Rk∥2 + ∥Rk+1∥2) +
m

t2
γclη

2
kσ

2
f (d2) + Φk − Φk+1 (102)

29



Under review as a conference paper at ICLR 2024

Taking the average over k = 1, · · · ,K on both sides and using ηk ≥ ηK , Q =
1

µgη
ln

CgxyCfyK

µg
,

ηk =
t

(m+ k)1/2
and Φ1 = E[Fδ(x1) +

10La
0cl

τµgcu
∥y1 − y∗(x1)∥2 + cl(∥w1 − ∇̄fδ(x1, yk+1) −

R1∥2 + ∥∇yg(x1, y1)− v1∥2)], we have

1

K

K∑
k=1

E[
1

4

(
2L2

0∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk −Rk∥2 + ∥Rk∥2 +
1

γ2c2l
∥x̃k+1 − xk∥2

)
]

≤ 1

KηK

(
Φ1 − Φ∗

γcl
+

17

4K2

K∑
k=1

ηk +
4

3K2

K∑
k=1

1

ηk
+ (

m

t2
σ2
f (d2))

K∑
k=1

η2k

)

≤ 1

KηK

(
Φ1 − Φ∗

γcl
+

17

4K2

∫
t

(m+ k)1/2
+

4

3K2

∫
(m+ k)1/2

t
+ (

m

t2
σ2
f (d2))

∫
t2

m+ k

)
≤ (m+K)1/2

Kt

(
Φ1 − Φ∗

γcl
+

17t

4K2
(m+K)1/2 +

4

3tK2
(m+K)3/2 + (mσ2

f (d2))t
2 ln(m+K)

)
(103)

According to the Jesen’s inequality, we have

1

K

K∑
k=1

E[
1

2

(√
2L2

0∥y∗(xk)− yk∥+
√
2∥∇fδ(xk, yk)− wk −Rk∥+ ∥Rk∥+

1

γcl
∥x̃k+1 − xk∥

)
]

≤

(
4

K

K∑
k=1

1

4

(
2L2

0∥y∗(xk)− yk∥2 + 2∥∇fδ(xk, yk)− wk −Rk∥2 + ∥Rk∥2 +
1

γ2c2l
∥x̃k+1 − xk∥2

))1/2

≤2(m+K)1/4√
Kt

√
Φ1 − Φ∗

γcl
+

17t

4K2
(m+K)1/2 +

4

3tK2
(m+K)3/2 + (mσ2

f (d2))t
2 ln(m+K)

≤2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
(104)

where G =
Φ1 − Φ∗

γcl
+

17t

4K2
(m+K)1/2 +

4

3tK2
(m+K)3/2 +(mσ2

f (d2))t
2 ln(m+K). Finally,

we can obtain

1

K

K∑
k=1

E[
1

2
Mk] ≤

2m1/4
√
G√

Kt
+

2
√
G

(Kt)1/4
+

δL

4µg
Cgxy(d2 + 3)3/2Cfy(1 +

1

µg
(1− ηµg)).

(105)

30


	Introduction
	Preliminaries
	Problem setting of the lower-level constrained bilevel optimization problem
	Review of unconstrained bilevel optimization methods
	Hypergrdient of lower-level constrained bilevel optimization problem

	Proposed method
	Gaussian Smoothing
	 Approximation of hypergradient
	Double-momentum method for lower-level constrained bilevel optimization

	Convergence analysis
	Experiments
	Baselines
	Applications
	Results

	Conclusion
	Ablation study
	Proof of Proposition 1
	Proof of Lemma 3
	Proof of lemma 4
	Route map of our convergence analysis
	Lipschitz continuousness of F(x)
	Proof of lemma 1

	Deriving the convergence metric
	Usefull lemmas in convergence rate
	Proof of the convergence rate in Theorem 1


